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1 S1-bundles over 3-manifolds: homological properties

Let (Y, g) denote a compact, oriented Riemann 3-manifold without boundary. Denote by
π : X → Y a principal S1-bundle over Y , and by Z → Y the associated 2-disk bundle. Set

c := c1(Z) ∈ H2(Y,Z).

Denote by tZ ∈ H2(Z, X;Z) the Thom class of Z → Y , by j the inclusion X ↪→ Z and by
ζ : Y ↪→ Z the natural inclusion. Using the Thom isomorphism

H•(Z) ∪tZ−→ H•+2(Z,X;Z), c = ζ∗tZ ,

and the long exact cohomological sequence of the pair (Z, X) we obtain the Gysin sequence

· · · π!−→ Hk−2(Y,Z) ∪c−→ Hk(Y,Z) π∗−→ Hk(X,Z) π!−→ Hk−1(Y,Z) ∪c−→ · · ·

If c is a torsion class we denote by ord(c) its order. Otherwise we set ord(c) = 0. The kernel
of the map ∪c : H0(Y,Z) → H2(Y,Z) is ord(c) · Z so for k = 1 we obtain an isomorphism

H1(X,Z) ∼= π∗H1(Y,Z)⊕ ord(c)Z.

For k = 2 we obtain a short exact sequence

0 → H2(Y,Z)/〈c〉 → H2(X,Z) → ker
(
H1(Y,Z) ∪c−→ H3(Y,Z)

)
→ 0.

The last group is free so the sequence is split. The image of the morphism

H1(Y,Z) ∪c−→ H3(Y,Z)

is a subgroup of H3(Y,Z) ∼= Z so it has the form nZ for some nonnegative integer n. We
set deg c := n. Observe that

deg c = 0 ⇐⇒ c is a torsion class ⇐⇒ ord(c) > 0.
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For k = 3 we obtain a short exact sequence

0 → Z/deg c → H3(X,Z) π!−→ H2(Y,Z) → 0.

Homologically, the Thom isomorphism is described by

ζ ! : H•(Z, X;Z) → H•−2(Y,Z), H•(Z, X;Z) 3 σ 7→ σ ∩ [Y ] ∈ H•−2(Z,Z) ∼= H•−2(Y,Z).

We obtain the homological Gysin sequence

· · · → Hk(X,Z)
j∗−→ Hk(Z,Z)

ζ!

−→ Hk−2(Y,Z) π!−→ Hk−1(X,Z) → · · ·

The morphism π!, also known as the tube map is described geometrically as follows. Rep-
resent σ ∈ Hm(Y,Z) by an embedded oriented submanifold S. The total space of the
restriction of the S1-bundle X → Y to S is a (m + 1)-dimensional submanifold of X repre-
senting π!σ .

If we use the isomorphism π∗ : H•(Z,Z) → H•(Y,Z) and we represent the Poincaré dual
of c ∈ H2(Y,Z) by a link L ↪→ Y then we can describe the Gysin sequence as

· · · → Hk(X,Z) π∗−→ Hk(Y,Z) ∩L−→ Hk−2(Y ) π!−→ Hk−1(X,Z) → · · ·

2 S1-bundles over 3-manifolds: geometric properties

Denote by d̂ the exterior derivative on X. Denote by Θ ∈ Ω2(Y ) the g-harmonic 2-form on
Y representing the first Chern class of the disk bundle Z → Y . We denote by ∂ϕ ∈ Vect(X)
the infinitesimal generator of the S1-action on X

(∂ϕf)(x) :=
d

dt
f(eit · x), ∀x ∈ X.

We identify u(1)-the Lie algebra of U(1)-with iR. Now choose a u(1)-valued connection
1-form iϕ ∈ iΩ1(X) such that

∂ϕ ϕ = 1, π∗Θ =
i

2π
d̂(iϕ) ⇐⇒ π∗Θ = − 1

2π
d̂ϕ.

For every r ≥ 0 we set ϕr := rϕ and define a metric ĝr on X by

ĝr = ϕ2
r + π∗g.

