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0. Introduction

In 1996 Meng and Taubes [16] have established a relationship between the Seiberg–
Witten invariants of a (closed) 3-manifold with b1 > 0 and the Milnor torsion.
A bit later Turaev, [29, 30], enhanced Meng–Taubes’ result, essentially identifying
the Seiberg–Witten invariant with the refined torsion he introduced earlier in [27].
In [29] Turaev raised the question of establishing a connection between these two
invariants in the remaining case, that of rational homology spheres.

Around the same time, Lim [12] succeeded in providing a combinatorial de-
scription of the Seiberg–Witten invariants of integral homology spheres. Namely,
in this case they coincide with the Casson invariant. In [19] we investigated a spe-
cial class of rational homology spheres, the lens spaces, and we proved that the
Seiberg–Witten invariants of such spaces are determined by the Casson–Walker
invariant and the Reidemeister–Turaev torsion in a very explicit fashion. In that
paper we also raised the question whether this is the case in general. Recently Mar-
colli and Wang [15] (see also the related work of Ozsváth–Szabó [23]) have shown
that the Seiberg–Witten invariants of a QHS determine the Casson–Walker invari-
ant. Additionally, they have proved a very general surgery formula involving the
Seiberg–Witten invariants.

The main result of the present paper is Theorem 2.4 where we prove that for
rational homology spheres we have
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SW⇐⇒ CW + RT def:= Casson–Walker invariant + Reidemeister–Turaev torsion .

Our strategy is based on analytic surgery formulae for Seiberg–Witten invariants
developed in [13, 15, 23], and topological surgery formulae for the Casson–Walker
invariant and the torsion, described in [30–32].

Although this approach is similar in spirit to the one in [16], there is, how-
ever, a serious obstacle one has to overcome, which was not present in [16]. More
precisely we cannot rely as Meng–Taubes did, on the Seiberg–Witten invariants of
3-manifolds with boundary because the required analytical set-up is incompatible
with surgeries leading to rational homology spheres. This has the effect of severely
limiting the amount of information carried by the various surgery formulae we can
employ. We outline below some the difficulties of this approach and the method we
propose to get out of trouble.

Both the Seiberg–Witten invariant and the CW+RT-invariant can be thought of
as Q-valued functions on the first homology group H of a given rational homology
sphere M . We denote by DM the difference of these two functions. Proving the
equality of these two invariants is equivalent to showing that DM ≡ 0.

We found it extremely convenient to work not with DM but with its Fourier
transform D̂M : H! → C, where H! is the Pontryagin dual of H . For example,
Marcolli–Wang result [15] translates into D̂M (1) = 0, for all rational homology
spheres. This is not just an artificial trick. The true nature of the surgery formulae is
best displayed in the Fourier picture. To explain the gist of these formulae consider a
3-manifold N with b1 = 1 and boundary T 2. N can be thought of as the complement
of a knot in a QHS. Pick two simple closed curves c1, c2 on ∂N with nontrivial
intersection numbers with the longitude λ ∈ H1(∂N, Z).

By Dehn surgery with ci as attaching curves we obtain two rational homology
spheres M1, M2 and two knots Ki ↪→ Mi, i = 0, 1. Let Hi := H1(Mi, Z), G :=
H1(N, ∂N ; Z). The knot Ki determines a subgroup K⊥

i ⊂ H!
i , consisting of the

characters vanishing on Ki. These subgroups are naturally isomorphic to G and
thus we have a natural isomorphism

f : K⊥
1 → K⊥

2 .

The surgery formulae have the forma

〈λ, c2〉D̂M1(χ) = 〈λ, c1〉D̂M2(f(χ)) + |G|K , ∀χ ∈ K⊥
1 ,

where 〈•, •〉 denotes the intersection pairing on H1(∂N, Z), and K is a universal
correction term which depends only on the divisibility m0 of the longitude and the
SL2(Z)-orbit of the pair (c1, c2) with respect to the obvious action of this group on
the space of pairs of primitive vectors in a 2-dimensional lattice. We will thus write

aThe reader should compare this description of the surgery formula with the ones in [15, 23]
(see also Sec. 3 of this paper) to truly appreciate the amazing simplifying power of the Fourier
transform.
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Km0;[c1,c2], and call the triplet (m0; [c1, c2]) the arithmetic type of the surgery. The
results of [23] prove that

K1;[c1,c2] ≡ 0 , ∀ [c1, c2] .

We call surgeries with m0 = 1 primitive, and the surgeries with trivial correction
term, admissible. We denote by X the class of rational homology spheres M such
that D̂M ≡ 0. Both the family of admissible surgeries and the family X are “time
dependent” families, and during our proof we will gradually produce larger and
larger classes of surgeries/manifolds inside these families.

The class X is closed under connected sums and certain primitive surgeries (see
Sec. 4.1). Using this preliminary information we are able to show that all homology
lens spaces belong to X. This follows from the general results in [4] concerning 3-
manifolds related by Dehn surgeries of special types. We also present an alternate
proof, based on Kirby calculus, which we learned from Saveliev. As a bonus, we can
include many more arithmetic types of Dehn surgeries in the class of admissible
surgeries.

Loosely speaking, the homology lens spaces have the simplest linking forms.
We take this idea seriously, and we define an appropriate notion of complexity of
a linking form. The proof then proceeds by induction, including in X manifolds
of larger and larger complexity. This process also increases the class of admissible
surgeries, which can be used at the various inductive steps. Such a proof is feasible if
we can produce a large supply of complexity reducing Dehn surgeries. Fortunately,
this can be done using elementary arithmetic.

Our proof also shows that the invariant introduced by Ozsváth and Szabó in
[23] also coincides with CW+RT-invariant, thus answering a question raised in
that paper. Moreover, the main theorem leads to a novel description (in the 3-
dimensional case) of the Brumfiel–Morgan [1] correspondence between spin struc-
tures and quadratic refinements of the linking form. This new description of the
Brumfiel–Morgan correspondence plays an important role in our recent investiga-
tion [17].

Basic Notations and Terminology. We will denote by M a closed, compact,
oriented 3-manifold. We will set H = H1(M, Z) ∼= H2(M, Z), and we will denote
the group operation multiplicatively. Set νM := |H |. A homology orientation on M
is an orientation on H ⊗ R. Define

Θ = ΘM :=
∑

h∈Tors(H)

h ∈ Z[H ] .

For any P =
∑

h∈H Phh ∈ Z[H ] we set P̄ :=
∑

h∈H Phh−1. The letter N will be
reserved for compact, oriented three-manifolds with boundary ∂N ∼= T 2 such that
b1(N) = 1. Equivalently, N can be viewed as the complement of a knot in a rational
homology sphere. We set G = H1(N, ∂N) ∼= H2(N, Z).
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We will denote by Spinc(M) the space of isomorphism classes of spinc structures
on M . We will denote a generic spinc structure by σ. Spinc(M) is an H-torsor, and
we will denote by

Spinc(M)×H - (σ, h) .→ hσ

the natural action of H on Spinc(M). The natural involution on Spinc(M) will be
denoted by σ .→ σ̄. The complex line bundle associated to σ will be denoted by
det(σ). We can identify det(σ) via the first Chern class and the Poincaré duality
with an element in H . Note that

det(hσ) = h2 det(σ) .

We will denote by Spin(M) the space of isomorphism classes of spin-structures
on M . A generic spin structure will be denoted by ε. Spin(M) is naturally a
H1(M, Z/2) ∼= Hom(H, Z/2)-torsor. We use the same notation to denote the action
of Hom(H, Z/2) on Spin(M). Every spin structure ε induces a canonical spinc-
structure σ(ε). Moreover

σ(ε) = σ(ε) , σ(hε) = β(h)σ(ε) , ∀h ∈ Hom(H, Z/2) ,

where β : H1(M, Z/2)→ H2(M, Z) denotes the Bockstein morphism whose image
is the 2-torsion part of H .

For any finitely generated Abelian group A we will denote by A! its Pontryagin
dual,

A! = Hom(A, S1) ∼= Hom(A, Q/Z) .

Finally for every χ ∈ H! and any P =
∑

h∈H Phh ∈ C[H ] we set

P̂ (χ) :=
∑

h∈H

Phχ(h) ∈ C .

The function H! - χ .→ P̂ (χ) is essentially the Fourier transform of P . Note that

P̂ (1) :=
∑

h∈H

Ph .

Moreover

Θ̂M (1) = |Tors(H)| , Θ̂M (χ) = 0 , if χ /= 1 , and ∃m > 1χ(H) ⊂ Um .

For every positive integer m we denote by Um ⊂ S1 the multiplicative group of
mth roots of 1.

1. The Modified Seiberg Witten Invariants of 3-Manifolds

We want to present, in a form suitable for our goals, some basic structural facts
concerning the Seiberg–Witten invariants of 3-manifolds. For more details we refer
to [13, 14, 16].

The Poincaré duality defines a natural orientation on H∗(M, R) which by default
will be the orientation we use in defining the Seiberg–Witten invariants of M . To
describe them in more detail we need to differentiate three cases.
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1.1. The case b1 > 1

The Seiberg–Witten invariant of M is a function

swM : Spinc(M)→ Z .

swM (σ) is a signed count of σ-monopoles, objects determined by additional ge-
ometric data on M , Riemannian metric g, and a closed 2-form η. The canonical
orientation on H∗(M, R) associates a sign to each monopole, and the signed count is
independent of g and η. The Seiberg–Witten invariant has the following properties.

