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Abstract

I am trying to understand a beautiful work of Pierre Schapira [5].

Notations and Conventions

• For any set S we denote by IS the identity map S → S. For any subset A ⊂ S we denote
by 1A the characteristic function of A.
• In the sequel all manifolds will be assumed real analytic. A morphism of manifolds will
be a real analytic map between two manifolds.

Introduction

Suppose we are given a simple closed smooth curve C ↪→ R2. Suppose that for every affine
line L ⊂ R2 we know the number nC(L) of intersection points of C with L. How much
information about C can we extract from this information?

Intuitively, this knowledge ought to differentiate between different curves. Clearly, we
would like to be more specific than this, and better yet, we would like to put numbers
behind such statements. We will sketch a classical approach to this problem following the
beautiful presentation in [3, I.§2]. We begin by giving a more useful description of the
counting function nC(L).

Denote by G̃ the set of affine lines in the plane. A line L is determined by its normal
coordinates (θ, c). More precisely, the line L(θ, c) is given by the equation

x cos θ + y sin θ = c.

We deduce
G̃ ∼=

{
(θ, c) ∈ R2

}
/(θ, c) ∼ (θ + π,−c).

∗Notes for myself and whoever else is reading this footnote.
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We have a natural projection G̃ → RP1, (θ, c) 7→ θ so we can identify G̃ with the total space
of the tautological line bundle over RP1, i.e. a Möebius band. Note that G̃ is equipped with
a measure

dL = |dθdc|
classically called the kinematic measure. The group of affine motions acts transitively on
the space of affine lines and the kinematic measure is invariant under this group. Up to a
positive multiplicative constant this is the unique invariant1 Borel measure on G̃.

We have an incidence relation

I =
{

(p, L) ∈ R2 × G̃; p ∈ L
}

.

I is equipped with two natural maps

I

R2 G̃

���
π1

[[]π2

The fiber of π1 over p can be identified with the pencil of lines passing through p while the
fiber of π2 over L can be identified with the set of all points in L.

Consider the pullback to I of the characteristic function 1C . The support of π∗11C is
the set {

(p, L); p ∈ L ∩ C
}

.

The set of lines intersecting C in infinitely many points has kinematic measure zero and
we will neglect these lines. This shows that for almost all lines L the intersection of the
fiber π−1

2 (L) with the support of π∗11C is finite and can be identified with the set L ∩ C.
The integral of π∗11C along the fibers of π2, denoted by (π2)∗π∗11C is then the cardinality
nC(L) := #L ∩ C. We have thus shown that

nC(−) = (π2)∗π∗11C .

The classical Crofton fomula states that
∫

G̃
nC(L)dL = 2 length (C).

For a proof we refer to [3, I§2].
This formula shows that “averaging” the intersection count information with respect to

a geometrically significant (i.e. invariant) measure on G̃ we can obtain nontrivial geometric
information about our curve.

In this report we will describe a new kind of geometrically significant measure on the
grassmannian G̃. It is a sort of motivic measure. This requires additional regularity on
C (subanalyticity) but a clever averaging of the count function nC(L) with respect to this
measure will yield complete geometric information on C: its “shape” and “location”.

1The invariant measures on this affine grassmanian are classified in [2].
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1 Constructible functions

Suppose X is a real analytic manifold. A subset S ⊂ X is called subanalytic at x ∈ X if
there exists an open neighborhood U of x ∈ X, compact manifolds Yi, Zi, 1 ≤ i ≤ N and
morphisms

fi : Yi → X, gi : Zi → X

such that

S ∩ U = U ∩
n⋃

i=1

fi(Yi) \ gi(Zi).

If S is analytic at each point x ∈ X, one says that Z is subanalytic in X.
The subanalytic sets behave nicely with respect to the set theoretic operations. We list

below some of the most useful properties.

