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Chapter 1

Grassmannians

1.1. Linear Grassmannians

Suppose V' is a real vector space of dimension n. For every 0 < k < n we denote by Grg (V)
the set of k-dimensional vector subspaces of V. We will say that Grg(V) is the linear
Grassmannian of k-planes in E. When V = R" we will write Gr(n, k) instead of Gry(R").

We would like to give several equivalent descriptions of the natural structure of smooth
manifold on Gry (V). To do this it is very convenient to fix an Euclidean metric on V. We
will denote the corresponding inner product by e.

Any k-dimensional subspace L C V is uniquely determined by the orthogonal projection
onto L which we will denote by Pr. Thus we can identify Gry (V') with the set of rank &
projectors

Proj,(V):={P:V —V; P*=P="P? rankP=1Fk}.
We have a natural map
P:Gri(V) — Proj,(V), L— Py,
with inverse
P — Range (P).
Proj, (V) is a subset of the vector space of symmetric endomorphisms

End"(V):={A€End(V), A*=A}.

End* (V) is equipped with a natural inner product
1
(A, B) = itr(AB), VA, B € End* (V). (1.1)

The norm on End™ (V) induced by this inner product is 1/2 the norm of a symmetric
operator viewed as a bounded operator between Hilbert spaces.

Proj, (V) is a closed and bounded subset of End* (V). The bijection P : Gry(V) —
Proj, (V) induces a topology on Grg(V). We want to show that Gri(V) has a natural
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2 1. Grassmannians

structure of smooth manifold compatible with this topology. To see this we define for every
L C Grg(V) the set

Gri(V,L):={U € Gry(V); UNL-=0}.
Lemma 1.1.1. (a) Let L € Gry (V). Then
UNL*=0+=1—-P,+ Py:V —V isan isomorphism. (1.2)
(b) Gri(V, L) is an open subset of Gry(V).

Proof. (a) Note first that a dimension count implies that
UNLT=0<=U+L"=V<=U"'NnL=0.

Let us show that UN L+ =0 implies that 1 — Pr, + Py, is an isomorphism. It suffices to
show that
ker(1 — P, + Py) = 0.
Suppose v € ker(1 — P, + Py). Then
0=P(l— P+ Py)v=P,Ppv=0= Ppv c UNker P, =UNL* =0.

Hence Pyv = 0 so that v € UL. From the equality (1 — Py, — Py)v = 0 we also deduce
(I — Pr)v =0 so that v € L. Hence

veUTNL=0.

Conversely, we will show that if 1 — Py, + Py = P;1 + Py onto then U + L+ = V. Indeed
let v € V. Then there exists x € V such that

v=Ppix+ Pyze Lt +U.

(b) We have to show that for every K € Gry(V, L) there exists ¢ > 0 such that any U
satisfying

[Py — Pkl <e
intersects L+ trivially. Since K € Gry(V, L) we deduce from (a) that

1-— PL — PK V-V
is an isomorphism. Note that
(1 = P — Px) = (1= P — Fy)| = [|Px — Pyl

The space of isomorphisms of V' is an open subset of End(V'). Hence there exists ¢ > 0 such
that for any U satisfying

HPU — PKH <e€

the endomorphism (1 — P, — Py) is an isomorphism. We now conclude using part (a). O

Since L € Gry(V, L), VL € Gri(V) we have an open cover of Gry (V)
Gr,(V)= |J Gr(V D).
LEGI‘k(V)

Note that for every L € Grg(V) we have a natural map
I': Hom(L, L) — Gr(V, L),
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which associates to each linear map S : L — L its graph (see Figure 1.1)
Ts={z+SzeL+Lt=V; zelL}.

We will show that this is a homeomorphism by providing an explicit description of the
orthogonal projection Prg

Sef—- - - - - L

Figure 1.1. Subspaces as graphs of linear operators.

Observe first that the orthogonal complement of I's is the graph of —S* : L+ — L.

More precisely
FézF_g* :{y—S*yELL—FL:V; yELL}.

Let v=Prv+ Priv=wvr +vp+ € V (see Figure 1.1). Then
Prov=x+Sz, 1€ L+<=>v—(x+Sr)els

x4+ S*y = vt

< 3JzeL, ye Lt such that {
Sr—y = v

Consider the operator § : L @ L+ — L @ L which has the block decomposition

(1, s
S[S —ﬂi]'

Then the above linear system can be rewritten as

s[5 1= Lo |

Now observe that

52 _ 17+ 5*S 0
o 0 1,04+ 85 |
Hence 8§ is invertible and
g1 _ (HL+S*S)_1 0 '3
B 0 (]lLi + SS*)_I

B (1 +8*S)~t  (1p+ 8*9)~1s*

- [ (1,0 4+ 88718 —(1;.+89%)7! ]
We deduce

x=(1p+ S*S)fle + (1 + S*S)fls*le
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and

Hence Prg has the block decomposition

1
Prg = { S ] (A +8*8)7 (1 +S5%9) 1S
[ (@p+8S)7t (1, +SrS) s
T S(1p +S5*S)7t S(1p +S*9)"tsr |-
Note that if U € Gry(V, L) and with respect to the decomposition V' = L+L* the projector
Py has the block form
P A B | | PPyl PPyl
V=1l c D| | PLPyl;, PLL‘PyI; .

where for every subspace K — V we denoted by I : K — V the canonical inclusion, then
U =Tg, where S = CA~!. This shows that the graph map

Hom(L,L* ) > S+ I's € Gry(V)

is a homeomorphism. Moreover, the above formulae show that if U € Grg(V, Lo)NGry(V, L1)
then we can represent U in two was,

U=Tg,=Ts, S;€Hom(L; L), i=0,1
and the map

So — 51

is smooth. This shows that Gr (V') has a natural structure of smooth manifold of dimension

dim Gry(V) = dim Hom(L, L') = k(n — k).

The above considerations shows that via the projection map U +— Py we can regard Gry (V')
as a submanifold of End* (V). The Euclidean metric (1.1) on End(V) induces a metric
h = hn,k on Grk(V)

Denote by O(V') the group of orthogonal transformations of V. The group O(V) acts
smoothly and transitively on Gry(V)

O(V) x Grg(V) > (g,L) — g(L) € Gri(V).
Note that
PgL = gPLg_l-

The action of O(V) on End™ (V) by conjugation preserves the inner product on End™ (V)
and thus we deduce the action of O(V') on Gry (V') preserves the metric h.

We would like to express this metric in the graph coordinates. Consider L € Gry(V)
and S € Hom(L, L*). Then, for every t € R, we have

Uy =Ty € Gri(V,L).
If Uy denotes the tangent to the path ¢t +— U, at t = 0, then

N 1 . . d
h(Uo,Uo) = itr(POQ)v Py = £|t:0PFtS7



1.1. Linear Grassmannians 5

If we write P, := Pr,; we deduce

p_ [ Qo+£25789)7" (1, +12578)1s"
ET tS(1p +t28*8)"1 12S(1, + t28*S)~1s*

Hence

0 S*

Py = [ ¢ o ] =S*P,. + SPp. (1.3)

so that .

h(Uy, Up) = 5(tr(ss*) +tr(S*S) ) = tr(SS*).
We can be even more concrete by choosing an orthonormal basis (€j)1<i<r of L and an
orthonormal basis (eq)r<a<n Of Lt

With respect to these bases the map S : L — Lt is described by a matrix (sqi)1<i<k<a<n
and then

tr(SS%) = tr(5*S) = > |sail*
We can think of the collection (sq;) as defining local coordinates on Gry(V, L). Hence
h(Uo, Uo) =Y _ |sail*. (1.4)

In integral geometric computations we will find convenient to relate the above coor-
dinates to the classical language of moving frames. In the sequel we make the following
notational conventions.

e We will use small Latin letters i, j, k, ... to denote indices in the range {1, ...,k}.
e We will use the Greek letters a, 3,7, ... do denote indices in the range {k +1,--- ,n}.
e We will use Latin letters A, B, C, ... to denote indices in the range {1,--- ,n}.

Suppose we have a smooth 1-parameter family of orthonormal frames (e4) = (ea(t)) ,
|t| < 1. This defines a smooth path

t— L, =span (e;(t)) € Grg(V).
We would like to compute
h(Lo, Lo).
Observe that we have a smooth path
t— g€ O(V),
defined by
grea(0) = ea(t).

With respect to the fixed frame (e4(0)) the orthogonal transformation g¢; is given my a
matrix (s4p(t)), where

sap =ea(0) e (grep(0)).
Observe that go = 1y. Let P; denote the projection onto L;. Then

P, = gPog; !
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so that if we set X = %|tzogt we have
Py = [X, Po).
With respect to the decomposition V = Ly + L(J)- the projector Py has the block decompo-

sition
| 1, O
po_[ ; 0]

X is represented by a skew-symmetric matrix with entries
TAB = SAB — €p®ép
which has the block form

X:

3

XL07L0 XL&J/O

X X ’
Lg,Lo L, Lg

where X L Lo denotes a map Lo — Ly etc. We deduce

X*
RI=| 0 |
XL&,LO 0
We deduce
AL 1 .. . . 9
h(Lo, Lo) = 5 tr(Po, o) = tr(Xpy 1 X7 ;) = Z\sm . (1.5)

We will find it convenient later on to interpret the above computations in the language of
moving frames.

Suppose M is a smooth m-dimensional manifold and L : M — Grg(V) is a smooth
map. Fix a point pg € M and local coordinates (u')1<i<m near py such that u'(pg) = 0.

The map L; can be described near pg via a moving frame, i.e. an orthonormal frame
(ea) depending smoothly on (u') such that

L(u) = span (e;(u) ).

The above computations show that the differential of L at pg is described by the (n—k) x k
matrix of 1-forms on M

DpoL = (0ui); 0Oui = eq @ de;.
This means that if X = (u®) € T,,,M then

Oe; .
Dy L(X) = (ai) € Tr0) Gr(V), Zai = za:ea o 5t (1.6)

If M happens to be an open subset of Gri(V') then we can use the forms 6,; to describe
the metric h. More precisely, the equalities (1.4) and (1.5) show that

h= 00i ® bai. (1.7)
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1.2. Densities and integration

On an orientable manifold M we can obtain Borel measures in a simple fashion. We fix
an orientation on M. Then, any nowhere vanishing, top dimensional differential form w
on M compatible with the orientation (which maps positively oriented frames to positive
numbers) defines a positive Borel measure p, on M via the equality

no0) = [

Unfortunately, this trick does not work on Grassmannians since many of them are not
orientable. To produce Borel measures we must abandon working with differential forms
and instead work with densities.

