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ABSTRACT. We prove a universality result relating the expected distribution of critical values of a
random linear combination of eigenfunctions of the Laplacian on an arbitrary compact Riemann m-
dimensional manifold to the expected distribution of eigenvalues of a (m + 1) × (m + 1) random
symmetric Wigner matrix. We then prove a central limit theorem describing what happens to the
expected distribution of critical values when the dimension of the manifold is very large.
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1. OVERVIEW

The goal of this paper is to describe a universal relationship between the distribution of critical
values of certain random functions on an arbitrary compact m-dimensional Riemann manifold and
the distribution of eigenvalues of certain random symmetric (m+ 1)× (m+ 1)-matrices. A special
case of this problem concerns the distribution of critical values of the restriction to the unit sphere
SN ⊂ RN+1 of a random polynomial of very large degree in (N + 1)-variables.
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1.1. The setup. Suppose that (M, g) is a smooth, compact, connected Riemann manifold of dimen-
sion m > 1. We denote by |dVg| the volume density on M induced by g. We assume that the metric
is normalized so that

volg(M) = 1. (∗)
For any u,v ∈ C∞(M) we denote by (u,v)g their L2 inner product defined by the metric g. The
L2-norm of a smooth function u is denoted by ‖u‖.

Let ∆g : C∞(M)→ C∞(M) denote the scalar Laplacian defined by the metric g. For L > 0 we
set

UL = UL(M, g) :=
⊕

λ∈[0,L2]

ker(λ−∆g), d(L) := dimUL.

We equip UL with the Gaussian probability measure.

dγL(u) := (2π)−
d(L)

2 e−
‖u‖2

2 |du|.
Fix an orthonormal Hilbert basis (Ψk)k≥0 of L2(M) consisting of eigenfunctions of ∆g,

∆gΨk = λkΨk, k0 ≤ k1 ⇒ λk0 ≤ λk1 .

Then
UL = span

{
Ψk; λk ≤ L2

}
.

A random (with respect to dγL) function u ∈ UL can be viewed as a linear combination

u =
∑
λk≤L2

ukΨk,

where uk are i.i.d. Gaussian random variables with mean 0 and variance σ2 = 1. We have the
following technical result whose proof is contained in Appendix A.

Proposition 1.1. There exists L0 > 0 such that for any L ≥ L0, a function u ∈ UL is almost surely
(a.s.) Morse. ut

Remark 1.2. For any f ∈ C∞(M) and any open neighborhood O of f in C∞(M) we can find
L0 ≥ 0 such that for any L ≥ L0 we have UL ∩O 6= ∅. Suppose that f is stable, i.e., f is Morse and
the critical level sets of f contain a single critical point. If O is sufficiently small, then any f ′ ∈ O is
topologically equivalent to f , [17, Prop. III.2.2]. This means that there exists a diffeomorphism Φ of
M and a diffeomorphism ϕ of R such that f ′ = ϕ ◦ f ◦Ψ−1. Thus, as L→∞ the spaceUL engulfs
all the possible topological types of stable Morse functions. ut

For any u ∈ C1(M) we denote by Cr(u) ⊂M the set of critical points of u and byD(u) the set
of critical values1 of u. If L is sufficiently large the random set UL 3 u 7→ Cr(u) is a.s. finite.

To a Morse function u on M we associate a Borel measure µu on M and a Borel measure σu on
R defined by the equalities

µu :=
∑

p∈Cr(u)

δp, σu := u∗(µu) =
∑

du(p)=0

δu(p).

Following the terminology on [3, 4] we will refer to σu as the variational complexity of u. Observe
that

suppµu = Cr(u), suppσu = D(u).

1The set D(u) is sometime referred to as the discriminant set of u.
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When u ∈ UL is not a Morse function we define µu and σu arbitrarily. We set

sm :=
(4π)−

m
2

Γ(1 + m
2 )
, dm :=

(4π)−
m
2

2Γ(2 + m
2 )
, hm :=

(4π)−
m
2

4Γ(3 + m
2 )
. (1.1)

The statistical significance of these numbers is described is Subsection 2.2. We only want to mention
here that the Hörmander-Weyl spectral estimates state that

dimUL = smL
m +O(Lm−1) as L→∞. (1.2)

For L � 0 , the correspondence UL 3 u 7→ µu is a random measure on M called the empirical
distribution of critical points of the random function. Its expectation is the measure µL on M defined
by ∫

M
fdµL =

∫
UL

(∫
M
fdµu

)
dγL(u),

for any continuous function f : M → R. Note that the number

NL :=

∫
M
dµL =

∫
UL
|Cr(u)|dγL(u)

is the expected number of critical points of a random function in UL.
In [23] we showed that there exists a universal (explicit) constant Cm that depends only on the

dimension m such that

NL ∼ Cm dimUL ∼ Cmsωm(L)m as L→∞, (1.3)

and the normalized measures

dµ̄L :=
1

NL
dµL

converges weakly to the metric volume measure |dVg| as L → ∞. This means that for L very large
we expect the critical set of a random u ∈ UL to be close to uniformly distributed on M .

Similarly, the random measure UL 3 u 7→ σu has an expectation σL := EUL(σu) which is a
finite measure on R defined by∫

R
f(λ)dσL(λ) =

∫
UL

(∫
R
f(λ)dσLu(λ)

)
dγL(u),

for any continuous and bounded function f : R→ R. Results of Adler-Taylor [1] (see Subection 2.1)
show that σL exists. Note that ∫

R
σL(dt) = NL.

1.2. Statements of the main results. In this paper we investigate the statistical properties of the
measure σL as L→∞ and then as m→∞. To state our results we need a bit of terminology.

For any t > 0 we denote by Rt : R → R the rescaling map R 3 x 7→ tx ∈ R. If µ is a Borel
measure on R we denote by (Rt)∗µ its pushforward via the rescaling map Rt. We denote by γv the
Gaussian measure on R with mean zero and variance v ≥ 0.

The central result of this paper states that as L→∞ the probability measures
1

NL

(
R 1√

dim UL

)
∗
σL

converge weakly to a probability measure σm on R which can be described explicitly in terms of the
statistics of the the eigenvalues of certain random symmetric (m+1)×(m+1)-matrices. Additionally
we prove a central limit theorem stating that as m → ∞, the probability measures σm converge
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weakly to a Gaussian measure γ2. Before we give a more precise description of the measure σm we
need to point out a small annoyance which we will turn to our advantage.

Observe that if u : M → R is a fixed Morse function and c is a constant, then

Cr(c+ u) = Cr(u), µc+u = µu,

but
D(u+ c) = c+D(u), σu+c = δc ∗ σu,

where ∗ denotes the convolution of two finite measures on R. More generally, if X is a scalar random
variable with probability distribution νX , then the expected variational complexity of the random
function X + u is the measure νX ∗ σu, where ∗ denotes the operation of convolution. In particular,
if the distribution νX is a Gaussian, then the measure σu is uniquely determined by the measure
νX ∗ σu since the convolution with a Gaussian is an injective operation.

