Solutions to Homework \# 1

Hatcher, Chap. 0, Problem 4. Denote by i_{A} the inclusion map $A \hookrightarrow X$. Consider a homotopy $F: X \times I \rightarrow X$ such that

$$
F_{0}:=\mathbb{1}_{X}, \quad F_{1}(X) \subset A, \quad F_{t}(A) \subset A
$$

We claim that $g:=F_{1}$ is a homotopy inverse of i_{A}, i.e.

$$
g \circ i_{A} \simeq \mathbb{1}_{A}, \quad i_{A} \circ g \simeq \mathbb{1}_{X} .
$$

To prove the first part consider the homotopy $g_{t}=\left.F_{1-t}\right|_{A}$. Observe that

$$
g_{0}=g \circ i_{A}, \quad g_{1}=F_{0} \circ i_{A}=\mathbb{1}_{A} .
$$

To prove the second part we consider the homotopy $H_{t}=F_{1-t}: X \rightarrow X$. Observe that $F_{1}=i_{A} \circ F_{1}$ since $F_{1}(X) \subset A$. On the other hand, $F_{0}=\mathbb{1}_{X}$.

Hatcher, Chap. 0, Problem 5. Suppose $F: X \times I \rightarrow X$ is a deformation retraction of X onto a point x_{0}. This means

$$
F_{t}\left(x_{0}\right)=x_{0}, \quad \forall t, \quad F_{0}=\mathbb{1}_{X}, \quad F_{1}(X)=\left\{x_{0}\right\} .
$$

We want to prove a slightly stronger statement, namely, that for any neighborhood U of x_{0} there exists a smaller neighborhood $V \subset U$ of x_{0} such that $F_{t}(V) \subset U, \forall t \in I$.

Figure 1: Constructing contractible neighborhoods of x_{0}.
Consider the pre-image of U via F,

$$
F^{-1}(U)=\left\{(x, t) \in X \times I ; \quad F_{t}(x) \in U\right\}
$$

Note that $C:=\left\{x_{0}\right\} \times I \subset F^{-1}(U)$ (see Figure 1).
For every $t \in I$ we can find a neighborhood U_{t} of $x_{0} \in X$, and a neighborhood J_{t} of $t \in I$ such that (see Figure 1)

$$
U_{t} \times J_{t} \subset F^{-1}(U)
$$

The set C is covered by the family of open sets $\left\{U_{t} \times J_{t}\right\}_{t \in I}$, and since C is compact, we can find $t_{1}, \ldots, t_{n} \in I$ such that

$$
C \subset \bigcup_{k} U_{t_{k}} \times J_{t_{k}} .
$$

In particular, the set

$$
V:=\bigcap_{k} U_{t_{k}}
$$

is an open neighborhood of x_{0}, and $V \times I \subset F^{-1}(U)$. This means $F_{t}(V) \subset U, \forall t$, i.e. we can regard F_{t} as a map from V to U, for any t.

If we denote by i_{V} the inclusion $V \hookrightarrow U$ we deduce that the composition $F_{t} \circ i_{V}$ defines a homotopy

$$
F: V \times I \rightarrow U
$$

between $F_{0}=i_{V}$ and $F_{1}=$ the constant map. In other words i_{V} is null-homotopic.
Hatcher, Chap. 0, Problem 9. Suppose X is contractible and $A \hookrightarrow X$ is a retract of X. Choose a retraction $r: X \rightarrow A$, and a contraction of X to a point which we can assume lies in A

$$
F: X \times I \rightarrow X, \quad F_{0}=\mathbb{1}_{X}, \quad F_{1}(x)=a_{0}, \quad \forall x .
$$

Consider the composition

$$
G: A \times I \xrightarrow{i_{A} \times \mathbb{1}_{I}} X \times I \xrightarrow{F} X \xrightarrow{r} A .
$$

This is a homotopy between the identity map $\mathbb{1}_{A}$ and the constant map $A \rightarrow\left\{a_{0}\right\}$.

Hatcher, Chap. 0, Problem 14. We denote by c_{i} the number of i-cells. In Figure 2 we have depicted three cell decompositions of the 2 -sphere. The first one has

$$
c_{0}=1=c_{2}, \quad c_{1}=0 .
$$

The second one has

$$
c_{0}=n+1, \quad c_{1}=n, \quad c_{2}=1, \quad n>0 .
$$

The last one has

$$
c_{0}=n+1, \quad c_{1}=n+k, \quad c_{2}=k+1, \quad k \geq 0 .
$$

Any combination of nonnegative integers c_{0}, c_{1}, c_{2} such that

$$
c_{0}-c_{1}+c_{2}=2, \quad c_{0}, c_{2}>0
$$

belongs to one of the three cases depicted in Figure 2.

Figure 2: Cell decompositions of the 2-sphere.

Solutions to Homework \# 2

Hatcher, Chap. 0, Problem 16. ${ }^{1}$ Let

$$
\mathbb{R}^{\infty}:=\bigoplus_{n \geq 1} \mathbb{R}=\left\{\vec{x}=\left(x_{k}\right)_{k \geq 1} ; \quad \exists N: \quad x_{n}=0, \quad \forall n \geq N\right\}
$$

We define a topology on \mathbb{R}^{∞} by declaring a set $S \subset \mathbb{R}^{\infty}$ closed if and only if, $\forall n \geq 0$, the intersection S of with the finite dimensional subspace

$$
\mathbb{R}^{n}=\left\{\left(x_{k}\right)_{k \geq 1} ; \quad x_{k}=0, \quad \forall k>n\right\}
$$

is closed in the Euclidean topology of \mathbb{R}^{n}. For each $\vec{x} \in \mathbb{R}^{\infty}$ set

$$
|\vec{x}|:=\left(\sum_{k=0}^{\infty} x_{k}^{2}\right)^{1 / 2}
$$

S^{∞} is homeomorphic to the "unit sphere" in $\mathbb{R}^{\infty}, S^{\infty} \cong\left\{\vec{x} \in \mathbb{R}^{\infty} ;|\vec{x}|=1\right\}$.
Observe that S^{∞} is a deformation retract of $\mathbb{R}^{\infty} \backslash\{0\}$ so it suffices to show that $\mathbb{R}^{\infty} \backslash\{0\}$ is contractible. Define $F: \mathbb{R}^{\infty} \times[0,1] \rightarrow \mathbb{R}^{\infty}$ by

$$
(\vec{x}, t) \mapsto F_{t}(\vec{x})=\left((1-t) x_{0}, t x_{0}+(1-t) x_{1}, t x_{1}+(1-t) x_{2}, \ldots\right)
$$

Observe that $F_{t}\left(\mathbb{R}^{\infty} \backslash\{0\}\right) \subset \mathbb{R}^{\infty} \backslash\{0\}, \forall t \in[0,1]$.
Indeed, this is obviously the case for F_{0} and F_{1}. Suppose $t \in(0,1)$, and $F_{t}(\vec{x})=0$. This means

$$
x_{0}=0, \quad x_{k+1}=\frac{t}{t-1} x_{k}, \quad \forall k=0,1,2, \ldots
$$

so that $\vec{x}=0$.
We have thus constructed a homotopy $F: \mathbb{R}^{\infty} \backslash\{0\} \times I \rightarrow \mathbb{R}^{\infty} \backslash\{0\}$ between $F_{0}=\mathbb{1}$ and $F_{1}=S$, the shift map, $\left(x_{0}, x_{1}, x_{2}, \cdots\right) \stackrel{S}{\longmapsto}\left(0, x_{0}, x_{1}, x_{2}, \ldots\right)$. It is convenient to write this map as $\vec{x} \mapsto(0, \vec{x})$.

Consider now the homotopy $G:\left(0 \oplus \mathbb{R}^{\infty} \backslash\{0\}\right) \times I \rightarrow \mathbb{R}^{\infty} \backslash\{0\}$ given by

$$
G_{t}(0, \vec{x})=(t,(1-t) \cdot \vec{x})
$$

If we first deform $\mathbb{R}^{\infty} \backslash\{0\}$ to $0 \oplus \mathbb{R}^{\infty} \backslash\{0\}$ following F_{t}, and then to $(1,0) \in \mathbb{R}^{\infty}$ following G_{t}, we obtain the desired contraction of $\mathbb{R}^{\infty} \backslash\{0\}$ to a point.

Figure 1. This $C W$-complex deformation retracts to both the cylinder (yellow) and the Möbius band (grey).

Hatcher, Chap. 0, Problem 17. (b) Such a $C W$ complex is depicted in Figure 1. For part (a) consider a continuous map $f: S^{1} \rightarrow S^{1}$. Fix a point a in S^{1}. A cell decomposition

[^0]is depicted in Figure 2. It consists of two vertices $a, f(a)$, three 1-cells e_{0}, e_{1}, t, and a single 2-cell C. The attaching map of C maps the right vertical side of C onto $S^{1}=e_{1} / \partial e_{1}$ via f.

Figure 2. A cell decomposition of a map $f: S^{1} \rightarrow S^{1}$.

Hatcher, Chap. 0, Problem 22. We investigate each connected component of the graph separately so we may as well assume that the graph is connected. We distinguish two cases.

Case 1. The graph has vertices on the boundary of the half plane. We can deform the graph inside the half-plane so that all its vertices lie on the boundary of the half-plane (see Figure 3). More precisely, we achieve this by collapsing the edges which connect two different vertices, and one of them is in the interior of the half-plane.

Rotating this collapsed graph we obtain a closed subset X of \mathbb{R}^{3} which is a finite union of sets of the type R or S as illustrated in Figure 3. More precisely, when an edge connecting different vertices is rotated, we obtain a region of type S which is a 2 -sphere. When a loop is rotated, we obtain a region of type R, which is a 2 -sphere with a pair of points identified.

Two regions obtained by rotating two different edges will intersect in as many points as the two edges. Thus, two regions of X can intersect in 0,1 or 2 points. Using the arguments in Example 0.8 and 0.9 in Hatcher we deduce that X is a wedge of S^{1} 's and S^{2} 's.

Figure 3. Rotating a planar graph.

Case 2. There are no vertices on the boundary. In this case the graph can be deformed inside the half plane to a wedge of circles. By rotating this wedge we obtain a space homotopic to collection of tori piled one on top another (see Figure 3).

Hatcher, Chap. 0, Problem 23. Suppose A, B are contractible subcomplexes of X such that $X=A \cup B$, and $A \cap B$ is also contractible. Since B is contractible we deduce $X / B \simeq X$. The inclusion $A \hookrightarrow X$ maps $A \cap B$ into B, and thus defines an injective continuous map

$$
j: A / A \cap B \hookrightarrow X / B \simeq X .
$$

Since $X=A \cup B$, the above map is a bijection. Note also that j maps closed sets to closed sets. From the properties of quotient topology we deduce that j is a homeomorphism.

Now observe that since $A \cap B$ is contractible we deduce

$$
A \simeq A / A \cap B
$$

so that $A / A \cap B$ is contractible.

Sec. 1.1, Problem 5. (a) \Longrightarrow (b) Suppose we are given a map $f: S^{1} \rightarrow X$. We want to prove that it extends to a map $\tilde{f}: D^{2} \rightarrow X$, given that f is homotopic to a constant. Consider a homotopy

$$
F: S^{1} \times I \rightarrow X, \quad F\left(e^{\mathrm{i} \theta}, 0\right)=x_{0} \in X, \quad F\left(e^{\mathrm{i} \theta}, 1\right)=f\left(e^{\mathrm{i} \theta}\right), \quad \forall \theta \in[0,2 \pi] .
$$

Identify D^{2} with the set of complex numbers of norm ≤ 1 and set

$$
\tilde{f}\left(r e^{\mathbf{i} \theta}\right)=F\left(e^{\mathbf{i} \theta}, r\right) .
$$

$(\mathrm{b}) \Longrightarrow(\mathrm{c})$ Suppose $f:\left(S^{1}, 1\right) \rightarrow\left(X, x_{0}\right)$ is a loop at $x_{0} \in X$ we want to show that $[f]=1 \in$ $\pi_{1}\left(X, x_{0}\right)$. From (b) we deduce that there exists $\tilde{f}:\left(D^{2}, 1\right) \rightarrow\left(X, x_{0}\right)$ such that the diagram below is commutative.

We obtain the following commutative diagram of group morphisms.

Since $\pi_{1}\left(D^{2}, 1\right)=\{1\}$ we deduce that i_{*} is the trivial morphism so that $f_{*}=\tilde{f}_{*} \circ i_{*}$ must be the trivial morphism as well.

The identity map $\mathbf{1}_{S^{1}}:\left(S^{1}, 1\right) \rightarrow\left(S^{1}, 1\right)$ defines a loop on S^{1} whose homotopy class is a generator of $\pi_{1}\left(S^{1}, 1\right)$, and we have $f_{*}\left(\left[1_{S^{1}}\right]\right)$ is trivial in $\pi_{1}\left(X, x_{0}\right)$. This homotopy class is precisely the homotopy class represented by the loop f.
(c) \Longrightarrow (a). Obvious.

Sec. 1.1, Problem 9. Assume the sets A_{i} are open, bounded and connected.
Set

$$
A:=A_{1} \cup A_{2} \cup A_{3}, \quad V_{i}:=\operatorname{vol}\left(A_{i}\right) .
$$

For every unit vector $\vec{n} \in S^{2}$ and every t we denote by $H_{\vec{n}, t}^{+}$the half space determined by the plane through $t \vec{n}$, of normal vector \vec{n}, and situated on the same side of this plane as \vec{n}. More precisely, if (\bullet, \bullet) denotes the Euclidean inner product in \mathbb{R}^{3}, then

$$
H_{\vec{n}, t}^{+}:=\left\{\vec{x} \in \mathbb{R}^{3} ; \quad(\vec{x}, \vec{n}) \geq t\right\} .
$$

Set

$$
V_{3}^{+}(\vec{n}, t):=\operatorname{vol}\left(A_{3} \cap H_{\vec{n}, t}^{+}\right)
$$

Observe that $t \mapsto V_{3}^{+}(\vec{n}, t)$ is a continuous, non-increasing function such that

$$
\lim _{t \rightarrow \infty} V_{3}^{+}(\vec{n}, t)=0, \quad \lim _{t \rightarrow-\infty} V_{3}^{+}(\vec{n}, t)=V_{3}
$$

The intermediate value theorem implies that the level set

$$
S_{\vec{n}}=\left\{t \in \mathbb{R} ; \quad V_{3}^{+}(\vec{n}, t)=\frac{1}{2} V_{3}\right\}
$$

is closed and bounded so it must be compact. $t \mapsto V^{+}(\vec{n}, t)$ is non-increasing we deduce that $S_{\vec{n}}$ must be a closed, bounded interval of the real line. Set

$$
t_{\min }(\vec{n}):=\min S_{\vec{n}}, \quad T_{\max }(\vec{n}):=\max S_{\vec{n}}, \quad s(\vec{n})=\frac{1}{2}\left(t_{\min }(\vec{n})+T_{\max }(\vec{n})\right)
$$

The numbers $t(\vec{n})$, and $T(\vec{n})$ have very intuitive meanings. Think of the family of hyperplanes

$$
H_{t}:=\left\{\vec{x} \in \mathbb{R}^{3} ; \quad(\vec{x}, \vec{n})=t\right\}
$$

as a hyperplane depending on time t, which moves while staying perpendicular to \vec{n}. For $t \ll 0$ the entire region A_{3} will be on the side of H_{t} determined by \vec{n}, while for very large t the region A_{3} will be on the other side of H_{t}, determined by $-\vec{n}$. Thus there must exist moments of time when H_{t} divides A into regions of equal volume. $t_{\min }(\vec{n})$ is the first such moment, and $T_{\max }(\vec{n})$ is the last such moment. Observe that

$$
T_{\max }(-\vec{n})=-t_{\min }(\vec{n}), \quad t_{\min }(-\vec{n})=-T_{\max }(\vec{n}), \quad s(-\vec{n})=-s(\vec{n})
$$

Set

$$
H_{\vec{n}}^{+}:=H_{\vec{n}, s(\vec{n})}^{+}
$$

Observe that $H_{\vec{n}}^{+}$and $H_{-\vec{n}}^{+}$are complementary half-spaces.
Lemma 1. $S_{\vec{n}}$ consists of a single point so that $t_{\min }(\vec{n})=T_{\max }(\vec{n})=s(\vec{\eta})$.
Lemma 2. The map $S^{2} \ni \vec{n} \rightarrow s(\vec{n}) \in \mathbb{R}$ is continuous
We will present the proofs of these lemmata after we have completed the proof of the claim in problem 9.

Set

$$
V_{i}^{+}(\vec{n})=\operatorname{vol}\left(A_{i} \cap H_{\vec{n}}^{+}\right), \quad i=1,2,3
$$

We need to prove that there exists $\vec{n} \in S^{2}$ such that

$$
V_{i}^{+}(\vec{n})=\frac{1}{2} V_{i}, \quad i=1,2,3
$$

Note that $V_{3}^{+}(\vec{n})=\frac{1}{2} V_{3}$ so we only need to find \vec{n} such that

$$
V_{i}^{+}(\vec{n})=\frac{1}{2} V_{i}, \quad i=1,2 .
$$

Define

$$
f: S^{2} \rightarrow \mathbb{R}^{2}, f(\vec{n}):=\left(V_{1}^{+}(\vec{n})+V_{2}^{+}(\vec{n}), V_{1}^{+}(\vec{n})\right)
$$

$H_{\vec{n}}^{+}$and $H_{-\vec{n}}^{+}=\mathbb{R}^{3}$ are complementary half spaces so that

$$
\begin{equation*}
V_{i}^{+}(\vec{n})+V_{i}^{+}(-\vec{n})=\operatorname{vol}\left(A_{i}\right), \quad i=1,2,3 . \tag{1}
\end{equation*}
$$

Lemma 2 implies that f is continuous, and using the Borsuk-Ulam theorem we deduce that there exists \vec{n}_{0} such that

$$
f\left(\vec{n}_{0}\right)=f\left(-\vec{n}_{0}\right) .
$$

The equality (1) now implies that

$$
V_{1}^{+}\left(\vec{n}_{0}\right)+V_{2}^{+}\left(\vec{n}_{0}\right)=\frac{1}{2}\left(\operatorname{vol}\left(A_{1}\right)+\operatorname{vol}\left(A_{2}\right)\right)
$$

and

$$
V_{1}^{+}\left(\vec{n}_{0}\right)=\frac{1}{2} \operatorname{vol}\left(A_{1}\right) .
$$

These equalities imply that $V_{2}^{+}\left(\vec{n}_{0}\right)=\frac{1}{2} \operatorname{vol}\left(A_{2}\right)$.
Proof of Lemma 1. Observe that since the set A_{3} is compact we can find a sufficiently large $R>0$ such that

$$
A_{3} \subset B_{R}(0)
$$

Set for brevity

$$
G_{\vec{n}}(t)=V_{3}^{+}(\vec{n}, t) .
$$

Observe that for each \vec{n} we have

$$
G_{\vec{n}}(t)=0, \quad \forall t \geq R, \quad G_{\vec{n}}(t)=V_{3}, \quad \forall t \leq-R .
$$

We claim that for every $t \in S_{\vec{n}}$ there exists $\varepsilon_{t}>0$ such that $\forall h \in\left(0, \varepsilon_{t}\right)$ we have

$$
G_{\vec{n}}(t-h)>G_{\vec{n}}(t)>G_{\vec{n}}(t+h),
$$

which shows that if $S_{\vec{n}}$ were an interval then $G_{\vec{n}}$ could not have a constant value ($V_{3} / 2$) along it.

Now observe that

$$
G_{\vec{n}}(t-h)-G_{\vec{n}}(t)=\operatorname{vol}\left(A_{3} \cap\{\vec{x} ; t-h<(\vec{x}, \vec{n})<t\}\right)
$$

Now observe that the region $A_{3} \cap\{\vec{x} ; t-h<(\vec{x}, \vec{n})<t\}$ is open. Since A_{3} is connected we deduce that for every h sufficiently small it must be nonempty and thus it has positive volume. The inequality $G_{\vec{n}}(t)>G_{\vec{n}}(t+h)$ is proved in a similar fashion.

Proof of Lemma 2. We continue to use the same notations as above.
Suppose $\vec{n}_{k} \rightarrow \vec{n}_{0}$ as $k \rightarrow \infty$. Set $G_{k}:=G_{\vec{n}_{k}}, G_{0}:=G_{\vec{n}_{0}}$. Note that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{k}(t)=G_{0}(t), \quad \forall t \in[-R, R] \tag{2}
\end{equation*}
$$

On the other hand

$$
\begin{array}{r}
\left|G_{k}(t+h)-G_{k}(t)\right|=\operatorname{vol}\left(A_{3} \cap\left\{\vec{x} ; t \leq\left(\vec{x}, \vec{n}_{k}\right) \leq t+h\right\}\right) \\
\leq \operatorname{vol}\left(B_{R}(0) \cap\left\{\vec{x} ; t \leq\left(\vec{x}, \vec{n}_{k}\right) \leq t+h\right\}\right) \leq \pi R^{2} h \tag{3}
\end{array}
$$

so that the family of functions $\left(G_{k}\right)$ is equicontinuous. Using (2) we deduce from the ArzelaAscoli theorem that the sequence of function G_{k} converges uniformly to G_{0} on $[-R, R]$.