If V is a finite dimensional real vector space we denote by det V' the top exterior power
of V, i.e. the one dimensional space AY™VV . Given a real number s we define an s-density
on V to be a map

ArdetV — R, AtQ) = [t|°A(Q), VteR*, Qe detV.

We denote by |Als(V) the one dimensional space of s-densities. Note that we have a canon-
ical identification |Alp(E) = R. We will refer to 1-densities simply as densities and denote
the corresponding space by |[A|(V). We say that an s-density A : det V' — R is positive if

A(det V'\ 0) C (0, 00).
We denote by |A| (V) the cone of positive densities.
Note that any basis (vy,--- ,v,) of V defines linear isomorphisms
IAlsV =R, A= Avr A Awy).
In particular, we have a canonical identification
IAls(R") =R, A= Ae1 A---Nep)
where (e, -+ ,e,) is the canonical basis of R".

If Vo and V; are vector spaces of the same dimension n and g : Vy — Vi is a linear
isomorphism then we get a linear map

9"t [Als(V1) = [Als(Vo), [ALs(Vi) 2 A= g™,
where

(9" ) (ANwy) = )\(/\Z-(gvi) ), Yoy, -+, v, € V.
If Vo = Vi =V so that g € Aut(EV) then

g*A = |det g|°\.
For every g,h € Aut(V') we gave (gh)* = h*g* and thus we have a left action of Aut(V') on
[Als(V)
Aut(V) x [Afs(V) — [A[s(V),
Aut(V) x [A[s(V) 2 (g,A) = ged = (¢71)*A = | det g| °\.

Observe that we have bilinear maps

[A[s(V) @ [Al(V) = [Alse(V), (Ap) = A .
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Note that to any short exact sequence of vector spaces
0—-U2VvEW_0, dmU=m, dmV =m, dimW =p
we can associate maps
\ A[S(U) @ [Als(V) — [Al(W),
[ AL(V) @ JA[S (W) — [Als(D),
and
x 1 [AL(U) @ [A[{(W) — |AL(V)
as follows.
e Let € [A|F(U) and X € [Al5(V) and suppose (wj)i<j<p is a basis of W. Now

choose lifts v; € V' of w; such that B(vj) = w; and a basis (u;)i1<i<m of U such
that
{ul,...,um,wl,...,wp,}
is a basis of V and we set
)\( (/\Zul) A (/\j’Uj) )
AN (Ajwj) = .
(1\ )( ij) M(/\z‘ui)
It is easily seen that the above definition is independent of the choices of v’s and
u’s.
e Let A € [A|5(V) and v € |[A|F(W). Given a basis (u;)1<i<m of U, extend the
linearly independent set (a(u;)) C V to a basis

{ a(ur),...,a(um), v, , Up, }
of V and now define
A ((hia(u) A (Ajvy))
v(AiBv;))
Again it is easily verified that the above definition is independent of the various
choices.

o Let p € |A|s(U) and v € |[A|s(W). To define pxv : det V- — R it suffices to indicate
its value on a single nonzero vector of the line det V. Fix a basis (u;)1<i<m of U
and a basis (w;)1<j<p of W. Choose lifts (v;) of w; to V. Then we set

(1 x v)((Aaug) A (Ajwy) ) = p( Agui)v(Aj;)-

Note that for a different choice of lifts v;- of w; we have

(Niui) A (Ajog) = (Aiwi) A (Ajvg).
Again one can check that this is independent of the various bases (u;) and (w;).
Example 1.2.1. Consider the short exact sequence
0-U=R-5V=R-ZLW=R-0

given by
a(s) = (487 105)7 6(x;y) = bx — 2y
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Denote by e the canonical basis of U, by (ej, es) the canonical basis of V' and by f the
canonical basis of W. We obtain canonical densities A\yy on U, Ay on V' and Ay on W given
by
Av(e) = Av(er Aex) = Aw(f) =1.
We would like to describe the density Ay /5* Ay on V. Set
.fl - a(e> - (273)
We choose f, € V such that 5(f,) = f, for example, fo = (1,2). Then

Av/B*Aw(e) = Av(f1 A fa)/Aw (f) = Lll 120 '

Hence Ay /3" Ay = 2\p. O

= 2.

det [

Suppose now that £ — M is a real vector bundle of rank n over the smooth manifold
M. Assume it is given by the open cover (U,) and gluing cocycle

9Ba : Uag — Aut(V),

where V is a fized real vector space of dimension n. Then the bundle of s-densities associated
to E is the real line bundle |A|sE given by the open cover (U,) and gluing cocycle

| det gga| " : Uap — Aut(|A]s(V)).

We denote by C°(|A|sE) the space of smooth sections of |A|sE. Such a section is given by
a collection of smooth maps
Aot Ug — |Al5(V)
satisfying the gluing conditions
Ag(x) = |det gga| *Ag(z), VYo, B, = € Uyp.
Let us point out that if V= R" then we have a canonical identification |A[s(R™) — R and

in this case a density can be regarded as a collection of smooth functions A\, : U, — R
satisfying the above gluing conditions.

An s-density A € C(|A|, E) is called positive if for every x € M we have \(z) €
AL (Ex).

If ¢ : N — M is a smooth map and EF — M is a smooth real vector bundle, we obtain
the pullback bundle 7*F — N. We have canonical isomorphisms

Al 7" E = n°|A|, B
and a natural pullback map
6" s C%(|A|, E) — C™(x* |Al, E) = C®(A|, 7).
Given a short exact sequence of vector bundles
0—-Fy— FE;1 — FEy—0
over F we obtain maps
\: C®(AIS Eo) x C(|Al, Er) — C(|Al, E)
/: C(|A], B) x C(A], Ey) — C™(|A], Eo)
x 2 CF(|Al; Eo) x CF(|A[ Ez) — CF(|A, Ey).
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Observe that for every positive smooth function f : M — (0,00) we have
(FI\X = (F7H(\N), A/ (fv) = (F ) (/N).
Moreover, for € C®(|A| Ey), v € C®(|A|F Ez) we have
p\(pxv) =v, (uxv)/v=p.

In the sequel we will almost exclusively need a special case of the above construction, when
E is the tangent bundle of the smooth manifold M. We will denote by |A|s(M) the line
bundle [A|s(T'M) and we will refer to its sections as (smooth) s-densities on M. When
s =1 we will use the simpler notation |A|j; to denote |A]; (M).

To give a local description of s-densities we first fix a coordinate atlas (U, (%)) where
xza Uy — R, 1=1,--- n=dimM

are local coordinates on U,. Suppose p € U,g. A tangent vector v € T, M has coordinate
decompositions
iy — Jja
ZX;é?% U= ZXﬁax]ﬁ'
( J

Using the identity

oz’
o B
Ouy, = ZJ: oxt, s
we deduce ‘ ,
. O’ . orl,
;Xéaﬂ”é - ;(;X;&UZ )a‘”fé — Xé - zz: &L‘SX&'

This proves that the tangent bundle T'M is given by the open cover (U,) and gluing maps

€ GL(n,R)

(99:%
9pa : Uaﬁ - GL(R,R), 9pa = (

oxt, )1§i,j§n
We deduce that an s-density on M is described by a coordinate atlas
( Ua, (mla) )a
and smooth functions
AUy —R

satisfying the conditions

«

8:17%
Ag = |dga| Ao, where dg, = det e . (1.8)
Yo ) i<ijen

We deduce that the smooth 0-densities on M are precisely the smooth functions.

Example 1.2.2. (a) Suppose w € Q"(M) is a top degree differential form on M. Then in
a coordinate atlas (U,, (z%)) this form is described by a collection of forms

Wa = AadTh Ao A sal.
The functions A, satisfy the gluing conditions

Mg = dgoha
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and thus we deduce that the collection of functions |Ay|® defines an s-density on M which
we will denote by |w|®. Because of this fact the densities are traditionally described as
collections
Aaldze|®, dxg = dmé A~ Ndxy.

(b) Suppose M is an orientable manifold. By fixing an orientation we choose an atlas
(Us, (%)) so that all the determinants dg, are positive. If w is a top dimensional form
on M described locally by forms

Wa = Aadxq,
then the collection of functions A\, defines a density on M. Thus a choice of orientation
produces an linear map

(M) — C=(|A[(M)).

As explained in [N, §3.4.2] this map is a bijection.

(c) Any Riemann metric g on M defines a canonical density on M denoted by |dV,| and
called the volume density. It is locally described by

V9alldzal,

where g, denotes the symmetric matrix representing the metric ¢ in the coordinates (z%,).
g

Observe that we cannot speak of its value of a given density at a point p € M. However,
as any section of a vector bundle, a density has a well defined zero set. The support of
density is by definition the closure of the complement of its zero set. We then denote by
Co(|A|(M) ) the space of continuous densities with compact support.

The densities on a manifold serve a major purpose: they can be integrated. More
precisely there is a natural linear map

[ s cullalon) — -, ldel ~ [ 1aid
defined as follows. Represent |du| as a collection

Mo ‘dxa‘

associated to a coordinate atlas (U, (z%,)). Next, choose a partition of unity subordinated

to the cover (U,), i.e. a collection of compactly supported smooth functions
g = Cg° (M) — [0,1],
such that for every k there exists a = a(k) so that suppn, C Ua (i) and

Zﬂk =1L

k
The density nx|du| is supported in U, = Uy(yy where it is described by
77kﬂa|dxa|'

Now regard U, as an open subset of the Euclidean space R™ with Euclidean coordinates
(«%,). Then interpret |dz,| as the Lebesgue measure on R™ and then

/nkﬂa’dxa’
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as the Lebesgue integral of the function

NMepa - Us CR™ — R.

/ |dpl == Z/nkua(k)\d%(kﬂ
M e

We refer to [N, §3.4.1] For a proof that the above definition is independent of the various
choices.

Define

Note that if f is a continuous, compactly supported function on M and |du| is a density
then f|du| is a continuous compactly supported density and thus there is a well defined

integral
| fld.
M
Thus there is a natural pairing
Co(M) % C(Ma). (£ 1de) = [ il

Let us observe that if |dp| and |d7| are two positive densities then there exists a positive
function f such that
|dp| = fldr].

The existence of this function follows from the Radon-Nicodym theorem and for every
x € M we have
d
lim fU’ P

fz) =
U—{z} [i; ldT|’
where the above limit is taken the open sets shrinking to x. We will use the notation

_ ldpl|
I =ar)

If ¢ : M — N is a diffeomorphism and |dp| = (U, paldya|) is a density on N, then we
define the pullback of |dp| by ¢ to be the density ¢*|dp| on M defined by

¢*‘dp’ - (¢_1(Ua)vpa‘dya’)7 yfx = J}Z o ¢.