• swM (σ) = 0 for all but finitely many σ’s.
• swM (σ) = swM (σ̄), ∀σ.

For every σ we can form the element

SWM,σ ∈ Z[H ] , SWM,σ =
∑

h∈H

swM (h−1σ)h .

Note that for every h0 ∈ H we have

SWM,h0σ = h0SWM,σ .

Moreover

SWM,σ = det(σ)SWM,σ̄ = det(σ)SWM,σ .

In particular, for any spin structure ε we have det(σ(ε)) = 1 so that

SWM,σ(ε) = SWM,σ(ε) .

For simplicity we set SWM,ε := SWM,σ(ε), ∀ ε.

1.2. The case b1 = 1

In this case we need to fix an orientation o on H⊗R, i.e. an isomorphism H⊗R→ R.
To describe the Seiberg–Witten invariant of M we need to recall the rudiments of
its construction.

Fix a metric g. The chosen orientation on H ⊗R defines a harmonic 1-form ωg

such that ωg induces the chosen orientation on H ⊗ R, and ‖ωg‖L2(g) = 1. Note
that this orientation also produces a surjection

dego : H → H/Tors(H) = Z .

For σ ∈ Spinc(M) denote by Pσ(g) the space of closed 2-forms such that

wo(σ, η) :=
∫

M
ωg ∧ η − 2πc1(detσ) /= 0 .

It is decomposed into two chambers

P±
σ (g, o) = {η ∈ Pσ(g) ; ±wo(σ, η) > 0} .
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For η ∈ Pσ(g) we denote by swM (σ, η) the signed count of (σ, g, η)-monopoles. It
is known that

swM (σ, η) = swM (σ̄,−η) ,

swM (σ, η) = 0 for all but finitely many σ’s, and

swM (σ, η1) = swM (σ, η2) , if wo(σ, η1) · wo(σ, η2) > 0 .

We set

sw±
M (σ, o) := swM (σ, η, o) , where ± wo(σ, η) > 0 .

The wall crossing formula (see [13]) states that

sw+
M (σ, o) − sw−

M (σ, o) =
1
2

dego(det σ) .

Set

SWM,σ,η = swM (h−1σ, η)h ∈ Z[H ] ,

SW+
M,σ =

∑

h∈H

sw+
M (h−1σ)h ∈ Z[[H ]] .

Suppose we pick σ = σ(ε) and η = η0 such that

0 <

∣∣∣∣
∫

M
ω ∧ η0

∣∣∣∣4 1 .

Fix T ∈ H such that dego(T ) = 1 and set deg± o = max(± dego, 0). We can
rephrase the wall crossing formula in the more compact form

SW+
M,σ(ε) = SWM,σ(ε),η0 +

∑

h∈H

deg+
o (h−1)h = SWM,σ(ε),η0 +

ΘMT

(1− T )2
.

We set WM := ΘM T
(1−T )2 ∈ Z[[H ]], and we will refer it as wall-crossing correction of

M . We set

SW0
M,σ(ε) := SW+

M,σ(ε) −
∑

h∈H

deg+
o (h−1)h = SWM,σ(ε),η0 ∈ Z[H ] . (1.1)

The wall-crossing formula implies the equality

SW0
M,σ(ε) = SW−

M,σ(ε) −
∑

h∈H

deg−o (h−1)h .

SW0
M,σ(ε) is a topological invariant which satisfies the symmetry condition

SW0
M,σ(ε) = SW

0
M,σ(ε) ,

and the equivariance property

SW0
M,σ(h0ε) = β(h0)SW0

M,σ(ε) , ∀h0 ∈ Hom(H, Z/2) .

We will refer to SW0
M,σ(ε) as the modified Seiberg–Witten invariant of M .
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1.3. The case b1 = 0

Suppose now that b1(M) = 0, i.e. M is a rational homology sphere. Fix σ ∈
Spinc(M). In this case the signed count of (σ, g, η)-monopoles depends on (g, η)
in a more complicated way. To produce a topological invariant we need to add a
correction to this count. For simplicity, we describe this correction only when η = 0.

Denote by Sσ the bundle of complex spinors determined by σ. The line bundle
detσ = det Sσ admits a unique equivalence class of flat connections. Pick one such
flat connection Aσ and denote by DAσ the Dirac operator on Sσ determined by the
twisting connection σ. We denote its eta invariant by ηdir(g,σ). Also, denote by
ηsign(g) the eta invariant of the odd signature operator determined by g. Finally
define the Kreck–Stolz invariant of (g,σ) by

KS(g,σ) = 4ηdir(g,σ) + ηsign(g) .

Define the modified Seiberg–Witten invariant of (M,σ) by

sw0
M (σ) =

1
8
KS(g,σ) + swM (σ) ∈ Q .

As shown in [13], the above quantity is independent of the metric, and it is a
topological invariant. Set

SW0
M,σ :=

∑

h∈H

swM (h−1σ)h ∈ Q[H ] .

If σ = σ(ε) we have

SW0
M,σ(ε) = SW

0
M,σ(ε) .

1.4. Summary

Let us coherently organize the facts explained so far. The modified Seiberg–Witten
invariant associates to each closed, compact, homologically oriented 3-manifold M ,
and each ε ∈ Spin(M) a “Laurent polynomial” SW0

M,ε ∈ Q[H ] with the following
properties.

SW0
M,ε ∈ Z[H ] , if b1(M) > 0 , (1.2)

SW0
M,ε = SW

0
M,ε , (1.3)

and

SW0
M,h0ε = β(h0)SW0

M,ε , ∀h0 ∈ Hom(H, Z/2) . (1.4)

2. The Modified Reidemeister Turaev Torsion of 3-Manifolds

In this section we survey the results of Turaev [26–31] in a language appropriate to
our goals.
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2.1. Turaev’s refined torsion

The Reidemeister–Turaev torsion associates to each homologically oriented 3-
manifold M , and each spinc structure σ on M a “formal power series” TM,σ ∈ Q[[H ]]
with the following properties.

TM,σ ∈ Z[[H ]] , b1(M) > 1

(1− T )2TM,σ ∈ Z[H ] , b1(M) = 1 , deg T = 1

TM,σ ∈ Q[H ] , T̂M,σ(1) = 0 , b1(M) = 0 .

Moreover

TM,h0σ = h0TM,σ , ∀h0 ∈ H ,

and

TM,σ = det(σ)T̄M,σ .

For ε ∈ Spin(M), set TM,ε = TM,σ(ε). It follows that

TM,ε = T̄M,ε .

Using [28, Sec. 4.2] and [30, Appendix 3] we deduce that when b1(M) = 1 we have

T0
M,ε := TM,ε −WM ∈ Z[H ] , (2.1)

and moreover

T0
M,ε = T̄0

M,ε .

When b1(M) = 0 we denote by CWM the Casson–Walker invariant of M and define

T0
M,ε = TM,ε −

1
2
CWMΘM . (2.2)

Observe that −T0
M,ε(1) = 1

2 |H |CWM = the Casson–Walker–Lescop invariant of M
(see [11, p. 80]).

We we will refer to the quantities T0
M,ε for b1(M) = 0, 1 the modified

Reidemeister–Turaev torsion of M . For uniformity, we set T0
M = TM when

b1(M) > 1.
Summarizing, we conclude that the modified Reidemeister–Turaev torsion as-

sociates to each homologically oriented 3-manifold M , and to each spin structure ε
on M a “Laurent polynomial” T0

M,ε ∈ Q[H ] with the following properties.

T0
M,ε ∈ Z[H ] , if b1(M) > 0 , (2.3)

T0
M,ε = T̄0

M,ε , (2.4)

and

T0
M,h0ε = β(h0)T0

M,ε , ∀h0 ∈ Hom(H, Z/2) . (2.5)
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2.2. Relations between the torsion and the Seiberg Witten
invariant

The Seiberg–Witten invariant and the modified Reidemeister torsion are related.
More precisely we have the following result.

Theorem 2.1. (a) SW0
M,ε = T0

M,ε if b1(M) = 1.

(b) ŜW
0

M (1) = T̂0
M (1) if b1(M) = 0.

(c) SW0
M = T0

M if M is a lens space.

Proof. Part (b) follows from [12, 15] while Part (c) follows from [19].b Only Part
(a) requires a bit of work. According to the results in [16, 29, 30] we have an equality

SW+
M,ε = ±TM,ε ⇐⇒ (SW0

M,ε + WM ) = ±(T0
M,ε + WM )

To prove that the correct choice of signs is “+” we argue by contradiction. Suppose

SW+
M,ε = −TM,ε .

Then this implies that

TM,ε −WM = −SW0
Mε
− 2WM /∈ Z[H ]

which contradicts (2.1).

Part (c) of the above theorem can be slightly strengthened to

SW0
M = T0

M , if M is a connected sum of lens spaces . (2.6)

This equality follows from the additivity of the torsion and of Casson–Walker in-
variant under connected sums [31, Sec. XII.1] and the additivity of the Kreck–Stolz
invariant which follows from the very general surgery results for eta invariants in [9].
In this case the formulae in [9] simplify considerably since the gluing occurs along
a 2-sphere which admits metrics of positive scalar curvature. For a more general
result of this type we refer to the discussion at the beginning of Sec. 4.1

Later on we will need the following consequence of Theorem 2.1(a).