It turns out that it is easier to understand the statistics of the variational complexity of the pertur-
bation of a random u ∈ UL by an independent Gaussian variable of cleverly chosen variance.

We consider random functions of the form

uω = Xω + u = Xω +
∑
λk≤L2

ukΨk,

where the Fourier coefficients uk are i.i.d. standard Gaussians, andXω ∈N(0,ω) is a scalar random
variable independent of the uk’s. In applications ω will depend on m and L.

Since Xω is independent of u we deduce that the expected variational complexity of Xω + u is
the measure σLω on R given by

σLω = E(σXω+u) = γω ∗ σL. (1.4)

Note that

NL =

∫
R
dσLω(t) =

∫
R
dσL(t).

The first goal of this paper is to investigate the behavior of the probability measures 1
NLσ

L
ω asL→∞

for certain very special ω’s. For reasons that we will shortly, we choose ω of the form

ω = ω(m,L, r) = ω̄m,rL
m (1.5)

where r > 0 and the positive quantity ω̄m,r are uniquely determined by the equality

sm + ω̄m,r = r
d2m
hm

=: sωm. (1.6)

Observe that as L → ∞ we have ω(m,L, r) → ∞ so the random variable Xω is more and more
diffuse. From the elementary identity

sm = hm(m+ 2)(m+ 4), dm = (m+ 4)hm (1.7)

we deduce that

sωm = r
m+ 4

m+ 2
sm, ω̄m,r =

(
r(m+ 4)

m+ 2)
− 1

)
sm. (1.8)

The inequality sωm ≥ sm shows that the parameter r must satisfy the m-dependent constraint

r ≥ m+ 2

m+ 4
. (Cm)



COMPLEXITY OF RANDOM SMOOTH FUNCTIONS 5

For v ∈ (0,∞) and N a positive integer we denote by GOEvN the space SN of real, symmetric
N × N matrices A equipped with a Gaussian measure such that the entries aij are independent,
zero-mean, normal random variables with variances

var(aii) = 2v, var(aij) = v, ∀1 ≤ i < j ≤ N.
We denote by ρN,v(λ) the normalized correlation function of GOEvN . It is uniquely determined by
the equality ∫

R
f(λ)ρN,v(λ)dλ =

1

N
EGOEvN

(
tr f(A)

)
,

for any continuous bounded function f : R → R. The function ρN,v(λ) also has a probabilistic
interpretation. For any Borel set B ⊂ R the expected number of eigenvalues in B of a random
A ∈ GOEvN is equal to

N

∫
B
ρN,v(λ)dλ.

The celebrated Wigner semicircle theorem, [2, Thm. 2.1.1], [20, Eq.(7.2.33)], states that as N →∞
the rescaled probability measures (

R 1√
N

)
∗
(
ρN,v(λ)dλ

)
converge weakly to the semicircle measure given by the density

ρ∞,v(λ) :=
1

2πv
×

{√
4v − λ2, |λ| ≤

√
4v

0, |λ| >
√

4v.

We can now explain what we gain by working with the perturbed function uω = Xω + u. The
computation of σL uses the (conditioned) Gaussian random matrix

ZL,x =
(
L−

m+4
2 Hess(uω,p)

∣∣∣ duω(p) = 0, uω(p) = L
m
2 x
)
, (1.9)

where Hess(uω,p) denotes the hessian of uω at p and x is a fixed real number. The probability
distribution of this random matrix depends on the choice of ω.

In Lemma 2.3 we show that if ω is chosen according to the prescriptions (1.5), (1.8) where r ≥ 1,
then the random m ×m matrix (1.9) converges as L → ∞ to a sum between a GOEhmm -distributed
matrix and an independent normally distributed multiple of the identity; see especially (2.12). Once
this happens we can use a simple trick of Fyodorov [15] to express the limit as L → ∞ of the
expectation of |detZL,x| in terms of statistics of the ensemble GOEhmm+1; see Lemmas C.1, C.2. For
example, in the extreme case r = 1, the random matrix ZL,x + x

m+41m converges as L → ∞ to a
random matrix in the ensemble GOEhmm .

None of the above nice accidents would take place if we did not perturb the function by the care-
fully chosen random variable Xω. The choice of Xω is essentially forced upon us by (2.12) and the
discussion in Appendix C, especially the equality (C.1).

We can now state the main technical result of this paper.

Theorem 1.3. Fix a positive real number satisfying r ≥ 1. Let ω = ω(m,L, r) be defined by the
equalities (1.5) and (1.6). Then as L→∞ the rescaled measures

1

NL

(
R 1√

sωmL
m

)
∗
σLω

converge weakly to a probability measure σm,r on R satisfying the equality

σm,r ∝ γ (r−1)
r

∗
(
e−

rλ2

4 ρm+1,r−1(λ)dλ
)
, (1.10)
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where ∝ denotes the relation of proportionality of two finite measures. In particular, when r = 1 we
have

σm,1 ∝ e−
λ2

4 ρm+1,1(λ)dλ.

The above result has several interesting consequences.

Corollary 1.4 (Universality.). As L→∞ the rescaled measures

1

NL

(
R 1√

dim UL

)
∗
σL

converge weakly to a probability measure σm on R uniquely determined by the convolution equation

γ 2
m+2
∗ σm =

(
R√

m+4
m+2

)
∗
σm,1.

The fact that the convolution equation

γ 2
m+2
∗ µ =

(
R√

m+4
m+2

)
∗
σm,1

has a unique solution µ can be seen easily by taking Fourier transforms. The above result shows that
the large L behavior of the average complexity σL is independent of the background manifold M
and of the metric g. We do not have a more explicit and simpler description of σm and we doubt that
such a description exists.

Corollary 1.5. As m→∞, the measures σm converge weakly to the Gaussian measure γ2.

1.3. Related results. The scaling limit of various statistical quantities associated to Gaussian random
fields in the high frequency limit has been studied in detail over the past fifteen years. In [27] S.
Zelditch investigates the volume of the zero set of such a random field and proves a related universality
result. The zero set of a random section of a large power of an ample line bundle over a Kähler
manifold displays a similar universal scaling behavior; see [8] and the references therein.

The distribution of critical points (or energy landscape) of isotropic random functions on Rm was
investigated by Fyodorov [15, 16] who also relates this problem to the staistics of the eigenvalues
in the ensemble GOEm+1. Recently A. Auffinger [3, 4] has investigated the distributions of critical
values of certain isotropic random fields on a round sphere Sm, where m → ∞, and described a
connection with the distribution of eigenvalues of symmetric matrices in the ensemble GOEm+1.

The scaling limit of the distribution of critical points of random holomorphic sections of a large
power of an ample line bundle on a Kähler manifold was investigated by M. Douglas, B. Schiffman
and S. Zelditch, [11, 12, 13]. The dimensional dependence of the number of critical points of such a
random holomorphic section was described by B. Baugher, [6].