The classical change in variables formula now takes the form

[ taol= [ o

Example 1.2.3. Suppose ¢ : M — N is a diffeomorphism between two smooth m-
dimensional manifolds, w € Q™ (M) and |w| is the associated density. Then

¢*lw| = [¢*wl.

O

Suppose a Lie group acts smoothly on M. Then for every g € G and any density |dp|
we get a new density g*|dp|. The density |dp| is called G-invariant if

g"|dp| = |dp, Vg€ G.
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Note that a density is invariant if and only if the associated Borel measure is g-invariant.

A positive density is invariant if the jacobian % is identically equal to 1.

Proposition 1.2.4. Suppose |dp| and |dT| are two G-invariant positive densities. Then the

jacobian % s a G-invariant smooth, positive function on G.

Proof. Let x € M and g € G. Then for every open neighborhood U of x we have

dr| Sy 147
[vaol= [ v, [ lari= [ jar| = 1T o ©
U 9(U) U ) Joldel [y ldol

and then letting U — {z} we deduce
J(x)=J(gx), Yx e M,g € G.

O

Corollary 1.2.5. If G acts smoothly transitively on the smooth manifold M then, up to a
positive multiplicative constant there exists at most one invariant positive density. O

Suppose ® : M — B is a submersion. The kernels of the differentials of ® form a vector
subbundle TV M < T'M consisting of the planes tangent to the fibers of ®. We will refer to
it as the vertical bundle. Since ® is a submersion we have a short exact sequence of bundles
over M.

0—T"M 2% &*TB — 0.
Observe that any (positive) density |dv| on B defines by pullback a (positive) density ®*|dv|
on the bundle ®*TB — M. If ) is a density on TV M then we obtain a density A x ®*|dv|
on M.

Suppose |dp| is a density on M such that & is proper on the support of |du|. Set
k =dim B, r = dim M — dim B. We would like to describe a density ®.|du| on B called
the pushforward of |du| by ®. Intuitively, ®.|du| is the unique density on B such that for
any open subset U C B we have

/ B.|dy) = / dul.
U d-1(U)

Proposition 1.2.6. There exists a smooth density ®.|du| on B uniquely characterized by
the following condition. For every density |dv| on B we have

D.|dp = Vyldv]
where V,, € C*(B) is given by

V,(b) = / dal /).
-1(b)

Proof. Fix a positive density |dv| on B. Along every fiber M}, we have a density |du|y,/P*|dv|.
To understand this density fix « € M. Then we can find local coordinates (y;)1<j<i near
b € B and smooth functions (z%);<;<, defined in a neighborhood V of z in M such that the
collection of functions (2%, 7) defines local coordinates near x on M and in these coordinates
the map @ is given by the projection (z,y) — y.
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In the coordinates y on B we can write

|dv| = pp(y)|dy| and |du| = pr(z,y)|dz A dy|.

Then along the fibers y = const. we have

dply /% |dv| = LY 0
|dpslo/ @7 |dv| PB(ZU)’ |

We set,
Vi (b) = / (daly/ ||
My,

V, is a smooth function on B. We can form the density V,,|dv| which a priori depends on v.

Observe that if |dP| is another density, then there exists a positive smooth function

w : B — R such that
|dv| = wl|dv|.
Then
|dpalo/ ®*|d| = w™dulp/®*|dv|, Vo =w'V,
so that
Vpldo| =V, |dv|.

In other words the density V,|dv| on B is independent on v. It depends only on |du|. O

Using partitions of unity and the classical Fubini theorem we obtain the identity

/ |du| = / ®,|du|, for any open subset U C B.
o-1(U) U

(1.9)

Remark 1.2.7. Very often the submersion ® : M — B satisfies the following condition.

For every point on the base b € B there exist an open neighborhood U of b in B, a
nowhere vanishing form w € QF(U), a nowhere vanishing form Q € Q7 (My), (My =

®~1(U)), and a form n € Q"(U) such that

Q=nA7r"w.
Then we can write
|dp| = p|Q]
for some p € C*°(My)
&l = flol

and then for every u € U C B we have

flu) = /Mu pln.

/MU i _/Uf(“”“’ —/U(/Mu pl ) ]

In particular
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Example 1.2.8 (Co-area formula). Suppose (M, g) is a Riemann manifold of dimension
m+ 1, and f : M — R is a smooth function without critical points. On M we have a
volume density |dV,|. We would like to compute the pushforward density f.|dV,| on R. We
seek fi|dV,| in the form

fldVy| = p(t)]dt|
where |dt| is the Euclidean volume density on R, and p is a smooth function.

For t € R we set M; := f~1(t). M; is a codimension 1 submanifold of M. We denote
by |dV;| the volume density on M; defined by the induced metric g, := g|p,. We denote by
V f the g-gradient of f, and we set n := ﬁVf.

Fix tp € R. For every point p € My, we have df(p) # 0, and from the implicit func-
tion theorem we deduce that we can find an open neighborhood U, and smooth function
x', ..., 2™ such that (f,z!,...,2™) are local coordinates on U. Then along U we can write

dVy| = wl|df Adxt A~ Ada™).
is a unit normal vector field along M;, N U, and we have
|dVio| lonar, = wln 1 (df A dz' Ao A da™) lonm,, | = WV fl[(dat A~ A da™) lUnMy,
Now observe that along U we have

|AVy|/ f*|dt] = w|(dz' A--- A da™)]

so that

AV | Lunns, = [V fI|dVgl/ f|dt]
so that

. 1

|dVgl/ f7|dt] = W|dmo| LU, -

Hence
1
FAV| = ptolatl, o0 = [ oldvi] (1.10)
My

and obtain in this fashion the co-area formula

/M|dvg| - /R(/Mt Wlﬂld%\)]dt\ (1.11)

To see how this works in practice consider the unit sphere S™ C R"*!. We denote the
coordinates in R™™! by (t,2!,...,2"). We let PL € S™ denote the poles given t = +1.

We denote by |dV;,| the volume density on S™ and by 7 : S™ — R the natural projection
given by
(t,x', ... 2") st

7 is a submersion on M = S™ \ {Py} and n(M) = (—1,1). We want to compute m|dV,|.
Observe that 7~ !(t) is the (n — 1)-dimensional sphere of radius (1 — t2)'/2. To find the
gradient V7 observe that for every p € S™ the tangent vector V(p) is the projection of
the vector d; on the tangent space T),5", because 0; is the gradient of the function linear
function 7 : R"*! — R, 7(¢,2%) = t with respect to the Euclidean metric on R™*!. Denote
by 6 the angle between 0; and T),S™, set p’ = 7(p) and denote by ¢ the coordinate of p’ (see
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Figure 1.2. Slicing a sphere by hyperplanes

Figure 3.1). Then 6 is equal to the angle at p between the radius [0, p] and the segment

[p,p']. We deduce
cos f = length [p,p/] = (1 — tQ)l/Z-
Hence
Va(p)| = (1 - )12
Hence
n—2
2 )

1
——|dV;| = 1t2—1/2/ dVy| = op_1(1 — 12
L = @ [ v = o)

s

where o,, denotes the m-dimensional area of the unit m-dimensional. The last formula

implies

n—2

where B denotes the Beta function

1
B(p,q) = / sP7H(1 —s)171ds, p,q> 0.
0

It is known (see ) that

We deduce

1 n

1 1
S 2an/ (1 — 2)"2|dt| = o*nl/ (1— )" s~ 2|ds| = 0y 1 B ( n
0 0 22

).

(1.12)

(1.13)

(1.14)
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1.3. Invariant measures on linear Grassmannians

On the Grassmannian Gry(V') we have an O(V)-invariant metric h = h,, ;. The associated
Riemannian volume defines an invariant density. We will denote by |dv, x|, where n =
dim V. It is called the kinematic density on Gry (V). Since the action of the group O(V) is
transitive, we deduce that any other invariant density is equivalent to a constant multiple
of this metric density. We would like to give a local description of |d~, k|-

Fix consider a small open set O C Grg(V). Set n := dim V. If O is sufficiently small
we can find smooth maps
ex:0—-V, A=1,---,n
with the following properties.
e For every L € O the collection (e4(L))1<a<n is an orthonormal frame of V.

e For every L € O the collection (e;(L))1<i<k is an orthonormal frame of L.
For every 1 <i¢ < k and every k+ 1 < a < 1 we have a 1-form
i € QHO), 04 = de, o €.

As explained in the previous subsection, the metric h is described along O by
h = Z Qai & eai
oyl
and the associated volume density is described by

’d’)/n,k‘ - ‘Haaz{ = ‘/\9(11‘

Example 1.3.1. To understand the above construction it is helpful to consider a special
case, Gri(R?), the Grassmannian of lines through the origin in R%. This space is also known
as the real projective line and as such it is also denoted by RP'.

A line L in R? is uniquely determined by the angle € [0, 7] it forms with the z axis.
For such an angle # we denote by Ly the corresponding line. Lg is also represented by the
the orthonormal frame

e1(0) = (cosf,sinf), ez(f) = (—sinb,cosh), Ly = span(ey(d)).

Then
021 =€z e d61 =db

and
|dy2,1| = |dO]. 0

1.4. The volumes of the linear Grassmannians

We would like to compute the volumes of the Grassmannian Grg(V), dimV = n with
respect to the density dv,, k, i.e. we would like to compute

Cn,k: = / ‘d’Yn,k
Grg(V)
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Denote by w,, the volume of the unit ball B C R™ and by o,_; the (n — 1)-dimensional
“surface area” of the unit sphere 8"!. Then

Op—1 = NWp

and
F—k n =2k
Lt
" T(1+n/2) 92k+1_ k.| ’
@Er 1) n=2k+1

where I'(x) is the gamma function. We list below the values of w,, for small n.

n (|0(1]2] 3|4

wy [1]2]|m |4 |

To compute the volume of the Grassmannians we need to give yet another description for
the Grassmannians, as a homogeneous space.

Fix Ly € Grg(V). Then the stabilizer of Ly with respect to the action of O(V') on
Gr(V) is the subgroup O(Lg) x O(Lg) and thus we can identify Gry (V) with the homo-
geneous space O(V)/O(Lo) x O(Lg).

The computation of C), ;, is carried out in three steps.

