Orientation transport

Liviu I. Nicolaescu
Dept. of Mathematics
University of Notre Dame
Notre Dame, IN 46556-4618
nicolaescu.1@nd.edu

June 2004

$1 \quad S^{1}$-bundles over 3-manifolds: homological properties

Let (Y, g) denote a compact, oriented Riemann 3-manifold without boundary. Denote by $\pi: X \rightarrow Y$ a principal S^{1}-bundle over Y, and by $Z \rightarrow Y$ the associated 2-disk bundle. Set

$$
c:=c_{1}(Z) \in H^{2}(Y, \mathbb{Z}) .
$$

Denote by $\mathbb{t}_{Z} \in H^{2}(Z, X ; \mathbb{Z})$ the Thom class of $Z \rightarrow Y$, by j the inclusion $X \hookrightarrow Z$ and by $\zeta: Y \hookrightarrow Z$ the natural inclusion. Using the Thom isomorphism

$$
H^{\bullet}(Z) \xrightarrow{\mathrm{Ut}_{Z}} H^{\bullet+2}(Z, X ; \mathbb{Z}), \quad c=\zeta^{*} \mathbb{t}_{Z},
$$

and the long exact cohomological sequence of the pair (Z, X) we obtain the Gysin sequence

$$
\cdots \xrightarrow{\pi_{!}} H^{k-2}(Y, \mathbb{Z}) \xrightarrow{\cup_{c}} H^{k}(Y, \mathbb{Z}) \xrightarrow{\pi^{*}} H^{k}(X, \mathbb{Z}) \xrightarrow{\pi_{!}} H^{k-1}(Y, \mathbb{Z}) \xrightarrow{\cup_{c}} \cdots
$$

If c is a torsion class we denote by $\operatorname{ord}(c)$ its order. Otherwise we set $\operatorname{ord}(c)=0$. The kernel of the map $\cup c: H^{0}(Y, \mathbb{Z}) \rightarrow H^{2}(Y, \mathbb{Z})$ is $\operatorname{ord}(c) \cdot \mathbb{Z}$ so for $k=1$ we obtain an isomorphism

$$
H^{1}(X, \mathbb{Z}) \cong \pi^{*} H^{1}(Y, \mathbb{Z}) \oplus \operatorname{ord}(c) \mathbb{Z}
$$

For $k=2$ we obtain a short exact sequence

$$
0 \rightarrow H^{2}(Y, \mathbb{Z}) /\langle c\rangle \rightarrow H^{2}(X, \mathbb{Z}) \rightarrow \operatorname{ker}\left(H^{1}(Y, \mathbb{Z}) \xrightarrow{\cup c} H^{3}(Y, \mathbb{Z})\right) \rightarrow 0 .
$$

The last group is free so the sequence is split. The image of the morphism

$$
H^{1}(Y, \mathbb{Z}) \xrightarrow{\cup c} H^{3}(Y, \mathbb{Z})
$$

is a subgroup of $H^{3}(Y, \mathbb{Z}) \cong \mathbb{Z}$ so it has the form $n \mathbb{Z}$ for some nonnegative integer n. We set $\operatorname{deg} c:=n$. Observe that

$$
\operatorname{deg} c=0 \Longleftrightarrow c \text { is a torsion class } \Longleftrightarrow \operatorname{ord}(c)>0
$$

For $k=3$ we obtain a short exact sequence

$$
0 \rightarrow \mathbb{Z} / \operatorname{deg} c \rightarrow H^{3}(X, \mathbb{Z}) \xrightarrow{\pi_{!}} H^{2}(Y, \mathbb{Z}) \rightarrow 0 .
$$

Homologically, the Thom isomorphism is described by

$$
\zeta^{!}: H_{\bullet}(Z, X ; \mathbb{Z}) \rightarrow H_{\bullet-2}(Y, \mathbb{Z}), \quad H_{\bullet}(Z, X ; \mathbb{Z}) \ni \sigma \mapsto \sigma \cap[Y] \in H_{\bullet-2}(Z, \mathbb{Z}) \cong H_{\bullet-2}(Y, \mathbb{Z})
$$

We obtain the homological Gysin sequence

$$
\cdots \rightarrow H_{k}(X, \mathbb{Z}) \xrightarrow{j_{*}} H_{k}(Z, \mathbb{Z}) \xrightarrow{\zeta^{!}} H_{k-2}(Y, \mathbb{Z}) \xrightarrow{\pi^{\prime}} H_{k-1}(X, \mathbb{Z}) \rightarrow \cdots
$$

The morphism $\pi^{!}$, also known as the tube map is described geometrically as follows. Represent $\sigma \in H_{m}(Y, \mathbb{Z})$ by an embedded oriented submanifold S. The total space of the restriction of the S^{1}-bundle $X \rightarrow Y$ to S is a $(m+1)$-dimensional submanifold of X representing $\pi!\sigma$.