The universality result described in Theorem 1.3 is not an isolated phenomenon and fits a more
general pattern. To explain this, fix a measurable function w : [0,∞) → [0,∞) called weight. For
L > 0 we define the rescaled weight

wL : [0,∞)→ [0,∞), wL(t) = w
( t
L

)
and consider the random function on M

uL =
∑
k≥0

√
wL
(
λk

1
2

)
CkΨk, (1.11)
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where Ck are independent normally distributed random variables. If w decays sufficiently fast as
t→∞, then uL is a.s. smooth.

The correlation kernel of the random function (1.11) can be identified with the Schwartz kernel of
the smoothing operator wL(

√
∆). We can then ask about the behavior as L → ∞ of the expected

variational complexity of the random function (1.11). This is in turn conditioned by the regularity of
w: the more regular is w the more detailed is the information about this behavior. This paper covers
the ”worst” situation, when w = I [0,1] is obviously discontinuous. Above and throughout this paper
we use the notation IA to denote the indicator function of a subset A of a given set S.

In [24], a sequel to this paper, we investigate the random functions defined by weights w which are
smooth. We show that Theorem 1.3 has a suitable counterpart in this case. Moreover, the smoothness
of w allows us to provide additional nontrivial information that is not available in the singular case
w = I [0,1].

1.4. Organization of the paper. Let us briefly describe the principles hiding behind the above re-
sults. Theorem 1.3 follows from a Kac-Rice type formula [1, 11] aided by the refined spectral es-
timates of the spectral function of the Laplacian on a compact Riemann manifold, [7, 14, 18, 26].
Corollary 1.4 is a rather immediate consequence of Theorem 1.3 while Corollary 1.5 follows from
Corollary 1.4 via a refined version of Wigner’s semicircle theorem.

The basic facts coverning the Kac-Rice formula are presented in Subsection 2.1 while the proofs
of the above results are presented in Subsections 2.2, 2.3, 2.4. Appendix A is devoted to the proof
of Proposition 1.1. To aid the reader with a more geometric bias we have included two probabilis-
tic appendices. In Appendix B we have collected a few basic facts about Gaussian measures used
throughout the paper. In the more exotic Appendix C we discuss a family of symmetric random
matrices and some of their properties needed in the main body of the paper.

Aknowledgments. I would like to thank the anonymous referee for the many constructive sugges-
tions that helped me improve the quality of the present paper.

2. PROOFS

2.1. A Kac-Rice type formula. As we have already mentioned, the key result behind Theorem 1.3
is a Kac-Rice type result which we intend to discuss in some detail in this section. This result gives an
explicit, yet quite complicated description of the measure σLω. More precisely, for any Borel subset
B ⊂ R the Kac-Rice formula provides an integral representation of σLω(B) of the form

σLω(B) =

∫
M
fL,ω,B(p) |dVg(p)|,

for some integrable function fL,ω,B : M → R. The core of the Kac-Rice formula is an explicit
probabilistic description of the density fL,ω,B .

Fix a point p ∈M . This determines three Gaussian random variables.

(UL,γLω) 3 uω 7→ uω(p) ∈ R,

(UL,γLω) 3 uω 7→ duω(p) ∈ T ∗pM,

(UL,γLω) 3 uω 7→ Hessp(uω) ∈ S(TpM),

(RVω)

where Hessp(uω) : TpM × TpM → R is the Hessian of uω at p defined in terms of the Levi-Civita
connection of g and then identified with a symmetric endomorphism of TpM using again the metric
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g. More concretely, if (xi)1≤i≤m are g-normal coordinates at p, then

Hessp(uω)∂xj =
m∑
i=1

∂2xixjuω(p)∂xi .

As shown in the proof of Proposition 1.1, for L very large the map UL 3 u 7→ du(p) ∈ T ∗pM is
surjective which implies that the covariance form of the Gaussian random vector duω(p) is positive
definite. We can identify it with a symmetric, positive definite linear operator

S
(
duω(p)

)
: TpM → TpM.

More concretely, if (xi)1≤i≤m are g-normal coordinates at p, then we can identify S
(
duω(p)

)
with

a m×m real symmetric matrix whose (i, j)-entry is given by

Sij
(
duω(p)

)
= E

(
∂xiuω(p) · ∂xjuω(p)

)
.

Theorem 2.1. Fix a Borel subset B ⊂ R. For any p ∈M define

fL,ω,B(p) :=
(

det
(

2πS(uω(p)
) )− 1

2 E
(
| det Hessp(uω)| · IB(uω(p) )

∣∣ duω(p) = 0
)
,

where E
(

var | cons
)

stands for the conditional expectation of the variable var given the con-
straint cons. Then

σLω(B) =

∫
M
fL,ω,B(p) |dVg(p)|. (2.1)

ut

This theorem is a special case of a general result of Adler-Taylor, [1, Thm. 11.2.1]. The many
technical assumptions in Adler-Taylor Theorem are trivially satisfied in this case. In [23] we proved
this theorem in the case B = R and ω = 0. The strategy used there can be modified to yield the more
general Theorem 2.1.

For the above theorem to be of any use we need to have some concrete information about the
Gaussian random variables (RVω). All the relevant statistical invariants of these variables can be
extracted from the covariance kernel of the random function uω. This is the function

ELω : M ×M → R,
ELω(p, q) = E

(
uω(p)uω(q)

)
= E

(
(X + u(p) ) · (X + u(q) )

)
= ω +

∑
λk≤L2

Ψk(p)Ψk(q) =: ω + EL(p, q).

The function EL is the spectral function of the Laplacian, i.e., the Schwartz kernel of PL, the or-
thogonal projection onto UL. Fortunately, a lot is known about the behavior of EL as L → ∞,
[7, 14, 18, 26, 27].

2.2. Proof of Theorem 1.3. Fix L � 0. For any p ∈ M we have the centered Gaussian vector
(RVω), ω = 0,

(UL,γL) 3 u 7→
(
u(p), du(p),Hessp(u)

)
∈ R⊕ T ∗pM ⊕ S(TpM).

We fix normal coordinates (xi)1≤i≤m at p and we can identify the above Gaussian vector with the
centered Gaussian vector(

u(p),
(
∂xiu(p)

)
1≤i≤m,

(
∂2xixju(p)

)
1≤i,j≤m

)
∈ R⊕ Rm ⊕ Sm.