With respect to this metric the fibers of π : X → Y have length 2πr.
Choose an oriented orthonormal frame {e1, e2, e3} TY defined on an open subset U ⊂ Y

and we denote by {e1, e2, e3} the dual coframe. We denote by

Γg =




0 −A3 A2

A3 0 −A1

−A2 A1 0


 ∈ Ω1(U)⊗ so(3)
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the 1-form describing the Levi-Civita connection with respect to the frame {e1, e2, e3}. From
Cartan’s structural equations we deduce

d




e1

e2

e3


 = Γg ∧




e1

e2

e3


 . (2.1)

Set f0 = f0(r) = ϕr, f i = π∗ei, i = 1, 2, 3, so that {f0, f1, f2, f3} is a ĝr-orthonormal
co-frame. We denote by {f0 = f0(r), f1, f2, f3} the dual frame and by Γ̂r the connection
1-form describing the Levi-Civita connection ∇̂r of the metric ĝr. Γ̂r is also characterized
by Cartan’s structural equations

d̂




f0

f1

f2

f3


 = Γ̂r ∧




f0

f1

f2

f3


 .

Using (2.1) and the equality d̂f0 = d̂ϕr = −2πrΘ we deduce

d̂




f0

f1

f2

f3


 =




−2πrΘ
−A3 ∧ f2 + A2 ∧ f3

A3 ∧ f1 −A1 ∧ f3

−A2 ∧ f1 + A1 ∧ f2


 = Γ̂r ∧




f0

f1

f2

f3


 . (2.2)

We set
Θ = Θ23e

2 ∧ e3 + Θ31e
3 ∧ e1 + Θ12e

1 ∧ e2, Θij = −Θji,

and we write

Γ̂r =
[

0 0
0 π∗Γ

]

︸ ︷︷ ︸
:=Γ̂0

+




0 rΞ0
1 rΞ0

2 rΞ0
3

rΞ1
0 0 rΞ1

2 rΞ1
3

rΞ2
0 rΞ2

1 0 rΞ2
3

rΞ3
0 rΞ2

1 rΞ3
2 0




︸ ︷︷ ︸
:=rΞ

, rΞα
β = −rΞβ

α.

The bundle TX admits a ĝr-orthogonal decomposition TX ∼= 〈f0〉 ⊕ π∗TY and as such it
is equipped with a metric connection

∇̂0 = f0 ⊗ ∂f0 ⊕ π∗∇g.

The 1-form describing this connection with respect to the frame {fα} is Γ̂0. Then

∇̂r = ∇̂0 + rΞ.

Using (2.2) we deduce

rΞ ∧




f0

f1

f2

f3


 =




−2πrΘ
0
0
0


 ⇐⇒





rΞ0
1 ∧ f1 + rΞ0

2 ∧ f2 + rΞ0
3 ∧ f3 = −2πrΘ =: Ψ0

rΞ1
0 ∧ f0 + rΞ1

2 ∧ f2 + rΞ1
2 ∧ f3 = 0 =: Ψ1

rΞ2
0 ∧ f0 + rΞ2

1 ∧ f1 + rΞ2
3 ∧ f3 = 0 =: Ψ2

rΞ3
0 ∧ f0 + rΞ3

1 ∧ f1 + rΞ3
2 ∧ f2 = 0 =: Ψ3

(2.3)

3



Set

rΞα
β = rΞα

βγfγ , Ψα =
1
2

∑

β,γ

Ψα
βγfβ ∧ fγ , Ψα

βγ = −Ψα
γβ.

Arguing as in [1, §4.2.3] we deduce

rΞα
βγ =

1
2

(
Ψα

βγ + Ψβ
γα −Ψγ

αβ

)

We deduce
rΞ0

ij = −πrΘij , ∀1 ≤ i, j ≤ 3,

so that
rΞ0

i = −πr
∑

j

Θijf
j = −πrfi Θ.

Next, observe that for 1 ≤ i, j, k ≤ 3 we have rΞi
jk = 0 so that

rΞi
j = rΞi

j0f
0 =

1
2
Ψ0

ijf
0 = πrΘijf

0

Hence

rΞ = πr




0 −f1 Θ −f2 Θ −f3 Θ
f1 Θ 0 Θ12f

0 Θ13f
0

f2 Θ Θ21f
0 0 Θ23f

0

f3 Θ Θ31f
0 Θ32f

0 0


 , f0 = rϕ.