• If S ⊂ X is subanalytic then so is its closure, its interior, its complement and any of its
connected components. Moreover the collection of connected components is locally finite2.
• The union and the intersection of two subanalytic sets is subanalytic.
• Suppose f : X → Y is a morphism. If S ⊂ Y is subanalytic then f−1(S) is subanalytic.
If f is proper and T ⊂ X is subanalytic then so is its image f(T ) ⊂ Y .
• Every close subanalytic subset S ⊂ Y is the image of a manifold X via a proper morphism
f : X → Y .
• (Triangulation theorem) If X =

⊔
α∈A Xα is a locally finite partition of X by subanalytic

subsets then there exists a simplicial complex S and a homeomorphism t : |S| → X with
the following properties.

(i) For every simplex σ of S the image t(int |σ|) is a subanalytic submanifold of X.
(ii) The image of the interior of any simplex |σ| via t is entirely contained in a single

stratum Xα.
The pair (S, t) is called a subanalytic triangulation subordinated to the subanalytic partition⊔

α∈A Xα. In the sequel we will omit t from notations.

Suppose X is a manifold. A function f : X → Z is called constructible if it satisfies the
following two conditions.

2A family of subsets of a topological space is called locally finite if every point of the space has a
neighborhood which intersects only finitely many sets of the family.
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• For every m ∈ Z the level set f−1(m) is subanalytic.
• The family

{
f−1(m); m ∈ Z

}
is locally finite.

The properties of subanalytic sets show that the sum of two constructible functions is a
constructible function. For any open set U ⊂ X we denote by CFX(U) the Abelian group
of constructible functions

f : X → Z, supp f ⊂ U.

We set CF(X) := CFX(X). The correspondence

U → CFX(U), U
open
↪→ X

defines a soft sheaf on X which we will denote by CFX .
Using the triangulation theorem we deduce that for any constructible function f : X → Z

we can find a subanalytic triangulation (S, t) subordinated to the level sets of f and for
every simplex σ ∈ S an integer mf (σ) such that

f =
∑

σ

mf (σ)1t(|σ|).

More precisely we can define the integers mf (σ) by descending induction over dimension
via the formulæ

mf (σ) = f(σ)−
∑
τÂσ

mf (τ), (1.1)

where σ ≺ τ signifies that σ is a face of τ .
In Figure 1 we have indicated by numbers attached to the various simplices the multi-

plicities mf , when f is the characteristic function of a square, and the triangulation is as
shown.

1

1

1

1

0

0
0

0

-1

-1

-1

-1

1

0

0 0

0

Figure 1: A triangulation of a square.

For any open set U ↪→ X we denote by CFc
X(U) the subgroup of CFX(U) consisting of

constructible functions F : X → Z with compact support contained in U .

Proposition 1.1. There exists a group morphism

L : CFc(X) → Z

uniquely determined by the requirement

L(1σ) = 1,

for any regular simplex σ ↪→ X. We will denote this morphism by
∫
X .
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Proof Any constructible compactly supported function f can be written as a Z-linear
combination

f =
∑

σ

mf (σ)1σ,

where the summation is carried over a finite family of regular simplices belonging to a
triangulation subordinated to the partition of X given by the level sets of f .

∫

X
f :=

∑
σ

mf (σ)

We need to show that this integer is independent of the choice of triangulation and it suffices
to prove this in the special case when f is the characteristic function of a regular simplex.
This follows from the following more general result.

Lemma 1.2. Suppose K ⊂ X is a compact subanalytic set and S is a subanalytic triangu-
lation of X subordinated to the partition K, X \K. If

1K =
∑

σ∈S

mK(σ)1σ

then ∑
σ

mK(σ) = χ(K) = the Euler characteristic of K.

Proof of the Lemma Define

Sσ := {τ ∈ S; τ º σ} = all simplices τ which have σ as a face.

We interpret m(σ) as a function mK : S → Z and thus if we use (1.1) with f = 1K we
deduce ∫

Sσ

mK = 1, ∀σ. (1.2)

Denote by V the set of vertices (0-simplices) of our triangulation. Observe that

S =
⋃

v∈V

Sv

Using the inclusion exclusion principle we deduce that
∫

S
mK =

∑

k≥0

(−1)k
∑

v0,··· ,,vk∈V

∫

Sv0∩···∩Svk

mK .

Now observe that Sv0 ∩ · · · ∩ Svk
is non-empty if and only if v0, · · · , vk span a simplex

[v0, · · · , vk] ∈ S in which case we have

Sv0 ∩ · · · ∩ Svk
= S[v0,··· ,vk].