Step 1. We equip the orthogonal groups O(R™) with a canonical invariant density |d~,|
called the kinematic density on O(n). Set

Cp = / |dyn|.
O(R")

Step 2. We show that

Cn
Cop=—=—+.
"k CkCri
Step 3. We show that
1 nw
Cn,l = 50'7171 = 2n

and then compute C), inductively using the recurrence relation from Step 2
Cny1 = (C1Cn,1)Ch,
and the initial condition

Cy=vol(0(2)) =20.

Step 1. The group O(V) is a submanifold of End(V) consisting of endomorphisms S
satisfying SS* = §*S = 1y. We equip End(V') with the inner product

(A, B) = %tr(AB*).

This metric induces an invariant metric A on O(V'). We would like to give a more concrete
description of this metric.
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Denote by End™ (V) the subspace of End(V') consisting of skew-symmetric operators.
If For Sp € O(V) we have a map

expg, : End™ (V) — O(V), End™ (V) — Sp - exp(X).

This defines a diffeomorphism from a neighborhood of 0 in End™ (V') to a neighborhood of
So in O(V'). Two skewsymmetric endomorphisms X,Y € End™ (V') define paths

Yx,w tR—=O(V), yx(t) = Soexp(tX), yv(t) = Soexp(tY)
originating at Sy. We set
X =4x(0) € Ts,0(V) C End(V), Y =4y (0) € Ts,0(V) C End(V).
Then _ '
X = 50X, Y =5y,

WX,V) = %tr( (S0X)(SoY)") = %tr(SoXY*SS) _ %tr(S{‘jSoXY*)

—

= ftr(XY*)

[\

If we choose an orthonormal basis (e4) of V' so that X and Y are given by the skew
symmetric matrices (z4p), (yap) then we deduce

h(X,Y) = Z TABYAB-
A>B
If we set
Fa(t) = exp(tX)ea
then we deduce
zap =eas fp(0) = £a(0) e £5(0).
More generally, we define
Fa:0V)—=V, fi(S)=Sex
we obtain the angular forms
Oap=faedfp.
Then the above metric has the description
h = Z 0aB ®0aB.
A>B
The associated volume density is
|dyn| = ‘ /\ OaB ’
A>B

Step 2. Fiz an orthonormal frame (e4) of V such that Lo = span(e;; 1 <1 < k). We
can identify V' with R", O(V) with O(n) and Ly with the subspace R” & 0,,_; C R™. An
orthogonal n x n matrix 7" is uniquely determined by the orthonormal frame (T'e4) via the
equalities

Tip=eyqoTep.
Define
p:0(n) — Grg(V), p(T)=T(Lo).
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More explicitly we have

p(T) = Span (Tei)lgisjf.

We will prove that we have a principal fibration

O(k) x O(n — k) —— O(n)

Gri(R™)

and that

Pildyn| = CrCr_g|dyn k-

Once we have this we deduce from the Fubini theorem that

Cn = Ckcnfkcn,k-

Let us prove the above facts.

For every sufficiently small open subset U C Gr(V) we can find a smooth section

¢:U— O(n)

of p: O(n) — Grg(V). The section can be identified with a smooth family of frames
(pa(L), L€ U)i<a<n such that

L =span(¢;(L); 1<i<k).

To such a frame we associate the orthogonal matrix ¢(L) € O(n) which maps the fixed
frame (e A) to the frame (qb B ) It is a given by a matrix with entries

P(L)ap =es® Pp.

Then we have a diffeomorphism

U:0(k)xO(m—Fk)xU— O(n)

defined as follows.

e Given (s,t,L) € O(k) x O(n — k) x U express s as a k X k matrix s = (s;) and t
as a (n — k) x (n — k) matrix (£3).
o Define the frame of V.

(fa)=(op)*(s,1),

via the equalities

fi:fi(va):ZSg¢j(L)€L7 1<i<k (1.15)
J

fo="Fat,L)=> gLy e Lt k+1<a<n (1.16)
B
e Now define ¥ = W(s,t, L) to be the orthogonal transformation of V' which maps
the frame (e4) to the frame (fp), i.e.

-fA = \I’EA, VA.



1.4. The volumes of the linear Grassmannians 21

The map ¥ is a homeomorphism with inverse
On)>T— U YT)=(s,t;L) € O(k) x O(n — k) x L
defined as follows. We set f4 = f4(T) =Tes, 1 < A <n. Then
L = Ly = span (f;)1<i<k

i.

while the matrices (s}

) and (t3) are obtained via (1.15) and (1.16). More precisely, we have
;’ = ¢2(LT) d f]7 Sg = ¢a(LT) i fﬁ
Observe that, Vsg, s1 € O(k), to,t1 € O(n — k), we have
)

((¢B) * (507t0)) * (81,t1 = (¢B) * (8081,750751).

This means that ¥ is equivariant with respect to the right actions of O(k) x O(n — k) on
O(k) x O(n — k) x U and O(n). We have a commutative diagram

W

O(k) x O(n— k) xU

X/

U C Gry(V)

pH(U)

In particular, this shows that p defines a principal O(k) x O(n — k)-bundle.

Observe now that p.|d7y,| is an invariant density on Grg(R™) and thus there exists a
constant ¢ such that

Pxldyn| = cldyn -
This constant is given by the integral of the density |dvy|/p*|dyn.k| along the fiber p~1(Ly).
Recall the if we define f, : O(n) — R™ by

Fa(T) :=Tea,
and
Oap = faedfp,
then
ldynl =1 /\ 0asl.
A>B

We write this as

(M) (A s (A

The form ( A i GW-) is the pullback of a nowhere vanishing form defined in a neighborhood

of Ly in R* whose associated density id |dv, |- We now find ourselves in the situation
described in Remark 1.2.7. We deduce

= [l (A0 2 (A o)
= () (], sl =i
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Step 3. Fix an orthonormal basis {e4} of V and denote by Si_l the open hemisphere
Stt={veV; |i]=1, vel>0}.

Note that Gri(V) =2 RP" ! is the Grassmannian of lines in V. The set of lines which do
not intersect S’f:l is a smooth hypersurface of Gry(V) diffeomorphic to RP"~2 and thus
has kinematic measure zero. We denote by Gri(V)* the open subset consisting of lines
intersecting SCL:I. We thus have a map

Y:Gri(V)— 87 t—ensSh
This map is a diffeomorphism and we have

Cn1 :/ |dyn,1] =/ |dyn 1 =/ dvnaly.
Gri(V) Gri(V) 517

1
Now observe that 1 is in fact an isometry and thus we deduce

On—1NWy

2 2

1
Chi1 = §area(5”*1) =

Hence
Cn+1 = Cnclcn+1,1 = UnCn-
And we deduce

n—1 n—1
Cn:Un—l"'UQCQZQHUk: HO’j.
k=1 7=0

In particular, we deduce the following result.

Proposition 1.4.1. For every 1 < k < n we have

anol g n [[[o wj
Cop = = ! = ! :
* /GrkaR") T (Tl o) - (I1= 7 oy) (’“> (TT wi) - (IT)=1 wy)

= 7=

Following [KR] we set

lo,_1 nwy, L wpn!
R O | (=)
k=1

2wn 1 an 1

m = <[k1'><[[ <Z> T (L17)

Denote by |dvy, k| the unique invariant dens1ty on Gr(V), dim V' = n such that

(
/Grk( v o] = [k] (1.18)

H

d .
Cnd | fynk’

3

We have

|dvy, | =
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Example 1.4.2. Using the computation in Example 1.3.1 we deduce
’d’yzﬂ = ‘d9|, 0<0 <.

vy
Ca =/ |df)| = 2%,
0 wi

and we deduce

as predicted by Proposition 1.4.1. We have
2 w2
=R

. O

so that |dva 1| = |dvya1

1.5. Affine Grassmannians

We denote by Graff; (V') the set of k-dimensional affine subspaces of V. We would like to
describe a natural structure of smooth manifold on Graff; (V).

Note that we have tautological vector bundle U = U, — Gri(V). It is naturally
a subbundle of the trivial vector bundle V. = V x Gry(V) — Gry(V) whose fiber over
€ Gry (V) is the vector subspace L. The trivial vector bundle V is equipped with a natural
metric and we denote by U+ — Gr (V) the orthogonal complement of U in V.

The fiber of Ut over L € Gry(V) is canonically identified with the orthogonal comple-
ment L+ of L in V. The points of U+ are pairs (¢, L), where L € Gry(V), and €'is a vector
in Lt

Observe that we have a natural map A : U+ — Graff,(V) given by

(¢,L) — 7+ L.
This map is a bijection with inverse
Graff, (V) > S +— (SN [S], [S]),
where [S] € Gri(V) denotes the vector subspace S — S parallel to S. We set
és) =sn[st
and we say that ¢(.S) is the center of the affine plane S.

We equip Graffy (V) with the structure of smooth manifold which makes A a diffeo-
morphism. Thus, we identify Graff,(V) with a vector subbundle of the t¢rivial bundle
V x Gry (V) described by

Ut ={(GL) eV x Grg(V); PLe=0},
where P; denotes the orthogonal projection onto L.

The projection 7 : U+ — Grg(V) is a submersion. The fiber of this submersion over
L € Gry(V) is canonically identified with the vector subspace L+ c V. Assuch is equipped
with a volume density dV; .. We obtain in this fashion a density dV; . on the horizontal
subbundle ker Dm € TU™ .

The base Gry (V) of the submersion 7 is equipped with a density |dv, x| and thus we
obtain a density
| k| = [dvp| X 7| doyn il
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Let us provide a local description for this density. Fix a small open subset O C Grg(V)
and denote by O its preimage in Graff; (V') via the projection 7. Then we can find smooth
maps 3
e : 0=V, 7m:0-=V
with the following properties
e For every S € O, (ea(S)) is an orthonormal frame of V and
[L] = span (e;([L])).
e For every S € O we have
S =7(S)+[9].
We rewrite the last equality as
S = S(7, ).

Observe that the center of this affine plane is the projection of i onto [S]*

d8) = (e oi)eq.

«

Following the tradition we introduce the (locally defined) 1-forms
O :=eq0dr, 0, :=e,ode;.