Observe that the sequence $t_{\min }\left(\vec{n}_{k}\right)$ lies $[-R, R]$ so it has a convergent subsequence. Choose such a subsequence $\tau_{j}:=t_{\text {min }}\left(\vec{n}_{k_{j}}\right) \rightarrow t_{0} \in[-R, R]$. Since the sequence $G_{k_{j}}$ converges uniformly to G_{0} and

$$
G_{k_{j}}\left(\tau_{j}\right)=V_{3} / 2
$$

we deduce ${ }^{1}$

$$
G_{0}\left(t_{0}\right)=V_{3} / 2,
$$

so that $t_{0} \in S_{\overrightarrow{n_{0}}}$. Since $S_{\vec{n}}$ consists of a single point we deduce that for every convergent subsequence of $t_{\min }\left(\vec{n}_{k}\right)$ we have

$$
\lim _{j \rightarrow \infty} t_{\min }\left(\vec{n}_{k_{j}}\right)=t_{\min }\left(\vec{n}_{0}\right) .
$$

This proves the continuity of $\vec{n} \mapsto s(\vec{n})=t_{\min }(\vec{n})$.
Sec. 1.1, Problem 16. We argue by contradiction in each of the situations (a)-(f). Suppose there exists a retraction $r: X \rightarrow A$.
(a) In this case r_{*} would induce a surjection from the trivial group $\pi_{1}\left(\mathbb{R}^{3}, p\right)$ to the integers $\pi_{1}\left(S^{1}, p\right)$.
(b) In this case r_{*} would induce a surjection from the infinite cyclic group $\pi_{1}\left(S^{1} \times D^{2}\right)$ to the direct product of infinite cyclic groups $\pi_{1}\left(S^{1} \times S^{1}\right)$. This is not possible since

$$
\operatorname{rank} \pi_{1}\left(S^{1} \times S^{1}\right)=2>1=\operatorname{rank} \pi_{1}\left(S^{1} \times D^{2}\right)
$$

[^1](c) The inclusion $i: A \hookrightarrow X$ induces the trivial morphism $i_{*}: \pi_{1}(A) \rightarrow \pi_{1}(X)$. Hence $\mathbf{1}_{\pi_{1}(A)}=r_{*} \circ i_{*}$ is trivial. This is a contradiction since $\pi_{1}(A)$ is not trivial.
(d) Observe first that S^{1} is a retract of $S^{1} \vee S^{1}$ so that there exist surjections
$$
\pi_{1}\left(S^{1} \vee S^{1}\right) \rightarrow \pi_{1}\left(S^{1}\right) .
$$

In particular $\pi_{1}\left(S^{1} \vee S^{1}\right)$ is nontrivial so that there cannot exist surjections $\pi_{1}\left(D^{2} \vee D^{2}\right) \rightarrow$ $\pi_{1}\left(S^{1} \vee S^{1}\right)$.
(e) Let p, q be two distinct points on ∂D^{2}, and $\underset{\tilde{C}}{X}=D^{2} /\{p, q\}$. Denote by x_{0} the point in X obtained by identifying p and q. The chord \tilde{C} connecting p and q defines a circle C on $X . C$ is a deformation retract of X so that

$$
\pi_{1}(X) \cong \pi_{1}(C) \cong \mathbb{Z}
$$

To prove that A is not a retract of X it suffices to show that $\pi_{1}\left(S^{1} \vee S^{1}\right)$ is not a quotient of \mathbb{Z}. We argue ${ }^{2}$ by contradiction.

Suppose $\pi_{1}\left(S^{1} \vee S^{1}\right)$ is a quotient of \mathbb{Z}. Since there are surjections $\pi_{1}\left(S^{1} \wedge S^{1}\right) \rightarrow \mathbb{Z}$ we deduce that $\pi_{1}\left(S^{1} \vee S^{1}\right)$ must be isomorphic to \mathbb{Z}. In particular there exists exactly two surjections

$$
\pi_{1}\left(S^{1} \wedge S^{1}\right) \rightarrow \mathbb{Z}
$$

We now show that in fact there are infinitely many thus yielding a contraction. We denote the two circles entering into $S^{1} \vee S^{1}$ by C_{1} and C_{2}. Since C_{i} is a deformation retract of $C_{1} \wedge C_{2}$ we deduce that $\left[C_{i}\right]$ is an element of infinite order in $\pi_{1}\left(C_{1} \vee C_{2}\right)$.

Denote by $e_{n}: S^{1} \rightarrow S^{1}$ the map $\theta \mapsto e^{\mathbf{i} \theta}$. Fix homeomorphisms $g_{i}: C_{i} \rightarrow S^{1}$ and define $f_{n}: C_{1} \rightarrow C_{2}$ by the composition

Define $r_{n}: C_{1} \vee C_{2} \rightarrow S_{1}$ by

$$
\begin{equation*}
\left.r_{n}\right|_{C_{1}}=f_{n},\left.\quad r_{n}\right|_{C_{2}}=g_{2} \tag{4}
\end{equation*}
$$

Observe that

$$
r_{n *}\left(\left[C_{1}\right]\right)=\left[e_{n}\right] \in \pi_{1}\left(S^{1}\right), \quad r_{n *}\left(\left[C_{2}\right]\right)=\left[e_{1}\right] \in \pi_{1}\left(S^{1}\right)
$$

Using the isomorphism $\mathbb{Z} \rightarrow \pi_{1}\left(S^{1}\right), n \mapsto\left[e_{n}\right]$ we deduce that $r_{n *} \neq r_{m *}$ if $n \neq m$.

[^2](f) Observe first that $\pi_{1}(X) \cong \mathbb{Z}$, where the generator is the core circle C of the Móbus band. A is a circle so that $\pi_{1}(A) \cong \mathbb{Z}$. In terms of these isomorphisms the morphism $i_{*}: \pi_{1}(A) \rightarrow \pi_{1}(X)$ induced by $i: A \hookrightarrow X$ has the description
$$
i_{*}(n[A])=2 n[C] .
$$

Clearly there cannot exist any surjection $f: \pi_{1}(X) \rightarrow \pi_{1}(A)$ such that

$$
[A]=f \circ i_{*}([A])=2 k[A], \quad k[A]:=f_{*}([C])
$$

Sec. 1.1, Problem 17. We have already constructed these retraction in (4). Using the notations there we define

$$
R_{n}: C_{1} \vee C_{2} \rightarrow C_{2}
$$

by $R_{n}:=g_{2}^{-1} \circ r_{n}$. Since

$$
R_{n_{*}} \neq R_{m *}, \quad \forall m \neq m
$$

we deduce that these retractions are pairwise non-homotopic.
Sec. 1.1, Problem 20. Fix a homotopy

$$
F: X \times I \rightarrow X, \quad f_{s}(\bullet)=F(\bullet, s)
$$

such that $f_{0}=f_{1}=\mathbf{1}_{X}$. Denote by $g: I \rightarrow X$ the loop

$$
g(t)=f_{t}\left(x_{0}\right)
$$

Consider another loop at $x_{0}, h:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ and form the map (see Figure 1).

$$
H: I_{t} \times I_{s} \rightarrow X, \quad H(s, t)=F(h(s), t)
$$

Set $u_{0}=g \cdot h, u_{1}=h \cdot g$. A homotopy $\left(u_{t}\right)$ rel x_{0} connecting u_{0} to u_{1} is depicted at the bottom of Figure 1.

Figure 1: $g \cdot h \simeq h \cdot g$.

Sec. 1.2, Problem 8.

Figure 1: A cell decomposition
The space in question has the cell decomposition depicted in Figure 1. It consists of one 0 -cell •, three 1-cells a, b, c and two 2 -cells, R_{1} and R_{2}. We deduce that the fundamental group has the presentation
generators: a, b, c
relations $R_{1}=a b a^{-1} b^{-1}=1, R_{2}=a c a^{-1} c^{-1}=1$.

Sec. 1.2, Problem 10. We will first compute the fundamental group of the complement of $a \cup b$ in the cylinder $D^{2} \times I$ (see Figure 2), and then show that the loop defined by c defines a nontrivial element in this group.

Figure 2: If you cannot untie it, cut it.
Cut the solid torus along the "slice" $D^{2} \times\{1 / 2\}$ into two parts A and B as in Figure 2. We will use the Seifert-vanKampen theorem for this decomposition of $D^{2} \times I$. We compute the fundamental groups $\pi_{1}(A, p t), \pi_{1}(B, p t), \pi_{1}(A \cap B, p t)$, where $p t$ is a point situated on the boundary c of the slice.

- $A \cap B$ is a homotopically equivalent to the wedge of four circles (see Figure 2), and thus $\pi_{1}(A \cap B, p t)$ is a free group with four generators x, y, z, t depicted 1 in Figure 2.

[^3]The intersection of $a \cup b$ with A consists of three oriented $\operatorname{arcs} a_{ \pm}, b_{0}$. Suppose g is one of these arcs. We will denote by ℓ_{g} the loop oriented by the right hand rule going once around the arc g. (The loop $\ell_{a_{+}}$is depicted in Figure 2.)

Figure 3: Pancaking a sphere with three solid tori deleted
As shown in Figure 3 the complement of these arcs in A is homotopically equivalent to a disk with three holes bounding the loops $\ell_{a_{ \pm}}$and $\ell_{a_{0}}$. This three-hole disk is homotopically equivalent to a wedge of three circles and we deduce that $\pi_{1}(A, p t)$ is the free group with generators $\ell_{a_{ \pm}}, \ell_{b_{0}}$. We deduce similarly that $\pi_{1}(B, p t)$ is the free group with generators $\ell_{b_{ \pm}}$ and $\ell_{a_{0}}$.

Denote by α the natural inclusion $A \cap B \hookrightarrow A$ and by β the natural inclusion $A \cap B \hookrightarrow B$ (see Figure 2). We want to compute the induced morphisms α_{*} and β_{*}. Upon inspecting

Figure 2 we deduce ${ }^{2}$ the following equalities.

$$
\left\{\begin{array}{l}
\alpha_{*}(x)=\ell_{b_{0}} \\
\alpha_{*}(y)=\ell_{a_{-}}^{-1} \\
\alpha_{*}(z)=\ell_{b_{0}}^{-1} \\
\alpha_{*}(t)=\ell_{a_{+}}
\end{array},\left\{\begin{array}{l}
\beta_{*}(x)=\ell_{b_{-}} \\
\beta_{*}(y)=\ell_{a_{0}}^{-1} \\
\beta_{*}(z)=\ell_{b_{+}}^{-1} \\
\beta_{*}(t)=\ell_{a_{0}}
\end{array} .\right.\right.
$$

Thus the fundamental group of the complement of $a \cup b$ in $D^{2} \times I$ is the group G defined by generators: $\ell_{a_{ \pm}}, \ell_{a_{0}}, \ell_{b_{ \pm}}, \ell_{b_{0}}$,
relations: $\ell_{b_{0}}=\ell_{b_{-}}, \ell_{a_{-}}^{-1}=\ell_{a_{0}}^{-1}, \ell_{b_{0}}^{-1}=\ell_{b_{+}}^{-1}, \ell_{a_{+}}=\ell_{a_{0}}$.
It follows that G is the free group with two generators $\ell_{b}\left(=\ell_{b_{ \pm}}=\ell_{b_{0}}\right)$ and $\ell_{a}\left(=\ell_{a_{ \pm}}=\right.$ $\ell_{a_{0}}$). Inspecting Figure 2 we deduce that the loop c defines the element

$$
\begin{aligned}
& \alpha_{*}(x y z t)^{-1}=\left(\ell_{b_{0}} \ell_{a_{-}}^{-1} \ell_{b_{0}}^{-1} \ell_{a_{+}}\right)^{-1} \\
= & \left(\ell_{b} \ell_{a}^{-1} \ell_{b}^{-1} \ell_{a}^{-1}\right)=\left[\ell_{b}, \ell_{a}^{-1}\right]^{-1} \neq 1 .
\end{aligned}
$$

[^4]Sec. 1.2, Problem 11. Consider the wedge of two circles

$$
\left(X, x_{0}\right)=\left(C_{1}, x_{1}\right) \vee\left(C_{2}, x_{2}\right), \quad x_{i} \in C_{i},
$$

and a continuous map $f:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$. Consider the mapping torus of f

$$
T_{f}:=X \times I /\{(x, 0) \sim(f(x), 1)\}
$$

and the loop $\gamma:(I, \partial I) \rightarrow\left(T_{f},\left(x_{0}, 0\right)\right), \quad \gamma(s)=\left(x_{0}, s\right)$. We denote by C its image in T_{f}. Observe that C is homeomorphic to a circle and the closed set $A=X \times\{0\} \cup C \subset T_{f}$ is homeomorphic to $X \vee C \cong X \vee S^{1}$. The complement $T_{f} \backslash A$ is homeomorphic to

$$
X \backslash\left\{x_{0}\right\} \times(0,1) \cong \underbrace{\left(C_{1} \backslash x_{1}\right) \times(0,1)}_{R_{1}} \cup \underbrace{\left(C_{2} \backslash x_{2}\right) \times(0,1)}_{R_{2}} .
$$

Figure 4: Attaching maps
In other words, the complement is the union of two open 2 -cells R_{1}, R_{2}, and thus T_{f} is obtained from A by attaching two 2-cells. The attaching maps are depicted in Figure 4. Thus the fundamental group of T_{f} has the presentation
generators: C_{1}, C_{2}, C
relations $R_{i}=C f_{*}\left(C_{i}\right) C^{-1} C_{i}^{-1}=1, i=1,2$.

Sec. 1.2, Problem 14. We define a counterclockwise on each face using the outer normal convention as in Milnor's little book. For each face R of the cube we denote by R_{*} the opposite face, and by R^{\circlearrowleft} the counterclockwise rotation by 90° of the face R. We denote by F, T, S the front, top, and respectively side face of the cube as in Figure 5.

Figure 5: A 3-dimensional $C W$-complex
We make the identifications

$$
F \longleftrightarrow F_{*}^{\circlearrowleft}, T \longleftrightarrow T_{*}^{\circlearrowleft}, S \longleftrightarrow S_{*}^{\circlearrowleft} .
$$

In Figure 5 we labelled the objects to be identified by identical symbols or colors. We get a $C W$ complex with two $0-0$ cellls (the green and red points), four 1 -cells, a, b, c, d, three 2 -cells, F, T, S, and one 3 -cell, the cube itself. For fundamental group computations the 3 -cell is irrelevant.

The 1 -skeleton is depicted in Figure 5 and by collapsing the contractible subcomplex d to a point we deduce that it is homotopically equivalent to a wedge of three circles. In other words the fundamental group of the 1 -skeleton (with base point the red 0-cell) is the free group with three generators

$$
\alpha=a \cdot d, \quad \beta=b^{-1} \cdot d, \quad \gamma=c \cdot d
$$

Attaching the three 2-cells has the effect of adding three relations

$$
\begin{equation*}
F=a c^{-1} d^{-1} b=\alpha \gamma^{-1} \beta^{-1}=1, \quad T=a b c d=\alpha \beta^{-1} \gamma=1, \quad S=a d b^{-1} c^{-1}=\alpha \beta \gamma^{-1}=1 \tag{1}
\end{equation*}
$$

Thus the fundamental group is isomorphic to the group G with generators α, β, γ and relations (1).

We deduce from the first relation

$$
\beta=\alpha \gamma^{-1} \Longrightarrow \alpha\left(\alpha \gamma^{-1}\right) \gamma^{-1}=1 \Longrightarrow \alpha^{2}=\gamma^{2} .
$$

Using the third relation we deduce

$$
\gamma=\alpha \beta \Longrightarrow \alpha^{2}=\gamma^{2}=\alpha \beta \gamma
$$

Using the second and third relation we deduce that

$$
\alpha=\gamma^{-1} \beta=\gamma \beta^{-1} \Longrightarrow \gamma^{2}=\beta^{2}
$$

Hence

$$
\begin{equation*}
\alpha^{2}=\beta^{2}=\gamma^{2}=\alpha \beta \gamma \tag{2}
\end{equation*}
$$

Observe that

$$
\alpha^{2} \beta=\beta^{2} \beta=\beta \beta^{2}=\beta \alpha^{2}, \text { and similarly } \alpha^{2} \gamma=\gamma \alpha^{2}
$$

so that the α^{2} lies in the center of $G . \alpha^{2}$ is an element of order 2 , and the cyclic subgroup $\left\langle\alpha^{2}\right\rangle$ it generates is a normal subgroup. Consider the quotient $H:=G /\left\langle\alpha^{2}\right\rangle$. We deduce that H has the presentation

$$
H=\left\langle\alpha, \beta, \gamma \mid \alpha^{2}=\beta^{2}=\gamma^{2}=\alpha \beta \gamma=1\right\rangle,
$$

which shows that $H \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. It follows that ord $G=8$.
Denote by Q the subgroup of nonzero quaternions generated by $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$. We have a surjective morphism $G \rightarrow Q$ given by

$$
\alpha \mapsto \boldsymbol{i}, \quad \beta \mapsto \boldsymbol{j}, \quad \gamma \mapsto \boldsymbol{k} .
$$

Since ord $(G)=\operatorname{ord}(Q)$ we deduce that this must be an isomorphism.

Sec. 1.3, Problem 9. Suppose $f: X \rightarrow S^{1}$ is a continuous map, and $x_{0} \in X$. Then $f_{*} \pi_{1}\left(X, x_{0}\right)$ is a finite subgroup of $\pi_{1}\left(S^{1}, f\left(x_{0}\right) \cong \mathbb{Z}\right.$ and thus it must be the trivial subgroup. It follows that f has a lift \tilde{f} to the universal cover

Since \mathbb{R} is contractible we deduce that \tilde{f} is nullhomotopic. Thus $f=\exp \circ \tilde{f}$ must be nullhomotopic as well.

Sec. 1.3, Problem 18. Every normal cover of X has the form

$$
Y:=\tilde{X} / G \xrightarrow{p} X
$$

where $G \unlhd \pi_{1}(X)$. In this case $\operatorname{Aut}(Y / X) \cong \pi_{1}(X) / G$. We deduce that the cover $X / G \rightarrow X$ is Abelian iff G contains all the commutators in $\pi_{1}(X)$, i.e.

$$
G_{0}:=\left[\pi_{1}(X), \pi_{1}(X)\right] \leq G .
$$

Consider the cover.

$$
X_{a b}:=X / G_{0} \xrightarrow{p_{a b}} X .
$$

Note that $\operatorname{Aut}\left(X_{a b} / X\right) \cong \operatorname{Ab}\left(\pi_{1}(X)\right)$ acts freely and transitively on $X_{a b}$. We deduce that for any Abelian cover of the form X / G we have an isomorphism of covers

$$
X / G \cong X_{a b} /\left(G / G_{0}\right)
$$

so that $X_{a b}$ is a normal covering of X / G.
For example, when $X=S^{1} \vee S^{1}$ we have $\pi_{1}\left(S^{1} \vee S^{1}\right) \cong \mathbb{Z} * \mathbb{Z}, \operatorname{Ab}(\mathbb{Z} * \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}$. The universal Abelian cover of $S^{1} \vee S^{1}$ is homomorphic to the closed set in \mathbb{R}^{2}

$$
X_{a b} \cong\left\{(x, y) \in \mathbb{R}^{2} \quad x \in \mathbb{Z} \text { or } y \in \mathbb{Z}\right\}
$$

The group \mathbb{Z}^{2} acts on this set by

$$
(x, y) \cdot(m, n):=(x+m, y+n)
$$

This action is even and the quotient is X. The case $S^{1} \vee S^{1} \vee S^{1}$ can be analyzed in a similar fashion.

Sec. 1.3, Problem 24. Suppose we are given a based G-covering

$$
\left(X_{0}, x_{0}\right) \xrightarrow{p^{0}}\left(X_{1}, x_{1}\right):=\left(X_{0}, x_{0}\right) / G .
$$

We want to classify the coverings $(X, x) \xrightarrow{p^{0}}\left(X_{1}, x_{1}\right)$ which interpolate between X_{0} and X_{1}, i.e. there exists a covering map $\left(X_{0}, x_{0}\right) \xrightarrow{q}(X, x)$ such that the diagram below is commutative.