In [23, §3] we showed that the spectral estimates of Bin-Hörmander [7, 18] imply the following
asymptotic estimates.
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Lemma 2.2. For any 1 ≤ i, j, k, ` ≤ m we have the uniform in p asymptotic estimates as L→∞

E(u(p)2
)

= sωmL
m
(
1 +O(L−1)

)
, (2.2a)

E
(
∂xiu(p)∂xju(p)

)
= dmL

m+2δij
(

1 +O(L−1)
)
, (2.2b)

E
(
∂2xixju(p)∂2xkx`u(p)

)
= hmL

m+4(δijδk` + δikδj` + δi`δjk)
(

1 +O(L−1)
)
, (2.2c)

E
(
u(p)∂2xixju(p)

)
= −dmLm+2δij

(
1 +O(L−1)

)
, (2.2d)

E
(
u(p)∂xiu(p)

)
= O(Lm), E

(
∂xiu(p)∂2xjxku(p)

)
= O(Lm+2), (2.2e)

where the constants sm, dm, hm are defined by (1.1). ut

Now let ω = ω(m,L, r) be defined as in (1.5), (1.6). Using the notation (1.8) we deduce from the
above that in the case of the random function uω we have the estimates

E(uω(p)2
)

= sωmL
m
(
1 +O(L−1)

)
, (2.3a)

E
(
∂xiuω(p)∂xjuω(p)

)
= dmL

m+2δij
(

1 +O(L−1)
)
, (2.3b)

E
(
∂2xixjuω(p)∂2xkx`uω(p)

)
= hmL

m+4(δijδk` + δikδj` + δi`δjk)
(

1 +O(L−1)
)
, (2.3c)

E
(
uω(p)∂2xixjuω(p)

)
= −dmLm+2δij

(
1 +O(L−1)

)
, (2.3d)

E
(
uω(p)∂xiuω(p)

)
= O(Lm), E

(
∂xiuω(p)∂2xjxkuω(p)

)
= O(Lm+2). (2.3e)

From the estimate (2.3b) we deduce that

S( duω(p) ) = dmL
m+2

(
1m +O(L−1)

)
,

so that √
|detS(uω(p))| = (dm)

m
2 L

m(m+2)
2

(
1 +O(L−1)

)
as L→∞. (2.4)

Consider the rescaled random vector

(sL, vL, HL) =(sL,ω,p, vL,ω,.p, HL,ω,p)

:=
(
L−

m
2 uω(p), L−

m+2
2 duω(p), L−

m+4
2 Hessp uω

)
.

Form the above we deduce the following uniform in p estimates as L→∞.

E( (sL)2
)

= sωm
(
1 +O(L−1)

)
, (2.5a)

E
(
vLi v

L
j

)
= dmδij

(
1 +O(L−1)

)
, (2.5b)

E
(
HL
ijH

L
kl

)
= hm(δijδk` + δikδj` + δi`δjk)

(
1 +O(L−1)

)
, (2.5c)

E
(
sLHL

ij

)
= −dmδij

(
1 +O(L−1)

)
, (2.5d)

E
(
sLvLi

)
= O(L−1), E

(
vLi H

L
jk

)
= O(L−1). (2.5e)

The probability distribution of the variable sL is

dγsL(x) =
1√

2πs̄ωm(L)
e
− x2

2s̄ωm(L) |dx|,

where its variance s̄ωm(L) satisfies the estimate

s̄ωm(L) = sωm +O(L−1).
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Fix a Borel set B ⊂ R. We have

E
(
| det Hessuω(p)|IB

(
uω(p)

) ∣∣ duω(p) = 0
)

= L
m(m+4)

2 E
(
|detHL|I

L−
m
2 B

(sL)
∣∣ vL = 0

)
= L

m(m+4)
2

∫
L−

m
2 B
E
(
|detHL|

∣∣ sL = x, vL = 0
) e

− x2

2s̄ωm(L)√
2πs̄ωm(L)

|dx|︸ ︷︷ ︸
=:qL,p(L

−m2 B)

.

(2.6)

Using (2.4) and (2.6) we deduce from Theorem 2.1 that

σLω(B) = Lm
(

1

2πdm

)m
2
∫
M
qL,p(L−

m
2 B)ρL(p)|dVg(p)|,

where ρL : M → R is a function that satisfies the uniform in p estimate

ρL(p) = 1 +O(L−1) as L→∞. (2.7)

Hence
1

Lm

(
R
L−

m
2

)
∗
σLω(B) =

(
1

2πdm

)m
2
∫
M
qL,p(B)ρL(p)|dVg(p)|. (2.8)

To continue the computation we need to investigate the behavior of qL,p(B) as L → ∞. More
concretely, we need to elucidate the nature of the Gaussian matrix

ZL,x :=
(
HL

∣∣ sL = x, vL = 0
)
.

Lemma 2.3. Set

κ = κ(r) :=
(r − 1)

2r
, r ≥ 1.

The Gaussian random matrix ZL,x converges uniformly in p as L → ∞ to the random matrix A −
x

r(m+4)1m, where A belongs to the Gaussian ensemble S
2κhm,hm
m described in Appendix C.

Proof. We will use the regression formula (B.3). For simplicity we set

Y L := (sL, vL) ∈ R⊕ Rm.

The components of Y are
Y L
0 = sL, Y L

i = vLi , 1 ≤ i ≤ m.
Using (2.5a), (2.5b) and (2.5e) we deduce that for any 1 ≤ i, j ≤ m we have

E(Y L
0 Y

L
i ) = sωmδ0i +O(L−1), E(Y L

i Y
L
j ) = dmδij +O(L−1).

If S(Y L) denotes the covariance operator of Y L, then we deduce that

S(Y L)−10,i =
1

sωm
δ0i +O(L−1), S(Y L)−1ij =

1

dm
δij +O(L−1). (2.9)

We now need to compute the covariance operator Cov(HL, Y L). To do so we equip Sm with the
inner product

(A,B) = tr(AB), A,B ∈ Sm

The space Sm has a canonical orthonormal basis Êij , 1 ≤ i ≤ j ≤ m, where

Êij =

{
Eij , i = j
1√
2
Eij , i < j
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and Eij denotes the symmetric matrix nonzero entries only at locations (i, j) and (j, i) and these
entries are equal to 1. Thus a matrix A ∈ Sm can be written as

A =
∑
i≤j

aijEij =
∑
i≤j

âijÊij ,

where

âij =

{
aij , i = j,√

2aij , i < j.

The covariance operator Cov(HL, Y L) is a linear map

Cov(HL, Y L) : R⊕ Rm → Sm

given by

Cov(HL, Y L)

(
m∑
α=0

yαeα

)
=
∑
i<j,α

E(ĤL
ijY

L
α )yαÊij =

∑
i<j,α

E(HL
ijY

L
α )yαEij ,

where e0, e1, . . . , em denotes the canonical orthonormal basis in R ⊕ Rm. Using (2.5d) and (2.5e)
we deduce that

Cov(HL, Y L)

(
m∑
α=0

yαeα

)
= −y0dm1m +O(L−1). (2.10)

We deduce that the transpose Cov(Hε, Y ε)∨ satisfies

Cov(HL, Y L)∨

∑
i≤j

âijÊij

 = −dm tr(A)e0 +O(L−1). (2.11)

The covariance operator of the random symmetric matrix ZL = XZL,x is then

S(ZL) = S(HL)−Cov(HL, Y L)S(Y L)−1Cov(HL, Y L)∨.

This means that
E
(
ẑLij · ẑLk`

)
= (Êij ,S(ZL)Êk`).