If we use the isomorphism $\pi_{*}: H_{\bullet}(Z, \mathbb{Z}) \rightarrow H_{\bullet}(Y, \mathbb{Z})$ and we represent the Poincaré dual of $c \in H^{2}(Y, \mathbb{Z})$ by a link $\mathcal{L} \hookrightarrow Y$ then we can describe the Gysin sequence as

$$
\cdots \rightarrow H_{k}(X, \mathbb{Z}) \xrightarrow{\pi_{*}} H_{k}(Y, \mathbb{Z}) \xrightarrow{\cap \mathcal{L}} H_{k-2}(Y) \xrightarrow{\pi^{\prime}} H_{k-1}(X, \mathbb{Z}) \rightarrow \cdots
$$

$2 S^{1}$-bundles over 3-manifolds: geometric properties

Denote by \hat{d} the exterior derivative on X. Denote by $\Theta \in \Omega^{2}(Y)$ the g-harmonic 2 -form on Y representing the first Chern class of the disk bundle $Z \rightarrow Y$. We denote by $\partial_{\varphi} \in \operatorname{Vect}(X)$ the infinitesimal generator of the S^{1}-action on X

$$
\left(\partial_{\varphi} f\right)(x):=\frac{d}{d t} f\left(e^{\mathrm{i} t} \cdot x\right), \quad \forall x \in X
$$

We identify $\underline{u}(1)$-the Lie algebra of $U(1)$-with $\mathbf{i} \mathbb{R}$. Now choose a $\underline{u}(1)$-valued connection 1 -form $\mathbf{i} \varphi \in \mathbf{i} \Omega^{1}(X)$ such that

$$
\left.\partial_{\varphi}\right\lrcorner \varphi=1, \quad \pi^{*} \Theta=\frac{\mathbf{i}}{2 \pi} \hat{d}(\mathbf{i} \varphi) \Longleftrightarrow \pi^{*} \Theta=-\frac{1}{2 \pi} \hat{d} \varphi .
$$

For every $r \geq 0$ we set $\varphi_{r}:=r \varphi$ and define a metric \hat{g}_{r} on X by

$$
\hat{g}_{r}=\varphi_{r}^{2}+\pi^{*} g .
$$

With respect to this metric the fibers of $\pi: X \rightarrow Y$ have length $2 \pi r$.
Choose an oriented orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\} T Y$ defined on an open subset $U \subset Y$ and we denote by $\left\{e^{1}, e^{2}, e^{3}\right\}$ the dual coframe. We denote by

$$
\Gamma_{g}=\left[\begin{array}{ccc}
0 & -A_{3} & A_{2} \\
A_{3} & 0 & -A_{1} \\
-A_{2} & A_{1} & 0
\end{array}\right] \in \Omega^{1}(U) \otimes \underline{s o}(3)
$$

the 1 -form describing the Levi-Civita connection with respect to the frame $\left\{e_{1}, e_{2}, e_{3}\right\}$. From Cartan's structural equations we deduce

$$
d\left[\begin{array}{l}
e^{1} \tag{2.1}\\
e^{2} \\
e^{3}
\end{array}\right]=\Gamma_{g} \wedge\left[\begin{array}{l}
e^{1} \\
e^{2} \\
e^{3}
\end{array}\right]
$$

Set $f^{0}=f^{0}(r)=\varphi_{r}, f^{i}=\pi^{*} e^{i}, i=1,2,3$, so that $\left\{f^{0}, f^{1}, f^{2}, f^{3}\right\}$ is a \hat{g}_{r}-orthonormal co-frame. We denote by $\left\{f_{0}=f_{0}(r), f_{1}, f_{2}, f_{3}\right\}$ the dual frame and by $\hat{\Gamma}_{r}$ the connection 1-form describing the Levi-Civita connection $\hat{\nabla}^{r}$ of the metric $\hat{g}_{r} . \hat{\Gamma}_{r}$ is also characterized by Cartan's structural equations

$$
\hat{d}\left[\begin{array}{l}
f^{0} \\
f^{1} \\
f^{2} \\
f^{3}
\end{array}\right]=\hat{\Gamma}_{r} \wedge\left[\begin{array}{l}
f^{0} \\
f^{1} \\
f^{2} \\
f^{3}
\end{array}\right]
$$