We will denote such coverings by ($X, x ; q, p$) A morphism between two such covers ($X^{\prime}, x^{\prime} ; q^{\prime}, p^{\prime}$) and $(X, x ; q, p)$ is a pair of continuous maps $f:(X, x) \rightarrow\left(X, x^{\prime}\right)$, such that the diagram below is commutative

Suppose $(X, x ; q, p)$ is such an intermediate cover. Set $F_{i}:=\pi_{1}\left(X_{i}, x_{i}\right), F:=\pi_{1}(X, x)$. Since $X_{0} \xrightarrow{p^{0}} X_{1}$ is a G-covering we obtain a short exact sequence

$$
1 \hookrightarrow F_{0} \xrightarrow{p_{*}^{0}} F_{1} \xrightarrow{\mu} G \rightarrow 1
$$

Note that we also have a commutative diagram

which can be completed to a commutative diagram

Consider another such commutative diagram,

We define a morphism $\left(F ; q_{*}, p_{*}\right) \rightarrow\left(F^{\prime} ; q_{*}^{\prime}, p_{*}^{\prime}\right)$ to be a group morphism $\varphi: F \rightarrow F^{\prime}$ such that the diagrams below are commutative

We denote by \mathcal{J} the collection of intermediate coverings $\left(X_{0}, x_{0}\right) \xrightarrow{q}(X, x) \xrightarrow{p}\left(X_{1}, x_{1}\right)$, and by \mathcal{D} the collection of the diagrams of the type $\left(F ; q_{*}, p_{*}\right)$.

We have constructed a map $\Xi: \mathcal{J} \rightarrow \mathcal{D}$ which associates to a covering $(X, x ; q, p)$ the diagram $\Xi(X, x ; q, p):=\left(F ; q_{*}, p_{*}\right) \in \mathcal{D}$. Moreover if $\left(X^{\prime}, x^{\prime} ; q^{\prime}, p^{\prime}\right) \in \mathcal{J}$, with associated diagram $\left(F^{\prime} ; q_{*}^{\prime}, p_{*}^{\prime}\right)$, and $f:(X, x ;, q, p) \rightarrow\left(X^{\prime}, x^{\prime} ; q^{\prime}, p^{\prime}\right)$ is morphism of intermediate coverings, then the group morphism $f_{*}: F \rightarrow F^{\prime}$ induces a morphism of diagrams

$$
\Xi(f): \Xi(X, x ; q, p) \rightarrow \Xi\left(X^{\prime}, x^{\prime} ; q^{\prime}, p^{\prime}\right) .
$$

Note that for every coverings $C, C^{\prime}, C^{\prime \prime} \in \mathcal{J}$, and every morphisms $C \xrightarrow{g} C^{\prime} \xrightarrow{f} C^{\prime \prime}$ we have

$$
\Xi\left(\mathbf{1}_{C}\right)=\mathbf{1}_{\Xi(C)}, \quad \Xi(f \circ g)=\Xi(f) \circ \Xi(g) .
$$

Thus two coverings $C, C^{\prime} \in I$ are isomorphic iff the corresponding diagrams are isomorphic, $\Xi(C) \cong \Xi\left(C^{\prime}\right)$.

This shows that we have an injective correspondence $[\Xi]$ between the collection $[\mathcal{J}]$ of isomorphisms classes of intermediate coverings and the collection $[\mathcal{D}]$ of isomorphism classes of diagrams.

Conversely, given a diagram $D \in \mathcal{D}$

we can form $(Y, y ; a, b) \in \mathcal{J}$ where

$$
(Y, y):=\left(X_{0}, x_{0}\right) / \mu \circ \beta(H),
$$

$a:\left(X_{0}, x_{0}\right) \rightarrow(Y, y)$ is the natural projection, and $b:(Y, y) \in\left(X_{1}, x_{1}\right)$ is the map

$$
(Y, y) \ni z \cdot H \mapsto z \cdot G \in\left(X_{1}, x_{1}\right),
$$

where for $z \in X_{0}$ we have denoted by $z \cdot H$ (resp. $z \cdot G$) the H-orbit (resp the G-orbit) of z. Observe that the diagram $\Xi(Y, y ; a, b)$ associated to ($Y, y ; a, b)$ is isomorphic to the initial diagram $(F ; \alpha, \beta)$. We thus have a bijection ${ }^{1}$

$$
[\Xi]:[\mathcal{J}] \rightarrow[\mathcal{D}] .
$$

To complete the solution of the problem it suffices to notice that the isomorphism class of the diagram $(F ; \alpha, \beta)$ is uniquely determined by the subgroup $\mu \circ \beta(F) \leq G$. Conversely, to every subgroup $H \hookrightarrow G$ we can associate the diagram

[^5]
Solutions to Homework \# 3

Sec. 2.1, Problem 1. It is The Möbius band; see Figure 1.

Figure 1. The Möbius band

Sec. 2.1, Problem 2. For the problem with the Klein bottle the proof is contained in Figure 2 , where we view the tetrahedron as the upper half-ball in \mathbb{R}^{3} by rotating the face $\left[V_{0} V_{1} V_{2}\right]$ about $\left[V_{1} V_{2}\right]$ so that the angle between the two faces with common edge [$V_{1} V_{2}$] increases until it becomes 180°. We now see the Klein bottle sitting at the bottom of this upper half-ball. All the other situations (the torus and $\mathbb{R P}^{2}$) are dealt with similarly.

Figure 2. A 3-dimensional Δ-complex which deformation retracts to the Klein bottle.

Sec. 2.1, Problem 4.

Figure 3. The homology of a parachute.
In this case we have
$C_{n}(K)=0$ if $n \geq 3$ or $n \leq 0$, and

$$
C_{2}(K)=\mathbb{Z}\langle\sigma\rangle, \quad C_{1}(K)=\mathbb{Z}\langle a, b, c\rangle, \quad C_{0}(K)=\mathbb{Z}\langle V\rangle
$$

and the boundary operator is determined by the equalities

$$
\partial \sigma=a+b-c, \quad \partial a=\partial b=\partial c=\partial V=0 .
$$

Then $Z_{2}\left(C_{*}(K)\right)=0, Z_{1}\left(C_{*}(K)\right)=C_{1}(K)=\mathbb{Z}\langle a, b, c\rangle, Z_{0}\left(C_{*}(K)\right)=C_{0}(K)$. Hence $H_{2}^{\Delta}(|K|)=(0)$. Moreover

$$
B_{1}\left(C_{*}(K)\right)=\operatorname{span}_{\mathbb{Z}}(a+b-c) \subset \mathbb{Z}\langle a, b, c\rangle
$$

so that

$$
H_{1}^{\Delta}(|K|) \cong \mathbb{Z}\langle a, b, c\rangle / \operatorname{span}_{\mathbb{Z}}(a+b-c) .
$$

The images of a and b in $H_{1}^{\Delta}(|K|)$ define a basis of $H_{1}^{\Delta}(|K|)$. It is clear that $H_{0}^{\Delta}(|K|) \cong \mathbb{Z}$.

Sec. 2.1, Problem 5.

Figure 4. The homology of the Klein bottle.
We have

$$
C_{2}=\mathbb{Z}\langle U, L\rangle, \quad C_{1}=\mathbb{Z}\langle a, b, c\rangle, \quad C_{0}=\mathbb{Z}\langle v\rangle .
$$

and

$$
\partial U=a+b-c, \quad \partial L=c+a-b, \quad \partial a=\partial b=\partial c=\partial v=0 .
$$

If follows that $Z_{2}=0 \cong H_{2}^{\Delta}(|K|)=0$, and $H_{0}^{\Delta} \cong \mathbb{Z}$. The first homology group has the presentation

$$
\mathbb{Z}\langle U, L\rangle \xrightarrow{P} \mathbb{Z}\langle a, b, c\rangle \rightarrow H_{1}^{\Delta} \rightarrow 0
$$

where P is the 3×2 matrix

$$
P=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

Using the Maple procedure ismith we can diagonalize P over the integers

$$
D_{0}:=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right]=A P B,
$$

where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

This means that by choosing the \mathbb{Z}-basis $\mu_{1}:=A^{-1} a, \mu_{2}:=A^{-1} b, \mu_{3}=A^{-1} c$ in $\mathbb{Z}\langle a, b, c\rangle$, and the \mathbb{Z}-basis $e:=B U, f:=B L$ in $\mathbb{Z}\langle U, L\rangle$ we can represent the linear operator P as the diagonal matrix D_{0}. We deduce that H_{1}^{Δ} has an equivalent presentation with three generators $\mu_{1}, \mu_{2}, \mu_{3}$ and two relations

$$
\mu_{1}=0, \quad 2 \mu_{2}=0 .
$$

Thus

$$
H_{1}^{\Delta} \cong \mathbb{Z}_{2}\left\langle\mu_{2}\right\rangle \oplus \mathbb{Z}\left\langle\mu_{3}\right\rangle .
$$

Using the MAPLE procedure inverse we find that

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

so that μ_{2} is given by the 2 nd column of A^{-1} and μ_{3} is given by the third column of A^{-1}

$$
\mu_{2}=c-b, \quad \mu_{3}=c .
$$

Solutions to Homework \# 4

Problem 6, $\S 2.1$ We begin by describing the equivalence classes of k-faces, $k=0,1,2$. Let $\Delta_{i}\left[v_{0}^{i} v_{1}^{i} v_{2}^{i}\right]$.

- The 0-faces. We have

$$
\left[v_{0}^{0} v_{1}^{0}\right] \sim\left[v_{1}^{0} v_{2}^{0}\right] \sim\left[v_{0}^{0} v_{2}^{0}\right]
$$

so that

$$
v_{0}^{0} \sim v_{1}^{0} \sim v_{2}^{0}
$$

Denote by v^{0} the equivalence class containing these vertices. Note that

$$
\begin{gathered}
{\left[v_{0}^{1} v_{2}^{1}\right] \sim\left[v_{0}^{0} v_{1}^{0}\right] \Longrightarrow v_{0}^{1} \sim v^{0}, \quad v_{2}^{1} \sim v^{0}} \\
{\left[v_{0}^{1} v_{1}^{1}\right] \sim\left[v_{1}^{1} v_{2}^{1}\right] \Longrightarrow v_{1}^{1} \sim v^{0}}
\end{gathered}
$$

Iterating this procedure we deduce that there exists a single equivalence class of vertices.

- The 1-faces. Denote by e_{0} the equivalence class containing the edges of Δ_{0}. Then all the edges $\left[v_{1}^{i} v_{2}^{i}\right]$ belong to this equivalence class. We also have another n-equivalence classes e_{i} containing the pair $\left[v_{0}^{i} v_{1}^{i}\right],\left[v_{1}^{i} v_{2}^{i}\right]$. Observe that

$$
\left[v_{0}^{i} v_{2}^{i}\right] \sim e_{i-1}, \quad i=1, \cdots, n
$$

- The 2-faces. We have $n+1$ equivalence classes of 2 -faces, $\Delta_{0}, \Delta_{1}, \cdots, \Delta_{n}$.
- $\partial: C_{2} \rightarrow C_{1}$. We have

$$
\begin{gathered}
C_{2}=\mathbb{Z}\left\langle\Delta_{0}, \cdots, \Delta_{1}\right\rangle, \quad C_{1}=\mathbb{Z}\left\langle e_{0}, e_{1}, \cdots, e_{n}\right\rangle \\
\partial \Delta_{0}=e^{0}, \quad \partial \Delta_{i}=\left[v_{0}^{i} v_{1}^{i}\right]+\left[v_{1}^{i} v_{2}^{i}\right]-\left[v_{0}^{i} v_{2}^{i}\right]=2 e_{i}-e_{i-1}
\end{gathered}
$$

- $\partial: C_{1} \rightarrow C_{0}$. We have

$$
C_{0}=\mathbb{Z}\left\langle v^{0}\right\rangle
$$

and

$$
\partial e_{i}=0, \quad \forall i=0,1, \cdots, n
$$

- Z_{2} and H_{2}. We have $B_{2}=0$ and

$$
Z_{2}=\left\{\sum_{i=0}^{n} x_{i} \Delta_{i} ; \sum_{i=0}^{n} x_{i} \partial \Delta_{i}=0\right\}
$$

Thus

$$
\sum_{i=0}^{n} x_{i} \Delta_{i} \in Z_{2} \Longleftrightarrow\left\{\begin{array}{ccc}
x_{n} & = & 0 \\
-x_{n}+2 x_{n-1} & = & 0 \\
\vdots & \vdots & \vdots \\
-x_{2}+2 x_{1} & = & 0 \\
-x_{1}+x_{0} & = & 0
\end{array}\right.
$$

We deduce $Z_{2}=0$ so that $H_{2}=0$.

- Z_{1} and H_{1}. We have $Z_{1}=C_{1}$ and H_{1} has the presentation

$$
\left\langle e_{0}, e_{1}, \cdots, e_{n} \mid \quad 0=2 e_{n}-e_{n-1}=\cdots 2 e_{1}-e_{0}=e_{0}\right\rangle
$$

Hence

$$
e_{n-1}=2 e_{n}, \quad e_{n-2}=\underset{1}{2 e_{n-1}}, \cdots, e_{0}=2 e_{1}=0
$$

so that H_{1} is the cyclic group of order 2^{n} generated by e_{n}. By general arguments we have $H_{0}=\mathbb{Z}$.

Sec. 2.1, Problem 7. Consider a regular tetrahedron $\Delta_{3}=\left[P_{0} P_{1} P_{2} P_{3}\right]$, and fix two opposite edges $a=\left[P_{0} P_{1}\right], b=\left[P_{2} P_{3}\right]$. Now glue the faces of this tetrahedron according to the prescriptions

- Type (a) gluing: $\left[P_{0} P_{1} P_{2}\right] \sim\left[P_{0} P_{1} P_{3}\right]$.
- Type (b) gluing: $\left[P_{0} P_{2} P_{3}\right] \sim\left[P_{1} P_{2} P_{3}\right]$.

To see that the space obtained by these identifications is homeomorphic to S^{3} we cut the tetrahedron with the plane passing through the midpoints of the edges of Δ_{3} different from a and b (see Figure 2).

The solid A

Figure 1. Gluing the faces of a tetrahedron to get a 3 -sphere.
We get a solid A containing the edge a and a solid B containing the edge B. By performing first the type (b) gluing and then the type (a) gluing on the solid B we obtain a solid torus. Then performing first the type (a) gluing and next the type (b) gluing on the solid A we obtain another solid torus. We obtain in this fashion the standard decomposition of S^{3} as an union of two solid tori

$$
S^{3} \cong \partial D^{4} \cong \partial\left(D^{2} \times D^{2}\right)=\left(\partial D^{2} \times D^{2}\right) \cup\left(D^{2} \times \partial D^{2}\right)
$$

Problem 8, §2.1 Hatcher. Denote by $\left[V_{0}^{i} V_{1}^{i} V_{2}^{i} V_{3}^{i}\right]$ the i-th 3 -simplex.

$$
\begin{aligned}
& V_{0}^{i} V_{1}^{i} V_{2}^{i} \sim V_{0}^{i+1} V_{1}^{i+l} V^{i+1} \\
& V_{1}^{i} V_{2}^{i} V_{3}^{i} \sim V_{0}^{i+1} V_{3}^{i+1} V^{i+1}
\end{aligned}
$$

Figure 2. Cyclic identifications of simplices
To describe the associated chain complex we need to understand the equivalence classes of k-faces, $k=0,1,2,3$.

- 0-faces. We deduce $V_{0}^{i} \sim V_{0}^{i+1} \forall i \bmod n$ and we denote by U_{0} the equivalence class containing V_{0}^{i}.

Similarly $V_{1}^{i} \sim V_{1}^{i+1}$ and we denote by U_{1} the corresponding equivalence class. Since $V_{1}^{i} \sim V_{0}^{i+1}$ we deduce $U_{0}=U_{1}$.

Now observe that $V_{2}^{i} \sim V_{2}^{i+1}$ and we denote by U_{2} the corresponding equivalence class. Similarly the vertices V_{3}^{i} determine a homology class U_{3} and we deduce from $V_{2}^{i} \sim V_{3} i+1$ that $U_{2}=U_{3}$. Thus we have only two equivalence classes of vertices, U_{0} and U_{2}. The vertices V_{0}^{i}, V_{1}^{j} belong to U_{0} while the vertices V_{2}^{i}, V_{3}^{j} belong to U_{2}.

- 1-faces. The simplex T^{i} has six 1-faces (edges) (see Figure 2).

A vertical edge $v_{i}=\left[V_{2}^{i} V_{3}^{i}\right]$.
A horizontal edge $h_{i}=\left[V_{0}^{i} V_{1}^{i}\right]$.
Two bottom edges: bottom-right $b r_{i}=\left[V_{1}^{i} V_{2}^{i}\right]$ and bottom-left $b l_{i}=\left[V_{0}^{i} V_{2}^{i}\right]$.
Two top edges: top-right $\operatorname{tr}_{i}=\left[V_{1}^{i} V_{3}^{i}\right]$ and top-left $t l_{i}=\left[V_{0}^{i} V_{3}^{i}\right]$.
Inspecting Figure 2 we deduce the following equivalence relations.

$$
\begin{align*}
& b r_{i} \sim b l_{i+1}, \quad t r_{i} \sim t l_{i+1}, \quad v_{i} \sim v_{i+1}, \tag{0.1}\\
& h_{i} \sim h_{i+1}, \quad b l_{i} \sim t l_{i+1}, \quad b r_{i} \sim t r_{i+1} . \tag{0.2}
\end{align*}
$$

We denote by v the equivalence class containing the vertical edges and by h the equivalence class containing the horizontal edges.

Observe next that

$$
b l_{i} \sim t l_{i+1} \sim t r_{i}, \quad \forall i
$$

so that $b l_{i} \sim t r_{i}$ for all i. Denote by e_{i} the equivalence class containing $b l_{i}$. Observe that

$$
b l_{i} \sim t r_{i} \sim e_{i}, \quad t l_{i} \sim e_{i-1}, \quad b r_{i} \sim e_{i+1}
$$

We thus have $(n+2)$ equivalence classes of edges v, h and $e_{i}, i=1, \cdots, n$.

- 2-faces. Each simplex T^{i} has four 2-faces

A bottom face $B_{i}=\left[V_{0}^{i} V_{1}^{i} V_{2}^{i}\right]$.
A top face $\tau_{i}=\left[V_{0}^{i} V_{1}^{i} V_{3}^{i}\right]$.
A left face $L_{i}=\left[V_{0}^{i} V_{2}^{i} V_{3}^{i}\right]$.
A right face $R_{i}=\left[V_{1}^{i} V_{2}^{i} V_{3}^{i}\right]$.
We have the identifications

$$
R_{i} \sim L_{i+1}, \quad B_{i} \sim \tau_{i+1}
$$

We denote by B_{i} the equivalence class of B_{i}, by L_{i} the equivalence class of L_{i} and by R_{i} the equivalence class of R_{i}. Observe that

$$
R_{i}=L_{i+1}, \quad \forall i \quad \bmod n
$$

There are exactly $2 n$ equivalence classes of 2 -faces.

- 3-faces. There are exactly n three dimensional simplices T^{1}, \cdots, T^{n}.
- The associated chain complex.

$$
\begin{gathered}
C_{0}=\mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle, \quad C_{1}=\mathbb{Z}\left\langle v, h, e_{i} ; \quad 1 \leq i \leq n\right\rangle \\
C_{2}=\mathbb{Z}\left\langle B_{i}, R_{j} ; 1 \leq i, j, k \leq n\right\rangle, \quad C_{3}=\mathbb{Z}\left\langle T^{i} ; 1 \leq i \leq n\right\rangle
\end{gathered}
$$

The boundary operators are defined as follows.