Consider the isometry

Lr : (TX, ĝr) → (TX, ĝ1), ∂ϕ 7→ r∂ϕ, fi 7→ fi, i = 1, 2, 3.

Now set
∇̃r := Lr∇̂rL−1

r , r ∈ [0, 1].

This is a connection on TX, compatible with the metric ĝ1. Its torsion is nontrivial.

Lemma 2.1. With respect to the ĝ1-orthonormal frame ∂ϕ, f1, f2, f3 we have decomposition

∇̃r = ∇̂0 + rΞ,

that is, if V =
∑3

α=0 V αfα ∈ Vect(X), f0 = ∂ϕ we have

∇̃rV = ∇̂0V +
3∑

α,β=0

rΞβ
αV αfβ.

In particular,
lim
r↘0

∇̃r = ∇̂0.
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Proof. For α > 0 and V ∈ Vect(X) we have

Lr∇̂r
V L−1

r fα = Lr∇̂r
V fα = Lr∇̂0

V fα + Lr

3∑

β=0

rΞβ
α(V )fβ

= Lr∇̂0
V fα + Lr(

1
r

rΞ0
α(V )∂ϕ) +

3∑

β=1

rΞβ
α(V )fβ

= ∇̂0
V fα − πr(V fα Θ)∂ϕ−→∇̂0

V fα as r ↘ 0.

Lr∇̂r
V L−1

r ∂ϕ = Lr∇̂r
V f0 = Lr∇̂0f0 + πr

3∑

i=1

(V fi Θ)fi → ∇̂0
V ∂ϕ as r ↘ 0.

Recall (see [1, §4.1.5]) that the exterior derivative d̂ : Ω•(X) → Ω•+1(X) can be de-
scribed as the composition

C∞(Λ•T ∗X) ∇̂1−→ C∞(T ∗X ⊗ Λ•T ∗X) ε−→ C∞(Λ•+1T ∗X), (2.4)

where ε : T ∗X⊗Λ•T ∗X → Λ•+1T ∗X denotes the exterior multiplication. Denote by d̃r the
operator obtained by replacing in (2.4) the connection ∇̂1 with the connection ∇̃r.

3 The ASD operator on S1-bundles over 3-manifolds

Denote ∗̂ the Hodge ∗-operator on (X, ĝ1) and by ∗ the Hodge operator on Y . The ASD
operator on (X, ĝr) is the first order elliptic operator

ASD =
√

2d̂+ ⊕ d̂∗ : Ω1(X) → Ω2
+(X)⊕ Ω0(X).

Set
E := R⊕ π∗T ∗Y ∼= R〈f0〉π∗T ∗Y,

We identify as above Λ1T ∗X and (Λ0 ⊕ Λ2
+)T ∗X with E as follows.

As in [2, Ex. 4.1.24] we have an ĝ1-isometry

T ∗X−→E = R〈f0〉 ⊕ π∗T ∗Y, a 7−→ a0 ⊕ aH , a0 := f0 a, aH = a− a0f
0.

To produce an identification of (Λ0 ⊕ Λ2
+)T ∗X with E we use the ĝ1-isometry

√
2f0 : Λ2

+T ∗X−→π∗T ∗Y.

If ω is a 2-form on X, so that

ω = f0 ∧ η + θ, rθ = 0

then
∗̂ω = f0 ∧ ∗θ + ∗η, ω+ =

1
2

(
f0 ∧ (η + ∗θ) + (θ + ∗η)

)
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√
2f0 ω+ =

1√
2
(η + ∗θ)

Via the above identifications we can regard the ASD operator with a differential operator

C∞(E)−→C∞(E).

We will locally represent the sections of E as linear combinations

a0f
0 + a1f

1 + a2f
2 + a3f

3

︸ ︷︷ ︸
:=aH

, f0 = ϕ.

d̃0[a0, a1, a2, a3] =
3∑

β=0

d̂aβ ∧ fβ +
3∑

j=1

ajπ
∗Γj

k ∧ fk

where Γ1
2 = −A3, Γ3

1 = −A2, Γ2
3 = −A1 and Γi

j = −Γj
i . Set for simplicity

d̃H =
3∑

j=1

f j∇̃0
fj

: Ω•(X) → Ω•+1(X), ∂ϕaH =
3∑

j=1

(∂ϕaj)f j .