Proposition 2.2. If M is a homologically oriented 3-manifold such that b1(M) = 1
then

T̂0
M (1) = ŜW

0

M (1) =
1
2
∆′′

M (1) ,

bThere is a sign discrepancy between the definition (2.2), and the definition of the modified torsion
in [19]. This is due to the definition in [32, Proposition 6.2] of the lens space L(p, q) as the p/q-
surgery on the unknot. The traditional definition is as the −p/q-surgery on the unknot as in [6,
p. 158], or [7, pp. 66–67]. This is the convention we adhere to in this paper.
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where ∆M ∈ Z[[T 1/2, T−1/2]] denotes the symmetrized Alexander polynomial of M
normalized such that ∆M (1) = |Tors(H)|.

Proof. The projection deg : H ! Z induces a morphism

aug : Z[[H ]]→ Z[[t, t−1]]

called augmentation. Fix T ∈ H such that deg T = 1. The symmetrized Alexander
polynomial ∆M is uniquely determined by the condition

augTM,ε = T k/2 ∆M (T )
(1− T )2

,

for some k ∈ Z. Using Theorem 2.1(a) we deduce

T k/2 ∆M (T )
(1− T )2

= augSWM = augSW0
M + aug(ΘM )

T

(1− T )2

= augSW0
M + |Tors(H)| T

(1− T )2
.

We conclude that

T k/2−1∆M (T ) = (T − 2 + T−1)augSW0
M (T ) + |Tors(H)| .

The symmetry of SW0 implies SW0
M (T ) = SW0

M (T−1), and since ∆M satisfies a
similar symmetry we conclude k/2− 1 = 0. Hence

∆M (T ) = (T − 2 + T−1)augSW0
M (T ) + |Tors(H)| .

Differentiating the above equality twice at T = 1 we deduce

∆′′
M (1) = 2augSWM (1) = 2ŜW

0
(1) .

Remark 2.3. Observe a nice “accident”. Suppose M is as in Proposition 2.2. Then

WM = ΘM

∑

n≥1

nT n .

Formally

ŴM (1) = Θ̂M (1)
∑

n≥1

n = |Tors(H)|
∑

n≥1

n

= |Tors(H)|ζ(−1) = − 1
12

|Tors(H)| ,

where ζ(s) denotes Riemann’s zeta function. In particular

ŜWM (1) = ŜW
0

M (1) + ŴM (1) =
1
2
∆′′

M (1)− 1
12

|Tors(H)| .

The expression in the right-hand side is precisely the Lescop invariant of M .



December 16, 2004 9:36 WSPC/152-CCM 00158

Seiberg–Witten Invariants of Rational Homology 3-Spheres 843

We can now state the main result of this paper.

Theorem 2.4.

SW0
M = T0

M

for any rational homology 3-sphere M .

3. Surgery Formulae

3.1. Dehn surgery

We want to survey a few basic facts concerning Dehn surgery. For more details and
examples we refer to [22].

Consider a 3-manifold N as in the introduction, i.e. b1(N) = 1, ∂N ∼= T 2, and
set G := H1(N, ∂N ; Z). We orient ∂N as boundary of N using the outer-normal
first convention. Denote by j the inclusion induced morphism

j : H1(∂N, Z)→ H1(N, Z) .

The kernel of j is a rank one Abelian group. We can select a generator λ of ker j
by specifying an orientation on H1(N, Z) ∼= H2(N, ∂N ; Z). We can write λ = m0λ0

where m0 > 0 and λ0 ∈ H1(∂N, Z) is a primitive class. λ is called the longitude of
N and m0 is called the divisibility of N . Fix µ0 ∈ H1(∂N, Z) such that λ0 ·µ0 = 1,
where the dot denotes the intersection pairing on H1(∂N, Z).

Denote by X the solid torus S1×D2, so that ∂X = T 2. Set l0 = S1× {pt} and
m0 = {pt} × ∂D2. We regard l0 and m0 as elements in H1(∂X, Z). They satisfy
m0 · l0 = 1. Fix an orientation reversing diffeomorphism Γ : ∂X → ∂N such that

Γ∗(m0) = µ0 , Γ∗(l0) = λ0 .

Every ϕ ∈ SL2(Z) determines an isotopy class of orientation preserving diffeomor-
phisms of T 2. We can use ϕ to construct a closed 3-manifold

Mϕ := X
∐

Γ◦ϕ:∂X→∂N

N .

We say that Mϕ is obtained by Dehn surgery with gluing map ϕ. The integer m0 is
called the divisibility of the surgery. The manifold Mϕ is uniquely determined up to
a diffeomorphism by the attaching curve c = Γ ◦ ϕ(m0). We can write c = cp/q :=
pµ0 + qλ0, (p, q) = 1. The diffeomorphism type of Mϕ is uniquely determined by
the ratio p/q. Instead of Mϕ we will write Mp/q. We set Hp/q := H1(Mp/q, Z). The
core of the solid torus determines an element Kp/q ∈ Hp/q.

We want to point out that the integer q depends on the choice of µ0 while p is
invariantly determined by the equality p := λ0 · c. We refer to p as the multiplicity
of the surgery.

The group Hp/q is determined from the short exact sequence

0→ 〈jcp/q〉 → H1(N, Z)→ Hp/q → 0 .
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We also have canonical isomorphisms

Φp/q : G→ Hp/q/〈Kp/q〉 .

We obtain a natural projection πp/q : Hp/q → G. The long exact sequence of the
pair (N, ∂N) implies

G = H1(N, Z)/jH1(∂N, Z) .

We deduce the following result.

Lemma 3.1. The characters of G are precisely the characters of H1(N, Z) which
vanish on jH1(∂N, Z). Also, we can think of the characters of G as characters χ of
Hp/q such that χ(Kp/q) = 1.

When p /= 0, Hp/q is a finite Abelian group and

|Hp/q| = pm0|G| .

In this case, we denote by lkp/q the linking form of Mp/q.
Observe that b1(M0/1) = 1. K0/1 can be written as m0h where h ∈ H0/1 gen-

erates the free part of H0/1. M0/1 carries a natural homology orientation, induced
from the orientation of H1(N, Z) and H1(X, Z) (see [30] for more details on this
rather painful issue). Fix T ∈ H0/1 such that deg(T ) = 1, and K0/1 = m0T . There
exists χ0 ∈ H!

0/1 uniquely determined by the requirements

χ0(T ) = ρ , χ0|Tors(H0/1) = 1 ,

where ρ is a primitive m0th root of 1. According to Lemma 3.1 we can think of χ0

as a character of G.c

We then have a natural isomorphism H1(X) ∼= Z, and via the Poincaré duality, a
natural isomorphism H2(X, ∂X) ∼= Z. The solid torus is equipped with a canonical
relative spinc structure σX uniquely determined by the condition

c1(detσX) ∈ 1 ∈ H2(X, ∂X) .

For any orientation reversing homeomorphism ϕ : ∂X → ∂N we have a gluing map
(see [26, Chap. VI])

#ϕ : Spinc(X, ∂X)× Spinc(N, ∂N)→ Spinc(M) , (σ1,σ2) .→ σ1#ϕσ2 .

In particular we obtain a surjection

Spinc(N, ∂N)→ Spinc(M) , σ .→ σϕ := σX#ϕσ .

cThe Universal Coefficients theorem and the Poincaré duality identifies G! = H1(N, ∂N ; Z)! with
the torsion subgroup of H1(N, Z). Via this identification we have χ0 = jλ0 ∈ H1(N, Z).
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3.2. Surgery formula for the modified Seiberg Witten invariant

We can now state the main surgery formula for the modified Seiberg–Witten in-
variant. Let N , Mp/q etc. be as above.

Any relative spinc structure σ on N induces spinc-structures σp/q on Mp,q. We
fix σ so that σ0 on M0/1 is induced by a spin structure ε0 on M0/1. For h ∈ Hp,q

we will write sw0
p/q(h) for sw0

Mp/q
(h−1σp/q).

Theorem 3.2 ([15, Marcolli–Wang], [23, Ozsváth–Szabó]).d For every p, q
there exists

fp,q,m0 : Um0 → Q

which depends only on p, q, m0 but not on N such that for every g ∈ G we have
∑

πp/q(h)=g

sw0
p/q(h)

= p
∑

π1/0(h)=g

sw0
1/0(h) + q

∑

π0/1(h)=g

sw0
0/1(h) + fp,q,m0(χ0(g)) . (†g)

To get more information out of this formula we will take a partial Fourier trans-
form. Let χ ∈ G!. Using Lemma 3.1 we can identify χ with a character of Hp/q

with the property that χ(h) = χ(h′) whenever πp/q(h) = πp/q(h′). If we multiply
(†g) by χ(g) and we sum over g ∈ G we deduce

ŜW
0

p/q(χ) = pŜW
0

1/0(χ) + qŜW
0

0/1(χ) +
∑

g∈G

fp,q,m0(χ0(g))χ(g) .

To gain further insight we need to simplify the sum on the right hand side. We have

∑

g∈G

fp,q,m0(χ0(g))χ(g) =
∑

ρ∈Um0




∑

χ0(g)=ρ

fp,q,m0(ρ)



χ(g)

=
∑

ρ∈Um0




∑

χ0(g)=ρ

χ(g)



 fp,q,m0(ρ) .

Observe that if χ /≡ 1 on kerχ0 then
∑

χ0(g)=ρ

χ(g) = 0 , ∀ ρ ∈ Um0 .