For fixed L € Gri(V) the density on the fiber U} = L= is given by

/\ b

The volume density on Graff; (V) is described along O by
Bl =] (Aoe) (A |

Theorem 1.5.1. Suppose f : Graff,(V) — R is a compactly supported |d7,
function. Then

/ F(9)|dAm i (S)] 2/ (/ f(p+L)dVLJ-(p)>|d'7n,k(L)|7
Graff, (V) Gr (V) L+

where dV; 1 denotes the Buclidean volume density on L*.

dVLL =

-integrable

Denote by Iso(V) the group of affine isometries of V', i.e. the subgroup of the group
of affine transformations generated by translations and rotations about a fixed point. Any
affine isometry 7' : V' — V is described by a unique pair (¢,5) € V x V so that

T(v)=Sv+t, YveV.
The group Iso(V') acts in an obvious fashion on Graffy (V') and a simple computation shows
that the associated volume density |d7, x| is Iso(V') invariant.

If instead of the density |dv, k| on Gry (V') we use the density |dv,, x|, we obtain a density
|dDy, ;| on Graffy (V') which is a constant multiple of |d¥,, k.

H

Cn,k

|diy, | = |dAn,, |- (1.19)
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Example 1.5.2. Let us unravel the above definition in the special case Graff;(R?), the
Grassmannians of affine lines in R?. Such a line L is determined by two quantities: the
angle 6 € [0,7) is makes with the z-axis, and the signed distance p € (—o0,00) from the
origin. More precisely, for every p € R and 0 € [0, 7) we denote by Lg,, the line is given in
Fuclidean coordinates by the equation

xsinf —ycosh =p

As a manifold, the Grassmannian Graff;(R?) is diffeomorphic to the interior of the Mobius
band. The Fubini formula in Theorem 1.5.1 can now be rewritten

Jo o FE ) = [~ ([ 1Tl ) ]

Vfe é’;’t(Graﬁ’l(RQ)). O






Chapter 2

A brief survey of
Riemannian geometry

2.1. The Levi-Civita connection and its
curvature

Let M be a smooth, connected manifold. We denote by Vect(M) the space of smooth vector
fields on M. For any smooth vector bundle ¥ — M we denote and by End E' the vector
bundle whose fiber over € M is End(E,), by C°°(FE) the space of smooth sections of F
and by QP(F) the space of smooth differential forms of degree p on M with coefficients in
FE i.e., the space of smooth sections of APT*M ® E.

Definition 2.1.1. (a) A connection on the smooth vector bundle E — M is an R-bilinear
map
V : Vect(M) x C*®°(E) — C*(E), Vect(M) x C*(E) > (X,u) — Vxu
satisfying
Vixu= f(Vxu), Vx(fu)=(Xf)Yu+ fVxu,
VfeC®(M), X € Vect(M), ue C®(FE). Vxu is called the covariant derivative of the
section v in the direction of X.

(b) The torsion of a connection V on T'M is the R-bilinear map
T =Ty : Vect(M) x Vect(M) — Vect(M),
(X,Y)— T(X,Y) :=VxY — VyX — [X,Y], VX,Y € Vect(M).
The connection is called symmetric if its torsion is zero.

(c) The curvature of a connection V on the vectur bundle £ — M is the R-bilinear map
R = Ry : Vect(M) x Vect(M) — C*(End E ),
(X,Y) — R(X,Y) = [Vx,Vy] - Vixy], ¥X,Y € Vect(M).
More precisely

R(X, Y)u =VxVyu—-VyVxZ — V[Xy]u, u e COO(E)



28 2. A brief survey of Riemannian geometry

(d) A connection V on T'M is called compatible with a Riemann metric g on M if
X -9V, 2)=9(VxY,2)+g(Y,VxZ), VX,Y,Z € Vect(M).

When the Riemann metric is clear from the context, we will simply say that V is a metric
connection.

We denote by C(M) the space of connections on T'M and by C(M, g) C C(M, g) the space
of connections compatible with the Riemann metric g. The following facts are immediate
consequences of the above definitions.

Proposition 2.1.2. Suppose V € C(M). Then the following hold.
(a) The torsion T = Ty is a tensor T € Q?(TM) i.e.,
T(X,Y)=-T(Y,X), T(fX,Y)=T(X, fY) = fT(X.Y),
VX,Y € Vect(M), f € C=(M).
(b) The curvature R = Ry is a tensor R € Q*(End TM) i.e.,
R(X,Y) = -R(Y,X), R(fX,Y)=R(X,fY)=fR(X,Y),
VX,Y € Vect(M), f € C(M) . 0

Example 2.1.3. The Euclidean space is equipped with a natural connection D = D®".
If (x!,...,2") are the natural coordinates on R", and we set 0; := d,: then for any vector

fields
X=X, Y=Y vy
i J

we have
DxY =Y X'DyY = Z(in@-w’)aj.

Both the torsion, and the curvature of D are equal to zero. We will refer to D as the trivial
connection on R"”. O

For any Riemann metric g on M we denote by End, T'M the bundle of skew-symmetric
endomorphisms of T'M. The fiber of End, T'M over x € M consists of endomorphisms of
T, M which are skew-symmetric with respect to the inner product g, on T, M.

Proposition 2.1.4. (a) If nonempty, (M) is affine space modelled by Q' (End TM).
(b) If nonempty, C(M,g) is an affine space modelled by Ql(End; TM).
Proof. Let VY, V! € G(M) define
A=V —V": Vect(M) x Vect(M) — Vect(M)
by
Vect(M) x Vect(M) 3 (X,Y) — AxY := VLY — V&Y.
Observe that

Ax(fY) = fAXY, Vf € C®(M) = Ax € C®(End TM).
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Clearly Afx = fAx, Vf € C°°(M) which shows that A € Q'(EndTM). Conversely let
V €C(M) and A € QY(End TM). For X,Y € Vect(M) define

ViY =V + AxY.

Then V'’ is a connection on 7M.

(b) Let VY, V! € C(M,g) and set A = V! — VY. We want to show that for every
X € Vect(M) the endomorphism Ax € C*°(End T'M) is skew-symmetric i.e.,

9(AxY,Z)+g(YAxZ) =0, VY, Z € Vect(M).
To see this note that
0=Xg(Y,2) - Xg(Y,2) = g(VXY,Z) + g(Y Vi Z) = g(VXY, Z) = (Y, V Z)
= g(AXy, Z) + g(YAXZ).
Conversely, if V € €(M,g) and A € Q'(End; TM) the if we define
/XY =VxY + AxY,

and one can check easily that V' € (M, g). 0
Example 2.1.5. Suppose V € C(M). Fix local coordinates (z!,...,2™), m = dim M

defined on an open subset U C M. We can then regard U as an subset of R™. We write
0; := 0, and we observe that the collection (0;)1<i<m trivializes TU = TM|y.

The trivial connection on TIR™ defines a connection D on TU and we can write
V=D+T, T € QYEndTU) = Q' (U) ® End(R™).
More precisely, if we set
Vz‘ = Vai, Dz = Dai, Fz = F&;

then T'; can be identified with an m x m matrix I'; = (ng)lgj,kzgm and we have

Vidy = Didy + > T30, => T30,
J J

The quantities ng are known classically as the Christoffel symbols and uniquely determine
the action of the connection V over U.

If T denotes the torsion of V then

T(0;,0;) = Vi0; — V;0; — 05, 0] = Vi0; — V;0i = Y _(TF; = T%) 0.
k

The connection is symmetric (i.e. 7' = 0) if and only if I‘k = FZ, Vk. If R denotes the
curvature of V then using the equality [0;, 0;] = 0 we deduce

R(0;,0,)0% = [Vi,V,]0% = (Zr ) — v, (Z kaas)
=3 ((@T5)0, + T5.(7:05) ) - Z( (O5T5)05 +T55(V,05) )

=3 (@ — 9T, + Z(rs 5T, )0
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= <(air§k —oTh) + Z(rjkrfs — rfjr§s> ) 0 = Ri;00
¢ s l

—_.pt
_'Rkij

Einstein Convention To reduce the notational overload when operating with tensors we
will use Finstein’s convention. Thus, when summing over a parameter which appears twice,
as a subscript and as a superscript we will omit the summation symbol. For example, with
this convention the expression

D (85, — 05 )de+ ) (ijrfs - I35, )3€
l st
can be rewritten as

(0T, — 9,74 )ar + (r;krffs — T3 T )ag. 0

ij- js

A connection V € C(M) can be used to derivate vector fields along a smooth path in
M. Suppose 7 : (a,b) — M is a smooth path. Then a vector field along 7 is a section of the
pullback bundle v*T'M — (a,b). For example, the velocity + is a vector field along 7. For
any vector field X along ~, its derivative along -y is another vector field along v denoted by
V5 X. Its value at tg € (a,b) is a vector V4 X |i=, € T,)M determined as follows.

e Choose local coordinates (x%) on M near ~y(tg) such that z*(y(tg)) = 0, Vi.

e In these coordinates, 7 is described by a collection of smooth functions () defined in
an open neighborhood of ty. The vector field X has the local description

X=> X',
i
where X* are smooth function of ¢, while the velocity 4 has the local description
y=> i'0;.
i

o If Fék denote the Christoffel symbols of V in the coordinates (z*) then

ViX=>" (Xk +) rfja';ixf> O
Y]

k

One can check that V5 X defined as above is independent of coordinates. Note alos that
the above system of ODE’s is linear in the unknown X*.

Definition 2.1.6. Let V € C(M). A smooth path v in M is called autoparallel with respect
to V if V44 = 0. 0

Example 2.1.7. Suppose V is a connection on M, described in local coordinates (%) by
the Christoffel symbols (F;k) Then a smooth path gamma : [0,1] — M described in local
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coordinates by smooth functions (z%(t)) is autoparallel if and only if the functions X°*(t)
satisfy the nonlinear system of second order ODE’s
# 4> Thalih =0, Vi O
j7k
Remark 2.1.8. A connection V € C(M) defines connections on all the tensor bundles of
M by requiring that the product rule be satisfied for any natural product between tensors.
For simplicity will all be denoted by V. For example, the covariant derivative of a 1-form
a € QY(M) along the vector field X is defined so that the product rule is satisfied
X - (a(Y)) = (VXa)(Y) + Q(VXY)

so that

(Vxa)(Y)=X-(aY)) —a(VxY), X,Y € Vect(M). (2.1)
If S € C®EndTM) is an endomorphism of TM, and X € Vect(M) then the covaraint
derivative of S along S is the endomorphism V xS defined by product rule requirement

Vx(SY)=(VxS)Y + S(VxY, VY € Vect(M)

so that
(VxS)Y =Vx(SY)—-S(VxY) VX,Y € Vect(M). (2.2)
This last equality is often written in the commutator form
VxS =[Vx,S] 0

Proposition 2.1.9. Let V', V! € @(M,g). Then
VY = V! = Tgo = To.
Proof. Let
T:=Tg1 — Tgo, A=V'-VC
Then
T(X,Y)=VyY - V%Y — (Vy X - V§X ) = AxY — Ay X.
On the other hand for every X,Y, Z € Vect(M) we have
0= g(AzX,Y) +9(X, AzY) = (9(Av X, 2) + 9(X, Ay Z) ) + g(Ax,Y) + (Y, AxZ)
=g(X,AzY —AvZ)+g(AxY — Ay X, Z) + g(Y, Az X + Ax Z)
=g9(X,T(Z,Y)+9(T(X,Y), Z)+ g(Y,AzX + Ax Z).
=9V, AzX + Ax2) +9(T(X,Y), Z) = g(X, T (Y, Z).
On the other hand
AxZ —AzX =T(X,Z2) = gV, T(X,2)) =g9(Y,Ax Z — AzY)
so that
9¥V,T(X,2)) = g(Y,AxZ — AzX) + g(Y, Az X + AxZ) + 9(T(X,Y), Z) — (X, T(Y, Z) )
=29(Y, AxZ) + 9(T(X,Y), Z) —g(X,T(Y, Z) ).
We deduce
2(Y, Ax Z) = g(Y, T(X, Z)) + (X, T(Y, Z)) — g(Z, T(X,Y)).
This proves that A =0<«<= T = 0. O
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The above result implies that that there exists at most one symmetric, metric connection
with trivial torsion.