Using (2.1) and the equality $\hat{d} f^{0}=\hat{d} \varphi_{r}=-2 \pi r \Theta$ we deduce

$$
\hat{d}\left[\begin{array}{l}
f^{0} \tag{2.2}\\
f^{1} \\
f^{2} \\
f^{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \pi r \Theta \\
-A_{3} \wedge f^{2}+A_{2} \wedge f^{3} \\
A_{3} \wedge f^{1}-A_{1} \wedge f^{3} \\
-A_{2} \wedge f^{1}+A_{1} \wedge f^{2}
\end{array}\right]=\hat{\Gamma}_{r} \wedge\left[\begin{array}{c}
f^{0} \\
f^{1} \\
f^{2} \\
f^{3}
\end{array}\right] .
$$

We set

$$
\Theta=\Theta_{23} e^{2} \wedge e^{3}+\Theta_{31} e^{3} \wedge e^{1}+\Theta_{12} e^{1} \wedge e^{2}, \quad \Theta_{i j}=-\Theta_{j i}
$$

and we write

$$
\hat{\Gamma}_{r}=\underbrace{\left[\begin{array}{cc}
0 & 0 \\
0 & \pi^{*} \Gamma
\end{array}\right]}_{:=\hat{\Gamma}_{0}}+\underbrace{\left[\begin{array}{cccc}
0 & r \Xi_{1}^{0} & r \Xi_{2}^{0} & r \Xi_{3}^{0} \\
r \Xi_{0}^{1} & 0 & \Xi_{2}^{1} & r \Xi_{3}^{1} \\
r \Xi_{0}^{2} & r \Xi_{1}^{2} & 0 & r \\
r & \Xi_{3}^{3} & \Xi_{1}^{2} & \Xi_{2}^{3} \\
\Xi_{0}^{3} & 0
\end{array}\right]}_{:=r}, r \Xi_{\beta}^{\alpha}=-_{r} \Xi_{\alpha}^{\beta}
$$

The bundle $T X$ admits a \hat{g}_{r}-orthogonal decomposition $T X \cong\left\langle f_{0}\right\rangle \oplus \pi^{*} T Y$ and as such it is equipped with a metric connection

$$
\hat{\nabla}^{0}=f^{0} \otimes \partial_{f_{0}} \oplus \pi^{*} \nabla^{g}
$$

The 1-form describing this connection with respect to the frame $\left\{f_{\alpha}\right\}$ is $\hat{\Gamma}_{0}$. Then

$$
\hat{\nabla}^{r}=\hat{\nabla}^{0}+{ }_{r} \Xi
$$

Using (2.2) we deduce

$$
r \Xi \wedge\left[\begin{array}{l}
f^{0} \tag{2.3}\\
f^{1} \\
f^{2} \\
f^{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \pi r \Theta \\
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{lrr}
r \Xi_{1}^{0} \wedge f^{1}+{ }_{r} \Xi_{2}^{0} \wedge f^{2}+{ }_{r} \Xi_{3}^{0} \wedge f^{3}= & -2 \pi r \Theta=: \Psi^{0} \\
r \Xi_{0}^{1} \wedge f^{0}+{ }_{r} \Xi_{2}^{1} \wedge f^{2}+{ }_{r} \Xi_{2}^{1} \wedge f^{3}= & 0=: \Psi^{1} \\
r \Xi_{0}^{2} \wedge f^{0}+{ }_{r} \Xi_{1}^{2} \wedge f^{1}+{ }_{r} \Xi_{3}^{2} \wedge f^{3}= & 0=: \Psi^{2} \\
r \Xi_{0}^{3} \wedge f^{0}+{ }_{r} \Xi_{1}^{3} \wedge f^{1}+{ }_{r} \Xi_{2}^{3} \wedge f^{2}= & 0=: \Psi^{3}
\end{array}\right.
$$