Using (2.9), (2.10) and (2.11) we deduce that

Cov(HL, Y L)S(Y L)−1Cov(HL, Y L)∨

∑
i≤j

âijÊij

 =
d2m
sωm

tr(A)1m +O(L−1)

E
(

(zLij)
2
)

= hm +O(L−1), E(zLiiz
L
jj) = hm −

d2m
sωm

+O(L−1), ∀i < j,

E
(

(zLii)
2
)

= 3hm −
d2m
sωm

+O(L−1), ∀i,

and
E(zLijz

L
k`) = O(L−1), ∀i < j, k ≤ `, (i, j) 6= (k, `).

We can rewrite these equalities in the compact form

E(zLijz
L
k`) =

(
hm −

d2m
sωm

)
δijδk` + hm(δikδj` + δi`δjk) +O(L−1). (2.12)
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The last equality is ultimately the main reason for our choices (1.5) and (1.8) in defining Xω. Note
that with r defined as in (1.6) we have

hm −
d2m
sωm

(1.7)
=

r − 1

r
hm.

Hence
E(zLijz

L
k`) = 2κhmδijδk` + hm(δikδj` + δi`δjk) +O(L−1). (2.13)

Using (B.4) we deduce that the expectation of ZL is

E(ZL) = Cov(HL, Y L)S(Y L)−1(xe0) = − x

r(m+ 4)
1m +O(L−1). (2.14)

This completes the proof of Lemma 2.3. ut

We deduce that

lim
L→∞

qL,p(B) = q∞(B) :=

∫
B
E

S
2κhm,hm
m

( ∣∣ det
(
A− x

r(m+ 4)
1m

) ∣∣ ) e− x2

2sωm

√
2πsωm

dx

= (hm)
m
2

∫
B
E

S
2κ,1
m

( ∣∣ det
(
A− x

r(m+ 4)
√
hm

1m

) ∣∣ ) e− x2

2sωm

√
2πsωm

dx

= (hm)
m
2

∫
(sωm)−

1
2B
E

S
2κ,1
m

( ∣∣ det
(
A− αmy1m

) ∣∣ )e− y2

2

√
2π
dy,

where

αm =

√
sωm

r(m+ 4)
√
hm

(1.7)
=

1√
r
.

This proves that

lim
L→∞

(
R
(sωm)−

1
2

)
∗
qL,p(B) = (hm)

m
2

∫
B
E

S
2κ,1
m

( ∣∣∣det
(
A− y√

r
1m

) ∣∣∣ )e− y2

2

√
2π
dy︸ ︷︷ ︸

=:µm(B)

.

Using the last equality, the normalization (∗) and the estimate (2.7) in (2.8) we conclude

lim
L→∞

1

sωmL
m

(
R
(sωmL

m)−
1
2

)
∗σ

L
ω(B) =

1

sm

(
hm

2πdm

)m
2

µm(B)

(1.7)
=

(
2

m+ 4

)m
2

Γ
(

1 +
m

2

)
µm(B).

(2.15)

In particular, this shows that

NL ∼ sωmLm
(

2

m+ 4

)m
2

Γ
(

1 +
m

2

)
µm(R).

Observe that the probability density of µm is

dµm
dy

= E
S

2κ,1
m

( ∣∣∣ det
(
A− y√

r
1m

) ∣∣∣ )e− y2

2

√
2π
. (2.16)

We now distinguish two cases.
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Case 1. r > 1 From Lemma C.2 we deduce that

E
S

2κ,1
m

( ∣∣∣det
(
A− y√

r
1m

) ∣∣∣ )
= 2

m+3
2 Γ

(
m+ 3

2

)
1√
2πκ

∫
R
ρm+1,1(λ)e

− 1
4τ2 (λ−(τ2+1) y√

r
)2+

(τ2+1)y2

4r dλ,

(2.17)

where

τ2 :=
κ

κ− 1
=
r − 1

r + 1
.

Thus

dµm
dy

= 2
m+3

2 Γ

(
m+ 3

2

)
1

2π
√
κ
e

(τ2+1−2r)y2

4r

∫
R
ρm+1,1(λ)e

− 1
4τ2 (λ−(τ2+1) y√

r
)2
dλ

= 2
m+3

2 Γ

(
m+ 3

2

)
1

2π
√
κ

∫
R
ρm+1,1(λ)e

− 1
4τ2 (λ−(τ2+1) y√

r
)2− ry2

2(r+1)dλ.

An elementary computation shows that

− 1

4τ2

(
λ− (τ2 + 1)

y√
r

)2

− ry2

2(r + 1)
= −1

4
λ2 −

(√
1

2(r − 1)
λ− y

√
r

2(r − 1)

)2

.

Now set

β = β(r) :=
1

(r − 1)
.

We deduce

dµm
dy

= 2
m+3

2 Γ

(
m+ 3

2

)
1

2π
√
κ

∫
R
ρm+1,1(λ)e−

1
4
λ2
e−

β
2
(λ−
√
ry)2dλ

(λ :=
√
rλ)

= 2
m+3

2 Γ

(
m+ 3

2

)
1

2π
√
κ

∫
R

√
rρm+1,1(

√
rλ)e−

r
4
λ2
e−

rβ
2
(λ−y)2dλ

(C.6)
= 2

m+3
2 Γ

(
m+ 3

2

)
1√

2πκrβ

∫
R
ρm+1,1/r(λ)e−

r
4
λ2
dγ 1

βr
(y − λ)dλ.

Using the last equality in (2.15) and then invoking the estimate (1.3) we obtain the case r > 1 of
Theorem 1.3.

Case 2. r = 1. The proof of Theorem 1.3 in this case follows a similar pattern. Note first that in this
case κ = 0 so invoking Lemma C.1 we obtain the following counterpart of (2.17)

EGOE1
m

( ∣∣∣ det
(
A− y1m

) ∣∣∣ ) = 2
m+4

2 Γ

(
m+ 3

2

)
e
y2

4 ρm+1,1(y).

Using this in (2.16) we deduce immediately (1.10) in the case r = 1. This completes the proof of
Theorem 1.3.

ut
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2.3. Proof of Corollary 1.4. We use Theorem 1.3 in the case r = 1. Using (1.4), (1.5) and (1.8) we
deduce that when r = 1 we have

sm = sωm
m+ 2

m+ 4
, σLω = γ 2smLm

m+2
∗ σL. (2.18)

We deduce
1

NL

(
R 1√

smLm

)
∗
σLω =

(
R√

m+4
m+2

)
∗

(
1

NL

(
R 1√

sωmL
m

)
∗
σLω

)
. (2.19)

Using (2.18) we deduce that

1

NL

(
R 1√

smLm

)
∗
σLω = γ 2

m+2
∗
(

1

NL

(
R 1√

smLm

)
∗
σL
)
. (2.20)

Using the spectral estimates (1.2), the equality (2.19) and Theorem 1.3 with r = 1 we deduce

lim
L→∞

γ 2
m+2
∗
(

1

NL

(
R 1√

smLm

)
∗
σL
)

= lim
L→∞

1

NL

(
R 1√

sωmL
m

)
∗
σLω =

(
R√

m+4
m+2

)
∗
σm+1,1.

We can now conclude by invoking Lévy’s continuity theorem [19, Thm. 15.23(ii)]. Here are the
details.