Proposition 2.1.10. Suppose g is a Riemann metric on the smooth manifold. Then there
exists precisely one symmetric metric connection V. on M. This is known as the Levi-Civita
connection associated to the metric g.

Proof. Suppose V is a symmetric metric connection on T'M. For X,Y,Z € Vect(M) we

have
X9V, Z2)—-Zg(X,Y)+Yg(Z,X)
=9(VxY, Z2) +9(Y,VxZ) = g(VzX,Y) — g(X,V2Y) +g(Vy Z,X) + g(Z,Vy X)
=g(VxY+Vy X, Z)+g(VxZ —VzX,Y)4+9g(VyZ —-VzY, X)

=g(2VxY = [X,Y], Z) + ¢g([X, Z],Y) + g([Y, Z], X),
so that

9(VxY,Z) = %{ Xg(Y,2) +Yg(Z,X) — Zg(X.Y) }

5 {91X. 1, 2) — 9(1v, 20, X) + 9(12,X],Y) }, V7 € Vect(M)

A simple computation shows that this defines a symmetric metric connection. O

Remark 2.1.11. We can use the above identity to produce local descriptions of the Levi-
Civita connection. If (z') are local coordinates on M such that in these coordinate the
metric g has the form
g = gijdx'dz’
then the Christoffel symbols of V in these coordinates are determined as follows. We have
(using Einstein’s convention)
k
so that )
grell; = g(Vi0;,0p) = 5(81‘91‘6 + 0jgit — 0ugij )-
We conclude

1
F?j = §gk£ (igje + 0jgic — Dugij )-

From a computational standpoint this formula is too complex and we will rarely use it. O

Definition 2.1.12. (a) A geodesic on a Riemann manifold is a path autoparalel with respect
to the Levi-Civita connection.

(b) The Riemann curvature of a Riemann metric is the curvature of the associated
Levi-Civita connection. O

We see that the Riemann curvature is locally described by the metric tensor g;; and its
partial derivatives up to order two.

In the sequel, unless otherwise indicated, we will work only with the Levi-Civita connec-
tion of a metric.
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Associated to the Riemann curvature R of a Riemann metric g on M is the Riemann
tensor. This is a section R of the tensor bundle T*M®* defined by

RI(U,V;X,Y) :=g(U R(X,Y)V), YU, V,X,Y € Vect(M).
In local coordinates X*) on M, if g = (g;;), then
R(Ok, 00)0; = R'1,40;
and R = (Rijre), where
Rijke = 9is Ry = 9(0i, R(Ok, 0p)05)

The Riemann curvature and tensor enjoy have many symmetries. The next result list the
fundamental symmetries relations of these tensors. For a proof we refer to [N, §4.2.1].

Proposition 2.1.13. The Riemann curvature R of a Riemann metric g on M satisfy the
following identities, for any U,V,X,Y, Z € Vect(M).

(a) R\(U,V;X,Y)=R\(U,V;Y,X)=—-R\(V,U; X,Y).
(b) (The first Bianchi identity)
R(X,Y)Z+ R(Z,X)Y + R(Y,Z)X =0.
(c)
RI(U,V;X,Y)=R\(X,Y;U, V).
(d) (The second Bianchi identity)
(VxR)(Y,Z)+ (VyR)(Z,X)+ (VzR)(X,Y) = 0. 0

In local coordinates the above identities take the form
Ripiy = Rijre = —Rjine = —Rijor,

Note that the Riemann curvature defines for every X,Y € Vect(M) and endomorphism of
T M described by

Vect(M) — R(U, X)Y.

The trace of this endomorphism is a section Ricci = Ricci, of T*M®? called the Ricci
curvature of g. The symmetry of the Riemann curvature implies that Ricci is a symmetric
tensor, i.e.

Ricci(X,Y) = Ricci(Y, X), VX,Y € Vect(M).

In local coordinates the Ricci curvature is described by the quantities (R;;), where
- l {
Rij:=) Riy= Rii=> Ruy.
L L L

Using the metric we obtain isomorphisms

T*M = TM, T*M®?~T*M @ TM =~ EndTM
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and thus we can regard Ricci as an endomorphism of T'M. As such, its trace is called the
scalar curvature and it is denoted by s = s4. In local coordinates s is described by

s=Y 9"Riyj = Riij, (2.3)
.3 i,J

where (g*/) denotes the inverse of the matrix (g;;).

Fix a point pp on the Riemann manifold M, « : [0,1] — M a smooth path staring at
po, and Xo € T, M. A parallel transport of X along ~ is a parallel vector field X = X (¢)
along 7 such that X (0) = Xj.

The existence and uniqueness results for initial value problems of linear ODE’s with
smooth coefficients implies that there exists a unique parallel transport of Xo € T,,M
along ~.

A connected Riemann manifold (M, g) is naturally a metric space, where the distance
between two points p,q € M is defined by

dg(p7Q) = I%f LQ(V))

YE€Ppq

where P, is the set of continuous, piecewise smooth paths v : [0,1] — M connecting p to
g, and for v € P, , we denoted by L,(v) its length

1
Ly(y) = / (0]t

The topology induced by this metric coincides with the natural topology on M. For every
x € M and r > 0 we set

By (z,r):={y e M; dy(z,y) <r}.

Suppose v : [a,b] — R is a geodesic on M then

d . . ..
%g(%’y) =29(Vs7,7) =0

so that the speed |¥(t)| is a constant, ¢ = o(y). Hence the length of v is

Ly(v) = a(v)(b = a).
In particular
dg((0),7(a)) < a(7)(b - a). (2.4)
Observe that if v : [a,b] — M is a geodesic with speed o then the rescaled path
3(s) i=(s/0), ca<s<ab
is also geodesic, but with unit speed. We will refer to the geodesics with unit speed as

geodesics parameterized by arclength.

The geodesics are locally defined by second order ode’s. The displacement inequal-
ity (2.4) and the standard existence and uniqueness results for such equations imply the
following result.
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Proposition 2.1.14. Let (M,g) be a connected Riemann manifold and po € M. Then
there exists r = r(po) > 0 such that for every tangent vector X € T, M of length | X |, <,
there exists a unique geodesic

Y = Ypo,x 1 [0,1] = M

satisfying the initial conditions
7(0) = po, 7(0) = X. O

The endpoint of the geodesic 7,,, x postulated by the above result is denoted by exp,, (X).
The smooth dependence on initial conditions of solutions of ode’s implies that this map is
actually smooth shows that we have a smooth map

expTM — M, exp(X) =exp,(X,), Vpe M, X € Vect(M).

We denote by D (po,r) the open disk in Ty, M of radius r centered at the origin. If r is
sufficiently small then the displacement inequality (2.4) implies

expy, (Dar(po, 7)) C Bar(po,r).
The differential of exp,, D(pg,r) — M at 0 € T,,, M is a linear map
Dexp,, : To(Tpo M) — Ty, M.

A simple computation shows that via the tautological identification Tp(T},, M) = T, M we
can identify this linear map with the identity 17,,m. The implicit function theorem then
implies the following result.

Proposition 2.1.15. There exists p = p(po) > 0 such that the exponential map

expy, : Dar(po, p) — Bupo, p)
is a diffeomorphism onto an open neighborhood of pg € M. O

A much more refined result is true.
Proposition 2.1.16. If p is as in Proposition 2.1.15 then exp,, defines a diffeomorphism

C€XPp, (]DM(])[), P) ) = BM(p()v P)

Note that any choice of Euclidean coordinates (z') in the tangent space Tp, M produces
local coordinates in some neighborhood of py which we continue to denote by (x?). The
local coordinates obtained in this fashion are called normal coordinates at py. In these
coordinates we have

'(po) = 0, Vi,
Ik(po) =0, gij(x) = 0i5 + O(2), Vi, j,k
where §;; denotes the Kronecker symbol, and for positive real number v we denote by O(v)
denotes a quantity bounded from above by const. ", |z'|” near p.

Example 2.1.17. Consider the vector space R" equipped with the Euclidean metric. Then
the exponential map
exp: TR" — R"
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has the simple form
exp(v,z) =z +v, Ve eR", veT,R"=R"

In the sequel we will denote this Euclidean exponential map by E. a

2.2. Cartan’s moving frames method

We want to describe a very useful method for computing the Riemann curvature in concrete
situations.

Suppose (M, g) is a Riemann manifold of dimension m. A local (or moving) frame on M
is a collection {ey, ..., ey} of smooth vector fields defined on an open subset U C M such
that for every u € U the collection of vectors {e1(u),...,en(u)} C T,,M is an orthonormal
basis of T,,M .

To any local frame (e;) defined on an open set U C M we can associate the dual coframe
which is the collection of 1-forms 8" € Q'(U), 1 < i < m = dim M uniquely determined by
the requirements

0'(ej) = 95 on U, Vi,j.
Following E. Cartan we want to explain how to extract information about the Riemann
curvature from the knowledge of the exterior derivatives d@'. In the sequel we will use
Finstein’s convention.