Set

$$
{ }_{r} \Xi_{\beta}^{\alpha}={ }_{r} \Xi_{\beta \gamma}^{\alpha} f^{\gamma}, \quad \Psi^{\alpha}=\frac{1}{2} \sum_{\beta, \gamma} \Psi_{\beta \gamma}^{\alpha} f^{\beta} \wedge f^{\gamma}, \quad \Psi_{\beta \gamma}^{\alpha}=-\Psi_{\gamma \beta}^{\alpha}
$$

Arguing as in $[1, \S 4.2 .3]$ we deduce

$$
{ }_{r} \Xi_{\beta \gamma}^{\alpha}=\frac{1}{2}\left(\Psi_{\beta \gamma}^{\alpha}+\Psi_{\gamma \alpha}^{\beta}-\Psi_{\alpha \beta}^{\gamma}\right)
$$

We deduce

$$
{ }_{r} \Xi_{i j}^{0}=-\pi r \Theta_{i j}, \quad \forall 1 \leq i, j \leq 3
$$

so that

$$
\left.r \Xi_{i}^{0}=-\pi r \sum_{j} \Theta_{i j} f^{j}=-\pi r f_{i}\right\lrcorner \Theta
$$

Next, observe that for $1 \leq i, j, k \leq 3$ we have ${ }_{r} \Xi_{j k}^{i}=0$ so that

$$
{ }_{r} \Xi_{j}^{i}={ }_{r} \Xi_{j 0}^{i} f^{0}=\frac{1}{2} \Psi_{i j}^{0} f^{0}=\pi r \Theta_{i j} f^{0}
$$

Hence

$$
r \Xi=\pi r\left[\begin{array}{cccc}
0 & \left.-f_{1}\right\lrcorner \Theta & \left.-f_{2}\right\lrcorner \Theta & \left.-f_{3}\right\lrcorner \Theta \\
\left.f_{1}\right\lrcorner \Theta & 0 & \Theta_{12} f^{0} & \Theta_{13} f^{0} \\
\left.f_{2}\right\lrcorner \Theta & \Theta_{21} f^{0} & 0 & \Theta_{23} f^{0} \\
\left.f_{3}\right\lrcorner \Theta & \Theta_{31} f^{0} & \Theta_{32} f^{0} & 0
\end{array}\right], \quad f^{0}=r \varphi
$$

Consider the isometry

$$
L_{r}:\left(T X, \hat{g}_{r}\right) \rightarrow\left(T X, \hat{g}_{1}\right), \quad \partial_{\varphi} \mapsto r \partial_{\varphi}, \quad f_{i} \mapsto f_{i}, \quad i=1,2,3
$$

Now set

$$
\tilde{\nabla}^{r}:=L_{r} \hat{\nabla}^{r} L_{r}^{-1}, \quad r \in[0,1]
$$

This is a connection on $T X$, compatible with the metric \hat{g}_{1}. Its torsion is nontrivial.
Lemma 2.1. With respect to the \hat{g}_{1}-orthonormal frame $\partial_{\varphi}, f_{1}, f_{2}, f_{3}$ we have decomposition

$$
\tilde{\nabla}^{r}=\hat{\nabla}^{0}+{ }_{r} \Xi,
$$

that is, if $V=\sum_{\alpha=0}^{3} V^{\alpha} f_{\alpha} \in \operatorname{Vect}(X), f_{0}=\partial_{\varphi}$ we have

$$
\tilde{\nabla}^{r} V=\hat{\nabla}^{0} V+\sum_{\alpha, \beta=0}^{3} r \Xi_{\alpha}^{\beta} V^{\alpha} f_{\beta}
$$