If χ ≡ 1 on kerχ0 then there exists j ∈ Z such that χ = χj
0 and

∑

χ0(g)=ρ

χ(g) = | kerχ0|ρj =
|G|
m0

ρj .

dThe surgery formula for the monopole count is contained in [15], while the surgery formula for
the Kreck–Stolz invariant is contained in [23]. These involve metrics displaying very long necks
around the splitting tori. See also the discussion at the beginning of Sec. 4.1.
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Denote by Fp,q,m0 the function

Fp,q,m0 : Z/m0Z→ C , Fp,q,m0(j mod Z) =
1

m0

∑

ρ∈Um0

fp,q,m0(ρ)ρ
j .

Fp,q,m0 is precisely the Fourier transform of 1
m0

fp,q,m0 . We deduce

ŜW
0

p/q(χ) = pŜW
0

1/0(χ) + qŜW
0

0/1(χ)

+ |G|
{

Fp,q,m0(j) if χ = χj
0

0 otherwise
. (3.1)

3.3. Surgery formula for the modified Reidemeister Turaev
torsion

The modified Reidemeister–Turaev torsion satisfies a surgery formula very similar
in spirit to (3.1). We first need to survey a few algebraic facts in the special setting
of the surgery formula. For details and proofs we refer to [22, Secs. 1.5 and 1.6],
[26].

For any finite Abelian group G we set

Q[G]0 = {P ∈ Q[G] ; P̂ (1) = 0} .

Consider a rank 1 Abelian group A = Z⊕Tors(A), C a finite cyclic group of order
m, and ϕ : A→ C an epimorphism. Fix a generator u ∈ A of Z ⊂ A, and let

Z[[A]]+ := Z[A] +ΘAZ[u, u−1, (1− u)−1] .

We refer to [26, 30] or [22, Proposition 1.27(b)] for an invariant definition of Z[[A]]+,
which does not rely on the non-canonical decomposition A = free part ⊕ torsion.
The morphism ϕ induces an “integration-along-fibers” morphism (see [22, Propo-
sition 1.30])

ϕ! : Z[[A]]+ → Z[C]0 .

Its definition is best expressed in terms of Fourier transforms. Think of an element
f ∈ Z[[A]]+ as a function f : A→ Z. As such, it has a Fourier transform

f̂ : A! → C , f̂(χ) =
∑

a∈h

f(a)χ(h) .

The above infinite sum may not be convergent for all χ, but the Fourier transform
still makes sense as a distribution on the compact Lie group A! with singular
support contained in {1} ⊂ A! (see [22, Sec. 1.6]). The epimorphism ϕ induces by
duality an inclusion

ϕ! : C! ↪→ A! .
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If we regard f̂ as a (generalized) function on A! then the Fourier transform of ϕ!f
is the function on C! obtained by pulling back f̂ to C! via the inclusion ϕ!. The
only possible problem arises at χ = 1 where f̂ could have a singularity. Let χ ∈ C!.
In [22, Sec. 1.6] we have shown the following.

• If f ∈ Z[A], so that f has finite support as a function A→ Z, then f̂ is a genuine
function A! → C and we have

(̂ϕ!f)(χ) =

{
f̂(ϕ!χ) , if ϕ!(χ) /= 1 ,

0 , if ϕ!(χ) = 1 .
(3.2)

• If f = ΘA(1− u)−1 then f̂ is a distribution on Â with singular support {1} and
we have

(̂ϕ!f)(χ) =

{
Θ̂A(ϕ!χ)(1− ϕ!χ(T ))−1 , if ϕ!χ /= 1 ,

0 , if ϕ!χ = 1 .
(3.3)

Suppose now that χ : A → Um is a surjective character, and f ∈ Z[[A]]+. The
identity function ιm : Um → Um is a character of Um and χ!(ιm) = χ. We get an
element χ!f ∈ Z[Um]0. If f ∈ Z[A] then

(χ!f)(ιm) =

{
f̂(χ) , if m > 1 ,

0 , if m = 1 .
(3.4)

If f = ΘA
1−u then

(̂ϕ!f)(ιm) =

{
Θ̂A(χ)(1− χ(T ))−1 , if χ(T ) /= 1 ,

0 , if χ(T ) = 1 .
(3.5)

If ϕ : A → B is a surjective morphism of finite Abelian groups then we get mor-
phisms [22, Sec. 1.6]

ϕ! : Q[A]0 → Q[B]0 , ϕ! : B! → A! .

Then for f ∈ Q[A]0 and χ ∈ B! we have

(̂ϕ!f)(χ) =

{
f̂(ϕ!χ) , if χ /= 1 ,

0 , if χ = 1 .

We can now return to topology. We will continue to use the notations in the previous
section. Applying [30, Lemma 6.2] (or [31, Lemma VIII.1.4]) iteratively we deduce
the following result.

Theorem 3.3. Suppose χ is a nontrivial character of G = H1(N, ∂N ; Z), so that
χ(G) = Um, for some m > 1. Then

χ!Tp/q = pχ!T1/0 + qχ!T0/1 .
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Above and in the sequel we use the convention

Objectp/q := Object(Mp/q) .

To proceed further we take the Fourier transform of the above formula and we get

̂(χ!Tp/q)(ιm) = ̂(pχ!T1/0)(ιm) + ̂(qχ!T0/1)(ιm) ,

where m = ord (χ). Recall that

Tp/q = T0
p,q −

1
2
CWp/qΘp/q , T1/0 = T0

1/0 −
1
2
CW1/0Θ1/0 ,

T0/1 = T0
0/1 +

Θ0/1T

(1− T )2
.

Using (3.4) and (3.5) and the identities Θp/q(χ) = 0 = Θ1/0(χ) for χ /= 1 we deduce

T̂0
p/q(χ) = pT̂0

1/0(χ) + qT̂0
0/1(χ)

+

{
Θ̂0/1(χ)χ(T )(1− χ(T ))−2 , if χ(T ) /= 1 ,

0 , if χ(T ) = 1 .

The last term is nontrivial if and only if χ(T ) /= 1 and χ|Tors(H0/1) = 1. This
is possible if and only if χ = χj

0, for some j = 1, 2, . . . , m0 − 1. Additionally,
Θ0/1(χ

j
0) = |Tors(H0/1)| = |G|/m0. We conclude that if χ is a nontrivial character

of G we have

T̂0
p/q(χ) = pT̂0

1/0(χ) + qT̂0
0/1(χ)

+
|G|
m0






χj
0

(1− χj
0)2

, if χ = χj
0 , j = 1, . . . , m0 − 1 ,

0 , if χ /= χk
0 , k = 1, . . . , m0 .

We need to relate

T̂0
p/q(1) =

|Hp/q|
2

CWp/q =
pm0|G|

2
CWp/q ,

T̂0
1/0(1) =

|H1/0|
2

CW1/0 =
m0|G|

2
CW1/0 ,

and

T̂0
0/1(1) =

1
2
∆′′

M0/1
(1) .

This follows from the surgery formula for the Casson–Walker invariant [11, Sec. 4.6],
[32, Chap. 4]. More precisely, the arguments in [23, pp. 38–39] yield

CWp/q = pCW1/0 +
q

2
∆′′

M0/1
(1) + |G|

(
q(m2

0 − 1)
12m0

− pm0s(q, p)
2

)
,
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where s(q, p) denotes the Dedekind sum of the pair of coprime integers q, p. Putting
all of the above together we deduce that for every pair of coprime integers (p, q),
and every positive integer m0 there exists a function

Gp,q,m0 : Z/m0Z→ C

such that

T̂0
p/q(χ) = pT̂0

1/0(χ) + qT̂0
0/1(χ) + |G|

{
Gp,q,m0(j) , if χ = χj

0 ,

0 , otherwise .
(3.6)

The similarity with (3.1) is striking. The results in [15, 23] show that

Fp,q,m0(1) = Gp,q,m0(1) , ∀ p, q, m0 .

In particular

Fp,q,1 = Gp,q,1 , ∀ p, q .

Let us briefly comment on the “flavor” of the surgery formulae (3.1) and (3.6). Note
first that the first homology group of a rational homology 3-sphere can be naturally
identified with its dual using the linking form. We can think of the invariants T0

M

and SW0
M as functions on H1(M, Z), as well as functions on the dual.

Suppose we perform Dehn surgery on a knot K ↪→M to obtain a new rational
homology sphere M(K) and a knot K ′ ↪→ M(K). The surgery formula essen-
tially states that if we know the values of these invariants on homology classes
c ∈ H1(M, Z) which do not link with K then we can also compute the values of
these invariants on homology classes c ∈ H1(M(K), Z) which do not link with K ′.

More rigorously, consider a pair M0, M1 related by a Dehn surgery on a knot
K. Denote by N the common knot complement, and set

H := H1(N, Z) , Hi := H1(Mi, Z) , i = 0, 1 .

We have a diagram of surjective morphismsWe have a diagram of surjective morphisms

H

H0 H1

π0 π1

Dualizing we get the diagram

H"

H"
0 H"

1

π!
0 π!

1

The knot K defines two subgroups

K⊥
i :=

{
c ∈ H"

i ; c(Ki) = 1
}
∼=

{
c ∈ Hi; lkMi(c,Ki) = 0

}
,

i = 0, 1, and we have isomorphisms

π"
i : K⊥

i → G :=
{

χ ∈ H" χ(jc), ∀c ∈ H1(∂N)
}
∼= H1(N, ∂N).