Note the Levi-Civita connection determines 1-forms w} € QY(M) uniquely defined by
the equalities
Viej = (e Jwj)e; = wilex)ei, Vj,k
where _| denotes the contraction of a differential form with a vector field. We can rewrite
the above equalities in the more compact form

Ve; = wéei, Yy (2.5)
We denote by w the m x m matrix with entries (w;) We will refer to these forms as the

1-forms associated to V by the frame (e;). Observe that because the Levi-Civita connection
is compatible with the metric the matrix w is skew-symmetric,

wh = —wl.
We set
w,ij = ey wj- = wj-(ek).
If we now denote by € the matrix [ey,. .., e;], then the equality (2.5) simplifies some more
to the equality
Vé=¢-w.

The Levi-Civita connection enters into the differentials d@° through the back door. More
precisely we have the identity.

d6'(ej, er) = €;6'(e) — ex8'(e;) — 6'([e;, ex]) = —6'([ej, ex))- (2.6)
On the other hand, since the torsion of the Levi-Civita connection is zero we deduce

S S
[ej,ex] = Ve er — Ve, €) = wires — wj e
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Hence
do*(ej, er) = —0wjy, + Owi; = —wii + Wi
If we consider the 2-form
n'=6°Aw;
then we observe that
' (ej, er) = 0°(ej)wi(er) — 0°(er)wi(e;) = S5wi(er) — Giwli(e;)
iy - wh = dB(es, ).
Hence
do' = 0° Nwy, = —w; A 6°.

If we introduce the column vector

0!
6 = :
om
then we can rewrite the above equality as
dd = —wA8. (2.7)

The last equality uniquely determines w. More precisely, we have the following result.

Theorem 2.2.1 (Cartan). There exists a unique, skew-symmetric matriz w with entries
1-forms on U such that

dd = —wA8. (2.8)
Moreover, the curvature 2-form R € QQ(Endg_ TM) is given by the equality
R=dw+wAw, (2.9)

where
(WAw); = Zw}‘g /\wf.
k

The equalities (2.8) and (2.9) are known as Cartan’s structural equations.

Proof. We have already established the existence of such a matrix. Let us establish its
uniqueness. Observe first that there exist smooth functions g;.k on U uniquely determined
by the equalities
1 , A
de* = 59}1@6” 6", 9k = —iyj-
i

Suppose w = (wj) is a skew-symmetric matrix of 1-forms on U satisfying (2.7). Then we

can write each entry w} as a linear combination of 0’s,
w; = f1x0%, Vi, j.
Since w satisfies (2.7) we deduce
0 N[5, =0 Nwj =do" = g3,.6” N6

If we write
Jl'k = ( ;k - flij)
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then we deduce
Fi_ i
I jk = 9jk-
Since w is skew symmetric we deduce

i J
jk — ik
We have
i+ Grs — 955 = Fir = Jig + Jia = Fin = 15 + 5 = 2

Hence, the coefficients f]’/,C are uniquely determined by the ¢'s via

to= 5 (g + ol — ).
To prove (2.9) we note that
R(es,em)e; = [Ve,, Ve, J€j — Vies,em]€i
Using the identity (2.6) we deduce that

les, en] ZB ler, em])es = — Zd@s e, en))

BN Sk A0 feremllen = D03 (i — whudf Jew = 3 (i — whe e
s k sk

S

Hence

_ s WS
V[eZ7em]ej - Z(w@m B Vesej ZZ w@m — Wme wsyel

S

Next, if we denote by Le, the Lie derivative along e; we deduce

Ve Venlej = Ve, (Vene)) = Ve, (Vee)) = Ve, Y wijes = Ve, D wijes
S S
= Z(qufnj — Le,,wyp )es + Z Z(w;’@jwés - wjjwfns )ei
s s 7
= Z( Le[wfnj — Le,,why )ei + Z Zwé A wj:(eg, €m)e;
% % s

On the other hand, using the formula
dn(X,Y) = Xn(Y) - Yn(X) —n([X,Y]), Vne Q' (M), ¥X,Y € Vect(M)
we deduce
dwj»(eg, em) = Lee — Le,, ,,i,w — wé([eg, en))

From the equality

[eﬁa em] = Z(Wﬁm - wmﬂ )e

S

we get,

eﬁaem ZWSJ wfm_ fn@)

Putting together all the above equalities we obtain Cartan’s structural equation (2.9). O
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Example 2.2.2. Suppose U is an open set in the plane R? and w : U — (0, o) is a smooth
function. Consider the Riemann metric g on U defined by

g = w?(dx® + dy?).
Then e; = iax, e = %c% is an orthonormal fram with dual coframe

0! = wdz, 6° = wdy.

Then
~ wdx - —w! dx A dy 0 — Yy wdz
— - y _
0 [wdy]’ d6 { whdx A dy ] w—;dy 0 ]/\[wdy}
1 0 —wy,dx 4 widy A | wde
Cw | wydr — widy wdy
We deduce that
1 [ 0 wydr — wi,dy ]
w=— / /
w | —wydr + wydy
- 0 Oy(log w)dx — 0, (log w)dy
| —0y(logw)dz + 9, (log w)dy
The curvature 2-form is
_ _ _ 0 —(Alogw)dx A dy o 9
R_dw+wAw_dw_[(Alogw)d:z/\dy 0 , A=0;+ 0,
Then the sectional curvature is
Alogw
Ri212 = g(e1, R(e1, e2)ez) = —(Alogw)dz A dy(e1,es) = — w2g .

For example, if U is the half-plane y > 0 and w(x,y) = y~! then the corresponding metric
has constant sectional curvature = —1. This half-plane equipped with the metric h =
y%(da:2 +y?) is known as the hyperbolic plane. O

2.3. The shape operator and the second
fundamental form of a submanifold in R"

Suppose M is an m-dimensional smooth submanifold of R"®. The Euclidean metric on R"
induces a metric ¢ on M. We would like to determine the Levi-Civita connection VM
and the curvature tensor of g. In the sequel, we will use without mentioning the Einstein
summation convention. We will use the following indezxing conventions.

o We will use small Latin letters ¢, j,... to denote indices in the range
1<i,j<m=dimM.
o We will use small Greek letters a, 3, ... to denote indices in the range
m<a,(,... <n.
e We will use the capital Latin letters A, B, C' to denote indices in the range
1< A B,C<n.
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To compute the Levi-Civita connection we will use Cartan’s moving frame method.
Denote by D the Levi-Civita connection of the Euclidean metric on R™. Let us recall its
definition since it will come in handy a bit later.

Every vector field on R™ can be regarded as an n-uple of functions
Xl
X — :

X’n
Then

dXx!

DX = : =dX.

axm

The restriction to M of the tangent bundle TR" admits an orthogonal decomposition
(TR™)|psr = TM & (TM)™*.

Correspondingly, a section X of (TR™)|p; decomposes into a tangential part X7 and a
normal part X¥. Fix a a point pg € M, an open neighborhood U of pg in R”, and a local
orhonormal frame (€4) of TR™ along U. We denote by (84) the dual coframe of (e4), i.e.

HA(eB) = eypo€eR = 5AB-
then
X" =6'(X)e;, XV =0%X)e,.

If X is a section of TR”‘ M

We denote by @‘é the 1-forms associated to D by the frame (e4). They satisfy Cartan’s
equations
d0* = -4 NP, Dep = Ones, 04 =—-0%F.
Now observe that
0%y =0
from which we conclude that
(d6")[ar = —(© A 67) 1.

If we write

ot =04y, DD =09y
we deduce from the equalities

d¢' = —®L N gI, @F = -0,
and Cartan’s theorem that (<I>;) are the 1-forms associated to the Levi-Civita connection
VM by the local orthonormal frame (e;|5s). This implies that

VMej = @éei = the tangential component of <I>JA6A = De;.
We have thus obtained the following result
Proposition 2.3.1. For every X,Y € Vect(M) we have the equality
vy = (DxY)". O
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Consider the Gauss map
§=S%u:M — Gr,,(R"), T, M.

The shape operator of the submanifold M — R” is, by definition, the differential of the

Gauss map. We denote it by S™ and we would like to relate it to the structural coefficients
A

O,

As explained in 1.1, in the neighborhood U of pg, the “moving plane” x +— T, M can be
represented by the orthonormal frame (e 4) which has the property that the first m vectors
ei(x),...,en(x) span T, M. The differential of the Gauss map at x € U N M is a linear
map

DS : T,M — Tg(p) Gy (R™) = Hom(T, M, (T, M)™).
As explained in (1.6), this differential described by the (n —m) x m matrix of 1-forms

(eaeDe;,)

a,t
On the other hand
D €; = (I);leA

so that
e,oDe; = (I)?.
Define
Ot =e; 1@} € QM NU),
so that

A A i
We have thus obtained the following result.

Proposition 2.3.2. The shape operator of M, that is the differential of the Gauss map, is
locally described by the matriz of 1-forms (®$)1<i<m<a<n. More precisely the operator

SM(e;) € Hom(T, M, (T, M)* )

s given by
SM(ei)ej = (De, €;)" = ®j;eq, Vi, . O

The torsion of D is trivial so that,
D, ej — De, e; = [e;, e;].
Since the vector fields e;, e; are tangent to M, so is their bracket [e;, e;] so that
lei,ej]ee, =0, V1 <i,j<m<a<n.
We deduce
(De, €j) @ €q = (De; €;) ® eq, Vi, j,a
The last equality can be rewritten as
(De; €;)” = (De; €;)".
If we observe that

(Dfeiej)uz(Dei(fej))l/:f(Deiej)V7 Vi,j, fECOO(UﬂM)
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we deduce that the map
Vect(M) x Vect(M) — C®((TM)*), Vect(M) x Vect(M) 3 (X,Y) — (Dx Y)”
is C°°(M) bilinear and symmetric, i.e., VXY € Vect(M), f € C>°(M) we have
(Dyx Y)" = (Dx(fY))” = f(DxY)" = f(Dy X)".

This symmetric bilinear form is called the second fundamental form of the submanifold
M — R", and we will denote it by Sjs. Note that

Su(ei,ej) = ¢ (De, ej)eq = Pfjeq = SM(ei)e;. (2.10)
From the equalities
0=cei(ejoey) = (D¢ ej)oe,+ejo(De, e,),
we deduce
ej®(De e,) =—(De, ej) eeq = —e, @ Sy(e;,€5), Vi, j,a. (2.11)
From Cartan’s structural equations (2.9) we deduce that the Riemann tensor satisfies
R=d®+® AP < R =d®) + &) AP, Vi, j.

Since the curvature of the Euclidean metric on R” is trivial, we deduce from Cartan’s
structural equations that

dOA + 04 N05 =0, VA, B.
Restricting this equality to M we deduce
. . c . X .
d®} = —OL N BT = —Bp NPT — D, A DY
so that
R; = d®% + &) A DF = —D, A DF.