In particular,

$$
\lim _{r \backslash 0} \tilde{\nabla}^{r}=\hat{\nabla}^{0} .
$$

Proof. For $\alpha>0$ and $V \in \operatorname{Vect}(X)$ we have

$$
\begin{gathered}
L_{r} \hat{\nabla}_{V}^{r} L_{r}^{-1} f_{\alpha}=L_{r} \hat{\nabla}_{V}^{r} f_{\alpha}=L_{r} \hat{\nabla}_{V}^{0} f_{\alpha}+L_{r} \sum_{\beta=0}^{3}{ }_{r} \Xi_{\alpha}^{\beta}(V) f_{\beta} \\
=L_{r} \hat{\nabla}_{V}^{0} f_{\alpha}+L_{r}\left(\frac{1}{r} r \Xi_{\alpha}^{0}(V) \partial_{\varphi}\right)+\sum_{\beta=1}^{3}{ }_{r} \Xi_{\alpha}^{\beta}(V) f_{\beta} \\
\left.\left.=\hat{\nabla}_{V}^{0} f_{\alpha}-\pi r(V\lrcorner f_{\alpha}\right\lrcorner \Theta\right) \partial_{\varphi} \longrightarrow \hat{\nabla}_{V}^{0} f_{\alpha} \text { as } r \searrow 0 \\
\left.\left.L_{r} \hat{\nabla}_{V}^{r} L_{r}^{-1} \partial_{\varphi}=L_{r} \hat{\nabla}_{V}^{r} f_{0}=L_{r} \hat{\nabla}^{0} f_{0}+\pi r \sum_{i=1}^{3}(V\lrcorner f_{i}\right\lrcorner \Theta\right) f_{i} \rightarrow \hat{\nabla}_{V}^{0} \partial_{\varphi} \text { as } r \searrow 0 .
\end{gathered}
$$

Recall (see $[1, \S 4.1 .5]$) that the exterior derivative $\hat{d}: \Omega^{\bullet}(X) \rightarrow \Omega^{\bullet+1}(X)$ can be described as the composition

$$
\begin{equation*}
C^{\infty}\left(\Lambda^{\bullet} T^{*} X\right) \xrightarrow{\hat{\nabla}^{1}} C^{\infty}\left(T^{*} X \otimes \Lambda^{\bullet} T^{*} X\right) \xrightarrow{\varepsilon} C^{\infty}\left(\Lambda^{\bullet+1} T^{*} X\right), \tag{2.4}
\end{equation*}
$$

where $\varepsilon: T^{*} X \otimes \Lambda^{\bullet} T^{*} X \rightarrow \Lambda^{\bullet+1} T^{*} X$ denotes the exterior multiplication. Denote by \tilde{d}_{r} the operator obtained by replacing in (2.4) the connection $\hat{\nabla}^{1}$ with the connection $\tilde{\nabla}^{r}$.

3 The $A S D$ operator on S^{1}-bundles over 3 -manifolds

Denote $\hat{*}$ the Hodge $*$-operator on $\left(X, \hat{g}_{1}\right)$ and by $*$ the Hodge operator on Y. The $A S D$ operator on $\left(X, \hat{g}_{r}\right)$ is the first order elliptic operator

$$
A S D=\sqrt{2} \hat{d}^{+} \oplus \hat{d}^{*}: \Omega^{1}(X) \rightarrow \Omega_{+}^{2}(X) \oplus \Omega^{0}(X)
$$

Set

$$
E:=\underline{\mathbb{R}} \oplus \pi^{*} T^{*} Y \cong \mathbb{R}\left\langle f^{0}\right\rangle \pi^{*} T^{*} Y
$$

We identify as above $\Lambda^{1} T^{*} X$ and $\left(\Lambda^{0} \oplus \Lambda_{+}^{2}\right) T^{*} X$ with E as follows.
As in [2, Ex. 4.1.24] we have an \hat{g}_{1}-isometry

$$
\left.T^{*} X \longrightarrow E=\mathbb{R}\left\langle f^{0}\right\rangle \oplus \pi^{*} T^{*} Y, \quad a \longmapsto a_{0} \oplus a_{H}, \quad a_{0}:=f_{0}\right\lrcorner a, \quad a_{H}=a-a_{0} f^{0}
$$

To produce an identification of $\left(\Lambda^{0} \oplus \Lambda_{+}^{2}\right) T^{*} X$ with E we use the \hat{g}_{1}-isometry

$$
\sqrt{2} f_{0-} \downharpoonleft: \Lambda_{+}^{2} T^{*} X \longrightarrow \pi^{*} T^{*} Y
$$

If ω is a 2 -form on X, so that

$$
\left.\omega=f^{0} \wedge \eta+\theta, \quad\right\lrcorner_{r} \theta=0
$$

then

$$
\hat{*} \omega=f^{0} \wedge * \theta+* \eta, \quad \omega^{+}=\frac{1}{2}\left(f^{0} \wedge(\eta+* \theta)+(\theta+* \eta)\right)
$$

$$
\left.\sqrt{2} f_{0}\right\lrcorner \omega^{+}=\frac{1}{\sqrt{2}}(\eta+* \theta)
$$