- $\underline{\partial: C_{3} \rightarrow C_{2}}$

$$
\partial T^{i}=R_{i}-L_{i}+\tau_{i}-B_{i}=R_{i}-R_{i-1}+B_{i-1}-B_{i}
$$

- $\partial: C_{2} \rightarrow C_{1}$

$$
\partial B_{i}=h+b r_{i}-b l_{i}=h+e_{i+1}-e_{i}, \quad \partial R_{i}=v-t r_{i}+b r_{i}=v+e_{i+1}-e_{i}
$$

- $\underline{\partial: C_{1} \rightarrow C_{0}}$

$$
\partial e_{i}=U_{2}-U_{0}, \quad \partial h=0, \quad \partial v=0
$$

For every sequence of elements $x=\left(x_{i}\right)_{i \in \mathbb{Z}}$ we define its "derivative" to be the sequence

$$
\Delta_{i} x=\left(x_{i+1}-x_{i}\right), \quad i \in \mathbb{Z}
$$

Using this notation we can rewrite

$$
\partial T^{i}=\Delta_{i-1} R-\Delta_{i-1} B, \quad \partial B_{i}=h+\Delta_{i} e, \quad \partial R_{i}=v+\Delta_{i} e
$$

- The groups of cycles.

$$
\begin{gathered}
Z_{0}=C_{0} \\
Z_{1}=\left\{a h+b v+\sum_{i} k_{i} e_{i} \in C_{1} ; \quad a, b, k_{i} \in \mathbb{Z}, \quad \sum_{i} k_{i}=0\right\} \\
=\operatorname{span}_{\mathbb{Z}}\left\{v, h, \Delta_{i} e ; \quad 1 \leq i \leq n\right\}^{1}
\end{gathered}
$$

[^6]Suppose

$$
c=\sum_{i} x_{i} B_{i}+\sum_{j} y_{j} R_{j} \in Z_{2}
$$

Then

$$
0=\partial C=\left(\sum_{i} x_{i}\right) h+\left(\sum_{j} y_{j}\right) v+\sum_{i}\left(x_{i}+y_{i}\right) \Delta_{i} e
$$

(use Abel's trick ${ }^{2}$)

$$
=\left(\sum_{i} x_{i}\right) h+\left(\sum_{j} y_{j}\right) v-\sum_{i} \Delta_{i}(x+y) e_{i+1}
$$

We deduce

$$
\sum_{i} x_{i}=\sum_{j} y_{j}=0, \quad \Delta_{i}(x+y)=\Delta_{i} x+\Delta_{i} y=0, \quad \forall y
$$

The last condition implies that $\left(x_{i}+y_{i}\right)$ is a constant α independent of i. Using the first two conditions we deduce

$$
0=\sum_{i}\left(x_{i}+y_{i}\right)=n \alpha
$$

so that $x_{i}=-y_{i}$, for all i. This shows

$$
Z_{2}=\left\{\sum_{i} x_{i}\left(B_{i}-R_{i}\right) ; \quad x_{i} \in \mathbb{Z}, \quad \sum_{i} x_{i}=0\right\}
$$

To find Z_{3} we proceed similarly. Suppose

$$
c=\sum_{i} x_{i} T^{i} \in Z_{3}
$$

Then

$$
0=\partial c=\sum_{i} x_{i} \Delta_{i-1}(R-B)=-\sum_{i}\left(R_{i}-B_{i}\right) \Delta_{i} x=-\sum\left(\Delta_{i} x\right) R_{i}+\sum_{i}\left(\Delta_{i} x\right) B_{i}
$$

We deduce $\Delta_{i} x=0$ for all i, i.e. x_{i} is independent of i. We conclude that

$$
Z_{3}=\left\{x T ; \quad x \in \mathbb{Z} ; \quad T=\sum_{i} T^{i}\right\}
$$

In particular we conclude $H_{3} \cong \mathbb{Z}$.

- The groups of boundaries and the homology. We have

$$
B_{0}=\operatorname{span}_{\mathbb{Z}}\left(U_{2}-U_{0}\right) \subset \mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle
$$

We deduce

$$
\begin{gathered}
H_{0}=Z_{0} / B_{0}=C_{0} / B_{0}=\mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle / \operatorname{span}_{\mathbb{Z}}\left(U_{2}-U_{0}\right) \cong \mathbb{Z} \\
B_{1}=\operatorname{span}_{\mathbb{Z}}\left(\partial B_{i}, \partial R_{j} ; \quad 1 \leq i, j \leq n\right) \subset \mathbb{Z}\left\langle h, v, e_{i} ; \quad 1 \leq i \leq n\right\rangle
\end{gathered}
$$

Thus H_{1} admits the presentation

$$
H_{1}=Z_{1} / B_{1}=\left\langle h, v, \Delta_{i} e ; \quad h=v=-\Delta_{i} e, \sum_{i} \Delta_{i} e=0 \quad 1 \leq i \leq n\right\rangle
$$

[^7]Using the equality

$$
\sum_{i=1}^{n} \Delta_{i} e=0
$$

we deduce $n h=n v=0$. This shows $H_{1} \cong \mathbb{Z} / n \mathbb{Z}$.
Using the fact that for every sequence $x_{i} \in \mathbb{Z} i \in \mathbb{Z} / n \mathbb{Z}$ such that $\sum_{i} x_{i}=0$ there exists a sequence $y_{i} \in \mathbb{Z}, i \in \mathbb{Z} / n \mathbb{Z}$ such that

$$
x_{i}=\Delta_{i} y, \quad \forall i
$$

Any element $c \in Z_{2}$ has the form

$$
c=\sum_{i} x_{i}\left(R_{i}-B_{i}\right)
$$

where $\sum_{i} x_{i}=0$. Choose y_{i} as above such that $x_{i}=-\Delta_{i} y, \forall i \bmod n$. Then

$$
c=\partial \sum_{i} y_{i} T^{i}
$$

so that $Z_{2}=B_{2}$, i.e. $H_{2}=0$.

Problem 11, §2.1, Hatcher. Denote by i the canonical map $A \hookrightarrow X$. Suppose $r: A \rightarrow X$ is a retraction, i.e. $r \circ i=\mathbb{1}_{A}$. Then the morphisms induced in homology satisfy

$$
r_{*} \circ i_{*}=\mathbb{1}_{H_{n}(A)} .
$$

This shows that i_{*} is one-to-one since $i_{*}(u)=i_{*}(v)$ implies

$$
u=r_{*} \circ i_{*}(u)=r_{*}\left(i_{*}(u)\right)=r_{*}\left(i_{*}(v)\right)=r_{*} \circ i_{*}(v)=v
$$

Solutions to Homework \# 5

Problem 17, §2.1, Hatcher. Denote by A_{n} a set consisting of n distinct points in X. The long exact sequence of the triple (X, A_{n}, A_{n-1}) is

$$
\cdots \rightarrow H_{k}\left(A_{n}, A_{n-1}\right) \rightarrow H_{k}\left(X, A_{n-1}\right) \rightarrow H_{k}\left(X, A_{n}\right) \rightarrow H_{k-1}\left(A_{n}, A_{n-1}\right) \rightarrow \cdots
$$

We deduce that for $k \geq 2$ we have isomorphisms

$$
H_{k}\left(X, A_{n-1}\right) \rightarrow H_{k}\left(X, A_{n}\right) .
$$

Thus for every $k \geq 2$ and every $n \geq 1$ we have an isomorphism

$$
\begin{equation*}
H_{k}(X) \cong \tilde{H}_{k}(X) \cong H_{k}\left(X, A_{1}\right) \rightarrow H_{k}\left(X, A_{n}\right) \tag{5.1}
\end{equation*}
$$

For $k=1$ we have an exact sequence

$$
0 \rightarrow H_{1}\left(X, A_{n-1}\right) \rightarrow H_{1}\left(X, A_{n}\right) \rightarrow H_{0}\left(A_{n}, A_{n-1}\right) \xrightarrow{j_{n}} H_{0}\left(X, A_{n-1}\right)
$$

Since $H_{0}\left(A_{n}, A_{n-1}\right)$ is a free Abelian group ker j_{n} is free Abelian and we have

$$
H_{1}\left(X, A_{n}\right) \cong H_{1}\left(X, A_{n-1}\right) \oplus \operatorname{ker} j_{n} .
$$

Assume X is a path connected $C W$-complex. Then X / A_{n-1} is path connected so that $H_{0}\left(X, A_{n-1}\right) \cong 0$. Hence

$$
\begin{aligned}
& H_{1}\left(X, A_{n}\right) \cong H_{1}\left(X, A_{n-1}\right) \oplus H_{0}\left(A_{n}, A_{n-1}\right) \\
& \cong H_{1}\left(X, A_{n-1}\right) \oplus \tilde{H}_{0}\left(A_{n} / A_{n-1}\right) \cong H_{1}\left(X, A_{n-1}\right) \oplus \mathbb{Z}
\end{aligned}
$$

Hence ${ }^{1}$

$$
\begin{equation*}
H_{1}\left(X, A_{n}\right) \cong H_{1}\left(X, A_{1}\right) \oplus \mathbb{Z}^{n-1} \cong H_{1}(X) \oplus \mathbb{Z}^{n-1} \tag{5.2}
\end{equation*}
$$

Finally assuming the path connectivity of X as above we deduce

$$
\begin{equation*}
H_{0}\left(X, A_{n}\right) \cong \tilde{H}_{0}\left(X / A_{n}\right) \cong 0 \tag{5.3}
\end{equation*}
$$

Now apply (5.1)-(5.3) using the information

$$
\begin{aligned}
H_{0}\left(S^{2}\right) & \cong H_{0}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}, \quad H_{1}\left(S^{2}\right)=0 \\
H_{1}\left(S^{1} \times S^{1}\right) & \cong \mathbb{Z} \times \mathbb{Z}, \quad H_{2}\left(S^{2}\right) \cong H_{2}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}
\end{aligned}
$$

Figure 1. The cycle A is separating while B is non-separating
(b) Denote by \tilde{A} a collar around A and by \tilde{B} a collar around B. Then \tilde{A} deformation retracts onto A while \tilde{B} deformation retracts onto B. Then

$$
H_{*}(X, A) \cong H_{*}(X, \tilde{A}) \stackrel{\text { excision }}{\cong} H_{*}(X-A, \tilde{A}-A)
$$

[^8]The space $X-A$ has two connected components Y_{1}, Y_{2} both homeomorphic to a torus with a disk removed. Then $\tilde{A}-A$ consists of two collars around the boundaries of Y_{j} so that

$$
H_{*}(X-A, \tilde{A}-A) \cong H_{*}\left(Y_{1}, \partial Y_{1}\right) \oplus H_{*}\left(Y_{2}, \partial Y_{2}\right)
$$

We now use the following simple observation. Suppose Σ is a surface, S is a finite set of points in Σ, and $D S$ is a set of disjoint disks centered at the points in S. By homotopy invariance we have

$$
H_{*}(\Sigma, S) \cong H_{*}\left(\Sigma, D_{S}\right)
$$

Denote by Σ_{S} the manifold with boundary obtained by removing the disks D_{S}. Using excision again we deduce

$$
H_{*}\left(\Sigma, D_{S}\right) \cong H_{*}\left(\Sigma_{S}, \partial \Sigma_{S}\right)
$$

so that

$$
\begin{equation*}
H_{*}\left(\Sigma_{S}, \partial \Sigma_{S}\right) \cong H_{*}(\Sigma, S) \tag{5.4}
\end{equation*}
$$

Note that the groups on the right hand side were computed in part (a).
We deduce that

$$
H_{*}(X, A) \cong H_{*}(\text { torus }, \mathrm{pt}) \oplus H_{*}(\text { torus }, \mathrm{pt})
$$

Observe that $X-B$ is a torus with two disks removed so that

$$
H_{*}(X, B) \cong H_{*}\left(\text { torus, }\left\{\mathrm{pt}_{1}, \mathrm{pt}_{2}\right\}\right)
$$

Problem 20, §2.1 (a) Consider the cone over X

$$
C X=I \times X /\{0\} \times X
$$

We will regard X as a subspace of $C X$ via the inclusion

$$
X \cong\{1\} \times X \hookrightarrow C X
$$

Then $C X$ is contractible and we deduce

$$
\tilde{H}_{*}(C X)=0
$$

$(C X, X)$ is a good pair, and $S X=C X / X$ so that

$$
\tilde{H}_{*}(S X) \cong H_{*}(C X, X)
$$

From the long exact sequence of the pair $(C X, X)$ we deduce

$$
\begin{equation*}
\cdots \rightarrow H_{k+1}(C X) \rightarrow H_{k+1}(C X, X) \rightarrow H_{k}(X) \rightarrow H_{k}(C X) \rightarrow \cdots \tag{5.5}
\end{equation*}
$$

Thus for $k \geq 1$ we have

$$
H_{k}(C X)=H_{k+1}(C X)=0
$$

so that

$$
H_{k+1}(S X) \cong H_{k+1}(C X, X) \cong H_{k}(X)
$$

Using $k=0$ in (5.5) we deduce

$$
0 \rightarrow H_{1}(C X, X) \rightarrow H_{0}(X) \rightarrow H_{0}(C X)
$$

The inclusion induced morphism $H_{0}(X) \rightarrow H_{0}(C X)$ is onto so that

$$
\tilde{H}_{1}(S X) \cong H_{1}(C X, X) \cong \operatorname{ker}\left(H_{0}(X) \rightarrow H_{0}(C X)\right) \cong \tilde{H}_{0}(X)
$$

(b) Denote by $S_{n} X$ the space obtained by attaching n-cones over X along their bases using the tautological maps (see Figure 2).

Figure 2. Stacking-up several cones

We see a copy of X inside $S_{n} X$. It has an open neighborhood U which deformation retracts onto this copy of X and such that its complement is homeomorphic to a disjoint union of n cones on X. The Mayer-Vietoris sequence of the decomposition

$$
S_{n} X=S_{n-1} X \cup_{X} C X
$$

is

$$
\cdots \rightarrow H_{k}(X) \rightarrow H_{k}\left(S_{n-1} X\right) \oplus H_{k}(C X) \rightarrow H_{k}\left(S_{n} X\right) \rightarrow H_{k-1}(X) \rightarrow \cdots
$$

For $k>0$ we have $H_{k}(C X)=0$. Moreover, the inclusion induced morphism $H_{k}(X) \rightarrow$ $H_{k}\left(S_{n-1} X\right)$ is trivial since any cycle in X bounds inside ${ }^{2} S_{n-1} X$. Hence we get a short exact sequence

$$
0 \rightarrow H_{k}\left(S_{n-1} X\right) \rightarrow H_{k}\left(S_{n} X\right) \rightarrow H_{k-1}(X) \rightarrow H_{k-1}\left(S_{n-1} X\right)
$$

For $k>1$ we have

$$
H_{k-1}(X) \cong \operatorname{ker}\left(H_{k-1}(X) \rightarrow H_{k-1}\left(S_{n-1} X\right)\right)
$$

while for $k=1$ we have

$$
\tilde{H}_{k-1}(X) \cong \operatorname{ker}\left(H_{k-1}(X) \rightarrow H_{k-1}\left(S_{n-1} X\right)\right)
$$

Thus, for every $k \geq 1$ we have the short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{k}\left(S_{n-1} X\right) \rightarrow H_{k}\left(S_{n} X\right) \rightarrow \tilde{H}_{k-1}(X) \rightarrow 0 \tag{5.6}
\end{equation*}
$$

Now observe that there exists a natural retraction

$$
r: S_{n} X \rightarrow S_{n-1} X
$$

To describe it consider first the obvious retraction from the disjoint union of n cones to the disjoint union of $(n-1)$ cones

$$
\tilde{r}:\{1, \cdots, n\} \times C X \rightarrow\{1, \cdots, n-1\} \times C X, \quad \tilde{r}(j, p)=\left\{\begin{array}{cll}
(j, p) & \text { if } & j<n \\
(1, p) & \text { if } & j=n
\end{array}\right.
$$

Now observe that

$$
\tilde{r}(\{1, \cdots, n\} \times X)=\{1, \cdots, n-1\} \times X
$$

[^9]and
$S_{n} X=\{1, \cdots, n\} \times C X /\{1, \cdots, n\} \times X, \quad S_{n-1} X=\{1, \cdots, n-1\} \times C X /\{1, \cdots, n-1\} \times X$
so that \tilde{r} descends to a retraction
$$
r: S_{n} X \rightarrow S_{n-1} X
$$

This shows that the sequence (5.6) splits so that

$$
H_{k}\left(S_{n} X\right) \cong H_{k}\left(S_{n-1} X\right) \oplus \tilde{H}_{k-1}(X) \cong{ }^{\text {inductively }} \cong \oplus_{j=1}^{n-1} \tilde{H}_{k-1}(X)
$$

Problem 27, §2.1 (a) We have the following commutative diagram

The rows are exact. The morphisms induced on absolute homology are isomorphisms so the five lemma implies that the middle vertical morphism between relative homology groups is an isomorphism as well.
(b) We argue by contradiction. Suppose there exists a map $g:\left(D^{n}, D^{n} \backslash 0\right) \rightarrow\left(D^{n}, \partial D^{n}\right)$ such that $g \circ f$ is homotopic as maps of pairs with $\mathbb{1}_{\left(D^{n}, \partial D^{n}\right)}$. If $x \in D^{n} \backslash 0$ then, $g(t x) \in \partial D^{n}$, $\forall t \in(0,1]$. We deduce that

$$
g(0)=\lim _{t \backslash 0} g(t x) \in \partial D^{n}
$$

Hence $g\left(D^{n}\right) \subset \partial D^{n}$ so we can regard g as a map $D^{n} \rightarrow \partial D^{n}$. Note that $\left.g\right|_{\partial D^{n}} \simeq \mathbb{1}_{\partial D^{n}}$. Equivalently, if we denote by i the natural inclusion $\partial D^{n} \hookrightarrow D^{n}$ then we have

$$
g \circ i \simeq \mathbb{1}_{\partial D^{n}}
$$

so that for every $k \geq 0$ we get a commutative diagram

In particular for $k=n-1$ we have $\tilde{H}_{n-1}\left(\partial D^{n}\right) \cong \mathbb{Z}$ and we reached a contradiction.

Problem 28, §2.1 The cone on the 1-skeleton of Δ_{3} is depicted in Figure 3.
Before we proceed with the proof let us introduce a bit of terminology. The cone X is linearly embedded in \mathbb{R}^{3} so that it is equipped with a metric induced by the Euclidean metric. For every point $x_{0} \in X$ we set

$$
B_{r}\left(x_{0}\right):=\left\{x \in X ; \quad\left|x-x_{0}\right| \leq r\right\}
$$

Figure 3. A cone over the 1-skeleton of a tetrahedron.
By excising $X-B_{r}\left(x_{0}\right), 0<r \ll 1$ we deduce

$$
H_{*}\left(X, X-x_{0}\right) \cong H_{*}\left(B_{r}\left(x_{0}\right), B_{r}\left(x_{0}\right)-x_{0}\right)
$$

Now observe that $B_{r}\left(x_{0}\right)$ deformation retracts onto $L_{r}\left(x_{0}\right)$, the link of x_{0} in X,

$$
L_{r}\left(x_{0}\right)=\left\{x \in X ; \quad\left|x-x_{0}\right|=r .\right.
$$

Hence

$$
H_{*}\left(X, X-x_{0}\right) \cong H_{*}\left(B_{r}\left(x_{0}\right), L_{r}\left(x_{0}\right)\right) \cong \tilde{H}_{*}\left(B_{r}\left(x_{0}\right) / L_{r}\left(x_{0}\right)\right)
$$

We now discuss separately various cases (see Figure 4).
(i)

(ii)

(iv)

Figure 4. The links of various points on X.
(i) x_{0} is in the interior of a 2-face. In this case $B_{r}\left(x_{0}\right) / L_{r}\left(x_{0}\right) \cong S^{2}$ for all $r \ll 1$ so that

$$
H_{*}\left(X, X-x_{0}\right) \cong \tilde{H}_{*}\left(S^{2}\right)
$$

(ii) x_{0} is inside one of the edges $\left[V_{i} V_{j}\right]$. In this case $B_{r}\left(x_{0}\right)$ is the upper half-disk, and the link is the upper half-circle.

$$
H_{*}\left(X, X-x_{0}\right) \cong 0
$$

(iii) x_{0} is inside one of the edges $\left[O V_{i}\right]$. In this case B_{r} consists of three half-disks glued along their diameters. The link consists of three arcs with identical initial points and final points. Then $B_{r}\left(x_{0}\right) / L_{r}\left(x_{0}\right) \simeq S^{2} \vee S^{2}$ so that

$$
H_{*}\left(X, X-x_{0}\right) \cong \tilde{H}_{*}\left(S^{2} \vee S^{2}\right) \cong \tilde{H}_{*}\left(S^{2}\right) \oplus \tilde{H}_{*}\left(S^{2}\right)
$$

(iv) x_{0} is one of the vertices V_{i}. In this case B_{r} consists of three circular sectors with a common edge. The link is the wedge of three arcs. In this case B_{r} / L_{r} is contractible so that

$$
H_{*}\left(X, X-x_{0}\right) \cong 0
$$

(v) $x_{0}=O$. In this case $B_{r} \cong X$ and the link coincides with the 1-skeleton of Δ_{3}. We denote this 1-skeleton by Y. Using the long exact sequence of the pair (X, Y) and the contractibility of X we obtain isomorphisms

$$
H_{n}(X, Y) \cong \tilde{H}_{n-1}(Y) \cong\left\{\begin{array}{cll}
0 & \text { if } & n \neq 2 \\
\mathbb{Z}^{3} & \text { if } & n=2
\end{array}\right.
$$

We deduce that the boundary points are the points in (ii) and (iv). These are precisely the points situated on Y.

To understand the invariant sets of a homeomorphism f of X note first that

$$
H_{*}(X, X-x) \cong H_{*}(X, X-f(x))
$$

In particular any homeomorphism of X induces by restriction a homeomorphism of Y. By analyzing in a similar fashion the various local homology groups $H_{*}(Y, Y-y)$ we deduce that any homeomorphism of Y maps vertices to vertices so it must permute them.

Any homeomorphism f of X maps the vertex O to itself. Also, it maps any point on one of the edges $\left[O V_{i}\right]$ to a point on an edge $\left[O V_{j}\right]$. Thus any homeomorphism permutes the edges $\left[O V_{i}\right]$. We deduce that the nonempty subsets of X left invariant by all the homeomorphisms of X are obtained from the following sets

$$
\{O\}, \quad\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}, \quad Y, \quad\left[O V_{0}\right] \cup \cdots \cup\left[O V_{3}\right], \quad X
$$

via the basic set theoretic operations \cup, \cap, \backslash.