Hence we deduce∫

S
mK =

∑

σ∈S

(−1)dim σ

∫

Sσ

mK
(1.2)
=

∑

σ∈S

(−1)dim σ = χ(K).
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Figure 2: A triangulation of the disk

Example 1.3. (a) Denote by D the unit disk

D =
{
z ∈ C; |z| ≤ 1}.

and by D∗ the punctured disk, D∗ = D \ 0. Then

1D∗ = 1D − 1{0}
so that ∫

1D∗ =
∫
1D −

∫
1{0} = χ(D)− χ({0}) = 0 = χ(D∗)

We can confirm this using the definition of the integral. Figure 2 contains a decomposition
of 1D∗ as a linear combination of characteristic functions of simplices. We deduce that

∫
1D∗ =

∑
weights of vertices, edges and faces in Figure 2

= 0− 3 + 3 = 0

(b) Suppose S is the surface of the tetrahedron [P0P1P2P3]. Then

1S =
∑

i<j<k

1[PiPjPk] −
∑

i<j

1[PiPj ] +
∑

i

1[Pi]

so that
∫
1S = number of faces− number of edges + number of vertices = χ(S) = 2.

Remark 1.4. (a) The construction of the integral reflects the fact that the Euler charac-
teristic of compact subanalytic sets satisfies the inclusion exclusion principle

χ(A ∪B) = χ(A) + χ(B)− χ(A ∪B).

This happens if the pair (A, B) is excisive, see [6, Chap.4, Sec.6]. The special local structure
of subanalytic sets implies that any pair of subanalytic sets is excisive.
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(b) One can show that if S is a precompact subanalytic set then
∫
1S = χc(S,R),

where χc(S,R) denotes the Euler characteristic of the compactly supported Čech cohomol-
ogy with coefficients in the constant sheaf R.

Given a morphism of manifolds f : X → Y we have a pullback map

f∗ : CF(Y ) → CF(X), CF(Y ) 3 ϕ 7→ f∗(ϕ) := ϕ ◦ f : X → Z.

This induces a morphism of sheaves

f ] : f−1 CFY → CFX .

Remark 1.5. Using the adjunction isomorphism

HomZ(f−1 CFY , CFX) ∼= HomZ(CFY , f∗ CFX)

we can regard f ] as a morphism CFY → f∗ CFX . Thus, if we regard the pair (X, CFX) as
a ringed space, we deduce that a morphism of manifolds f : X → Y induces a morphism of
ringed spaces

(f, f ]) : (X, CFX) → (Y,CFY ).

Given a morphism f : X → Y and a constructible function φ : X → Z such that the
restriction of φ to every fiber φ−1(y) has compact support we can define a new function on
Y (∫

f
φ
)
(y) :=

∫

X
1f−1(y)φ“ =′′

∫

f−1(y)
φ.

We have the following nontrivial result. For a proof we refer to [1, Chap. IX], [4], or [7] in
the complex analytic case.

Theorem 1.6. For every φ ∈ CF(X) such that the restriction of f to suppφ is proper the
function

∫
f φ : Y → Z is constructible.

Remark 1.7. Theorem 1.6 is very strong. For example, it implies that, given a compact
subanalytic set K ⊂ K then for any n ∈ Z the set

{
y ∈ Y ; χ

(
K ∩ f−1(y)

) ≤ n
}

is subanalytic. Roughly speaking, the Euler characteristic of K ∩ f−1(y) ought to depend
analytically on y, except for a few glitches!
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Proposition 1.8 (Projection Formula). If f : X → Y is a proper morphism then for
every φ ∈ CF(Y ), ψ ∈ CF(Y ) we have

∫

f
f∗φ · ψ = φ

(∫

f
ψ

)
.

In particular ∫

f
f∗φ =

(∫

f
1X

)
φ

Example 1.9. Suppose X and Y are two compact Riemann surfaces and f : X → Y is a
non-constant holomorphic map

f : X → Y

Let Cf ⊂ X be the set of critical points of f and Bf ⊂ Y be the branching locus of f ,
i.e. the set of critical values. We have a constructible function ν = µf : X → Z naturally
associated to f . More precisely for every x ∈ X we define µf (x) to be the Milnor number
of f at x. This means that we can choose local coordinates z near x and w near y such that

z(x) = w(f(x)) = 0, f∗dw = zµdz.