We can think of G as the graph of a correspondence TK : H"
0 → H"

1 induced by the Dehn surgery.
The domain of this correspondence is K⊥

0 , the range is K⊥
1 , and viewed as a correspondence

TK ⊂ K⊥
0 × K⊥

1 it is a group isomorphism.
For a surgery along a knot K ↪→ M , whose meridian satisfies λ0 · µ = 1, and attaching

curve c = pµ + qλ0, we will denote by ξ := ξK,c the induced p.i. We denote by GK the group
H1(M \ K, ∂(M \ K); Z), by m0(K, c) respectively p = p(K, c) the divisibility, and respectively
multiplicity of the surgery. Finally, set DM := SW0

M − T0
M . Since T0

M = SW0
M if b1(M) = 1

we can now rephrase the surgery formulæ (3.1) and (3.6)

D̂MK,c(ξK,cχ) = pD̂M (χ) + |GK |Km0;p,q(χ), ∀χ ∈ K⊥ = Dom(ξK,c),

where the correction term is a function on GK , which is nontrivial only on the cyclic group of
order m0 generated by

jλ0 ∈ Tors(H1(N \ K, Z)) = G"
K ,

and depends only on the arithmetic of the surgery, p, q,m0. Moreover

K1;p,q = 0.

More invariantly, consider a 3-manifold N such that ∂N ∼= T 2, fix a longitude λ0, and two
primitive classes c0, c1 represented by two simple closed curves. By Dehn surgery with attach-
ing curves c0, c1 we get two manifolds Mc0 , Mc1 , with first homology groups Hc0 , Hc1 , and
distinguished classes Kci ∈ Hci , i = 0, 1, defined by the core of the attached solid torus. Set
G := H1(N, ∂N ; Z), and denote by ξc1,c0 the isomorphism K⊥

c0 → K⊥
c1 described above. We

denote by [c0, c1] the orbit of (c0, c1) relative to the action of SL2(Z) on the space of pairs of
primitive classes c0, c1 ∈ H1(∂N, Z). Then we have

(λ0 · c0)D̂Mc1
(ξc0,c1χ) = (λ0 · c1)D̂Mc0

(χ) + |G|Km0,[c0,c1](χ), (3.7)

16

.

Dualizing we get the diagram

We have a diagram of surjective morphisms

H

H0 H1

π0 π1

Dualizing we get the diagram

H"

H"
0 H"

1

π!
0 π!

1

The knot K defines two subgroups

K⊥
i :=

{
c ∈ H"

i ; c(Ki) = 1
}
∼=

{
c ∈ Hi; lkMi(c,Ki) = 0

}
,

i = 0, 1, and we have isomorphisms

π"
i : K⊥

i → G :=
{

χ ∈ H" χ(jc), ∀c ∈ H1(∂N)
}
∼= H1(N, ∂N).

We can think of G as the graph of a correspondence TK : H"
0 → H"

1 induced by the Dehn surgery.
The domain of this correspondence is K⊥

0 , the range is K⊥
1 , and viewed as a correspondence

TK ⊂ K⊥
0 × K⊥

1 it is a group isomorphism.
For a surgery along a knot K ↪→ M , whose meridian satisfies λ0 · µ = 1, and attaching

curve c = pµ + qλ0, we will denote by ξ := ξK,c the induced p.i. We denote by GK the group
H1(M \ K, ∂(M \ K); Z), by m0(K, c) respectively p = p(K, c) the divisibility, and respectively
multiplicity of the surgery. Finally, set DM := SW0

M − T0
M . Since T0

M = SW0
M if b1(M) = 1

we can now rephrase the surgery formulæ (3.1) and (3.6)

D̂MK,c(ξK,cχ) = pD̂M (χ) + |GK |Km0;p,q(χ), ∀χ ∈ K⊥ = Dom(ξK,c),

where the correction term is a function on GK , which is nontrivial only on the cyclic group of
order m0 generated by

jλ0 ∈ Tors(H1(N \ K, Z)) = G"
K ,

and depends only on the arithmetic of the surgery, p, q,m0. Moreover

K1;p,q = 0.

More invariantly, consider a 3-manifold N such that ∂N ∼= T 2, fix a longitude λ0, and two
primitive classes c0, c1 represented by two simple closed curves. By Dehn surgery with attach-
ing curves c0, c1 we get two manifolds Mc0 , Mc1 , with first homology groups Hc0 , Hc1 , and
distinguished classes Kci ∈ Hci , i = 0, 1, defined by the core of the attached solid torus. Set
G := H1(N, ∂N ; Z), and denote by ξc1,c0 the isomorphism K⊥

c0 → K⊥
c1 described above. We

denote by [c0, c1] the orbit of (c0, c1) relative to the action of SL2(Z) on the space of pairs of
primitive classes c0, c1 ∈ H1(∂N, Z). Then we have

(λ0 · c0)D̂Mc1
(ξc0,c1χ) = (λ0 · c1)D̂Mc0

(χ) + |G|Km0,[c0,c1](χ), (3.7)

16

.

The knot K defines two subgroups

K⊥
i := {c ∈ H!

i ; c(Ki) = 1} ∼= {c ∈ Hi ; lkMi(c, Ki) = 0} ,
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i = 0, 1, and we have isomorphisms

π!i : K⊥
i → G := {χ ∈ H! χ(jc) , ∀ c ∈ H1(∂N)} ∼= H1(N, ∂N) .

We can think of G as the graph of a correspondence TK : H!
0 → H!

1 induced by
the Dehn surgery. The domain of this correspondence is K⊥

0 , the range is K⊥
1 , and

viewed as a correspondence TK ⊂ K⊥
0 ×K⊥

1 it is a group isomorphism.
For a surgery along a knot K ↪→ M , whose meridian satisfies λ0 · µ = 1,

and attaching curve c = pµ + qλ0, we will denote by ξ := ξK,c the induced p.i.
We denote by GK the group H1(M\K, ∂(M\K); Z), by m0(K, c) respectively p =
p(K, c) the divisibility, and respectively multiplicity of the surgery. Finally, set
DM := SW0

M − T0
M . Since T0

M = SW0
M if b1(M) = 1 we can now rephrase the

surgery formulae (3.1) and (3.6)

D̂MK,c(ξK,cχ) = pD̂M (χ) + |GK |Km0;p,q(χ) , ∀χ ∈ K⊥ = Dom(ξK,c) ,

where the correction term is a function on GK , which is nontrivial only on the cyclic
group of order m0 generated by

jλ0 ∈ Tors(H1(N\K, Z)) = G!
K ,

and depends only on the arithmetic of the surgery, p, q, m0. Moreover

K1;p,q = 0 .

More invariantly, consider a 3-manifold N such that ∂N ∼= T 2, fix a longitude λ0,
and two primitive classes c0, c1 represented by two simple closed curves. By Dehn
surgery with attaching curves c0, c1 we get two manifolds Mc0 , Mc1 , with first
homology groups Hc0 , Hc1 , and distinguished classes Kci ∈ Hci , i = 0, 1, defined
by the core of the attached solid torus. Set G := H1(N, ∂N ; Z), and denote by
ξc1,c0 the isomorphism K⊥

c0
→ K⊥

c1
described above. We denote by [c0, c1] the orbit

of (c0, c1) relative to the action of SL2(Z) on the space of pairs of primitive classes
c0, c1 ∈ H1(∂N, Z). Then we have

(λ0 · c0)D̂Mc1
(ξc0,c1χ) = (λ0 · c1)D̂Mc0

(χ) + |G|Km0,[c0,c1](χ) , (3.7)

∀χ ∈ K⊥
c0

. The arithmetic type α of a surgery is the pair (m0, [c1, c2]). We denote
by A the set of all arithmetic types for which the correction term K is trivial. We
know that

(1, [c1, c2]) ∈ A , ∀ c1, c2 .

We will call the surgeries of arithmetic type α ∈ A as admissible.

Remark 3.4. As explained in [22, Remark B.5], the orbit [c0, c0] is completely
characterized by the extension

0→ Z〈c0〉 ⊕ Z〈c1〉 ↪→ H1(∂N, Z)→ H1(∂N, Z)/(Z〈c0〉 ⊕ Z〈c1〉)→ 0 .



December 16, 2004 9:36 WSPC/152-CCM 00158

Seiberg–Witten Invariants of Rational Homology 3-Spheres 851

More precisely, the quotient group H1(∂N, Z)/(Z〈c0〉 ⊕Z〈c1〉) is isomorphic to the
cyclic groups of order |c0 · c1|, and the extension is characterized by a character of
this group. Thus, the orbit [c0, c1] is described by the integer c0 ·c1, and a character
of Z|c0·c1|.

4. Seiberg Witten ⇐⇒ Casson Walker + Reidemeister Turaev
Torsion

4.1. Topological preliminaries

Denote by X the family of all closed, compact oriented 3-manifolds M with b1(M) =
0 such that

SW0
M = T0

M .

We want to prove that X consists of all 3-manifolds with b1(M) = 0.
We already know that M ∈ X if M is an integral homology sphere, or if M is a

lens space. Also, we have

M1, M2 ∈ X , b1(M1) = b1(M2) = 0 =⇒M1#M2 ∈ X . (4.1)

We should perhaps dwell upon this statement which is a consequence of the
fact that the modified Seiberg–Witten invariant behaves exactly as the modified
Reidemeister–Turaev torsion (see [31, XII.1]) with respect to connected sums.