Homework

1. We denote by $\mathbb{Z}[t]$ the ring of polynomials with integer coefficients in one variable t. If $A, B \in \mathbb{Z}[t]$, we say that A dominates B, and we write this $A \succeq B$, if there exists a polynomial $Q \in \mathbb{Z}[t]$, with nonnegative coefficients such that

$$
A(t)=B(t)+(1+t) Q(t)
$$

(a) Show that if $A_{0} \succeq B_{0}, A_{1} \succeq B_{1}$ and $C \succeq 0$ then

$$
A_{0}+A_{1} \succeq B_{0}+B_{1} \text { and } C A_{0} \succeq C B_{0}
$$

(b) Suppose $A(t)=a_{0}+a_{1} t+\cdots a_{n} t^{n} \in \mathbb{Z}[t], B=b_{0}+b_{1} t+\cdots+b_{m} t^{m}$. Show that $A \succeq B$ if and only if, for every $k \geq 0$ we have

$$
\begin{align*}
\sum_{i+j=k}(-1)^{i} a_{j} & \geq \sum_{i+j=k}(-1)^{i} b_{j} \\
\sum_{j \geq 0}(-1)^{j} a_{j} & =\sum_{k \geq 0}(-1)^{j} b_{j} \tag{=}
\end{align*}
$$

(c) We define a graded Abelian group to be a sequence of Abelian groups $C_{\bullet}:=\left(C_{n}\right)_{n \geq 0}$. We say that C_{\bullet} is of finite type if

$$
\sum_{n \geq 0} \operatorname{rank} C_{n}<\infty
$$

The Poincaré polynomial of a graded group C • of finite type is defined as

$$
P_{C}(t)=\sum_{n \geq 0}\left(\operatorname{rank} C_{n}\right) t^{n}
$$

The Euler characteristic of C_{\bullet} is the integer

$$
\chi\left(C_{\bullet}\right)=P_{C}(-1)=\sum_{n \geq 0}(-1)^{n} \operatorname{rank} C_{n} .
$$

A short exact sequence of graded groups $\left(A_{\bullet}\right),\left(B_{\bullet}\right),\left(C_{\bullet}\right)$ is a sequence of short exact sequences

$$
0 \rightarrow A_{n} \rightarrow B_{n} \rightarrow C_{n} \rightarrow 0, \quad n \geq 0
$$

Prove that if $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0$ is a short exact sequence of graded Abelian groups of finite type, then

$$
\begin{equation*}
P_{B}(t)=P_{A}(t)+P_{C}(t) \tag{2}
\end{equation*}
$$

(d)(Morse inequalities. Part 1) Suppose

$$
\cdots \rightarrow C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_{1} \xrightarrow{\partial} C_{0} \rightarrow 0
$$

is a chain complex such that the grade group C_{\bullet} is of finite type. We denote by H_{n} the n-th homology group of this complex and we form the corresponding graded group $H_{\bullet}=\left(H_{n}\right)_{n \geq 0}$. Show that H_{\bullet} is of finite type and

$$
P_{C}(t) \succeq P_{H}(t) \text { and } \chi\left(C_{\bullet}\right)=\chi\left(H_{\bullet}\right) .
$$

(e) (Morse inequalities. Part 2) Suppose we are given three finite type graded groups A_{\bullet}, B_{\bullet} and $C \bullet$ which are part of a long exact sequence

$$
\cdots \rightarrow A_{k} \xrightarrow{i_{k}} B_{k} \xrightarrow{j_{k}} C_{k} \xrightarrow{\partial_{k}} A_{k-1} \rightarrow \cdots \rightarrow A_{0} \rightarrow B_{0} \rightarrow C_{0} \rightarrow 0 .
$$

Show that

$$
P_{A}(t)+P_{C}(t) \succeq P_{B}(t)
$$

$$
1
$$

and

$$
\chi\left(B_{\bullet}\right)=\chi\left(A_{\bullet}\right)+\chi\left(C_{\bullet}\right) .
$$

Proof. (a) We have

$$
A_{0}(t)=B_{0}(t)+(1+t) Q_{0}(t), \quad A_{1}(t)=B_{1}(t)+(1+t) Q_{1}(t)
$$

so that

$$
A_{0}(t)+A_{1}(t)=B_{0}(t)+B_{1}(t)+(1+t)\left(Q_{0}(t)+Q_{1}(t)\right)
$$

Note that if Q_{0} and Q_{1} have nonnegative integral coefficients, so does $Q_{0}+Q_{1}$. Next observe that

$$
C A_{0}=C B_{0}+(1+t) C Q
$$

If C and Q have nonnegative integral coefficients, so does $C Q$.
(b) Use the identity

$$
(1+t)^{-1}=\sum_{k \geq 0}(-1)^{k} t^{k}
$$

Then

$$
\begin{gathered}
A-B=(1+t) Q \Longleftrightarrow Q(t)=(1+t)^{-1}(A(t)-B(t)) \\
\Longleftrightarrow q_{n}=\sum_{i+j=n}(-1)^{i}\left(a_{j}-b_{j}\right), \text { where } Q=\sum_{n} q_{n} t^{n}
\end{gathered}
$$

Hence

$$
q_{n} \geq 0, \quad \forall n \Longleftrightarrow \sum_{i+j=n}(-1)^{i} a_{j} \geq \sum_{i+j=n}(-1)^{i} b_{j}
$$

This proves $\left(M_{\geq}\right)$. The equality $\left(M_{=}\right)$is another way of writing the equality

$$
A(-1)=B(-1)
$$

(c) Set $a_{n}=\operatorname{rank} A_{n}, b_{n}=\operatorname{rank} B_{n}, c_{n}=\operatorname{rank} C_{n}$. If

$$
0 \rightarrow A_{n} \rightarrow B_{n} \rightarrow C_{n} \rightarrow 0, \quad n \geq 0
$$

is a short exact sequence then

$$
b_{n}=a_{n}+c_{n} \Longrightarrow \sum_{n \geq 0} b_{n} t^{n}=\sum_{n \geq 0} a_{n} t^{n}+\sum_{n \geq 0} c_{n} t^{n}
$$

which is exactly (2).
(d) Observe that we have short exact sequences

$$
\begin{align*}
0 & \rightarrow Z_{n}(C) \rightarrow C_{n} \stackrel{\partial}{\rightarrow} B_{n-1}(C) \rightarrow 0 \tag{3}\\
0 & \rightarrow B_{n}(C) \rightarrow Z_{n}(C) \rightarrow H_{n}(C) \rightarrow 0 . \tag{4}
\end{align*}
$$

We set

$$
z_{n}:=\operatorname{rank} Z_{n}(C), \quad b_{n}=\operatorname{rank} B_{n}(C), \quad h_{n}=\operatorname{rank} H_{n}(C), \quad c_{n}=\operatorname{rank} C_{n}
$$

From (3) we deduce

$$
c_{n}=z_{n}+b_{n-1}, \quad \forall n \geq 0
$$

where we have $B_{-1}(C)=0$. Hence

$$
P_{C}(t)=P_{Z}(t)+t P_{B}(t)
$$

On the other hand, the sequence (4) implies

$$
P_{Z}=P_{B}+P_{H}
$$

Hence

$$
P_{C}=P_{H}+(1+t) P_{B} \Longrightarrow P_{C} \succeq P_{H} .
$$

The equality $\chi(C)=\chi(H)$ follows from $\left(M_{=}\right)$.
(e) Set

$$
\begin{gathered}
a_{k}:=\operatorname{rank} A_{k}, \quad b_{k}:=\operatorname{rank} B_{k}, \quad c_{k}=\operatorname{rank} C_{k}, \\
\alpha_{k}=\operatorname{rank} \operatorname{ker} i_{k}, \quad \beta_{k}=\operatorname{rank} \operatorname{ker} j_{k}, \quad \gamma_{k}=\operatorname{rank} \operatorname{ker} \partial_{k} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\left\{\begin{array}{l}
a_{k}=\alpha_{k}+\beta_{k} \\
b_{k}=\beta_{k}+\gamma_{k} \\
c_{k}=\gamma_{k}+\alpha_{k-1}
\end{array} \Longrightarrow a_{k}-b_{k}+c_{k}=\alpha_{k}+\alpha_{k-1}\right. \\
\Longrightarrow \sum_{k}\left(a_{k}-b_{k}+c_{k}\right) t^{k}=\sum_{k} t^{k}\left(\alpha_{k}+\alpha_{k-1}\right) \\
\Longrightarrow P_{A_{\bullet}}(t)-P_{B_{\bullet}}(t)+P_{C \bullet}(t)=(1+t) Q(t), Q(t)=\sum_{k} \alpha_{k} t^{k-1} .
\end{gathered}
$$

Hatcher, §2.1, Problem 14. We will use the identification

$$
\mathbb{Z}_{n}=\{i / n \in \mathbb{Q} / \mathbb{Z} ; i \in \mathbb{Z}\}
$$

(a) Consider the injection

$$
j: \mathbb{Z}_{4} \hookrightarrow \mathbb{Z}_{8} \oplus \mathbb{Z}_{2}, \quad 1 / 4 \mapsto(1 / 4,1 / 2)
$$

Then $(1 / 8,0)$ is an element of order 4 in $\left(\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}\right) / j\left(\mathbb{Z}_{4}\right)$ so that we have a short exact sequence

$$
0 \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow 0
$$

(b) Suppose we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}_{p^{m}} \xrightarrow{j} A \xrightarrow{\pi} \mathbb{Z}_{p^{n}} \rightarrow 0 . \tag{5}
\end{equation*}
$$

Then A is an Abelian group of order p^{m+n} so that it has a direct sum decomposition

$$
\begin{equation*}
A \cong \bigoplus_{i=1}^{k} \mathbb{Z}_{p^{\nu_{i}}}, \quad \nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{k}, \quad \sum_{i} \nu_{i}=m+n \tag{6}
\end{equation*}
$$

On the other hand A must have an element of order p^{m}, and an element of order $\geq p^{n}$ so that $\nu_{1} \geq \max (m, n)$.

Fix an element $a_{1} \in A$ which projects onto a generator of $\mathbb{Z}_{p^{n}}$, and denote by $a_{0} \in A$ the image of a generator in $\mathbb{Z}_{p^{m}}$. Then A is generated by a_{0} and a_{1} so the number k of summands in (6) is at most 2 . Hence

$$
\begin{equation*}
A \cong A_{\alpha, \beta}:=\mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}}, \quad \alpha \geq \max (m, n, \beta), \quad \alpha+\beta=m+n \tag{7}
\end{equation*}
$$

We claim that any group $A_{\alpha, \beta}$ as in (7) fits in an exact sequence of the type (5). To prove this we need to find an inclusion $j: \mathbb{Z}_{p^{n}} \hookrightarrow A_{\alpha, \beta}$ such that the group $A_{\alpha, \beta} / j\left(\mathbb{Z}_{p^{m}}\right)$ has an element of order p^{n}.

Observe first that $\beta \leq \min (m, n)$ because

$$
\beta=(m+n)-\alpha=\min (m, n)+\underbrace{(\max (m, n)-\alpha)}_{\leq 0} \leq \min (m, n) .
$$

Consider the inclusion

$$
\mathbb{Z}_{p^{m}} \rightarrow A_{\alpha, \beta}=\mathbb{Z}_{p^{\alpha}} \oplus \mathbb{Z}_{p^{\beta}}, \quad 1 / p^{m} \mapsto\left(1 / p^{m}, 1 / p^{\beta}\right)
$$

Then the element $g=\left(1 / p^{\alpha}, 0\right)$ has order p^{n} in the quotient $A_{\alpha, \beta} / j\left(\mathbb{Z}_{p^{m}}\right)$.
To prove this observe first that the order of g is a power p^{ν} of $p, \nu \leq n$. Since $p^{\nu} g \in j\left(\mathbb{Z}_{p^{m}}\right)$, there exists $x \in \mathbb{Z}, 0<x<p^{m}$, such that

$$
p^{\nu} g=\left(1 / p^{\alpha-\nu}, 0\right)=x \cdot\left(1 / p^{m}, 1 / p^{\beta}\right) \quad \bmod \mathbb{Z}
$$

Hence

$$
p^{\beta}\left|x, \quad p^{\alpha+m}\right|\left(p^{m+\nu}-x p^{\alpha}\right)
$$

We can now write $x=x_{1} p^{\beta}$, so that

$$
p^{n+m} \mid\left(x_{1} p^{\alpha+\beta}-p^{m+\nu}\right)
$$

Since $\alpha+\beta=m+n$ we deduce $p^{n+m} \mid p^{m+\nu}$ so that $n \leq \nu$.
(c)* Consider a short exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{f} A \xrightarrow{g} \mathbb{Z}_{n} \rightarrow 0 .
$$

We will construct a group morphism $\chi: \mathbb{Z}_{n} \rightarrow \mathbb{Q} / \mathbb{Z}$ as follows. ${ }^{1}$
For every $x \in \mathbb{Z}_{n}$ there exists $\hat{x} \in A$ such that $g(\hat{x})=x$. Then $g(n \cdot \hat{x})=n x=0$ so that

$$
n \cdot \hat{x} \in \operatorname{ker} g=f(\mathbb{Z})
$$

Hence there exists $k \in \mathbb{Z}$ such that

$$
f(k)=n \cdot \hat{x}
$$

Set ${ }^{2}$

$$
\chi(x):=\frac{k}{n} \quad \bmod \mathbb{Z}
$$

The definition of $\chi(x)$ is independent of the choice \hat{x}. Indeed if $\hat{x}^{\prime} \in A$ is a different element of A such that $g\left(\hat{x}^{\prime}\right)=x$ then $\hat{x}-\hat{x}^{\prime} \in \operatorname{ker} g$ so there exists $s \in \mathbb{Z}$ such that

$$
\hat{x}-\hat{x}^{\prime}=f(s)
$$

Then

$$
n \hat{x}^{\prime}=n \hat{x}-f(n s)=f(k-n s)
$$

so that $\frac{k}{n}=\frac{k-n s}{n} \bmod \mathbb{Z}$.
Now define a map

$$
h: A \rightarrow \mathbb{Q} \oplus \mathbb{Z}_{n}, \quad a \mapsto\left(\frac{f^{-1}(n a)}{n}, g(a)\right)
$$

Observe that h is injective. Its image consists of pairs $(q, x) \in \mathbb{Q} \oplus \mathbb{Z}_{n}$ such that

$$
q=\chi(x) \quad \bmod \mathbb{Z}
$$

We deduce that A is isomorphic to $\mathbb{Z} \oplus \operatorname{Im}(\chi)$. The image of χ is a cyclic group whose order is a divisor of n.

Conversely,given a group morphism $\lambda: \mathbb{Z}_{n} \rightarrow \mathbb{Q} / \mathbb{Z}$, we denote by $C_{\lambda} \subset \mathbb{Q} / \mathbb{Z}$ its image, and we form the group

$$
A_{\lambda}:=\left\{(q, c) \in \mathbb{Q} \times \mathbb{Z}_{n} ; \quad q=\lambda(c) \quad \bmod \mathbb{Z}\right\}
$$

Observe that $A \cong \mathbb{Z} \oplus C_{\lambda}$, and C_{λ} is a finite cyclic group whose order is a divisor of n.

[^10]We have a natural injection

$$
f: \mathbb{Z} \hookrightarrow \mathbb{Q} \oplus 0 \hookrightarrow A_{\lambda},
$$

a natural surjection

$$
A_{\lambda} \hookrightarrow \mathbb{Q} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}
$$

and the sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow A_{\lambda} \rightarrow \mathbb{Z}_{n} \rightarrow 0
$$

is exact.
Given any divisor m of n, we consider

$$
\lambda_{m}: \mathbb{Z}_{n} \rightarrow \mathbb{Q} / \mathbb{Z}, \quad \frac{k}{n} \quad \bmod \mathbb{Z} \mapsto \frac{k}{m} \quad \bmod \mathbb{Z}
$$

Its image is a cyclic group of order m. We have thus shown that there exists a short exact sequences

$$
0 \rightarrow \mathbb{Z} \rightarrow A \rightarrow \mathbb{Z}_{n} \rightarrow 0
$$

if and only if $A \cong \mathbb{Z} \oplus \mathbb{Z}_{m}, m \mid n$.

Homework \# 7

Definition 7.1. A space X is said to be of finite type if it satisfies the following conditions.
(a) $\exists N>0$ such that $H_{n}(X)=0, \forall n>N$.
(b) $\operatorname{rank} H_{k}(X)<\infty, \forall k \geq 0$.

1. (a) Suppose A, B are open subsets of the space X such that $X=A \cup B$. Assume A, B and $A \cap B$ are of finite type. Prove that X is of finite type and

$$
\chi(X)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

(b) Suppose X is a space of finite type. Prove that

$$
\chi\left(S^{1} \times X\right)=0
$$

(c) Suppose we are given a structure of finite Δ-complex on a space X. We denote by c_{k} the number of equivalence classes of k-faces. Prove that

$$
\chi(X)=c_{0}-c_{1}+c_{2}-\ldots
$$

(d) Let us define a graph to be a connected, 1-dimensional, finite Δ-complex. (A graph is allowed to have loops, i.e., edges originating and ending at the same vertex, see Figure 1.)

Figure 1. A graph with loops.
Suppose G is a graph with vertex set V. For simplicity, we assume that it is embedded in the Euclidean space \mathbb{R}^{3}. We denote by $c_{0}(G)$ the number of vertices, and by $c_{1}(G)$ the number of edges, and by $\chi(G)$ the Euler characteristic of G. We set

$$
\ell(v):=\operatorname{rank} H_{1}(G, G \backslash\{v\}), \quad d(v)=1+\ell(v)
$$

Prove that

$$
c_{1}(G)=\frac{1}{2} \sum_{v \in V} d(v), \quad \chi(G)=\frac{1}{2} \sum_{v \in V}(1-\ell(v))
$$

Proof. (a) From the Mayer-Vietoris sequence

$$
\ldots \rightarrow H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus H_{n}(B) \rightarrow H_{n}(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \rightarrow \cdots
$$

that X is of finite type. Using part (e) of Problem 1 in Homework $\# 6$ for the above long exact sequence we deduce

$$
\chi(A)+\chi(B)=\chi(A \cap B)+\chi(X)
$$

(b) View S^{1} as the round circle in the plane

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} ; \quad x^{2}+y^{2}=1\right\}
$$

Denote by p_{+}the North pole $p_{+}=(0,1)$, and by p_{-}the South pole, $p_{-}=(0,-1)$. We set

$$
A_{ \pm}=\left(S^{1} \backslash\left\{p_{ \pm}\right\}\right) \times X
$$

Then $A_{ \pm}$are open subsets of $S^{1} \times X$ and $S^{1} \times A_{+} \cup A_{-}$. Each of them is homeomorphic to $(0,1) \times X$, and thus homotopic with X and therefore

$$
\chi\left(A_{ \pm}\right)=\chi(X)
$$

The overlap

$$
A_{0}=A_{+} \cap A_{-}=\left(S^{1} \backslash\left\{p_{+}, p_{-}\right\}\right) \times X
$$

has two connected components, each homeomorphic to $(0,1) \times X$, and thus homotopic with X so that

$$
\chi\left(A_{0}\right)=2 \chi(X)
$$

From part (a) we deduce that

$$
\chi(X)=\chi\left(A_{+}\right)+\chi\left(A_{-}\right)-\chi\left(A_{0}\right)=0
$$

(c) The homology of X can be computed using the Δ-complex structure. Thus, the homology groups $H_{k}(X)$ are the homology groups of a chain complex

$$
\cdots \rightarrow \Delta_{n}(X) \xrightarrow{\partial} \Delta_{n-1}(X) \xrightarrow{\partial} \cdots
$$

where $\operatorname{rank} \Delta_{n}(X)=c_{n}$. The desired conclusion now follows from part (d) of Problem 1 in Homework \# 6.
(d) For every $v \in V$ we denote by $B_{r}(v)$ the closed ball of radius r centered at x, and we set

$$
G_{r}(v):=B_{r}(v) \cap G
$$

For r sufficiently small $G_{r}(x)$ is contractible. We assume r is such. Using excision, we deduce

$$
H_{\bullet}(G, G \backslash\{v\}) \cong H_{\bullet}\left(G_{r}(v), G_{r}(x) \backslash\{v\}\right)
$$

We set $G_{r}^{\prime}(x):=G_{r}(v) \backslash\{x\}$. Using the long exact sequence of the pair $\left(G_{r}(v), G_{r}^{\prime}(v)\right)$ we obtain the exact sequence

$$
0=H_{1}\left(G_{r}(x)\right) \rightarrow H_{1}\left(G_{r}(v), G_{r}^{\prime}(x)\right) \rightarrow H_{0}\left(G_{r}^{\prime}(v)\right) \xrightarrow{i_{0}} H_{0}\left(G_{r}(v)\right) \cong \mathbb{Z}
$$

Hence

$$
\ell(x)=\operatorname{rank} \operatorname{ker} i_{0}=\operatorname{rank} H_{0}\left(G_{r}^{\prime}(v)\right)-1 \Longrightarrow d(v)=\operatorname{rank} H_{0}\left(G_{r}^{\prime}(x)\right)
$$

In other words, $d(v)$ is the number of components of $G_{r}^{\prime}(v)$, when r is very small. Equivalently, $d(v)$ is the number of edges originating /and/or ending at v, where each loop is to be counted twice. This is called the degree of the vertex x. For example, the degree of the top vertex of the graph depicted in Figure 1 is 8 , because there are 3 loops and 2 regular edges at that vertex. The equality

$$
\sum_{v \in V} d(v)=2 c_{1}(G)
$$

is now clear, because in the above sum each edge is counted twice. From part (c) we deduce

$$
\chi(G)=c_{0}(G)-c_{1}(G)
$$

so that

$$
\begin{gathered}
\chi(G)=\sum_{v \in V} 1-\frac{1}{2} \sum_{v \in V} d(v)=\sum_{v \in V} 1-\frac{1}{2} \sum_{v \in V}(1-\ell(v)) \\
=\frac{1}{2} \sum_{v \in V}(1+\ell(v))
\end{gathered}
$$

2. Consider a connected planar graph G situated in a half plane H, such that the boundary of the half plane intersects G in a nonempty set of vertices. Denote by ν the number of such vertices, and by χ_{G} the Euler characteristic of G. Let S be the space obtained by rotating G about the y axis.
(a) Compute the Betti numbers of S.
(b) Determine these Betti numbers in the special case when G is the graph depicted in Figure 2 , where the red dotted line is the boundary of the half plane.