Equivalently, this means that µf (x) + 1 is the local degree of f at x. Observe that

µf (x) 6= 0 ⇐⇒ x ∈ Cf .

We have the “motivic” Riemann-Hurwitz formula

∀φ ∈ CF(Y ),
∫

f
f∗φ =

(∫

f
f∗1Y

)
φ = (deg f −

∫

f
µf )φ. (1.3)

The first equality is the projection formula and it is tautological,
(∫

f
f∗φ

)
(y) = #f−1(y) · φ(y) =

(∫

f
f∗1Y

)
(y) · φ(y).

If we write f−1(y) = {x1, · · · , xk} then

deg f =
∑

local degrees =
k∑

i=1

(µf (xi) + 1) = k +
k∑

i=1

µf (xi)

so that

#f−1(y) = k = deg f −
k∑

i=1

µf (xi) = deg f −
(∫

f
µf

)
(y).

Given two morphisms
X0

f0−→ S, X1
f1−→ S

we define
X0 ×S X1 :=

{
(x0, x1) ∈ X0 ×X1; f0(x0) = f1(x1)

}
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Observe that
X0 ×S X1 = (f0 × f1)−1(∆S),

where ∆S denotes the diagonal of S × S. X0 ×S X1 is equipped with natural maps

X0
p0←− X0 ×S X1

p1−→ X1.

We obtain in this fashion a Cartesian square

X0 ×S X1 X1

X0 S
u

p0

wp1

u

f1

w
f0

(†)

If X0 ×S X1 is a manifold then we say that the Cartesian square is smooth. We describe
below a simple way of constructing smooth Cartesian squares. First, we need to introduce
some microlocal terminology.

The normal bundle of a submanifold Y of a manifold Z is the vector bundle TY Z → Y
defined as the quotient

0 → TY → (TZ) |Y ³ TY Z → 0.

The conormal bundle of a submanifold Y of a manifold Z is the dual of the normal bundle.
It can be defined as the subbundle T ∗Y Z of (T ∗Z) |Y defined by

(T ∗Y Z)y :=
{

ξ ∈ T ∗y Z; 〈ξ, v〉 = 0, ∀v ∈ TyY
}

.

The fiber (T ∗Y Z)y is spanned by the differentials of functions vanishing on X.
A morphism f : M → N is called clean with respect to a submanifold Y ⊂ N if

• f−1(Y ) is a submanifold X ⊂ M .
• For every x ∈ X and every ξ ∈ (T ∗XM)x there exists a smooth function ϕ defined in a
neighborhood of f(x) such that

ϕ |Y≡ 0, dM (f∗ϕ)x = ξ.

Equivalently this means that for every x ∈ X the germ of f at x is equivalent to the
germ of a linear map, i.e we can find local coordinates Φx : Ux → TxM near x and local
coordinates Ψy : Vy → TyN near y = f(x) such that f(Ux) ⊂ Vy and the diagram below is
commutative

Ux Vy

TxM TyY

wf

u

Φx

u

Ψy

w
dfx

A morphism f : M → N is called transversal to a submanifold Y ⊂ N if
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• f−1(Y ) is a submanifold X ⊂ M .
• For every x ∈ X we have

Tf(x)N = Tf(x)Y + dfx(TxM).

Observe that f : M → N is clean with respect to Y iff f−1(Y ) is a submanifold of M and
the restriction of f to f−1(Y ) is a submersion onto Y , i.e. it is transversal to every y ∈ Y .

A pair of morphisms Xj
fj−→ S, j = 0, 1 is called clean (resp. transversal) if the

morphism X0 ×X1
f0×f1−→ S × S is clean with respect to (resp. transversal to) the diagonal

∆S ⊂ S × S. We have the following implications involving Cartesian squares

transversal =⇒ clean =⇒ smooth.