Via the above identifications we can regard the ASD operator with a differential operator

$$
C^{\infty}(E) \longrightarrow C^{\infty}(E) .
$$

We will locally represent the sections of E as linear combinations

$$
\begin{gathered}
a_{0} f^{0}+\underbrace{a_{1} f^{1}+a_{2} f^{2}+a_{3} f^{3}}_{:=a_{H}}, f^{0}=\varphi . \\
\tilde{d}_{0}\left[a^{0}, a_{1}, a_{2}, a_{3}\right]=\sum_{\beta=0}^{3} \hat{d} a_{\beta} \wedge f^{\beta}+\sum_{j=1}^{3} a_{j} \pi^{*} \Gamma_{k}^{j} \wedge f^{k}
\end{gathered}
$$

where $\Gamma_{2}^{1}=-A_{3}, \Gamma_{1}^{3}=-A_{2}, \Gamma_{3}^{2}=-A_{1}$ and $\Gamma_{j}^{i}=-\Gamma_{i}^{j}$. Set for simplicity

$$
\tilde{d}_{H}=\sum_{j=1}^{3} f^{j} \tilde{\nabla}_{f_{j}}^{0}: \Omega^{\bullet}(X) \rightarrow \Omega^{\bullet+1}(X), \quad \partial_{\varphi} a_{H}=\sum_{j=1}^{3}\left(\partial_{\varphi} a_{j}\right) f^{j} .
$$

Observe that

$$
\tilde{d}_{H}\left(\pi^{*} \omega\right)=\pi^{*} d \omega, \quad \forall \omega \in \Omega^{\bullet}(Y) .
$$

Then

$$
\begin{gathered}
\tilde{d}_{0}\left(a_{0} f^{0}+a_{1} f^{1}+a_{2} f^{2}+a_{3} f^{3}\right)=f^{0} \wedge\left(-\tilde{d}_{H} a_{0}+\partial_{\varphi} a_{H}\right)+\tilde{d}_{H} a_{H} \\
\left.\sqrt{2} f_{0}\right\lrcorner\left(\sqrt{2} \tilde{d}_{0}^{+}\right)=\left(-\tilde{d}_{H} a_{0}+\partial_{\varphi} a_{H}\right)+* \tilde{d}_{H} a_{H} .
\end{gathered}
$$

Next we look at the differential operator

$$
\tilde{d}_{0}: \Omega^{0}(X) \rightarrow \Omega^{1}(X)=\varphi \wedge \partial_{\varphi}+d_{H} .
$$

Since ∂_{φ} generates a 1-parameter group of \hat{g}_{1}-isometries we deduce $\div \hat{g}_{1} \partial_{\varphi}=0$ so that $\partial_{\varphi}^{*}=-\partial_{\varphi}$ and

$$
\tilde{d}_{0}^{*}\left(a_{0} \varphi+a_{H}\right)=-\partial_{\varphi} a_{0}+d_{H}^{*} a_{H} .
$$

If we define

$$
\left.\left.\begin{array}{c}
\mathbf{A S D}_{0}:=\tilde{d}_{0}^{*} \oplus \sqrt{2} \tilde{d}_{0}^{+}: C^{\infty}(E) \longrightarrow C^{\infty}(E) \\
a_{0} \\
a_{H}
\end{array}\right] \longmapsto\left[\begin{array}{cc}
-\partial_{\varphi} a_{0}+\tilde{d}_{H}^{*} a_{H} \\
-\tilde{d}_{H} a_{0}+\partial_{\varphi} a_{H}+* \tilde{d}_{H} a_{H}
\end{array}\right] . \begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \partial_{\varphi}\left[\begin{array}{c}
a_{0} \\
a_{H}
\end{array}\right]+\left[\begin{array}{cc}
0 & \tilde{d}_{H}^{*} \\
-\tilde{d}_{H} & * \tilde{d}_{H}
\end{array}\right] \cdot\left[\begin{array}{c}
a_{0} \\
a_{H}
\end{array}\right] .
$$