Figure 2. Rotating a planar graph.

Proof. For every graph Γ, we denote by $c_{0}(\Gamma)$ (respectively $\left(c_{1}(\Gamma)\right)$ the number of vertices (respectively edges) of Γ.

As in Homework \# 2, we can deform the graph G inside the halfplane, by collapsing one by one the edges which have at least one vertex not situated on the y-axis. We obtain a new planar graph G_{0}, that is homotopic to G, and has exactly ν vertices, all situated on the axis of rotation. From the equality

$$
\chi_{G}=\chi\left(G_{0}\right)
$$

we deduce

$$
\chi_{G}=c_{0}\left(G_{0}\right)-c_{1}\left(G_{0}\right)=\nu-c_{1}\left(G_{0}\right) \Longrightarrow c_{1}\left(G_{0}\right)=\nu-\chi_{G} .
$$

Denote by S_{0} the space obtained by rotating G_{0} about the y-axis. Then S_{0} is homotopic with S, and the result you proved in Homework 2 shows that S_{0} is a wedge of a number n_{1} circles, and a number n_{2} of spheres. Using Corollary 2.25 of your textbook we deduce

$$
\tilde{H}_{k}\left(S_{0}\right)=\underbrace{\tilde{H}_{k}\left(S^{1}\right) \oplus \cdots \oplus \tilde{H}_{k}\left(S^{1}\right)}_{n_{1}} \oplus \underbrace{\tilde{H}_{k}\left(S^{2}\right) \oplus \cdots \oplus \tilde{H}_{k}\left(S^{2}\right)}_{n_{2}}
$$

so that

$$
b_{0}\left(S_{0}\right)=1, \quad b_{1}\left(S_{0}\right)=n_{1}, \quad b_{2}\left(S_{0}\right)=n_{2}, \quad b_{k}\left(S_{0}\right)=0, \quad \forall k>2
$$

and its Euler characteristic satisfies

$$
\chi(S)=\chi\left(S_{0}\right)=1-n_{1}+n_{2}
$$

The 2-spheres which appear in the above wedge decomposition of S_{0} are in a bijective correspondence with the edges of G_{0} so that

$$
b_{2}\left(S_{0}\right)=n_{2}=c_{1}\left(G_{0}\right)=\nu-\chi_{G} .
$$

For every vertex v of G_{0} we denote by S_{0}^{v} the intersection of S_{0} with a tiny open ball centered at v. Note that S_{0}^{v} is contractible. Define

$$
A:=\bigcup_{v \in V} S_{0}^{v}, \quad B=S_{0} \backslash V
$$

Then A, B are open subsets of S_{0} and

$$
S_{0}=A \cup B
$$

From part (a) of Problem 1 we deduce

$$
\chi\left(S_{0}\right)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

provided that the spaces A, B and $A \cap B$ are of finite type. A is the disjoint union of ν contractible sets so that A is of finite type and $\chi(A)=\nu . B$ is the disjoint union of $c_{1}\left(G_{0}\right)$ cylinders, one cylinder for each edge of G_{0}. In particular, B is of finite type and $\chi(B)=0$. The overlap is the disjoint union of punctured disks, and each of them has finite type and trivial Euler characteristic. Hence

$$
\chi\left(S_{0}\right)=\nu
$$

We deduce

$$
\nu=1-n_{1}+n_{2}=1-n_{1}+\nu-\chi_{G} \Longrightarrow b_{1}\left(S_{0}\right)=n_{1}=1-\chi_{G}=b_{1}(G)
$$

(b) Observe that the graph in Figure 1 has $(m+2)(n+1)$ vertices because there are $n+1$ horizontal lines and $m+2$ vertices on each of them.

To count the edges, observe that there are $(m+1)(n+1)$ horizontal edges and $n(m+1)$ vertical ones. Hence

$$
\chi_{G}=(m+2)(n+1)-(m+1)(n+1)-n(m+1)=n+1-n(m+1)=1-m n .
$$

Since $b_{0}(G)=1$, we deduce $b_{1}(G)=m n$. By rotating G about the vertical axis we obtain a space which is a wedge of $m n$ copies of S^{1} and $n+m n$ copies of S^{2}.

Solutions to Homework \# 8

Problem 3, §2.2. Since $\operatorname{deg} f=0 \neq(-1)^{n+1}$ we deduce that f must have a fixed point, i.e. there exists $x \in S^{n}$ such that $f(x)=x$.

Let $g=(-\mathbb{1}) \circ f$. Then $\operatorname{deg} g=\operatorname{deg}(-\mathbb{1}) \cdot \operatorname{deg} f=0$ so that g must have a fixed point y. Thus $f(y)=-y$.

Problem 4, §2.2. Consider a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(0)=f(1)=0, \quad f(1 / 2)=2 \pi
$$

The map

$$
I:=[0,1] \rightarrow S^{1}, \quad t \mapsto \exp (\boldsymbol{i} f(t))
$$

induces a continuous surjective map $g: I / \partial I=S^{1} \rightarrow S^{1}$. The map f is a lift at $0 \in \mathbb{R}$ of g in the universal cover $\mathbb{R} \xrightarrow{\exp } S^{1}$. Since f starts and ends at the same point we deduce that g is homotopically trivial so that $\operatorname{deg} g=0$. We have thus constructed a surjection $g: S^{1} \rightarrow S^{1}$ of degree zero. Suppose inductively that $f: S^{n} \rightarrow S^{n}$ is a degree 0 surjection. Then the suspension of f is a degree 0 surjection

$$
S f: S^{n+1} \rightarrow S^{n+1}
$$

Problem 7, §2.2. Assume E is an n-dimensional real Euclidean space with inner product $\langle\bullet, \bullet\rangle$. Suppose $T: E \rightarrow E$ is a linear automorphism, and set

$$
S:=T T^{*}
$$

S is selfadjoint, and thus we can find an orthonormal basis $\left(e_{1}, \cdots, e_{n}\right)$ of E which diagonalizes it,

$$
S=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right), \quad \lambda_{i}>0
$$

Let

$$
D(t)=\operatorname{diag}\left(\lambda_{1}^{-t / 2}, \cdots, \lambda_{n}^{-t / 2}\right)
$$

so that $D(0)=\mathbb{1}$ and $D(1)^{2}=S^{-1}$. Now define

$$
T_{t}=D(t) T, \quad S_{t}=T_{t} T_{t}^{*}=D_{t} S D_{t}
$$

Observe that $\operatorname{sign} \operatorname{det} T_{t}=\operatorname{sign} \operatorname{det} T, \forall t$, and

$$
S_{0}=S, \quad S_{1}=1
$$

so that T_{1} is homotopic through automorphisms with an orthogonal operator. Thus, we can assume from the very beginning that T is orthogonal.

For each $\theta \in[0,2 \pi]$ denote by $R_{\theta}: \mathbb{C} \rightarrow \mathbb{C}$ the counterclockwise rotation by θ. Using the Jordan normal form of an orthogonal matrix we can find an orthogonal decomposition

$$
E \cong U \oplus V \oplus \mathbb{C}^{m}
$$

such that T has the form

$$
T=\mathbb{1}_{U} \oplus\left(-\mathbb{1}_{V}\right) \oplus \bigoplus_{i=1}^{m} R_{\theta_{i}}
$$

There exists a homotopy

$$
T_{s}=\mathbb{1}_{U} \oplus\left(-\mathbb{1}_{V}\right) \oplus \bigoplus_{i=1}^{m} R_{s \theta_{i}}
$$

such that

$$
T_{0}=\mathbb{1}_{U} \oplus\left(-\mathbb{1}_{V}\right) \oplus \mathbb{1}_{\mathbb{C}^{m}}, \quad T_{1}=T, \quad \operatorname{det} T_{0}=\operatorname{det} T_{1}
$$

Thus T is homotopic to a product of reflections and the claim in the problem is true for such automorphisms.

Problem 8, §2.2. It is convenient to identify S^{2} with $\mathbb{C P}^{1}$. As such, its covered by two coordinate charts,

$$
U_{s}=S^{2} \backslash\{\text { South Pole }\} \cong \mathbb{C}, U_{n}=S^{2} \backslash\{\text { North Pole }\} \cong \mathbb{C}
$$

We denote by $x: U_{s} \rightarrow \mathbb{C}$ the complex coordinate on U_{s} and by $y: U_{n} \rightarrow \mathbb{C}$ the complex coordinate on U_{n}. On the overlap $U_{s} \cap U_{n}$ we have the equality $x=\frac{1}{y}$.

We think of a polynomial as a function $f: U_{s} \rightarrow \mathbb{C}$,

$$
f(p)=\sum_{j=0}^{d} a_{j} x^{j}, \quad x^{j}=x(p)^{j}
$$

Here we think of U_{s} as a coordinate chart in a copy of of $\mathbb{C P}^{1}$ which we denote by $\mathbb{C}_{\text {source }}^{1}$.
We think of the target space \mathbb{C} of f as the coordinate chart V_{s} of another copy of $\mathbb{C} \mathbb{P}^{1}$ which we denote by $\mathbb{C P}_{\text {target }}^{1}$. We denote the local coordinates on $\mathbb{C P}_{\text {target }}^{1}$ by u on V_{s}, and v on V_{n}. Thus we regard $f: U_{s} \rightarrow V_{s}$ as a function

$$
\begin{equation*}
u=\sum_{j} a_{j} x^{j} \tag{0.1}
\end{equation*}
$$

We identify the South Pole on $\mathbb{C P}_{\text {source }}^{1}$ with the point at ∞ on $U_{s}, x \rightarrow \infty$. Using the equality $y=\frac{1}{x}$ we see that the point at ∞ has coordinate $y=0$. Similarly, the point at infinity on $\mathbb{C P}_{\text {target }}^{1}(u \rightarrow \infty)$ has coordinate $v=0$.

Using (0.1) we deduce that $\lim _{x \rightarrow \infty} u(x)=\infty$. Now chage the coordinates in both the source and target space, $x=1 / y, v=1 / u$. Hence

$$
v(y)=\frac{1}{u(x)}=\frac{1}{u(1 / y)}=\frac{1}{\sum_{j=0}^{n} a_{j} y^{-j}}=\frac{y^{d}}{\sum_{j=0}^{d} a_{j} y^{d-j}}
$$

This shows that the polynomial f extends as a smooth map $\mathbb{C P}_{\text {source }}^{1} \rightarrow \mathbb{C P}_{\text {target }}^{1}$.
Suppose r_{1}, \cdots, r_{m} are the roots of f with multiplicities $\mu_{1}, \cdots, \mu_{m}, \sum_{k} \mu_{k}=d$.
Fix a small disk $\Delta=\{|u|<\varepsilon\}$ centered at the point $u=0 \in V_{s} \subset \mathbb{C P}_{\text {target }}^{1}$. We can find small pairwise disjoint disks D_{1}, \cdots, D_{m} centered at $r_{1}, \cdots, r_{k} \in U_{s} \subset \mathbb{C P}_{\text {source }}^{1}$ such that

$$
f\left(D_{k}\right) \subset \Delta, \quad \forall 1 \leq k \leq m
$$

More explicitly $D_{k}:=\left\{\left|x-r_{k}\right|<\delta_{k}\right\}$, where δ_{k} is a very small positive number. On D_{k} the polynomial f has the description

$$
u(x)=\left(x-r_{k}\right)^{\mu_{k}} Q_{k}(x), \quad Q_{k}(x) \neq 0, \quad \forall x \in D_{k}
$$

Since $Q_{k} \leq 0$ on D_{k} we can find a holomorphic function $L_{k}: D_{k} \rightarrow \mathbb{C}$ such that

$$
Q_{k}=\exp \left(L_{k}\right) .\left(\text { Explicitely }, L_{k}(x)=\log \left(Q_{k}\left(r_{k}\right)\right)+\int_{r_{k}}^{x}\left(d Q_{k} / Q_{k}\right)\right)
$$

For $t \in[0,1]$ we set

$$
Q_{k}^{t}:=\exp \left(t L_{k}\right), \quad f_{k}^{t}=\left(x-r_{k}\right)^{\mu_{k}} Q_{k}^{t}
$$

Observe that

$$
\left|Q_{k}^{t}\right|=\left|Q_{k}\right|^{t}
$$

Set

$$
M_{k}:=\sup \left\{\left|Q_{k}(x)\right| ; \quad\left|x-r_{k}\right| \leq \delta_{k}\right\}
$$

If we choose δ_{k} sufficiently small then

$$
\left|\left(x-r_{k}\right)^{\mu_{k}} Q_{k}^{t}(x)\right| \leq M_{k}^{t}\left|x-r_{k}\right|^{\mu_{k}} \leq M_{k}^{t} \delta_{k}^{\mu_{k}}<\varepsilon, \quad \forall\left|x-r_{k}\right|<\delta_{k}
$$

Equivalently, this means that if δ_{k} is sufficiently small then

$$
f_{k}^{t}\left(D_{k}, D_{k} \backslash\left\{r_{k}\right\}\right) \subset(\Delta, \Delta \backslash\{0\})
$$

This implies that $f=f^{1}:\left(D_{k}, D_{k} \backslash r_{k}\right) \rightarrow(\Delta, \Delta \backslash 0)$ is homotopic to

$$
f^{0}:\left(D_{k}, D_{k} \backslash r_{k}\right) \rightarrow(\Delta, \Delta \backslash 0), \quad f^{0}(x)=\left(x-r_{k}\right)^{\mu_{k}}
$$

as maps of pairs. The degree of induced map

$$
f^{0}:\left\{|x|=\delta_{k}\right\} \rightarrow\left\{|u|=\delta_{k}^{\mu_{k}}\right\} \subset \Delta \backslash 0
$$

is μ_{k} so that $\operatorname{deg}\left(f, r_{k}\right)=\mu_{k}$. We conclude that

$$
\operatorname{deg} f=\sum_{k} \operatorname{deg}\left(f, r_{k}\right)=\sum_{k} \mu_{k}=d
$$

Solutions to Homework \# 9

Problem 10, §2.2 (a) X has a cell structure with a single vertex v, a single 1-cell e, and two 2-cells $D_{ \pm}$(the upper and lower hemispheres of S^{2}.) The cellular complex has the form

$$
0 \rightarrow \mathbb{Z}\left\langle D_{1}, D_{2}\right\rangle \xrightarrow{\partial_{2}} \mathbb{Z}\langle e\rangle \xrightarrow{\partial_{1}} \mathbb{Z}\langle v\rangle \rightarrow 0 .
$$

Denote by $\alpha_{n}: S^{n} \rightarrow S^{n}$ the antipodal map. Then

$$
\partial_{2} D_{ \pm}=\left(1+\operatorname{deg} \alpha_{1}\right) e=2 e, \quad \partial_{1} e=0
$$

We conclude that

$$
H_{2}(X) \cong \mathbb{Z}\left\langle\left(D_{+}-D_{-}\right)\right\rangle \cong \mathbb{Z}, \quad H_{1}(X) \cong \mathbb{Z}_{2}, \quad H_{0}(X) \cong \mathbb{Z}
$$

(b) For the space Y obtained by identifying the antipodal points of the equator we obtain a cell complex

$$
\begin{gathered}
0 \rightarrow \mathbb{Z}\left\langle D_{+}, D_{-}\right\rangle \xrightarrow{\partial_{3}} \underbrace{\mathbb{Z}\left\langle e_{2}\right\rangle \xrightarrow{\partial_{2}} \mathbb{Z}\left\langle e_{1}\right\rangle \xrightarrow{\partial_{1}} \mathbb{Z}\langle v\rangle \rightarrow 0}_{\text {cellular chain complex of } \mathbb{R}^{2} \mathbb{P}^{2}}, \\
\partial D_{ \pm}=\left(1+\operatorname{deg} \alpha_{2}\right) e_{2}=0 .
\end{gathered}
$$

Hence

$$
H_{3}(Y) \cong \mathbb{Z} \oplus \mathbb{Z}, \quad H_{2}(Y) \cong H_{2}\left(\mathbb{R} \mathbb{P}^{2}\right) \cong 0, \quad H_{1}(Y) \cong \mathbb{Z} / 2 \mathbb{Z}, \quad H_{0}(Y) \cong \mathbb{Z}
$$

Problem 14, §2.2. Denote by $\alpha_{n}: S^{n} \rightarrow S^{n}$ the antipodal map. Then the map f is even if and only if

$$
f \circ \alpha_{n}=f
$$

Hence

$$
\operatorname{deg} f=\operatorname{deg}(f) \operatorname{deg} \alpha_{n} \Longrightarrow \operatorname{deg} f=(\operatorname{deg} f) \cdot \operatorname{deg} \alpha_{n}=(-1)^{n+1} \operatorname{deg} f
$$

Hence if n is even then $\operatorname{deg} f=0$. Assume next that n is odd.
Since $\mathbb{R} \mathbb{P}^{n}=S^{n} /(x \sim-x)$ there exists a continuous map $g: \mathbb{R} \mathbb{P}^{n} \rightarrow S^{n}$ such that the diagram below is commutative

Consider the collapse maps

$$
q: \mathbb{R} \mathbb{P}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n} / \mathbb{R P}^{n-1} \cong S^{n}
$$

Arguing as in the proof of the Cellular Boundary Formula (page 140 of the textbook) we deduce that the degree of the map

$$
q \circ \pi: S^{n} \cong \partial \mathbb{R} \mathbb{P}^{n} / \mathbb{R} \mathbb{P}^{n-1} \cong S^{n}
$$

is $1+(-1)^{n+1}=2$.
From the long exact sequence of the pair $\left(\mathbb{R P}^{n}, \mathbb{R} \mathbb{P}^{n-1}\right)$ we deduce that the natural map

$$
H_{n}\left(\mathbb{R} \mathbb{P}^{n}\right) \xrightarrow{j_{n}} H_{n}\left(\mathbb{R P}^{n}, \mathbb{R} \mathbb{P}^{n-1}\right) \cong H_{n}\left(\mathbb{R}^{n} / \mathbb{R} \mathbb{P}^{n-1}\right)
$$

is an isomorphism.

By consulting the commutative diagram

we deduce that the induced $\pi_{*}: H_{n}\left(S^{n}\right) \cong \mathbb{Z} \rightarrow H_{n}\left(\mathbb{R} \mathbb{P}^{n}\right) \cong \mathbb{Z}$ is described by multiplication by ± 2. Using this information in the diagram (\dagger) we deduce that $\operatorname{deg} f= \pm \operatorname{deg} g$, so that $\operatorname{deg} f$ must be even.