We will take for granted the following deep result, [1, Chap. IX], [4] in the real case, or [7]
in the complex analytic case.

Theorem 1.10. (a) The operations f∗ and
∫
f are functorial in the sense that given a

sequence of morphisms
X

f−→ Y
g−→ Z

we have
(g ◦ f)∗ = f∗ ◦ g∗, (1.4a)
∫

g◦f
φ =

∫

g

∫

f
φ, (1.4b)

for every constructible function φ : X → Z such that g ◦ f is proper on suppφ.
(b) Given a smooth Cartesian square (†) and ψ ∈ CF(X0) such that f0 restricted to suppψ
is proper we have the base change formula

f∗1

∫

f0

ψ =
∫

p0

p∗1ψ. (1.5)

Example 1.11. We include here an elementary example which in our view illustrates the
strength of (1.4b). Suppose f : X → Y is a smooth map between two compact Riemann
surfaces. Denote by cY : Y → {pt} the collapse map. Then

cX = cY ◦ f

and in particular, for every φ ∈ CF(X) we have
∫

X
φ =

∫

cX

φ =
∫

cY

(∫

f
φ
)

=
∫

Y

(∫

f
φ
)

If we take φ = 1X = f∗(1Y ) then we deduce

χ(X) =
∫

Y

(∫

f
φ
)

(1.3)
=

∫

Y

(
deg f −

∫

f
µf )
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= deg f

∫

Y
1Y −

∫

Y

∫

f
µf

(1.4b)
= (deg f)χ(Y )−

∫

X
µf = (deg f)χ(Y )−

∑

x∈Cf

µf (x).

We have obtained the classical Riemann-Hurwitz formula

χ(X) = (deg f)χ(Y )−
∑

x∈Cf

µf (x).

2 “Motivic” Radon Transforms

A morphism between two manifolds f : X → Y is uniquely determined by its its graph

Γf ⊂ X × Y, Γf :=
{

(x, y ∈ X × Y ; y = f(x)
}

The graph is equipped with two natural morphisms

X
πX←− Γf

πY−→ Y.

Suppose for simplicity that f is proper. Then given any constructible function φ ∈ CF(X)
we set

TΓf
φ :=

∫

πY

π∗Xφ.

We have the following identity ∫

f
φ = TΓf

φ. (2.1)

To prove this notice that we have a clean Cartesian square

Γf Y

X Y

wπY

u
πX

u
IY

w
f

.

Using (1.5) we deduce ∫

f
φ = I∗Y

∫

f
φ =

∫

πY

π∗Xφ

which is exactly (2.1). Notice in passing that for every x ∈ X we have

TΓf
1{x} = 1{f(x)}

so that the transformation
TΓf

: CF(X) → CF(Y )

completely determines f . The above construction works for any locally closed subanalytic
set S ⊂ X × Y and properly supported function φ. We assume

πX is proper on the closure of S in X × Y . (∗)
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We define
TS : CFc(X) → CF(Y ), φ 7→

∫

πY

π∗Xφ =
∫

πY

1Sπ∗Xφ.

We would like to describe a situation when TS is bijective and hopefully describe a com-
putable way of finding its inverse.

Given a locally closed subanalytic set

R ⊂ Y ×X

we form the Cartesian square

S ×Y R R

X ×X

S Y

(
(
(()
p

wπR

u

πS

u

πY

w
πY

, p(s, r) = (πX(s), πX(r)). (2.2)

Assume R satisfies the following conditions

the Cartesian square (2.2) is smooth. (2.3a)

πX is proper on the closure of R in Y ×X. (2.3b)

∃µ 6= ν ∈ Z : χ(p−1(x, x′)) =
{

µ if x 6= x′

ν if x = x′ . (2.3c)

Note that condition (2.3c) is equivalent to
∫

p
1S×Y R = ν1∆X

+ µ1X×X\∆X
= (ν − µ)1∆X

+ µ1X×X . (2.4)

The fiber of p over (x, x′) is

p−1(x, x′) =
{

[(x, y), (y, x′)] ∈ S ×R
}

.

To get a feeling on the meaning of this space, we need to elaborate significance of the fiber
product S ×Y R.