More precisely we should think of the manifold M1#M2 equipped with a metric
gL with a very long neck [−L, L] × Σ, Σ = (round sphere), L 7 0, in the region
where we perform the connected sum (see Fig. 1).

The Kreck–Stolz invariant can only change by integral jumps due to the possible
integral jumps in ηdir. These are due to jumps in the dimension of the kernel of the
spinc-Dirac operator on (M, gL) coupled with a flat connection. Since the cutting

M  #  M

1

1

2

2

M'

M'

-L L

Σ

Fig. 1. Stretching a connected sum.
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L

Fig. 2. Elongated thimble.

hypersurface Σ has positive scalar curvature, the main result in [21] shows that the
dimension of this kernele is independent of L7 0. In particular this shows that the
gL-monopole count must also be independent of L7 0.

Now cut (M1#M2, gL) along the middle hypersurface {0} × Σ to obtain two
manifolds with boundary M ′

1 and M ′
2 which have long collars of the form [0, L]×Σ

(see Fig. 1). Now cap M ′
k with a long “thimble” of the type depicted in Fig. 2.

We obtain the manifolds Mk equipped with metrics gk,L displaying long thim-
bles. Denote by SL the 3-sphere equipped with the Riemann metric g0,L obtained
by gluing two thimbles along Σ. Since Σ is equipped with a metric of positive scalar
curvature and b1(Mk) = 0 we deduce that the gluing results of [9, Example 8.25]
are applicable and we conclude that ∀L7 0, ∀σk ∈ Spinc(Mk)

KS(M1#M2,σ1#σ2, gL) = KS(M1,σ1, g1,L) + KS(M2,σ2, g2,L)−KS(SL, g0,L) ,

where σ1#σ2 is the connected sum of Euler structures defined in [31, XII.1]. The
positive scalar curvature metric g0,L can be deformed to the round metric through
metrics with positive scalar curvature and we deduce that KS(SL, g0,L) = 0.

The gluing techniques in [18, Sec. 4.5] imply that the monopole count is additive
as well

swM1#M2(σ1#σ2, gL)

= swM1(σ1, g1,L) + swM2(σ2, g2,L)− swSL , ∀σk ∈ Spinc(Mk) .

Since g0,L has positive scalar curvature we deduce that there are no irreducible
monopoles on SL so that swSL = 0. These identities together with [31, Re-
mark XII.1.3] imply immediately (4.1).

Definition 4.1. A deflating primitive surgery is a Dehn surgery on a knot K in a
rational homology sphere M with the following properties.

(a) The longitude λ ∈ H1(∂M\K, Z) is a primitive class.
(b) The attaching curve c of the surgery satisfies c · λ = ±1.

An excellent surgery is a deflating primitive surgery which does not change the
order of the first homology group. Two rational homology 3-spheres will be called
e-related if one can be obtained from the other by a sequence of excellent surgeries.

eIn fact, this kernel can be arranged to be trivial for large L $ 0 by suitably and generically
choosing the parameters g, η in the Seiberg–Witten problem.
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The attribute deflating is justified by the inequality

|H1(M ′, Z)| ≤ |H1(M, Z)|

when M ′ is obtained from M by a deflating primitive surgery. The surgery
is excellent iff we have equality. Note that if M0 and M1 are e-related then
H1(M0, Z) ∼= H1(M1, Z) and they have isomorphic linking forms. The following
result is immediate.

Lemma 4.2. Suppose M ∈ X, b1(M) = 0. If M ′ is obtained from M by a deflating
primitive surgery then M ′ ∈ X. In particular, if M ∈ X and M ′ is e-related to M
then M ′ ∈ X.

Proof. Indeed, we have G := H1(M ′, Z) ∼= H1(M\K, ∂(M\K); Z) and Fp,q,1 =
Gp,q,1. The surgery formulae establish the equality of T0

M ′ and SW0
M ′ as functions

on G!, and G! turns out to be their maximal domain.

Corollary 4.3. X contains lens spaces, integral homology spheres, and is closed
under connected sums and deflating primitive surgeries.

Before we proceed further we want to briefly recall some basic topological facts.
For more details we refer to [6, 24]. Any rational homology sphere can be obtained
from S3 by performing Dehn surgery on a link L = K1 ∪ · · · ∪ Kn with surgery
coefficients p1/q1, . . . , pn/qn. Set 2p = (p1, . . . , pn), 2q = (q1, . . . , qn). We denote by
M = M(L, 2p, 2q) the 3-manifold obtained by this surgery. We say that a surgery
diagram belongs to X if the corresponding 3-manifold belongs to X.

All the homological data of M(L, 2p, 2q) is contained in the n× n linking matrix
A = A(L; 2p, 2q) defined by

aij =

{
pi/qi , if i = j ,

3ij , if i /= j ,

where 3ij = Lk(Ki, Kj). The surgery diagram is called integral if the linking matrix
is integral.

Denote by µi the meridian of Ki, set Ω := A−1, and denote by Q the diagonal
n×n matrix Q := diag (q1, . . . , qn). The manifold M is a rational homology sphere
if and only if the linking matrix A is nonsingular. The first homology group admits
the presentation

0→ Zn QA−→ Zn → H1(M)→ 0 ,

so that its order is det(QA).
We have a natural isomorphism H1(S3\L)→ Zn defined by

c .→ (Lk(c, K1), . . . ,Lk(c, Kn)) ,
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for any closed curve c disjoint from L, where Lk denotes the linking number of two
disjoint knots in S3. More geometrically

c =
m∑

i=1

Lk(Ki, c)µi .

Such a closed curve defines a homology class [c] ∈ H1(M). We have [µi] = −qi[Ki].
The images of the knots [Ki] generate H1(M) and we have

lkM ([µi], [µj ]) = −Ωijmod Z .

Suppose [c] is a homology class in M of order m. (We set m = 1 if [c] = 0.) A
surgery on a knot representing [c] has divisibility m0 determined by

m0 := (k, m) , lkM ([c], [c]) =
k

m
mod Z .

A class c ∈ H1(M, Z) is called primitive if it has divisibility one. Note that if K is a
knot in M representing a primitive class of order m, and M ′ is a manifold obtained
from M by deflating surgery then

|H1(M ′, Z)| =
1
m
|H1(M, Z)| .

The above observations show that the excellent surgeries are precisely the 1/q-
surgeries on a homologically trivial knots.

The pruning of a surgery diagram is the operation of removing the compo-
nents with surgery coefficients ±1 which are algebraically split from the rest of the
diagram. The pruning is equivalent to performing a sequence of excellent surgeries.
We say that two surgery diagrams are p-related if one can go form one to another
by a sequence of Kirby moves and prunings.

Corollary 4.4. If D is a surgery diagram p-related to a diagram in X then D is
also in X.

For every 2a ∈ Zn we denote by [2a] the rational number

[2a] = a1 −
1

a2 −
1

a3 − · · ·

.

The following result is a very special case of the general results in [4]. For the
reader’s convenience we present an elementary proof due to Saveliev [25]

Lemma 4.5 [4, Corollary 3.9]. Any homology lens space is e-related to a lens
space.

Proof. Any homology lens space M is obtained by Dehn surgery on a knot K0 in
an integral homology sphere M ′ [2]. Denote by r ∈ Q the surgery coefficient of K0.
We can represent the homology sphere M ′ as surgery on an algebraically split link
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Fig. 3. Slam-dunking K0.

L = K1 ∪ · · · ∪Kn in S3 with surgery coefficients εj = ±1, [24]. We can think of
M as obtained from S3 by surgery on the link L0 = K0 ∪ L. Suppose

r = [2a] , 2a = (a1, a2, . . . , am) .

Performing a sequence of slam-dunks as in [6, Sec. 5.3] we can replace L0 with the
link L ∪ K as in Fig. 3. We have thus succeeded in presenting M as an integral
surgery on a link in S3 with surgery presentation





±1 0 0 · · · 0 31 0 · · · · · · 0
0 ±1 0 · · · 0 32 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 · · · · · · ±1 3n 0 · · · · · · 0
31 32 · · · · · · 3n a1 1 0 0 · · ·
0 0 · · · · · · 0 1 a2 1 0 · · ·
...

...
...

...
... 0 1 a3 1 · · ·

...
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · 0 0 · · · · · · 1 am





.

The first part of this matrix is described by the link L, and 3j := Lk(K0, Kj).
By sliding K0 over the components of L we can kill the off-diagonal terms 3i.
This changes the topological type of K0. It becomes a knot K ′

0, and the surgery
coefficient a1 changes to some integer a′

1. Now undo the slam-dunks. We get a
new link algebraically split link L2 = K ′

0 ∪ L where the surgery coefficient of K ′
0

is r′ = [a′
1, a2, . . . , am], and the surgery coefficient of Kj is ±1. By inserting ∞-

unknots and performing a sequence of Rolfsen twists we can replace K ′
0 with an

unknot K ′′
0 . We can thus describe M as surgery on the algebraically split link

L2 = K ′′
0 ∪K1 · · · ∪Kn

with surgery coefficients ε0 = r′, ε1 = ±1, . . . , εn = ±1. The r′ surgery on K ′′
0

is a lens space while the surgeries on Kj are excellent surgeries. This shows M is
e-related to a lens space.
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4.2. Proof of the main result

We will present a proof by induction over the “complexity” of a rational homology
sphere. To define the notion of complexity we need to present a few algebraic facts
about the linking forms of such manifolds. We follow the notations in [8].