Denote by µ(ξ) and respectively µLω(ξ) the Fourier transforms of the measures

1

NL

(
R 1√

sωmL
m

)
∗
σLω and respectively

1

NL

(
R 1√

smLm

)
∗
σL

Observe that the Fourier transform of the Gaussian measure γ 2
m+2

is e−
1

(m+2)
|ξ|2 . Then (2.20) implies

µL(ξ) = e
1

(m+2)
|ξ|2
µLω(ξ). (2.21)

Theorem 1.3 coupled with Levy’s theorem imply that the family of functions µLω(ξ) has a limit µ∞ω (ξ)
as L→∞. Hence the family µL(ξ) has a limit µ∞(ξ) as L→∞ satisfying

µ∞(ξ) = e
1

(m+2)
|ξ|2
µ∞ω (ξ).

The limit µ∞ω (ξ) is the Fourier transform of(
R√

m+4
m+2

)
∗
σm+1,1.

Invoking Levy’s theorem again, we deduce from (2.21) that the measures

1

NL

(
R 1√

sωm(L)

)
∗
σL

converge as L→∞ to a measure σm whose Fourier transform is µL(ξ). The equality

γ 2
m+2
∗ σm =

(
R√

m+4
m+2

)
∗
σm,1,

is the Fourier inverse of the equality (2.21). ut
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2.4. Proof of Corollary 1.5. By invoking Levy’s continuity theorem and Corollary 1.4 we see that
is suffices to show that the probability measures σm,1 converge weakly to the Gaussian measure γ2.

Set
R̄m(x) :=

√
mρm+1,1(

√
mx) = ρm+1, 1

m
(x),

R∞(x) =
1

2π
I{|x|≤2}

√
4− x2.

Fix c ∈ (0, 2). In [23, §4.2]. we proved that

lim
m→∞

sup
|x|≤c
|R̄m(x)−R∞(x)| = 0, (2.22a)

sup
|x|≥c
|R̄m(x)−R∞(x)| = O(1) as m→∞. (2.22b)

We deduce that

ρm+1,1(λ)e−
λ2

4 =

√
4π

m
R̄m

(
λ√
m

)
1√
4π
e−

λ2

4 , (2.23)

and

Im :=

∫
R
ρm+1,1(λ)e−

λ2

4 dλ =

√
4π

m

∫
R
R̄m(x)

√
m

4π
e−

mx2

4 dx =

√
4π

m

∫
R
R̄m(x)dγ 2

m
(x).

The estimates (2.22a), (2.22b) imply that

Im ∼
√

4πR∞(0)m−
1
2 as m→∞.

To prove that the probability measures
1

Im
ρm+1,1(λ)e−

λ2

4 dλ

converges weakly to γ2 it suffices to show that the finite measures

νm := m
1
2 ρm+1,1(λ)e−

λ2

4 dλ

converge weakly to the finite measure ν∞ := R∞(0)e−
λ2

4 dλ.
Let f : R→ R be a bounded continuous function. Using (2.23) we deduce that∫

R
f(λ)dνm(λ) =

∫
R
f(λ)R̄m

(
m−

1
2λ
)
e−

λ2

4 dλ.

We deduce that∫
R
f(λ)dνm(λ)−

∫
R
f(λ)dν∞(λ) =

∫
R
f(λ)

(
R̄m
(
m−

1
2x
)
−R∞(0)

)
e−

λ2

4 dλ

=

∫
R
f(λ)I{|λ|≤c

√
m}

(
R̄m
(
m−

1
2x
)
−R∞(0)

)
e−

λ2

4 dλ︸ ︷︷ ︸
Am

+

∫
R
f(λ)I{|λ|≥c

√
m}

(
R̄m
(
m−

1
2x
)
−R∞(0)

)
e−

λ2

4 dλ︸ ︷︷ ︸
Bm

.

The estimate (2.22a) coupled with the dominated convergence theorem imply that Am → 0 as m →
∞. The estimate (2.22b) and the dominated convergence theorem imply that Bm → ∞ as m → ∞.

ut
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APPENDIX A. PROOF OF PROPOSITION 1.1

We will prove that there exists L0 > 0 such that for any L ≥ L0 the space UL is ample, i.e., for
any p ∈ M and any ξ ∈ T ∗pM there exists u ∈ UL such that du(p) = ξ. We can then invoke [22,
Cor. 1.26] to conclude that the functions in UL are a.s. Morse.

Choose smooth functions f1, . . . , fN : M → R such that the map

M 3 p 7→
(
f1(p), . . . , fN (p)

)
∈ RN

is a smooth embedding. Denote by F the subspace of C∞(M) spanned by the functions f1, . . . , fN
and by PL : L2(M)→ UL the L2-orthogonal projection onto UL.

Lemma A.1.

lim
L→∞

sup
f∈F \0

‖f − PLf‖C2

‖f‖C2

= 0.

Proof. Fix a basis ϕ1, . . . , ϕν of F , ν = dimF so that any f ∈ F has a unique decomposition

f =

ν∑
i=1

xi(f)ϕi, xi(f) ∈ R.

Since dimF <∞ the C2-norm on F is equivalent with the norm

‖f‖∗ :=

ν∑
i=1

|xi(f)|.

We have

‖f − PLf‖C2 ≤
ν∑
i=1

|xi(f)|‖ϕi − PLϕi‖C2 ≤ ‖f‖∗ max
1≤i≤ν

‖ϕi − PLϕi‖C2

≤ C
(

max
1≤i≤ν

‖ϕi − PLϕi‖C2

)
‖f‖C2 ,

for some constant C > 0. Now observe that

max
1≤i≤ν

‖ϕi − PLϕi‖C2 → 0 as L→∞.

ut

To prove the ampleness of UL for L large we argue by contradiction. Thus, we assume that for
any positive integer n we can find pn ∈M and a tangent vector Xn ∈ TpnM such that

|Xn|g = 1, du(Xn) = 0, ∀u ∈ Un.

Upon extracting a subsequence we can assume that pn → p∞ and Xn → X∞ ∈ Tp∞M as n→∞.
Since the space F is obviously ample we can find f∞ ∈ F such that df∞(X∞) = 1. Set un :=
Pnf∞. Then dun(Xn) = 0 for any n and

|df∞(Xn)| =
∣∣ d( f∞(Xn)− un(Xn) )

∣∣ ≤ ‖f∞ − Pnf∞‖C2 ≤ εn‖f∞‖C2 ,

where εn → 0 as n→∞ according to Lemma A.1. On the other hand

df∞(Xn)→ df∞(X∞) = 1.

This contradiction completes the proof of Proposition 1.1. ut
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APPENDIX B. GAUSSIAN MEASURES AND GAUSSIAN VECTORS

For the reader’s convenience we survey here a few basic facts about Gaussian measures. For more
details we refer to [9]. A Gaussian measure on R is a Borel measure γµ,v, v ≥ 0, m ∈ R, of the form

γµ,v(dx) =
1√
2πv

e−
(x−µ)2

2v dx.