It is convenient to think of S as the graph of a multivalued map F : X 99K Y ,

(x, y) ∈ S ⇐⇒ x
F−→ y.

Similarly ,we can think of R as the graph of a multivalued map G : Y 99K X. Then the
graph of G ◦ F : X → X is the image of S ×Y R via the map p. In other words

x
G◦F−→ x′ ⇐⇒ p−1(x, x′) 6= ∅.

Also we can identify the fiber p−1(x, x′) with the set of paths

x
F−→ y

G−→ x′
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We can loosely reformulate (2.4) as follows.

• The “number” of paths x
F−→ y

G−→ x is independent of x and it is the integer ν.
• The “number” of paths x

F−→ y
G−→ x′ is independent of x 6= x′ and it is the integer µ.

Theorem 2.1 (The Inversion Formula). Suppose S and R satisfy the conditions (∗),
(2.3a), (2.3b) and (2.3c). Then for every compactly supported ϕ ∈ CF(X) we have

TR ◦ TS(ϕ) = (ν − µ)ϕ + µ
(∫

X
ϕ
)
1X .

Proof Consider the following diagram

S ×Y R

S X ×X R

X Y X

�
�
��

πS

u
p

[
[
[]
πR

�
�

���

πX

[
[
[[]
πY �

�
���

πY

[
[
[[]
πX

Since the square (2.2) is smooth Cartesian we deduce from (1.5) that

TR ◦ TS(ϕ) =
∫

πX

◦ π∗Y ◦
∫

πY︸ ︷︷ ︸
◦π∗X(ϕ) =

∫

πX

◦
∫

πR

◦π∗S
︸ ︷︷ ︸

◦π∗X(ϕ)

(1.4b)
=

∫

πX◦πR

◦(πX ◦ πS)∗(ϕ)

Now look at the commutative diagram

S ×Y R

X ×X

X X

�
�
�
�

�
�
���

πX◦πS
u
p

[
[
[
[
[
[
[[]

πX◦πR

AAAAAAAD p1

�p2

⇐⇒ πX ◦ πS = p1 ◦ p, πX ◦ πR = p2 ◦ p.

We deduce
TR ◦ TS(ϕ) =

∫

p2◦p
◦(p1 ◦ p)∗(ϕ) =

∫

p2

◦
∫

p
p∗(p∗1(ϕ)).

At this point observe that for every ψ ∈ CF(X × X) we have according to the projection
formula, ∫

p
p∗ψ =

(∫

p
p∗1X×X

)

︸ ︷︷ ︸
:=K(x,x′)

ψ.
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Hence
TR ◦ TS(ϕ)(x′) =

∫

p2

K(x, x′)ϕ(x)

More precisely, this means that

TR ◦ TS(ϕ)(x′) =
∫

X
K(−, x′)ϕ(−).

Using the condition (2.4) we deduce

K(x, x′) = (ν − µ)1∆X
+ µ1X×X .

Hence ∫

X
K(−, x′)ϕ(−) = (ν − µ)φ(x′) + µ

(∫

X
ϕ
)
1X .

This concludes the proof of the Inversion Formula

Here is a beautiful application of the Inversion Formula. Let X be a n-dimensional real
vector space, Y = the Grassmanian of affine hyperplanes in X. We can describe Y as the
total space of the tautological line bundle over P(X∗) via the projection ~n : Y → P(X∗)
which associates to each affine hyperplane the hyperplane through the origin parallel to it.
For each hyperplane H we can think of ~n(H) as a unit normal to H and we can rewrite the
condition ~v ∈ ~n(H) as ~v ⊥ ~n(H).

Consider the incidence relation

I =
{

(x,H) ∈ X × Y ; x ∈ H
}

and its dual
I∗ =

{
(H, x) ∈ Y ×X; H 3 x

}
.

They satisfy conditions (∗) and (2.3b). The transformation

TI : CFc(X) → CF(Y )

is called the “motivic” Radon transform. In this case we have

I ×Y I∗ =
{

(x,H, x′); x, x′ ∈ H ∈ Y
}

.

Observe that if ~n = ~n(H) denotes a unit normal vector to a hyperplane H then

(x,H, x′) ∈ I ×Y I∗ ⇐⇒ (x′ − x) ⊥ ~n.