To show that there exist even maps $S^{2 n-1} \rightarrow S^{2 n-1}$ of arbitrary even degrees we use the identification

$$
S^{2 n-1}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} ; \quad \sum_{k}\left|z_{k}\right|^{2}=n\right\}
$$

We write $z_{k}=r_{k} \exp \left(\boldsymbol{i} \theta_{k}\right)$. For every vector $\vec{\nu}=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right) \in\left(\mathbb{Z}^{*}\right)^{n}$ define

$$
F_{\vec{\nu}}: S^{2 n-1} \rightarrow S^{2 n-1}, \quad F_{\vec{\nu}}\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right)=\left(r_{1} e^{\nu_{1} i \theta_{1}}, \ldots, r_{n} e^{\nu_{n} i \theta_{n}}\right)
$$

Observe that

$$
F_{\vec{\nu}}(-\vec{z})=F_{\vec{\nu}}\left(e^{i \pi} \cdot \vec{z}\right)
$$

Hence, if all the integers ν_{i} are odd, the map $F_{\vec{\nu}}$ is odd, i.e., $F_{\vec{\nu}}(-\vec{z})=-F_{\vec{\nu}}(\vec{z})$.
Now observe that $p_{0}:=(1,1, \ldots, 1) \in S^{2 n-1}$ and

$$
F_{\vec{\nu}}^{-1}\left(p_{0}\right)=\left\{\vec{\zeta}:=\left(\zeta_{1}, \ldots, \zeta_{n}\right) ; \quad \zeta_{k}^{\nu_{k}}=1\right\}
$$

Near $\vec{\zeta}$ the map $F_{\vec{\nu}}$ is homotopic to its linearization $D_{\zeta} F_{\vec{\nu}}$ since for \vec{z} close to $\vec{\zeta}$

$$
F_{\vec{\nu}}(\vec{z}) \approx F_{\vec{\nu}}(\vec{\zeta})+D_{\zeta} F_{\vec{\nu}} \cdot(\vec{z}-\vec{\zeta})+O\left(|\vec{z}-\vec{\zeta}|^{2}\right)
$$

Near $\vec{\zeta}$ and p_{0} we can use the same coordinates $\left(r_{1}, \ldots, r_{n-1} ; \theta_{1}, \ldots, \theta_{n}\right)$ and the linearization is given by the matrix

$$
D_{\zeta} F_{\vec{\nu}}=\mathbb{1}_{\mathbb{R}^{n-1}} \oplus \operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right)
$$

We have

$$
\operatorname{deg}\left(F_{\vec{\nu}}, \vec{\zeta}\right)=\operatorname{det} D_{\zeta} F_{\vec{\nu}}=\operatorname{sign}\left(\nu_{1} \cdots \nu_{n}\right)
$$

We conclude that

$$
\operatorname{deg} F_{\vec{\nu}}=\sum_{\vec{\zeta} \in F_{\vec{\nu}}^{-1}\left(p_{0}\right)} \operatorname{deg}\left(F_{\vec{\nu}}, \vec{\zeta}\right)=\nu_{1} \nu_{2} \cdots \nu_{n}
$$

When $\vec{\nu}=(m, 1, \ldots, 1)$ we write F_{m} instead of $F_{(m, \ldots, 1)}$. Note that F_{m} is odd if and only if m is odd.

Denote by $G: S^{2 n-1} \rightarrow S^{2 n-1}$ the continuous map defined as the composition

$$
S^{2 n-1} \rightarrow \mathbb{R P}^{2 n-1} / \mathbb{R} \mathbb{P}^{2 n-1} \cong S^{2 n-1}
$$

The map G is even and has degree 2.
Suppose N is an even number. We can write $N=2^{k} m$, m, odd number. Define

$$
G_{N}:=\underbrace{G \circ \cdots \circ G}_{k} \circ F_{m} .
$$

Then G_{N} is an even map of degree N.

Problem 29, §2.2 The standard embedding of a genus 2 Riemann surface in \mathbb{R}^{3} is depicted in Figure 1. Denote by $j: \Sigma_{g} \rightarrow R$ the natural embedding. It induces a morphism

$$
j_{*}: H_{1}\left(\Sigma_{g}\right) \rightarrow H_{1}(R)
$$

whose kernel consists of cycles on Σ_{g} which bound on R.
More precisely, ker j is a free Abelian group of rank g with a basis consisting of the cycles a_{1}, \ldots, a_{g} (see Figure 1). We can complete a_{1}, \ldots, a_{g} to a \mathbb{Z}-basis $a_{1}, \ldots, a_{g} ; b_{1}, \ldots, b_{g}$ of $H_{1}\left(\Sigma_{g}\right)$ (see Figure 1). R is homotopic to the wedge of the circles b_{1}, \ldots, b_{g}.

Figure 1. Σ_{2} is the "crust" of a double bagel R.
Consider now two copies R^{0}, R^{1} of the handlebody R. Correspondingly we get two inclusions

$$
j^{k}: \Sigma \hookrightarrow R^{k}, \quad k=0,1
$$

Then $X=R^{0} \cup_{\Sigma} R^{1}$. Denote by i^{k} the inclusion $R^{k} \hookrightarrow X$. The Mayer-Vietoris sequence has the form

$$
\cdots \rightarrow H_{k}\left(R^{0}\right) \oplus H_{k}\left(R^{1}\right) \xrightarrow{s} H_{k}(X) \xrightarrow{\partial} H_{k-1}(\Sigma) \xrightarrow{\Delta_{k-1}} H_{k-1}\left(R^{0}\right) \oplus H_{k-1}\left(R^{1}\right) \rightarrow \cdots
$$

where $\Delta(c)=\left(j_{*}^{0}(c),-j_{*}^{1}(c)\right)$, and $s(u, v)=i_{*}^{0}(u)+i_{*}^{1}(v)$. Since R is homotopic to a wedge of circles we deduce $H_{k}(R)=0$ for $k>1$.

Using the portion $k=3$ in the above sequence we obtain an isomorphism

$$
\partial: H_{3}(X) \rightarrow H_{2}(\Sigma) \cong \mathbb{Z}
$$

For $k=2$ we obtain an isomorphism

$$
\partial: H_{2}(X) \rightarrow \operatorname{ker} \Delta_{1} \cong \mathbb{Z}\left\langle b_{1}, \ldots, b_{g}\right\rangle
$$

Since ker $\Delta_{0}=0$ we obtain an isomorphism

$$
H_{1}(X) \cong \operatorname{coker}\left(\Delta_{1}\right) \cong \frac{\mathbb{Z}^{g} \oplus \mathbb{Z}^{g}}{\left\{\vec{x} \oplus-\vec{x} ; \quad \vec{x} \in \mathbb{Z}^{g}\right\}} \cong \mathbb{Z}^{g}
$$

We use the long exact sequence of the pair (R, Σ)

$$
\cdots \rightarrow H_{k}(R) \rightarrow H_{k}(R, \Sigma) \xrightarrow{\partial} H_{k-1}(\Sigma) \xrightarrow{j_{*}} H_{k-1}(R) \rightarrow \cdots
$$

For $k=3$ we obtain an isomorphism $\partial: H_{3}(R, \Sigma) \rightarrow H_{2}(\Sigma)$. For $k=2$ we obtain an isomorphism

$$
\partial: H_{2}(R, \Sigma) \rightarrow \operatorname{ker} j_{*} \cong \mathbb{Z}\left\langle a_{1}, \ldots, a_{g}\right\rangle
$$

(The disks depicted in Figure 1 represent the generators of $H_{2}(R, \Sigma)$ defined by the above isomorphism.)

For $k=1$ we have an exact sequence

$$
H_{1}(\Sigma) \xrightarrow{j_{*}} H_{1}(R) \rightarrow H_{1}(R, \Sigma) \xrightarrow{\partial} \operatorname{ker} j_{*}=0 .
$$

Since $H_{1}(\Sigma) \xrightarrow{j_{*}} H_{1}(R)$ is onto we deduce $H_{1}(R, \Sigma)=0$. Finally, $H_{0}(R, \Sigma)=0$.

Problem 30, §2.2

(a) Observe that $H_{k}\left(T_{f}\right) \cong 0$ for $k>3$. Since r is a reflection we deduce $f_{*}=\operatorname{deg} f \cdot \mathbb{1}=-\mathbb{1}$ on $H_{2}\left(S^{2}\right)$ and $=\mathbb{1}$ on $H_{0}\left(S^{2}\right)$. We have the short exact sequence

$$
0 \rightarrow H_{3}\left(T_{f}\right) \rightarrow H_{2}\left(S^{2}\right) \xrightarrow{2 \cdot} H_{2}\left(S^{2}\right) \rightarrow H_{2}\left(T_{f}\right) \rightarrow 0 .
$$

Hence $H_{3}\left(T_{f}\right)=0$ and $H_{2}\left(T_{f}\right) \cong \mathbb{Z}_{2}$. We also have a short exact sequence

$$
0 \rightarrow H_{1}\left(T_{f}\right) \rightarrow H_{0}\left(S^{2}\right) \xrightarrow{0} H_{0}\left(S^{2}\right)
$$

so that $H_{1}\left(T_{f}\right) \cong \mathbb{Z}$.
(b) In this case $1-f_{*}=-1$ on $H_{2}\left(S^{2}\right)$, and we deduce as above $H_{3}\left(T_{f}\right) \cong H_{2}\left(T_{f}\right) \cong 0$. We conclude similarly that $H_{1}\left(T_{f}\right) \cong \mathbb{Z}$.
The maps $f: S^{1} \rightarrow S^{1}$ are described by matrices $A: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$. More precisely such a map defines a continuous map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which descends to quotients

$$
A: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}
$$

Here are the matrices in the remaining three cases.
(c)

$$
A:=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

(d)

$$
A:=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

(e)

$$
A:=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Suppose $f: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$ is given by a 2×2 matrix A with integral entries. We need to compute the induced maps $f_{*}: H_{k}\left(T^{2}\right) \rightarrow H_{k}\left(T^{2}\right)$. For $k=0$ we always have $f_{*}=\mathbb{1}$.
For $k=1$ we have $H_{1}\left(T^{2}\right) \cong H_{1}\left(S^{1}\right) \oplus H_{1}\left(S^{1}\right) \cong \mathbb{Z}^{2}$ and the induced map $f_{*}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ coincides with the map induced by the matrix A. For $k=2$ the induced map $f_{*}: \mathbb{Z} \rightarrow \mathbb{Z}$ can be identified with an integer, the degree of f. This can be computed using the computation in Problem 7, $\S 2.2$, and local degrees as in Proposition 2.30, page 136. We deduce that

$$
\operatorname{deg} f=\operatorname{det} A .
$$

The Wang long exact sequence then has the form

$$
\begin{gathered}
0 \rightarrow H_{3}\left(T_{A}\right) \rightarrow H_{2}\left(T^{2}\right) \xrightarrow{1-\operatorname{det} A} H_{2}\left(T^{2}\right) \rightarrow H^{2}\left(T_{A}\right) \rightarrow \\
\rightarrow H_{1}\left(T^{2}\right) \xrightarrow{1-A} H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(T_{A}\right) \rightarrow H_{0}\left(T^{2}\right) \xrightarrow{0} H_{0}\left(T^{2}\right) \rightarrow H_{0}\left(T_{A}\right) .
\end{gathered}
$$

In our cases $\operatorname{det} A= \pm 1$ When $\operatorname{det} A=1$ (case (d) and (e)) we have

$$
H_{3}\left(T_{A}\right) \cong H_{2}\left(T^{2}\right) \cong \mathbb{Z} .
$$

In the case (c) we have $1-\operatorname{det} A=2$ and we have

$$
H_{3}\left(T_{A}\right) \cong 0 .
$$

In the cases (d) and (e) we have short exact sequences

$$
0 \rightarrow H_{2}\left(T^{2}\right) \rightarrow H_{2}\left(T_{A}\right) \rightarrow \operatorname{ker}(1-A) \rightarrow 0
$$

In both cases $\operatorname{ker}(1-A)=0$ so that

$$
H_{2}\left(T_{A}\right) \cong \mathbb{Z}
$$

Finally we deduce a short exact sequence

$$
0 \rightarrow \operatorname{coker}(1-A) \rightarrow H_{1}\left(T_{A}\right) \rightarrow H_{0}\left(T^{2}\right) \rightarrow 0
$$

so that

$$
H_{1}\left(T_{A}\right) \cong \mathbb{Z} \oplus \operatorname{coker}(1-A)
$$

In the case (d) we have $1-A=2 \cdot \mathbb{1}_{\mathbb{Z}^{2}}$ so that coker $\cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
In the case (e) we have

$$
1-A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

$\operatorname{coker}(1-A)$ is a group of order $|\operatorname{det}(1-A)|=2$ so it can only be \mathbb{Z}_{2}.
In the case (c) we have $1-\operatorname{det} A=2$ and we get an exact sequence

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow H_{2}\left(T_{A}\right) \rightarrow \operatorname{ker}(1-A) \rightarrow 0 \Longrightarrow H_{2}\left(T_{A}\right) \cong \mathbb{Z}_{2} \oplus \operatorname{ker}(1-A)
$$

Note that

$$
1-A=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

Hence

$$
H_{2}\left(T_{A}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}
$$

We get again

$$
H_{1}\left(T_{A}\right) \cong \mathbb{Z} \oplus \operatorname{coker}(1-A)
$$

so that $\operatorname{coker}(1-A) \cong \mathbb{Z} \oplus \mathbb{Z}_{2}$. We deduce

$$
H_{1}\left(T_{A}\right) \cong \mathbb{Z}^{2} \oplus \mathbb{Z}_{2}
$$

The following table summarizes the above conclusions.

$H_{*}\left(T_{f}\right)$	H_{0}	H_{1}	H_{2}	H_{3}
(a)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_{2}	0
$(\mathrm{~b})$	\mathbb{Z}	\mathbb{Z}	0	0
(c)	\mathbb{Z}	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z} \oplus \mathbb{Z}_{2}$	0
$(\mathrm{~d})$	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	\mathbb{Z}	\mathbb{Z}
(e)	\mathbb{Z}	$\mathbb{Z} \oplus \mathbb{Z}_{2}$	\mathbb{Z}	\mathbb{Z}

Homework \# 10: The generalized Mayer-Vietoris principle.

Suppose X is a locally compact topological space, and $\mathcal{U}=\left(U_{\alpha}\right)_{\alpha \in A}$ is an open cover of X. Assume for simplicity that the set A is finite. Fix a total ordering on A. For each finite subset $S \subset A$ we set

$$
U_{S}:=\bigcap_{\alpha \in S} U_{\alpha}
$$

The nerve of the cover \mathcal{U} is the combinatorial simplicial complex $\boldsymbol{N}(\mathcal{U})$ defined as follows.

- The vertex set of $\boldsymbol{N}(\mathcal{U})$ is A.
- A finite subset $S \in A$ is a face of $\boldsymbol{N}(\mathcal{U})$ if and only if $U_{S} \neq \emptyset$.

For example, this meas that two vertices $\alpha, \beta \in A$ are to be connected by an edge, i.e., $\{\alpha, \beta\}$ is a face of $\boldsymbol{N}(\mathcal{U})$, if and only if $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

In Figure 1 we have depicted two special cases of the above construction
(a) The nerve of a cover consisting of two open sets U_{1}, U_{2} with nonempty overlap.
(b) The nerve of the open cover of the one-dimensional space X depicted in Figure 1.

Figure 1. An open cover of a 1-dimensional cellular complex X.

In general, for any X, any open cover \mathcal{U} as above, and any $p, q \geq 0$ we set

$$
K_{p, q}(\mathcal{U}):=\bigoplus_{S \subset A,|S|=q+1} C_{p}\left(U_{S}\right)
$$

where $C_{p}\left(U_{S}\right)$ denotes the free Abelian group generated by singular simplices $\sigma: \Delta_{p} \rightarrow U_{S}$. Note that the above direct sum is parameterized by the q-dimensional faces of the nerve $\boldsymbol{N}(\mathcal{U})$.

The elements of $K_{p, q}$ have the form

$$
c=\bigoplus_{|S|=q+1} c_{S}, \quad c_{S} \in C_{p}\left(U_{S}\right)
$$

The chain c assigns to each q-dimensional face S of the nerve $\boldsymbol{N}(\mathcal{U})$ an element c_{S} in the group $C_{p}\left(U_{S}\right)$.

We now form a double complex $\left(K_{\bullet}, \boldsymbol{\bullet}, \partial_{I}, \partial_{I I}\right)$ as follows.

$$
\begin{gathered}
\partial_{I}: K_{p, q}=\bigoplus_{S \subset A,|S|=q+1} C_{p}\left(U_{S}\right) \longrightarrow \bigoplus_{S \subset A,|S|=q+1} C_{p-1}\left(U_{S}\right)=K_{p-1, q} \\
\partial_{I}\left(\oplus_{|S|=q+1} c_{S}\right)=\oplus_{|S|=q+1} \partial c_{S}
\end{gathered}
$$

To define $\partial_{I I}$, note that for every inclusion $S^{\prime} \hookrightarrow S$ we have an inclusion $U_{S} \hookrightarrow U_{S^{\prime}}$. In particular, for every

$$
S=\left\{s_{0}<s_{1}<\cdots<s_{q}\right\} \subset A, \quad U_{S} \neq \emptyset
$$

we have inclusions

$$
\varphi_{j}: U_{S} \rightarrow U_{S \backslash s_{j}}
$$

and thus we have morphisms $\varphi_{j}: C_{p}\left(U_{S}\right) \rightarrow C_{p}\left(U_{S \backslash s_{j}}\right)$ Given a singular simplex

$$
\sigma: \Delta_{p} \rightarrow U_{S}
$$

so that σ determines an element in $K_{p, q}$, we define $\delta \sigma \in K_{p, q-1}$ by

$$
\delta \sigma=\sum_{j=0}^{q}(-1)^{j} \varphi_{j}(\sigma) \in \bigoplus_{j=0}^{q} C_{p}\left(U_{S \backslash s_{j}}\right) \subset K_{p, q-1} .
$$

The map δ extends by linearity to an morphism $\delta: K_{p, q} \rightarrow K_{p, q-1}$ called the Čech boundary operator. Note that

$$
K_{p, 0}=\bigoplus_{\alpha \in A} C_{p}\left(U_{\alpha}\right)
$$

Exercise 10.1. (a) Describe $K_{\bullet, \bullet}, d_{I}$ and δ for the two situations in (a) and (b). Prove that in both these cases $\delta^{2}=0$.
(b) Prove in general that $\delta^{2}=0$, and define

$$
d_{I I}: K_{p, q} \rightarrow K_{p, q-1}, \quad d_{I I}=(-1)^{p} \delta
$$

Show that $d_{I} d_{I I}=-d_{I I} d_{I}$.
Proof. In both cases we have $U_{S}=\emptyset$ for $|S|>2$ so that in both cases we have

$$
K_{p, q}=0, \quad \forall q \geq 2
$$

so that in either case the double complex has the form in Figure 2 where the o's denote the places where $K_{p, q}=0$.