The scalar µ is called the mean, while v is called the variance. We allow v to be zero in which case

γµ,0 = δµ = the Dirac measure on R concentrated at µ.

For a real valued random variable X we write

X ∈N(µ, v) (B.1)

if the probability measure of X is γµ,v.
Suppose that V is a finite dimensional vector space with dual V ∨. A Gaussian measure on V is a

Borel measure γ on V such that, for any ξ ∈ V ∨, the pushforward ξ∗(γ) is a Gaussian measure on
R,

ξ∗(γ) = γµ(ξ),σ(ξ).

One can show that the map V ∨ 3 ξ 7→ µ(ξ) ∈ R is linear, and thus can be identified with a vector
µγ ∈ V called the barycenter or expectation of γ that can be alternatively defined by the equality

µγ =

∫
V
vdγ(v).

Moreover, there exists a nonnegative definite, symmetric bilinear map

Σ : V ∨ × V ∨ → R such that σ(ξ)2 = Σ(ξ, ξ), ∀ξ ∈ V ∨.

The form Σ is called the covariance form and can be identified with a linear operator S : V ∨ → V
such that

Σ(ξ, η) = 〈ξ,Sη〉, ∀ξ, η ∈ V ∨,
where 〈−,−〉 : V ∨ × V → R denotes the natural bilinear pairing between a vector space and its
dual. The operator S is called the covariance operator and it is explicitly described by the integral
formula

〈ξ,Sη〉 = Λ(ξ, η) =

∫
V
〈ξ,v − µγ〉〈η,v − µγ〉dγ(v).

The Gaussian measure is said to be nondegenerate if Σ is nondegenerate, and it is called centered if
µ = 0. A nondegenerate Gaussian measure on V is uniquely determined by its covariance form and
its barycenter.

Example B.1. Suppose that U is an n-dimensional Euclidean space with inner product (−,−). We
use the inner product to identify U with its dual U∨. If A : U → U is a symmetric, positive definite
operator, then

dγA(x) =
1

(2π)
n
2

√
detA

e−
1
2
(A−1u,u) |du| (B.2)

is a centered Gaussian measure on U with covariance form described by the operator A. ut

If V is a finite dimensional vector space equipped with a Gaussian measure γ and L : V → U is
a linear map, then the pushforward L∗γ is a Gaussian measure on U with barycenter

µL∗γ = L(µγ)
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and covariance form

ΣL∗γ : U∨ ×U∨ → R, ΣL∗γ(η, η) = Σγ(L∨η,L∨η), ∀η ∈ U∨,
whereL∨ : U∨ → V ∨ is the dual (transpose) of the linear mapL. Observe that if γ is nondegenerate
and L is surjective, then L∗γ is also nondegenerate.

Suppose (S, µ) is a probability space. A Gaussian random vector on (S, µ) is a (Borel) measurable
map

X : S→ V , V finite dimensional vector space
such that X∗µ is a Gaussian measure on V . We will refer to this measure as the associated Gauss-
ian measure, we denote it by γX and we denote by ΣX (respectively S(X)) its covariance form
(respectively operator),

ΣX(ξ1, ξ2) = E
(
〈ξ1, X −E(X) 〉 〈ξ2, X −E(X) 〉

)
.

Note that the expectation of γX is precisely the expectation of X . The random vector is called
nondegenerate, respectively centered, if the Gaussian measure γX is such.

Let us point out that if X : S → U is a Gaussian random vector and L : U → V is a linear map,
then the random vector LX : S→ V is also Gaussian. Moreover

E(LX) = LE(X), ΣLX(ξ, ξ) = ΣX(L∨ξ,L∨ξ), ∀ξ ∈ V ∨,
where L∨ : V ∨ → U∨ is the linear map dual to L. Equivalently, S(LX) = LS(X)L∨.

Suppose that Xj : S → V 1, j = 1, 2, are two centered Gaussian random vectors such that the
direct sum X1 ⊕ X2 : S → V 1 ⊕ V 2 is also a centered Gaussian random vector with associated
Gaussian measure

γX1⊕X2 = pX1⊕X2(x1,x2)|dx1dx2|.
We obtain a bilinear form

cov(X1, X2) : V ∨1 × V ∨2 → R, cov(X1, X2)(ξ1, ξ2) = Σ(ξ1, ξ2),

called the covariance form. The random vectors X1 and X2 are independent if and only if they are
uncorrelated, i.e.,

cov(X1, X2) = 0.

We can then identify cov(X1, X2) with a linear operatorCov(X1, X2) : V 2 → V 1, via the equality

E
(
〈ξ1, X1〉〈ξ2, X2〉

)
= cov(X1, X2)(ξ1, ξ2)

=
〈
ξ1,Cov(X1, X2)ξ

†
2

〉
, ∀ξ1 ∈ V ∨1 , ξ2 ∈ V ∨2 ,

where ξ†2 ∈ V 2 denotes the vector metric dual to ξ2. The operator Cov(X1, X2) is called the
covariance operator of X1, X2.

The conditional random variable (X1|X2 = x2) has probability density

p(X1|X2=x2)(x1) =
pX1⊕X2(x1,x2)∫

V 1
pX1⊕X2(x1,x2)|dx1|

.

For a measurable function f : V 1 → R the conditional expectation E(f(X1)|X2 = x2) is the
(deterministic) scalar

E(f(X1)|X2 = x2) =

∫
V 1

f(x1)p(X1|X2=x2)(x1)|dx1|.

If X2 is nondegenerate, the regression formula, [5], implies that the random vector (X1|X2 = x2) is
a Gaussian vector with covariance operator

S(X1|X2 = x2) = S(X1)−Cov(X1, X2)S(X2)
−1Cov(X2, X1), (B.3)
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and expectation
E(X1|X2 = x2) = Cx2, (B.4)

where C is given by
C = Cov(X1, X2)S(X2)

−1. (B.5)

APPENDIX C. A CLASS OF RANDOM SYMMETRIC MATRICES

We denote by Sm the space of real symmetric m ×m matrices. This is an Euclidean space with
respect to the inner product (A,B) := tr(AB). This inner product is invariant with respect to the
action of SO(m) on Sm. We set

Êij :=

{
Eij , i = j
1√
2
Eij , i < j.

.

The collection (Êij)i≤j is a basis of Sm orthonormal with respect to the above inner product. We set

âij :=

{
aij , i = j√

2aij , i < j.

The collection (âij)i≤j the orthonormal basis of S∨m dual to (Êij). The volume density induced by
this metric is

|dA| :=
∏
i≤j

dâij = 2
1
2(m2 )

∏
i≤j

daij .