For each prime p > 1, each q ∈ Z, and each k ≥ 1 such that (p, q) = 1 denote
by Ak

p(q) the linking form on the cyclic group Z/pk defined by g · g = q
pk , where

g denotes the natural generator of this group. Also denote by Ek
0 , k ≥ 1 and Ek

1 ,
k ≥ 2, the linking forms on Z/2k ⊕ Z/2k defined by the matrices

Ek
0 =

[
0 2−k

2−k 0

]
, Ek

1 =

[
21−k 2−k

2−k 21−k

]
.

When referring to Ak
p(q), Ek

0 , Ek
1 we mean the corresponding groups equipped with

these linking forms. Define the complexity of An
p to be κ(An

p ) = pk+1. Define the
complexity of En

i , i = 0, 1 to be κ(En
i ) = 22n+2.

A classical result of Wall [33] shows that every linking form (G, q) decomposes
non-uniquely into an orthogonal sum of A’s and E’s. If q is a linking form on a
p-group, then we define its complexity to be the product of the complexities of its
elementary constituents A and/or E in some orthogonal decomposition. The results
in [8] show that this number is independent of the chosen orthogonal decomposition
of q in elementary parts A and E. We denote by κ(q) the complexity of q. For an
arbitrary linking form, we define its complexity to be the product of the complex-
ities of its p-group summands. For every QHS M we denote by νM the order of
H1(M, Z), by qM the linking form of M , and by κM the complexity of qM . We have
the following elementary result whose proof is left to the reader.

Lemma 4.6. If M1 and M2 are two rational homology spheres such that νM1 |νM2

and νM1 < νM2 then κM1 < κM2 .

We would like to present a few methods of reducing the complexity of a manifold.
The primitive deflating surgeries provide one first example.

Definition 4.7. Let K be a knot in a rational homology sphere M supporting a
nontrivial homology class. The knot K is called good if qM (K, K) /= 0. Otherwise,
it is called bad.

Suppose K is a good knot in a rational homology sphere M . If r is order of K
then

q(K, K) =
m

r
, 0 < m < r ,

and the divisibility of any surgery on this knot is m0(K) := (m, r). Consider any
surgery with attaching curve c satisfying |c ·λ| = m0. This is a surgery of divisibility
m0 and of type (p, q) = (m0, ∗). We obtain a new rational homology sphere M ′ such
that νM = r

m0
νM ′ . Lemma 4.6 shows that the complexity of M ′ is smaller than the

complexity of M . We have thus proved the following result.
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Corollary 4.8. The complexity of a rational homology sphere can be reduced by
performing surgeries on good knots. Moreover if the original manifold has no 2-
torsion we can arrange that the resulting manifold also has no 2-torsion.

Certain surgeries on certain bad knots also do reduce the complexity. We have
the following technical result whose proof is deferred to the Appendix.

Lemma 4.9. Suppose M is a rational homology sphere with linking form As
p(q1)⊕

Ar
p(q2) s ≥ r, and K is a bad knot in M of the form

K = c1 ⊕ c2

where the homology class c2 generates Apr (q2). Then one can perform a surgery on
K such that the resulting manifold is a homology lens space of the same order as
M .

We will call the surgery in this lemma Ap-surgery. A knot with the properties
in the lemma will be called a mildly bad knot. Set

Q := {q ; qM
∼= q =⇒M ∈ X} .

We already know that all the linking forms Ak
p(q) belong to Q.

We need to talk a little bit about admissible surgeries, i.e. surgeries for which the
correction term in the surgery formula (3.7) is trivial. Observe that if two rational
homology spheres in X are related by a Dehn surgery then this surgery is admissible.

Corollary 4.10. The Ap surgeries described in Lemma 4.9 are admissible.

Proof. Consider a direct sum of two lens spaces with the above linking forms. This
is a manifold in X. The result of this surgery produces a homology lens space which
is also a manifold in X so the surgery is admissible.

We also want to mention the following topological result. For a proof we refer
to [22].

Lemma 4.11. Suppose M1, M2 are two rational homology spheres and φ is an
isomorphism

φ : (H1(M1, Z), qM1)→ (H1(M2, Z), qM2) .

Suppose Ki is a knot in Mi, i = 1, 2 such that φ([K1]) = [K2]. If M ′
i i = 1, 2, are

obtained perform surgeries of the same arithmetic type α on K1 and K2, then there
exists an isomorphism

φα : (H1(M ′
1, Z), qM ′

1
)→ (H1(M ′

2, Z), qM ′
2
) .

The basic trick used in the proof of Theorem 2.4 is the following immediate
consequence of the surgery formula (3.7).



December 16, 2004 9:36 WSPC/152-CCM 00158

858 L. I. Nicolaescu

Lemma 4.12. Suppose M is a rational homology sphere, and χ a character of
H = H1(M, Z). We identify H with its dual using the linking form. Suppose that
there exists an admissible surgery on a knot K such that

qM (χ, K) = 0⇐⇒ χ ∈ K⊥

and the result of the surgery is a manifold in X. Then D̂M (χ) = 0. In particular, if
for every χ there exists a knot with the above properties then D̂M ≡ 0.

The proof of Theorem 2.4 will be carried out in several steps.

• Step 1. Fix a prime number p > 2, and denote by Rp the family of rational
homology spheres such that νM = pr, r > 0. We will show that Rp ⊂ X. The proof
will be an induction on the complexity. For κ ≥ 0 denote by Rκ

p the manifolds in
Rp of complexity ≤ κ.

The homology lens spaces of order p have minimal complexity p+1, and belong
to X so that Rp+1

p ⊂ X. Observe that if M ∈ Rp then we have a decomposition

qM =
n⊕

j=1

Asj
p (qj) , 0 < s1 ≤ s2 ≤ · · · ≤ sk ,

and

κM = ps1+···+sk+k .

The integer k is called the rank, and we denote it by ρM . Define the standard
model of M to be the connected sum of lens spaces with the same linking form
as M . We denote the standard model by M̃ . Note that for every M ∈ Rp we have
M̃ ∈ X.

Suppose Rκ
p ⊂ X. We want to prove that Rκ+1

p ⊂ X. Let M ∈ Rκ+1
p . Set

H := H1(M, Z), and fix a nontrivial character χ of H . We distinguish two cases.

Case 1. There exists a good knot K ∈ χ⊥. Then there exists a good knot K̃ in
the model M̃ . We can perform a complexity reducing surgery on K̃ to obtain a
manifold of smaller complexity which by induction we know is in X. This show that
the arithmetic type of this surgery is admissible. We perform this admissible surgery
on the knot K on M and we obtain a manifold of smaller complexity. Lemma 4.12
then implies D̂M (χ) = 0.

Case 2. χ⊥ consists only of bad knots. If the rank of H is 1 then M is a rational
homology space so it is in X. Suppose the rank is > 1. (H, qM ) decomposes into a
nontrivial sum of cyclic p groups

H = Z/ps1 ⊕ · · ·⊕ Z/psk , 0 < s1 ≤ · · · ≤ sk , k > 1 .

We get a corresponding decomposition χ = χ1 ⊕ · · · ⊕ χk. Observe that all com-
ponents must be nonzero. Indeed, if χj = 0 then the generator of the jth compo-
nent belongs to χ⊥ and is a good knot. Thus χ1, χ2 /= 0. It is easy to see that
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χ⊥∩ (Z/ps1 ⊕Z/ps2) /= 0. Pick a mildly bad knot K in this group. Thus all but the
first two components of K are zero, and one of the components generates the cor-
responding summand. Perform an Ap surgery on this knot. Using models as in the
first case we conclude that this surgery is admissible. This reduces the complexity
of M . By induction, the resulting manifold is in X that D̂M (χ) = 0. Thus Rp ⊂ X.

• Step 2. If νM is odd then M ∈ X. For each vector 2p = (p1, . . . , pn) whose
components consist of pairwise distinct of odd primes. Denote by R-p the family of
rational homology spheres M such that the prime divisors of νM are amongst the
primes pj . Again we perform induction on complexity. The first homology group H
of M ∈ R-p decomposes as an orthogonal direct sum of p-groups

H =
n⊕

j=1

Gpj , |Gpj | = p
sj

j .

Each component Gpj decomposes as an orthogonal sums of A∗
pj

(∗). Denote by rj

the number of such components. We have

κ(M) = |H |pr1
1 · · · prn

n .

Suppose χ is a nontrivial character of H . We distinguish again two cases.

Case 1. χ⊥ contains good knots. In this case we perform a surgery as in Lemma 4.8
which produces a manifold of smaller complexity. Using models as in Step 1 we can
prove that such a surgery is admissible. Thus in this case D̂M (χ) = 0.

Case 2. If all rj ’s are = 1 then H is a cyclic group, M is a homology lens space,
so that M ∈ X.

Suppose r1 > 1. We set p := p1 and

Gp =
n⊕

j=1

Asj
p (qj) , 0 < s1 ≤ s2 ≤ · · · ≤ sk .

We conclude as in Step 1 that all the components of χ determined by the above
decomposition of Gp are nontrivial. By performing an Ap surgery on a mildly bad
knot we obtain a manifold M ′ satisfying

νM ′ = νM , r′1 = r1 − 1 , r′j = rj , ∀ j = 2, . . . , n .

Thus κ(M ′) < κ(M) and we conclude by induction. We can now conclude that
any Dehn surgery which transforms an odd order QHS to an odd order QHS is
admissible.