This shows that we have a locally trivial fibration

I ×Y I∗
π³ X × P(X∗) ∼= Rn × RPn−1,

π(x, H, x′) = (x, ~n(H)), π−1
(
x, ~n(H)

)
= ~n(H) ⊂ X.

This shows that (2.3a) is satisfied.
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In this case p−1(x, x′)= the set of planes containing x and x′. We deduce

p−1(x, x′) ∼=
{
RPn−2 if x 6= x′

RPn−1 if x = x′ ,

so that in this case we have

µ = µ(n) = χ(RPn−2) =
1
2
(1 + (−1)n), ν =

1
2
(1− (−1)n)

Observe that
ν − µ = (−1)n+1.

In this case we have

TI∗TI(ϕ) = (−1)n+1ϕ +
1
2
(1 + (−1)n)

(∫

X
ϕ)1X .

In particular, if ϕ = 1K , K compact, subanalytic then

TI∗TI(1K) = (−1)n+11K+
1
2
(1+(−1)n)χ(K)1X =

{
1K if n is odd

−1K + χ(K)1X if n is even
(2.5)

Here are two striking applications of the last formula.

Corollary 2.2. (a) Suppose C ⊂ R2 is continuous, subanalytic simple closed curve. Then if
we know the number of intersection points of C with any affine line then we can completely
determine the shape and location of C!
(b) Suppose K is a compact subanalytic set in R2n+1. Then we can completely determine
K if we know the Euler characteristics of the intersection of K with any affine hyperplane.

What’s hiding behind the curtains

There is a very deep and rich world hiding behind Theorem 1.10. Describing it fully would
require a lot more space, but I would not pass the chance to at least hint at it.

It is a deep theorem of Masaki Kashiwara that the Abelian group of constructible func-
tions on the real analytic manifold can be viewed naturally as the K-theoretic group of
“something”. This “something” is a category Db

c(X) naturally associated to X. In this
category one can add morphisms, one speak of the direct sum of two objects and one can
formulate a notion of short exact sequence of objects. We define its K-group as the Abelian
group K(Db

c(X)) spanned by the objects of Db
c(X) modulo the relations

B = A + C

for every “short exact sequence”

0 → A → B → C → 0

The objects in Db
c(X) are constructible bounded complexes of sheaves on X. More precisely,

a bounded complex of sheaves of real vector spaces

0 → Fa → Fa+1 → · · · → Fb → 0, a, b ∈ Z
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is called constructible if there exists a locally finite covering X =
⊔

i Xi by subanalytic
subsets such that for every a ≤ j ≤ b the cohomology sheaf Hj(F•) is locally constant along
each stratum Xi and for every x ∈ X the stalk Hj(F•x) is a finite dimensional vector space.

Db
c(X) is a full subcategory of the derived category of sheaves on X and as such one

can define the direct sum and “short exact sequences”3 in Db
c(X).

To a constructible complex F• one can associate a constructible function

χF• : X → Z, χF•(x) = χ(H•(F•x)) =
∑

j

(−1)j dimHj(F•x)

and this induces a map
χ− : K(Db

c(X)) → CF (X).

Kashiwara proved that this map is an isomorphism (see [1]) and that the operations f∗,
∫
f

are then induced by operations between the categories Db
c(−). This is a highly nontrivial feat

requiring a very good microlocal understanding of the behavior of constructible complexes.
The integration operation can then be interpreted as an index, more precisely the Euler
characteristic of the hypercohomology of a bounded complex.

The story does not end here. The every constructible complex F• on X one can associate
a (conic) lagrangian cycle Ch(F•) on T ∗X, the so called characteristic cycle. It depends
only on the class of F• in K(Db

c(X)) and thus it is an invariant of the Euler characteristic
function χF• . One can think of this characteristic cycle as “the graph of the differential of
χF•”. The Kashiwara index theorem states that

∫

X
χF• = ±Ch(F•) ∩ [X]

where we regard X as a lagrangian cycle of T ∗X via the zero section embedding X ↪→ T ∗X.

3These are technically distinguished triangles in a triangulated category.
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