In case (a) we have

$$
K_{p, 0}=C_{p}\left(U_{1}\right) \oplus C_{p}\left(U_{2}\right), \quad K_{p, 1}=C_{p}\left(U_{12}\right), \quad U_{12}=U_{1} \cap U_{2}
$$

Denote by φ_{α} the inclusion

$$
C_{p}\left(U_{12}\right) \hookrightarrow C_{p}\left(U_{\alpha}\right) .
$$

We will identify $\varphi_{\alpha}\left(C_{p}\left(U_{\alpha}\right)\right)$ with $C_{p}\left(U_{\alpha}\right)$. Then for $\left(c_{1}, c_{2}\right) \in K_{p, 0}$ we have

$$
d_{I}\left(c_{1}, c_{2}\right)=\left(\partial c_{1}, \partial c_{2}\right) \in K_{p-1,0}
$$

and

$$
\delta\left(c_{1}, c_{2}\right)=0
$$

For $c \in K_{p, 1}=C_{p}\left(U_{12}\right)$ we have

$$
d_{I} c=\partial c \in K_{p-1,1}, \quad \delta c=\left(-\varphi_{1}(c), \varphi_{2}(c)\right)=(-c, c) \in K_{p, 0} .
$$

Figure 2. A highly degenerate double complex
In case (b) we have

$$
K_{p, 0}=C_{p}\left(U_{1}\right) \oplus C_{p}\left(U_{2}\right) \oplus C_{p}\left(U_{3}\right) \oplus C_{p}\left(U_{3}\right) \oplus C_{p}\left(U_{4}\right)
$$

We describe the elements of $K_{p, 0}$ as quadruples $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ and we have

$$
\begin{gathered}
\delta\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=0 . \\
K_{p, 1}=C_{p}\left(U_{12}\right) \oplus C_{p}\left(U_{23}\right) \oplus C_{p}\left(U_{34}\right) \oplus C_{p}\left(U_{41}\right) .
\end{gathered}
$$

We describe the elements of $K_{p, 1}$ as quadruples ($c_{12}, c_{23}, c_{34}, c_{14}$). Then

$$
\delta\left(c_{12}, c_{23}, c_{34}, c_{14}\right)=\left(-c_{14}-c_{12}, c_{12}-c_{23}, c_{23}-c_{34}, c_{34}+c_{14}\right) .
$$

The condition $\delta^{2}=0$ is trivially satisfied in both cases.
Consider now the general situation, and let $c \in K_{p, q}=\bigoplus_{|S|=q+1} C_{p}\left(U_{S}\right)$. We can write

$$
c=\bigoplus_{|S|=q+1} c_{S}
$$

We will first show that

$$
\delta^{2} c_{S}=0, \quad \forall S
$$

Fix one such S. Assume $S=\{0,1,2, \cdots q\}$. For every $i, j \in S$ denote by $\varphi_{i j}$ the inclusion

$$
C_{p}(S) \hookrightarrow C_{p}(S \backslash\{i, j\}) .
$$

Then

$$
\begin{gathered}
\delta c_{S}=\sum_{i=0}^{q}(-1)^{j} \varphi_{j}\left(c_{S}\right) . \\
\delta\left(\delta c_{S}\right)=\sum_{i=0}^{q}(-1)^{i} \delta\left(\varphi_{i} c_{S}\right)=\sum_{i=0}^{q}(-1)^{i}\left(\sum_{j=0}^{i-1}(-1)^{j} \varphi_{j} \varphi_{i}\left(c_{S}\right)+\sum_{j=i+1}^{q}(-1)^{j-1} \varphi_{j} \varphi_{i}\left(c_{S}\right)\right) \\
=\sum_{0 \leq j<i}(-1)^{i+j} \varphi_{i j}\left(c_{S}\right)+\sum_{0 \leq i<j}(-1)^{i+j+1} \varphi_{i j}\left(c_{S}\right)=0 .
\end{gathered}
$$

This proves $\delta^{2}=0$. Form the definition of δ it follows that

$$
\delta d_{I}=d_{I} \delta
$$

For $c \in K_{p, q}$ we have

$$
d_{I} d_{I I} c=(-1)^{p} d_{I} \delta c=(-1)^{p} \delta\left(d_{I} c\right)=(-1)^{p} \cdot(-1)^{p-1} d_{I I} d_{I} c .
$$

Exercise 10.2. Denote by $C_{p}(X, \mathcal{U})$ the free Abelian group spanned by singular simplices in X whose images lie in some U_{α}. Note that we have a natural surjection

$$
\varepsilon: K_{p, 0} \rightarrow C_{p}(X, \mathcal{U}) .
$$

Prove that for every $p \geq 0, q \geq 0$ we have

$$
\operatorname{Im}\left(K_{p, q+1} \xrightarrow{\partial_{I I}} K_{p, q}\right)=\operatorname{ker}\left(K_{p, q} \xrightarrow{\partial_{I I}} K_{p, q-1}\right),
$$

and

$$
\operatorname{Im}\left(K_{p, 1} \xrightarrow{\partial_{I I}} K_{p, 0}\right)=\operatorname{ker}\left(K_{p, 0} \xrightarrow{\varepsilon} C_{p}\right) .
$$

(In other words, you have to show that the columns of the expanded double complex

$$
\left(K_{\bullet, \bullet}, \partial_{I}, \partial_{I I}\right) \xrightarrow{\varepsilon}\left(C_{*}(X, \mathcal{U}), \partial\right)
$$

are exact. Hint: Workout some special cases first.
Proof. We have

$$
C_{p}(X, \mathcal{U}):=\sum_{\alpha} C_{p}\left(U_{\alpha}\right) \subset C_{p}(X)
$$

The natural map

$$
\varepsilon: K_{p, 0}=\bigoplus_{\alpha} C_{p}\left(U_{\alpha}\right) \rightarrow \sum_{\alpha} C_{p}\left(U_{\alpha}\right)
$$

is given by

$$
\bigoplus_{\alpha} C_{p}\left(U_{\alpha}\right) \ni \bigoplus_{\alpha} c_{\alpha} \mapsto \sum_{\alpha} c_{\alpha}
$$

For every $\oplus_{|S|=2} c_{S} \in K_{p, 1}$ we have

$$
\delta\left(c_{S}\right)=\left(-c_{S}\right) \oplus c_{S} \in C_{p}\left(U_{s_{1}}\right) \oplus C_{p}\left(U_{s_{2}}\right), \quad\left(S=\left\{s_{1}, s_{2}\right\}\right),
$$

and clearly $\varepsilon\left(\delta\left(c_{S}\right)\right)=0$. Set

$$
K_{p,-1}:=C_{p}(X, \mathcal{U}) .
$$

We denote by $\boldsymbol{N}(\mathcal{U})_{q}$ the set of q-faces of the simplicial complex $\boldsymbol{N}(\mathcal{U})$. For $S \in \boldsymbol{N}(\mathcal{U})_{q}$ we set

$$
\mathcal{S}_{p, q}(S):=\left\{\sigma: \Delta^{p} \rightarrow X ; \sigma\left(\Delta^{p}\right) \subset U_{S}\right\}=\left\{\sigma: \Delta^{p} \rightarrow X ; \sigma\left(\Delta^{p}\right) \in U_{s}, \quad \forall s \in S\right\} .
$$

For each singular simplex $\sigma: \Delta^{p} \rightarrow X$ we set

$$
\operatorname{supp}_{q}(\sigma):=\left\{S \in N(\mathcal{U})_{q} ; \sigma\left(\Delta^{p}\right) \subset U_{S} \Longleftrightarrow \sigma\left(\Delta^{p}\right) \in U_{s}, \quad \forall s \in S\right\} .
$$

Denote by $\mathcal{S}_{p, q}$ the set of singular p-simplices $\sigma: \Delta^{p} \rightarrow X$ such that $\operatorname{supp}_{q}(\sigma) \neq \emptyset$. Then

$$
K_{p, q}=\bigoplus_{S \in N(\mathcal{U})_{q}} \bigoplus_{\sigma \in S_{p, q}(S)} \mathbb{Z} .
$$

We denote by $\left\{\langle\sigma, S\rangle ; S \in \boldsymbol{N}(\mathcal{U})_{q}, \quad \sigma \in \mathcal{S}_{p, q}(S)\right\}$ the canonical basis of $K_{p, q}$ corresponding to the above direct sum decomposition. We will denote the elements in group by sums

$$
c=\sum_{S \in \boldsymbol{N}(\mathcal{U})_{q}} \sum_{\sigma \in S_{p, q}(S)} n(\sigma, S)\langle\sigma, S\rangle=\sum_{\sigma \in \delta_{p, q}} \sum_{S \in \operatorname{supp}_{q}(\sigma)} n(\sigma, S)\langle\sigma, S\rangle .
$$

Denote by $\left(C_{\bullet}(\boldsymbol{N}(\mathcal{U})), \partial\right)$ the simplicial chain complex associated to the nerve $\boldsymbol{N}(\mathcal{U})$. Then

$$
C_{q}(\boldsymbol{N}(\mathcal{U}))=\bigoplus_{S \in \boldsymbol{N}(\mathcal{U})_{q}} \mathbb{Z}
$$

and we denote by $\left\{\langle S\rangle ; \quad S \in \boldsymbol{N}(\mathcal{U})_{q}\right\}$ the canonical basis of $C_{q}(\boldsymbol{N}(\mathcal{U}))$ determined by the above direct sum decomposition. Observe that for every $\sigma_{0} \in \mathcal{S}_{p, q}$ we have a canonical projection

$$
\sum_{\sigma \in S_{p, q}} \sum_{S \in \operatorname{supp}_{q}(\sigma)} n(\sigma, S)\langle\sigma, S\rangle \mapsto \sum_{S \in \operatorname{supp}_{q}\left(\sigma_{0}\right)} n\left(\sigma_{0, q} \rightarrow C_{q}(\boldsymbol{N}(\mathcal{U})), ~<S\right\rangle
$$

We see from the definition of δ that the morphism

$$
\pi_{*}\left(\sigma_{0}\right):\left(K_{p, \bullet}, \delta\right) \rightarrow\left(C_{\bullet}(\boldsymbol{N}(\mathcal{U})), \partial\right)
$$

is a chain map. In particular, if

$$
c=\sum_{\sigma \in S_{p, q}} \sum_{S \in \operatorname{supp}_{q}(\sigma)} n(\sigma, S)\langle\sigma, S\rangle
$$

is a δ-cycle, $\delta c=0$, then for every $\tau \in \mathcal{S}_{p, q}$ we get a ∂-cycle in $C_{*}(\boldsymbol{N}(\mathcal{U}))$,

$$
\pi_{q}(\tau) c=\sum_{S \in \operatorname{supp}_{q}(\tau)} n(\tau, S)\langle S\rangle \in C_{q}(\boldsymbol{N}(\mathcal{U})), \quad \partial \pi_{q}(\tau) c=0
$$

Consider the set of vertices

$$
V(\tau):=\bigcup_{S \in \operatorname{supp}_{q}(\tau)} S
$$

We deduce that the image of τ lies in all of the open sets $U_{t}, t \in V(\tau)$. In other words, the vertices in $V(\tau)$ span a simplex of the nerve $\boldsymbol{N}(\mathcal{U})$. The ∂-cycle $\pi_{q}(\tau) c$ is a cycle inside this simplex so it bounds a simplicial chain of this simplex. Hence

$$
\pi_{q}(\tau) c=\partial \sum_{T \in \operatorname{supp}_{q+1}(\tau)} m_{\tau}\langle T\rangle
$$

We conclude that

$$
c=\delta\left(\sum_{\tau \in \mathcal{S}_{p, q+1}} \sum_{T \in \operatorname{supp}_{q+1}(\tau)} m_{\tau}\langle\tau, T\rangle\right)
$$

Exercise 10.3 (The generalized Mayer-Vietoris principle). Suppose that we have a double complex

$$
\left(K_{\bullet, \bullet}=\bigoplus_{p, q \geq 0} K_{p, q}, \quad D_{I}, \quad d_{I I},\right)
$$

where

$$
d_{I}: K_{p, q} \rightarrow K_{p-1, q}, \quad d_{I I}: K_{p, q} \rightarrow K_{p, q-1}
$$

satisfy the identities

$$
d_{I}^{2}=d_{I I}^{2}=d_{I} d_{I I}+d_{I I} d_{I}=0
$$

(see Figure 3.)
Form the total complex

$$
\left(K_{\bullet}, D\right), \quad K_{m}=\bigoplus_{p+q=m} K_{p, q}, \quad D=d_{I}+d_{I I}: K_{m} \rightarrow K_{m-1}
$$

(a) Prove that $D^{2}=0$.
(b) Suppose we are given another chain complex $\left(C_{\bullet}, \partial\right)$, and a surjective morphism of chain complexes

$$
\left.\varepsilon:\left(K_{\bullet, 0}, \partial_{I}\right) \rightarrow C_{\bullet}, \partial\right)
$$

Figure 3. A double chain complex
such that

$$
\varepsilon \circ d_{I I}=0
$$

Prove that ε induces a morphism of chain complexes

$$
\begin{equation*}
\varepsilon:\left(K_{\bullet}, D\right) \rightarrow\left(C_{\bullet}, \partial\right) \tag{10.1}
\end{equation*}
$$

(c) Assume that for every $p \geq 0, q \geq 1$ we have

$$
\operatorname{Im}\left(K_{p, q+1} \xrightarrow{d_{I I}} K_{p, q}\right)=\operatorname{ker}\left(K_{p, q} \xrightarrow{d_{I I}} K_{p, q-1}\right),
$$

and

$$
\operatorname{Im}\left(K_{p, 1} \xrightarrow{d_{I I}} K_{p, 0}\right)=\operatorname{ker}\left(K_{p, 0} \xrightarrow{\varepsilon} C_{p}\right)
$$

Prove that the morphism (10.1) induces isomorphisms in homology.
Proof. (a) We have

$$
D^{2}=\left(d_{I}+d_{I I}\right)^{2}=d_{I}^{2}+d_{I I}^{2}+d_{I} d_{I I}+d_{I I} d_{I}=0
$$

For part (b) we note that a chain $c \in K_{p}$ is a sum

$$
c_{p}=\sum_{i=0}^{p} c_{i, p-i}, \quad c_{i, p-i} \in K_{i, p-i} .
$$

We define

$$
\varepsilon\left(c_{p}\right)=\varepsilon\left(c_{p, 0}\right)
$$

and it is now obvious that the resulting map $\varepsilon: K_{\bullet} \rightarrow C_{\bullet}$ is a morphism of chain complexes.
To prove that ε induces an isomorphism in homology we need to prove two things.
A. For any $p \geq 0$, and any $c \in C_{p}$ such that $\partial c=0$, there exists $z=\sum_{j=0}^{p} z_{j, p-j} \in K_{p}$ such that $D z=0$ and $\varepsilon\left(z_{p, 0}\right)=c$. Observe that the condition $D z=0$ is equivalent to the collection of equalities

$$
d_{I} z_{p-j, j}+d_{I I} z_{p-j-1}, j+1=0, \quad \forall j=0, \ldots p-1
$$

B. If $z \in K_{p}$ is a D-cycle, $D z=0$, and $\varepsilon(z) \in C_{p}$ is a ∂-boundary, i.e., exists $c \in C_{p+1}$ such that $\partial c=\varepsilon(z)$, then there exists $x \in K_{p+1}$ such that $D x=z$.
A. We will construct by induction on $0 \leq j \leq p$ elements $z_{j} \in K_{p-j, j}$ such that (see Figure 4)

$$
\begin{equation*}
\varepsilon\left(z_{p, 0}\right)=c, \quad d_{I} z_{i-1}+d_{I I} z_{i}=0, \quad \forall i=1, \ldots, j \tag{j}
\end{equation*}
$$

Figure 4. A zig-zag
Observe that since ε is surjective, there exists $z_{0} \in K_{p, 0}$ such that

$$
\varepsilon\left(z_{0}\right)=c
$$

Since $\partial c=0$ we deduce

$$
\partial \varepsilon\left(z_{0}\right)=\varepsilon\left(d_{I} z_{0}\right) \Longrightarrow-d_{I} z_{0} \in \operatorname{ker} \varepsilon
$$

Hence, we can find $z_{1} \in K_{1}$ such that $d_{I I} z_{1}=-d_{I} z_{0}$.
Suppose that we have determined the elements z_{0}, \ldots, z_{j} satisfying $\left(Z_{j}\right)$. We want to show that we can find $z_{j+1} \in K_{p-j-1, j+1}$ such that the extended sequence z_{0}, \ldots, z_{j+1} satisfies $\left(Z_{j+1}\right)$.

From the equality $d_{I I} z_{j}=-d_{I} z_{j-1}$ we deduce

$$
d_{I} d_{I I} z_{j}=-d_{I}^{2} z_{j-1}=0 \Longrightarrow d_{I I} d_{I} z_{j}=0
$$

Hence

$$
-d_{I} z_{j} \in \operatorname{ker} d_{I I}=\operatorname{Im}\left(d_{I I}\right) \Longrightarrow \exists z_{j+1} \in K_{p-j-1, j+1}: \quad d_{I I} z_{j+1}=-d_{I} z_{j}
$$

This completes the proof of A..
B. Suppose we have

$$
z=z_{p, 0}+z_{p-1,1}+\cdots+z_{0, p} \in K_{p}
$$

and $c \in C_{p+1}$, such that

$$
\partial c=\varepsilon(D z)=\varepsilon\left(z_{p, 0}\right) \text { and } d_{I} z_{p-i, i}+d_{I I} z_{p-i-1, i+1}=0, \quad \forall i=0, \ldots, p-1
$$

For simplicity, we write $z_{j}=z_{p-j, j}$. Since ε is surjective we deduce that there exists $b_{0} \in$ $K_{p+1,0}$ such that $\varepsilon\left(b_{0}\right)=c$. We deduce

$$
\varepsilon\left(z_{0}\right)=\partial c=\partial \varepsilon\left(b_{0}\right)=\varepsilon\left(d_{I} b_{0}\right)
$$

Hence

$$
z_{0}-d_{I} b_{0} \in \operatorname{ker} \varepsilon=\operatorname{Im}\left(d_{I I}\right) \Longrightarrow \exists b_{1} \in K_{p, 1}: z_{0}-d_{I} b_{0}=d_{I I} b_{1}
$$

Suppose we have determined

$$
b_{i} \in K_{p+1-i, i}, \quad 0 \leq i \leq j: \quad z_{i}=d_{I I} b_{i+1}+d_{I} b_{i}, \quad \forall i=0, \ldots, j
$$

and we want to determine $b_{j+1} \in K_{p-j, j+1}$ such that

$$
z_{j}=d_{I I} b_{j+1}+d_{I} b_{j}
$$

Figure 5. Another zig-zag

Observe that (see Figure 5)

$$
0=d_{I} z_{j-1}+d_{I I} z_{j} \Longrightarrow d_{I I} z_{j}=-d_{I} z_{j-1}=-d_{I}\left(d_{I I} b_{j}+d_{I} b_{j-1}\right)=-d_{I} d_{I I} b_{j}=d_{I I} d_{I} b_{j}
$$

Hence

$$
z_{j}-d_{I} b_{j} \in \operatorname{ker} d_{I I}=\operatorname{Im}\left(d_{I I}\right)
$$

so that there exists $b_{j+1} \in K_{p-j, j+1}$ such that

$$
d_{I I} b_{j+1}=z_{j}-d_{I} b_{j}
$$

This completes the proof of B..
Exercise 10.4. Obtain the usual Mayer-Vietoris theorem from the generalized Mayer-Vietoris principle.

Proof. Consider and open cover of X consisting of two open sets U_{1}, U_{2}. Denote by K_{\bullet}, \bullet the double complex constructed in Exercise 10.1 determined by this cover, and by K_{\bullet} the associated total complex constructed as in Exercise 10.3. We have the short exact sequence of complexes

$$
0 \rightarrow\left(A_{\bullet}, d_{I}\right) \xrightarrow{i}\left(B_{\bullet}, D\right) \xrightarrow{\pi}\left(C_{\bullet}, d_{I}\right) \rightarrow 0,
$$

where

$$
A_{m}:=K_{m, 0}, \quad B_{n}:=K_{n}, \quad C_{p}:=K_{p-1,1}
$$

Observe that

$$
H_{m}\left(A_{\bullet}\right):=H_{m}\left(U_{1}\right) \oplus H_{m}\left(U_{2}\right), \quad H_{m}\left(C_{*} \bullet\right)=H_{m-1}\left(U_{1} \cap U_{2}\right)
$$

From Exercise 10.3 we deduce

$$
H_{m}\left(B_{\bullet}\right)=H_{m}(X)
$$

We get a long exact sequence

$$
\cdots \rightarrow H_{m}\left(U_{1}\right) \oplus H_{m}\left(U_{2}\right) \xrightarrow{i_{*}} H_{m}(X) \xrightarrow{\pi_{*}} H_{m-1}\left(U_{1} \cap U_{2}\right) \xrightarrow{\partial_{*}} H_{m-1}\left(U_{1}\right) \oplus H_{m-1}\left(U_{2}\right) \rightarrow \cdots
$$

One can easily verify that π_{*} coincides with the connecting morphism in the Mayer-Vietoris long exact sequence.

[^0]: ${ }^{1}$ See Example 1.B. 3 in Hatcher's book.

[^1]: ${ }^{1}$ This also follows directly form (3) without invoking the Arzela-Ascoli theorem.

[^2]: ${ }^{2}$ We can achieve this much faster invoking Seifert-vanKampen theorem.

[^3]: ${ }^{1}$ Warning: The order in which the elements x, y, z, t are depicted is rather subtle. You should keep in mind that since the two arcs a and b link then the segment which connects the entrance and exit points of b (x and z) must intersect the segment which connects the entrance and exit points of a (y and t); see Figure 2.

[^4]: ${ }^{2}$ Be very cautions with the right hand rule.

[^5]: ${ }^{1}$ In more modern language, we have constructed two categories \mathcal{J} and \mathcal{D}, and an equivalence of categories $\Xi: \mathcal{J} \rightarrow \mathcal{D}$.

[^6]: ${ }^{1}$ Here we use the elementary fact that the subgroup of \mathbb{Z}^{n} described by the condition $x_{1}+\cdots+x_{n}=0$ is a free Abelian group with basis $e_{2}-e_{1}, e_{3}-e_{2}, \cdots, e_{n}-e_{n-1}$, where $\left(e_{i}\right)$ is the canonical basis of \mathbb{Z}^{n}

[^7]: ${ }^{2}$ Abel's trick is a discrete version of the integration-by-parts formula. More precisely if R is a commutative ring, M is an R-module, $\left(x_{i}\right)_{i \in \mathbb{Z}}$ is a sequence in $R,\left(y_{i}\right)_{i \in \mathbb{Z}}$ is a sequence in M then we have

 $$
 \sum_{i=1}^{n}\left(\Delta_{i} x\right) \cdot y_{i}=x_{n+1} y_{n}-x_{1} y_{0}-\sum_{j=1}^{n} x_{j} \cdot\left(\Delta_{j-1} y\right)
 $$

[^8]: ${ }^{1}$ Can you visualize the isomorphisms in (5.2)?

[^9]: ${ }^{2}$ The cone on z bounds z.

[^10]: ${ }^{1}$ A group morphism $G \rightarrow \mathbb{Q} / \mathbb{Z}$ is called a character of the group.
 ${ }^{2}$ Less rigorously $\chi(x)=\frac{f^{-1}\left(n g^{-1}(x)\right)}{n} \bmod \mathbb{Z}$.