• Step 3. If qM = An
2 (q)⊕ q1, where q1 is a linking form on a group of odd order,

then M ∈ X. Denote by R′
2 the family of such rational homology spheres. The

complexity of such a manifold is
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κM = 2n+1κ(q1) .

The considerations in Step 2 lead to the following complexity reduction trick.

Lemma 4.13. If K is a knot in an odd order QHS such that K⊥ is a nontrivial
subgroup, then there exists K ′ ∈ K⊥ and a surgery on K ′ producing an odd order
QHS of smaller complexity. Moreover, such a surgery is admissible.

Suppose qM = An
2 (q)⊕ q1 and χ is a nontrivial character of qM . Then χ⊥ /= 0.

Decompose

χ = χ0 ⊕ χ1 , χ0 ∈ An
2 (q) , χ1 ∈ q1 .

It follows that χ⊥
1 is a nontrivial subgroup in q1. Perform a complexity reduction

surgery on a knot K ∈ χ⊥
1 ⊂ q1 as in Lemma 4.13 to conclude, as we have done

before, that D̂M (χ) = 0.

• Step 4. If qM =
⊕m

k=1 Ank
2 (qk) ⊕ q1, n1 ≥ n2 ≥ · · · ≥ nm > 0, where q1 is a

linking form on a group of odd order, then M ∈ X. Denote by R2 the family of
such rational homology spheres. Redefine the complexity of such a manifold to be

κ̂M := κ

(
m⊕

k=1

Ank
2 (qk)

)
= 2n1+···+nm+m .

For every M ∈ R2 we define its model M̃ to be a connected sum of lens spaces
with the same linking form as M . Again we will carry out the proof by induction
on the new complexity. The basic complexity reduction technique is contained in
the following lemma whose proof is deferred to the Appendix.

Lemma 4.14. (a) Suppose c ∈ As
2(q1) ⊕ Ar

2(q2), s ≥ r > 0. Then there exists
K ∈ c⊥ of the form

K = K1 ⊕K2 (4.2)

where K2 is a generator of Ar
2(q2).

(b) Suppose M is a rational homology sphere such that qM = As
2(q1) ⊕ Ar

2(q2)
and K is a knot in M whose homology class satisfies (4.2). Then there exists a
Dehn surgery on M such that the resulting manifold M ′ is in R′

2 and has smaller
complexity. More precisely, we can arrange that

qM ′ = At
2(q)⊕ q1 ,

where t ≤ r + s and q1 is the linking form of some odd order lens space.

Let M ∈ R2. Then we can write

qM = q0 ⊕ q1 :=

(
m⊕

k=1

Ank
2 (qk)

)
⊕ q1 .

If m = 1 then M ∈ X according to Step 3. We can assume m > 1.
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Any nontrivial character χ ∈ qM decomposes as

χ = χ0 + χ1 , χi ∈ qi , i = 0, 1 .

Pick K ∈ An1
2 (q1) ⊕ An2

2 (q2) orthogonal to χ0, and satisfying (4.2). We want to
perform a complexity reduction surgery as in Lemma 4.14 but we first must show
that any such surgery is admissible. This can be seen by performing this surgery on
the model M̃ ∈ X. It produces a manifold of smaller complexity which by induction
we know it is in X, and thus proving that the surgery is admissible. We can now
conclude, as we have many times before, that D̂M (χ) = 0. This shows that R2 ⊂ X.

• Step 5 Conclusion. Suppose M is an arbitrary QHS. Then qM = q0 ⊕ q1,
where q0 is a linking form on a 2 group, and q1 is a linking form on an odd order
group. The results in [8, Theorem 0.1] show that if we add sufficiently many A’s to
q0 we obtain a linking form isomorphic to a direct sum of A’s. Topologically this
means that we can find a connected sum X of lens spaces of order 2s such that
M#X ∈ R2 ⊂ X. Thus D̂M#X = 0. Since D̂ is additive with respect to connected
sums we deduce D̂M = 0. This concludes the proof of Theorem 2.4.

5. Final Comments

The invariant introduced by Ozsváth and Szabó in [23] satisfies the same surgery
formula as the modified Seiberg–Witten invariant, and detects in the same fashion
the Casson–Walker invariant. This shows that the strategy presented in this paper
also answers a question in [23]. More precisely, their invariant is equivalent to the
modified Reidemeister–Turaev torsion.

If we consider the mod Z reduction of the modified Seiberg–Witten invariant
we deduce that

sw0
M (σ) =

1
8
KSM (σ)mod Z ,

where KSM (σ) denotes the Kreck–Stolz invariant. In general it depends on the
metric but its mod 8Z reduction is metric independent. Fix a spin structure ε. This
choice allows us to think of T and SW as functions H → Q, H := H1(M, Z).

Denote by FM the space of functions f : H → Q/Z. For each h ∈ H define the
finite difference operator

∆h : F → F , (∆hf)(σ) := f(h · σ)− f(σ) .

In [28] it is shown that for every h1, h2 ∈ H we have

lkM (h1, h2) = ∆h1∆h2T mod Z .

Since the constant functions are killed by ∆• we deduce

∆•T = ∆•T
0 .
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Our main result now implies the following equality.

lkM (h1, h2) = −1
8
∆h1∆h2KSMmod Z , ∀h1, h2 ∈ Z .

This shows that the function

H - h .→ 1
8
KSM (σ(ε))− 1

8
KSM (h · σ(ε)) mod Z ∈ Q/Z

is a quadratic refinement of the linking form. A simple application of the Atiyah–
Patodi–Singer index theorem shows that this quadratic refinement coincides with
the canonical refinement of the linking form associated to the spin structure ε
described in the work of Brumfiel–Morgan, [1]. This simple observation together
with the main result of this paper has important applications in the study of isolated
singularities of complex surfaces. We refer to [17, 22] for more details.

Recently, Deloup and Massuyeau [5] gave a purely topological proof of this
relationship between the mod Z reduction of the Reidemeister–Turaev torsion and
the quadratic refinements of the linking form.

In [20] we associated to each spin structure ε on a rational homology sphere an
invariant c(ε) ∈ Q/Z which was powerful enough to distinguish many lens spaces.
We can now identify it. We have

c(ε) =
1
8
KSM (ε) +

1
2
CWMmod Z .
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Appendix A. Proofs of Some Technical Results

Proof of Lemma 4.9. A simple model of Ap surgery is the manifold given by the
surgery diagram

Dn := {(K1, p
s/q1), (K2, p

r/q2), (K, n)} , s ≥ r > 0 ,
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where K1 and K2 are unlinked unknots, and K is a knot such that Lk(K, Ki) = 3i,
−ps/2 < 31 < ps/2, −pr/2 < 32 < pr/2. The linking matrix of this diagram is





ps

q1
0 31

0
pr

q2
32

31 32 n




.

We can view K as a knot in the connected sum of lens spaces L(ps,−q1)#L(pr,−q2).
K is a bad knot if and only if

q1321
ps

+
q2322
pr

= k ∈ Z . (∗)

The knot is mildly bad if and only if (p, 32) = 1. Denote by H the first homology
group of the 3-manifold obtained by performing the surgery indicated by Dn. The
matrix

Bn :=




ps 0 q131

0 pr q232

31 32 n





is a presentation matrix for H and has determinant

det(Bn) = ps+rn− psq23
2 − prq13

2
1

= ps+r

(
n−

(
q1321
ps

+
q2322
pr

))
= ps+r(n− k) .

Observe that | detBn| = ps+r when n = k ± 1. Let n = k + 1.
Rewrite the condition (∗) as

q13
2
1 + ps−rq23

2
2 = psk .

Since (q131, p) = 1 we deduce that (q232, p) = 1. To find H we need to find the
elementary divisors d1|d2|d3 of Bk+1. Clearly d1 = 1. By looking at the 2×2 minor
in the top left hand corner we deduce that d2|ps+r. On the other hand, if we look
the 2× 2 minor

∣∣∣∣∣
0 q232

31 k + 1

∣∣∣∣∣ ,

we deduce that it is not divisible by p. Thus d2 = 1 which shows that H is a cyclic
p-group of order ps+r.

Proof of Lemma 4.14. Part (a) is elementary and is left to the reader. For Part
(b) it suffices to look at a concrete realization of the given homological data. Any
homology class K ∈ As

2(q1)⊕Ar
2(q2) satisfying (4.2) can be realized as a knot in a

connected sum of lens spaces X := L(2s, a)#L(2r, b). We describe X as surgery on
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2

2
s

r

/a

/b

n

K

Linking number = k

Fig. 4. Modeling a complexity reducing surgery.

two unlinked unknots K1, K2 with surgery coefficients −2s/a, −2r/b. Also we can
view K as a knot such that

Lk(K,g) = 1 , Lk(K, K1) = k .

Assume K has an integral surgery coefficient n (see Fig. 4). Slam-dunking K2 over
K we obtain a surgery presentation with linking matrix

A :=

[
−2s/a k

k n + b/2r

]
.

The first homology group H of the manifold described by this surgery diagram
admits the presentation matrix

B :=

[
−2s ak

2rk 2rn + b

]
.

The order of this group is |2r+sn + 2sb + 2rak2|. Pick n to be any number such
that 2r+s+1 does not divide the order of this group. Then H is a cyclic group of
the form Z/2t ⊕ Z/(2m + 1), t ≤ r + s. Its κ̂-complexity is smaller than that of
As

2(q1)⊕Ar
2(q2).
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