Observe that
d̃H(π∗ω) = π∗dω, ∀ω ∈ Ω•(Y ).

Then
d̃0(a0f

0 + a1f
1 + a2f

2 + a3f
3) = f0 ∧ (−d̃Ha0 + ∂ϕaH) + d̃HaH

√
2f0 (

√
2d̃+

0 ) = (−d̃Ha0 + ∂ϕaH) + ∗d̃HaH .

Next we look at the differential operator

d̃0 : Ω0(X) → Ω1(X) = ϕ ∧ ∂ϕ + dH .

Since ∂ϕ generates a 1-parameter group of ĝ1-isometries we deduce ÷ĝ1∂ϕ = 0 so that
∂∗ϕ = −∂ϕ and

d̃∗0(a0ϕ + aH) = −∂ϕa0 + d∗HaH .

If we define
ASD0 := d̃∗0 ⊕

√
2d̃+

0 : C∞(E)−→C∞(E)
[

a0

aH

]
7−→

[ −∂ϕa0 + d̃∗HaH

−d̃Ha0 + ∂ϕaH + ∗d̃HaH

]

=
[ −1 0

0 1

]
∂ϕ

[
a0

aH

]
+

[
0 d̃∗H

−d̃H ∗d̃H

]
·
[

a0

aH

]

=
[ −1 0

0 1

]

∂ϕ +

[
0 −d̃∗H

−d̃H ∗d̃H

]

︸ ︷︷ ︸
:=S


 ·

[
a0

aH

]
.
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Similarly, if W is metric vector bundle on Y and A is a metric connection on W then we
get a differential operator

dA : Ω•(W ) → Ω•+1.

We can pull back the bundle W and the connection A on X. Denote by ∇̃r,A the connection
on TX ⊗W obtained by twisting ∇̃0 with π∗A and then similarly

dH,A =
3∑

j=1

f j ∧ ∇̃A,0.

We obtain twisted ASD-operators

ASDA,r : Ω1(π∗W ) → Ω0(W )⊕ Ω2
+(W ).

and as above we deduce

ASDA,0 =
[ −1 0

0 1

]



∂ϕ +

[
0 −d̃∗H,A

−d̃H,A ∗d̃H,A

]

︸ ︷︷ ︸
:=SA




We set
PA := ∂ϕ + SA.

Then
kerASDA,0 = kerPA = kerA∗

AAA, indAW = indASDA,0.

The operators ∂ϕ and SW commute so that

P∗APA = −∂2
ϕ + S2

A.

We deduce that if a = a0 + aH ∈ kerPA then

∂ϕa = 0, SAa = 0.

This shows that the pullback by π induces an isomorphism

π∗ : ker SA → kerPA.

A similar argument shows that if At is a path of metric connections on W then the orien-
tation transport along the path PAt is equal to

(−1)SF (SAt )

Now observe that the difference

DA,r := ASDA,r −ASDA,0

is a zeroth order operator which converges to zero in in any Ck-norm. We denote by OTA,r

the orientation transport along the path

t 7→ ASDA,(1−t)r
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which connects ASDA,r to ASDA,0. Since

indASDA,r = indASDA,0

we deduce that if ker SA = 0 then kerASDA,r = 0 for all 0 ≤ r ¿ 1. In particular

OTA,r = 0, ∀0 < r ¿ 1.

Suppose {At; t ∈ [0, 1]} is a path of connections on W such that ker SAj = 0 for j = 0, 1.
Then for every r > 0 we have

OT (ASDAt,r) = OTA0,r(−1)SF (SAt )OTA1,r.

For r sufficiently small we deduce

OT (ASDAt,r) = (−1)SF (SAt )

Now it remains to see that the operator ASDAt,r is conjugate (via Lr with the usual ASD-
operator defined using the metric ĝr of radius r and the twisting connection At).
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