Throughout the paper we encountered a 2-parameter family of Gaussian probability measures on Sm.
More precisely for any real numbers u, v such that

v > 0,mu+ 2v > 0,

we denote by S
u,v
m the space Sm equipped with the centered Gaussian measure dΓu,v(A) uniquely

determined by the covariance equalities

E(aijak`) = uδijδk` + v(δikδj` + δi`δjk), ∀1 ≤ i, j, .k, ` ≤ m.
In particular we have

E(a2ii) = u+ 2v, E(aiiajj) = u, E(a2ij) = v, ∀1 ≤ i 6= j ≤ m,

while all other covariances are trivial. The ensemble S
0,v
m is a rescaled version of the Gaussian Or-

thogonal Ensemble (GOE) and we will refer to it as GOEvm.
For u > 0 the ensemble S

u,v
m can be given an alternate description. More precisely a random

A ∈ S
u,v
m can be described as a sum

A = B + X1m, B ∈ GOEvm, X ∈N(0, u), B and X independent.

We write this
Su,vm = GOEvm +̂N(0, u)1m, (C.1)

where +̂ indicates a sum of independent variables.
The Gaussian measure dΓu,v coincides with the Gaussian measure dΓu+2v,u,v defined in [23, App.

B]. We recall a few facts from [23, App. B].
The probability density dΓu,v has the explicit description

dΓu,v(A) =
1

(2π)
m(m+1)

4

√
D(u, v)

e−
1
4v

trA2−u
′

2
(trA)2 |dA|,
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where
D(u, v) = (2v)(m−1)+(m2 )(mu+ 2v

)
,

and

u′ =
1

m

(
1

mu+ 2v
− 1

2v

)
= − u

2v(mu+ 2v)
.

In the special case GOEvm we have u = u′ = 0 and

dΓ0,v(A) =
1

(2πv)
m(m+1)

4

e−
1
4v

trA2 |dA|. (C.2)

We have a Weyl integration formula [2] which states that if f : Sm → R is a measurable function
which is invariant under conjugation, then the value f(A) atA ∈ Sm depends only on the eigenvalues
λ1(A) ≤ · · · ≤ λn(A) of A and we have

EGOEvm

(
f(X)

)
=

1

Zm(v)

∫
Rm

f(λ1, . . . , λm)

 ∏
1≤i<j≤m

|λi − λj |

 m∏
i=1

e−
λ2
i

4v

︸ ︷︷ ︸
=:Qm,v(λ)

|dλ1 · · · dλm|,

(C.3)
where the normalization constant Zm(v) is defined by

Zm(v) =

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2
i

4v |dλ1 · · · dλm|

= (2v)
m(m+1)

4

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2
i
2 |dλ1 · · · dλm|︸ ︷︷ ︸

=:Zm

.

The precise value of Zm can be computed via Selberg integrals, [2, Eq. (2.5.11)], and we have

Zm = (2π)
m
2 m!

m∏
j=1

Γ( j2)

Γ(12)
= 2

m
2 m!

m∏
j=1

Γ

(
j

2

)
. (C.4)

For any positive integer n we define the normalized 1-point corelation function ρn,v(x) of GOEvn to
be

ρn,v(x) =
1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

For any Borel measurable function f : R→ R we have [10, §4.4]
1

n
EGOEvn

(
tr f(X)

)
=

∫
R
f(λ)ρn,v(λ)dλ. (C.5)

The equality (C.5) characterizes ρn,v. Let us observe that for any constant c > 0, if

A ∈ GOEvn⇐⇒cA ∈ GOEc
2v
n .

Hence for any Borel set B ⊂ R we have∫
cB
ρn,c2v(x)dx =

∫
B
ρn,v(y)dy.

We conclude that
cρn,c2v(cy) = ρn,v(y), ∀n, c, y. (C.6)
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The behavior of the 1-point correlation function ρn,v(x) for n large is described by Wigner semicircle
law which states that for any v > 0 the sequence of measures on R

ρn,vn−1(x)dx = n
1
2 ρn,v(n

1
2x)dx

converges weakly as n→∞ to the semicircle distribution

ρ∞,v(x)|dx| = I{|x|≤2
√
v}

1

2πv

√
4v − x2|dx|.

The expected value of the absolute value of the determinant of of a random A ∈ GOEvm can be
expressed neatly in terms of the correlation function ρm+1,v. More precisely, we have the following
result first observed by Y.V. Fyodorov [15] in a context related to ours.

Lemma C.1. Suppose v > 0. Then for any c ∈ R we have

EGOEvm

(
| det(A− c1m)|

)
= 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
e
c2

4v ρm+1,v(c).

Proof. Using the Weyl integration formula we deduce

EGOEvm

(
|det(A− c1m)|

)
=

1

Zm(v)

∫
Rm

m∏
i=1

e−
λ2
i

4v |c− λi|
∏
i≤j
|λi − λj |dλ1 · · · dλm

=
e
c2

4v

Zm(v)

∫
Rm

e−
c2

4v

m∏
i=1

e−
λ2
i

4v |c− λi|
∏
i≤j
|λi − λj |dλ1 · · · dλm

=
e
c2

4vZm+1(v)

Zm(v)

1

Zm+1(v)

∫
Rm

Qm+1,v(c, λ1, . . . , λm)dλ1 · · · dλm

=
e
c2

4vZm+1(v)

Zm(v)
ρm+1,v(c) = v

m+1
2
e
c2

4vZm+1

Zm
ρm+1,v(c)

= (m+ 1)
√

2(2v)
m+1

2 e
c2

4vΓ

(
m+ 1

2

)
ρm+1,v(c) = 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
e
c2

4v ρm+1,v(c).

ut

The above result admits the following generalization, [3, Lemma 3.2.3].

Lemma C.2. Let u > 0. Then

ES
u,v
m

(
| det(A− c1m)|

)
= 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x

2

2u dx.

In particular, if u = 2kv, k < 1 we have

E
S

2kv,v
m

(
| det(A−c1m)|

)
= 2

3
2 (2v)

m
2 Γ

(
m+ 3

2

)
1√
2πk

∫
R
ρm+1,v(c−x)e

− 1

4vt2
k

(x+t2kc)
2+

(t2k+1)c2

4v
dx,

(λ := c− x)

= 2
3
2 (2v)

m
2 Γ

(
m+ 3

2

)
1√
2πk

∫
R
ρm+1,v(λ)e

− 1

4vt2
k

(λ−(t2k+1)c)2+
(t2k−1)c2

4v
dλ,

where
t2k :=

1
1
k − 1

=
k

1− k
.
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Proof. Recall the equality (C.1) Su,vm = GOEvm +̂N(0, u)1m. We deduce that

ES
u,v
m

(
|det(A− c1m)|

)
= E

(
det(B + (X − c)1)|

)
=

1√
2πu

∫
R
EGOEvm

(
| det(B − (c−X)1m)|

∣∣ X = x)e−
x2

2u dx

=
1√
2πu

∫
R
EGOEvm

(
|det(B − (c− x)1m)|

)
e−

x2

2u dx

= 2
3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x

2

2u dx.

Now observe that if u = 2kv then
(c− x)2

4v
− x2

2u
= − x2

4kv
+

1

4v
(x2 − 2cx+ c2)

=
1

4v

(
− 1

t2k
x2 − 2cx− c2t2k

)
+
c2(1 + t2k)

4v
= − 1

4vt2k
(x+ t2kc)

2 +
c2(1 + t2k)

4v
.

ut
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