Similarly, if W is metric vector bundle on Y and A is a metric connection on W then we get a differential operator

$$
d_{A}: \Omega^{\bullet}(W) \rightarrow \Omega^{\bullet+1}
$$

We can pull back the bundle W and the connection A on X. Denote by $\tilde{\nabla}^{r, A}$ the connection on $T X \otimes W$ obtained by twisting $\tilde{\nabla}^{0}$ with $\pi^{*} A$ and then similarly

$$
d_{H, A}=\sum_{j=1}^{3} f^{j} \wedge \tilde{\nabla}^{A, 0}
$$

We obtain twisted $A S D$-operators

$$
\mathbf{A S D}_{A, r}: \Omega^{1}\left(\pi^{*} W\right) \rightarrow \Omega^{0}(W) \oplus \Omega_{+}^{2}(W)
$$

and as above we deduce

$$
\mathbf{A S D}_{A, 0}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right](\partial_{\varphi}+\underbrace{\left[\begin{array}{cc}
0 & -\tilde{d}_{H, A}^{*} \\
-\tilde{d}_{H, A} & * \tilde{d}_{H, A}
\end{array}\right]}_{:=S_{A}})
$$

We set

$$
\mathcal{P}_{A}:=\partial_{\varphi}+\mathcal{S}_{A}
$$

Then

$$
\operatorname{ker} \mathbf{A} \mathbf{S D}_{A, 0}=\operatorname{ker} \mathcal{P}_{A}=\operatorname{ker} \mathcal{A}_{A}^{*} \mathcal{A}_{A}, \quad \operatorname{ind} \mathcal{A}_{W}=\operatorname{ind} \mathbf{A} \mathbf{S D}_{A, 0}
$$

The operators ∂_{φ} and \mathcal{S}_{W} commute so that

$$
\mathcal{P}_{A}^{*} \mathcal{P}_{A}=-\partial_{\varphi}^{2}+\mathcal{S}_{A}^{2}
$$

We deduce that if $a=a_{0}+a_{H} \in \operatorname{ker} \mathcal{P}_{A}$ then

$$
\partial_{\varphi} a=0, \quad \mathcal{S}_{A} a=0
$$

This shows that the pullback by π induces an isomorphism

$$
\pi^{*}: \operatorname{ker} \mathcal{S}_{A} \rightarrow \operatorname{ker} \mathcal{P}_{A}
$$

A similar argument shows that if A_{t} is a path of metric connections on W then the orientation transport along the path $\mathcal{P}_{A_{t}}$ is equal to

$$
(-1)^{S F\left(\mathcal{S}_{A_{t}}\right)}
$$

Now observe that the difference

$$
D_{A, r}:=\mathbf{A S D}_{A, r}-\mathbf{A S D}_{A, 0}
$$

is a zeroth order operator which converges to zero in in any C^{k}-norm. We denote by $O T_{A, r}$ the orientation transport along the path

$$
t \mapsto \mathbf{A S D}_{A,(1-t) r}
$$

which connects $\mathbf{A S D}_{A, r}$ to $\mathbf{A S D}_{A, 0}$. Since

$$
\operatorname{ind} \mathbf{A S D}_{A, r}=\operatorname{ind} \mathbf{A} \mathbf{S D}_{A, 0}
$$

we deduce that if $\operatorname{ker} \mathcal{S}_{A}=0$ then $\operatorname{ker} \mathbf{A S D}_{A, r}=0$ for all $0 \leq r \ll 1$. In particular

$$
O T_{A, r}=0, \quad \forall 0<r \ll 1
$$

Suppose $\left\{A_{t} ; t \in[0,1]\right\}$ is a path of connections on W such that $\operatorname{ker} \mathcal{S}_{A_{j}}=0$ for $j=0,1$. Then for every $r>0$ we have

$$
O T\left(\mathbf{A S D}_{A_{t}, r}\right)=O T_{A_{0}, r}(-1)^{S F\left(\delta_{A_{t}}\right)} O T_{A_{1}, r}
$$

For r sufficiently small we deduce

$$
O T\left(\mathbf{A S D}_{A_{t}, r}\right)=(-1)^{S F\left(\delta_{A_{t}}\right)}
$$

Now it remains to see that the operator $\mathbf{A S D}_{A_{t}, r}$ is conjugate (via L_{r} with the usual $A S D$ operator defined using the metric \hat{g}_{r} of radius r and the twisting connection A_{t}).

References

[1] L.I. Nicolaescu: Lectures on the Geometry of Manifolds, World Sci. Pub. Co. 1996.
[2] L.I. Nicolaescu: Notes on Seiberg-Witten theory, Graduate Studies in Math, vol. 28, Amer. Math. Soc., 2000.