In particular, we deduce

. ot Pl
g(ei Rler,ee;) = Rjleper) = =) | o ‘
o kj 2
o o
= Z <I>(’f:“l <I>§“l ' = Sm(ex, ei) @ Sn(er, e;) — Su(ex, ;) ® Sn(er, €;).
o j j

This implies the following result.

Theorem 2.3.3 (Gauss’ Golden Theorem). Suppose M is a submanifold of R™. We denote
by g the induced metric on M and by Sy; the second fundamental form of the embedding
M — R™. Denote by R the Riemann curvature of M with the induced metric. Then for
any Xi,...,X4 € Vect(M) we have

9(X1, R(X3, X4)X2) = Sn(X3, X1) @ Sy ( Xy, X2) — Su (X3, Xo) @ Spr( Xy, X1),

where o denotes the inner product in R™. O
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2.4. The Gauss-Bonnet theorem for
hypersurfaces of an Euclidean space.

The results in the previous subsection have very surprising consequences.

Suppose M is a compact, orientable hypersurface of R™*!. If fix on orientation on M
then we obtain a normal vector field

n:M—R™ nz) L T,M, |n(z)=1, Ve M.

If we choose a local oriented orthonormal frame ey, ..., e,, of TM then n(z),ei(x),..., ey
is an oriented orthonormal frame of R™*!. In this case we can identify the second funda-
mental form with a genuine symmetric bilinear form

Sy € C®(T*M®?, Sy (X,Y)=ne(DxY).
The Gauss map of M < R™F! can be given the description
Sar: M — Grp,(R™), M 3 2 +— (n(z)) := the vector subspace orthogonal to n(x).
On the other hand, we have an oriented Gauss map
Sy M — S™ x— n(z),

and a double cover
7 8™ — Grp,(R™Y), S™ 3 i — (@),
so that the diagram below is commutative
S

M —— s

GI‘m (Rm—i—l )

We fix an oriented orthonormal frame ( fé, fi.eo, fm) of R™*1 and we orient the unit sphere
S™  R™*+! 50 that the orientation of T 7 S™ is given by the ordered frame

(fla oo mFm)
Theorem 2.4.1 (Poincaré-Hopf-Morse). Suppose m = dim M is even. Then

> 1
deg Gy = §X(M) = Euler charactersitic of M.

Proof. Pick a regular value hy € Gr,,,(R™"!) of Gp;. Then 7~ 1(ho) consists of two unit
vectors tug € S™ which are both regular values of Gp;. For every regular point x € M of
Sy we set

1 Dng T M — Tn(x) S™ preserves orientations,
€ 2
’ -1 DSy T, M — Tn(x) S™ reverses orientations.

Then

deggM: Z €p = Z €' -

n(z)=uo n(z’')=—uo
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Consider now the function
C:R™ SR, f(2) =ug ez
and denote by £ its restriction to M.

Lemma 2.4.2. (a) A point x € M is a critical point of ¢ if and only if n(x) = fuog.
(b) The function ¢ to M is a Morse function. Moreover, if x is a critical point of £ and
w(x) is its Morse index then

e = (1)),

Proof. (a) Observe that ug is the gradient of /. We deduce that z € M is a critical point
of L|ys if and only if ug L T, M, i.e., n(z) = tuyg.
(b) Suppose xy € M is a critical point of ¢, that is, n(xo) = tug. Choose a local, oriented

orthonormal moving frame z — €(z) := (e1(z),...,emn(z)) of TM defined in a neighbor-
hood of xy. Then

€(xo) := (e1(xo),...,em(xo))
is a positively oriented orthonormal frame of Th,(,,,)S™.
The Hessian of ¢ at z¢ is the symmetric bilinear form Hy, : T M x T, M — R defined
by
Hﬂﬁo( €i,€j ) = (LeiLejg)(xO)v
where Le; denotes the Lie derivative along the vector field e;. We have

Lejl = Le;(ug ® x) = up ® €,

Sul(e;, e; if n(xg) = ug
LeiLejgzLei(uo.ej):uo.(Dei ej): ( ' ]) . ( )
—Su(ei,e;) if n(xg) = —uo.
On the other hand, the differential at x( of the oriented Gauss map is the linear map
D:rogM : TxoM - Tn(:co)Sm
which associates to e;(xg) € Ty, M the orthogonal projection of the vector (De, 1), onto

Tr(wo)S™ = span €(p). In other words,

— 2.11
Dy, Gme; = E (ej @ D¢, n)e; L E S (e, ej)e;. (2.12)
j j

Because n(xg) is a regular value of G,y we deduce that the matrix (SM(ei, ;) )1<ij<m is

nonsingular. This implies that the Hessian of £ at z¢ is also nonsingular and

(=1)M=0) = det H,, = (£1)™ det( Sr(ei, e;)) = det(—Su(ei, €5)) = €q-

From the above lemma we deduce

2deg§M: Z €p = Z (—1)”($):X(M)7

n(z)==xxo dl(z)=0
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where at the last step we used the Morse (in)equalities for the Morse function ¢. This
concludes the proof of Theorem 2.4.1. O

Remark 2.4.3. The above result has one interesting consequence, namely that the com-
pact, orientable hypersurfaces of an odd dimensional vector space have even Euler charac-
teristic. This shows for example that the complex projective plane CP? cannot be embedded
smoothly in R® because y(CP?) = 3. 0

In the remainder of this subsection we will assume that m is even, m = 2h. Denote by
dA,, the “area” form on the unit m-dimensional sphere S™. Recall that o,, denotes the

“area” of S™. Hence
1
/ —dA,, =1
gm Um

1 - 1
/ GydAy, = deg Gar = - x(M).
Om JM 2

so that

We recall that
oon,  22hzhp)
=(2h+1 — — =
oon = (2h + Nwart1 9 2n)!
Denote by g the induced metric on M and by R the curvature of g. We would like to prove
that the integrand §3,dA,, has the form

(2.13)

Gt d Ay = P(Ry)dVay,
where dV)s denotes the metric volume form on M and P(R)y) is a universal polynomial of

degree 3 in the curvature R of M.

Fix a positively oriented orthonormal frame € = (ey,...,ey) of TM defined on some
open set U C M and denote by 8 = (01, ...,0™) the dual coframe. Observe that

dVayr =0 A A O™,
We set
Sij = Sm(ei,ej) en, Rijie:=g(ei, R(ex, er)e;).
Theorem 2.3.3 implies that

S S
Sik Sje

Observe that R;jre # 0 =1 # j, k # {, and in this case the matrix
5 o]
Sjk Sie
is the 2 x 2 submatrix of S = (S;;)1<i j<m obtained by intersection the rows 7, j with the
columns k, . We can rephrase the equality (2.14) in a more convenient form.

Rijke = SirSije — SitSjr = ’ : (2.14)

First, we regard the curvature R;j, at a point x € M as a linear map

AT, M — A’T;M, Rlephe)) =Y Rijud' A6,

1<j
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Next, regard S as a linear map
S:T,M — T*M, Se; = S;;6".
Then S induces linear maps
APS : AFT, M — APT*M,
defined by
S(ey N---Nej,) = (Sei ) N---A(Se;,), V1<ip <---<ip<m.
The equality (2.14) can now be rephrased as
R = A%S. (2.15)
Along U we have the equality
(GisdAn) lu=A"S(er A+ Aep) = (det S)OT A - A O™ = (det S)dV)y.
We want to prove that det S can be described in terms of A%2S. To see this observe that
(A*'S)(e1 Aeg A---exp_1 Aeg) = (A2S)(er Aex) A--- A (A2S)(ean—1 A ean)

= /h\ (Z Rijos1,2:0" N6’ ) = Z e(p) (ﬁ Rgo(?s—l)cp(?s),Qs—l,Qs) dVr,

s=1 i<j PES, s=1
where 8/, denotes the set of permutations ¢ of {1,2,...,m = 2h} such that

and €(¢) = £1 denotes the signature of a permutation. Observe that

#8! = (22h) : (2h2_ 2) (;) = (22}2)' (2.16)

We would like to give an alternate description of det S using the concept of pfaffian.
First of all, define
1
k 14 k 14 2 2
@ij = ZRUMO NO° = §ZRijk€0 N = A S(ez /\ej) I3y (U)
k<t k0

We obtain in this fashion a m x m skew-symmetric matrix

6 =0, :=(0y)

whose entries are 2-forms on U. Note that we can also think of © as a 2-form whose
coefficients are skew-symmetric matrices. With the latter interpretation © is the curvature
2-form associated to the Levi-Civita connection

0y = Rys € Q*(End, TM).
Define the pfaffian of © by the equality

1<i j<m

—_1)h
Pf(O):= (2h;3| Z €(©)Ou(1)p@) A+ A Ouan—1)p(n) € XU,
T eSS,

where §,,, denotes the group of permutations of {1,2,...,m}. Observe that

—1)»
Pf(O©)= ( h!) Z €(©)Ou(1)p(2) A+ A Oypan—1)p(21h)

peS,
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We can simplify this some more if we introduce the set 8!/, consisting of permutations ¢ € 8/,
such that

(1) <p(3) < <p(2h—1).
Observe that

8 2h)!
#8 = (#8I )h! = #8I! = h—f‘f = (2hh)! =1-3---(2h —1) =: ~v(2h).
Then
PFO)=(-1)" > e(©)Oum)p) N A Opian_1)p(2n)-
peS,
We have
1 h
Pf(_@) = ﬁ Z (H p(25-1)p(27)0(25— 1)0’(2])>dVM-
(O’,QO)ES{,RXS/ j=1

On the other hand
(AQhS)(el Neag AN - Negp_1 N\ EQh)

Y (@)A"S(epn) Aeppa) A A epan1) A epan)
pES,
1

1
—#S),

Y 9)Opr)p@) A A Opiantyp(an)
PES,

1 i !
ey > (0 0) (TT Rotas-vyotanatei-otan ) Var = g5 PI(=0).

™ (op)ES!, XS, j=1

Hence
h!

#8m

GirdAnr = (A?S)(e1 Aea A+ Aeap1 Aeap) = Pf(-0),

so that

S s 2 2 h! (2.13) h! 2h)!
gM(o—ThdAM) 4 (2h)

P Sl
on #3), (=) #8! 22hghp)
We have thus obtalned the following result.

(27T)h Pf(—@)

Theorem 2.4.4 (Gauss-Bonnet). If M?" ¢ R?"1 is o compact, oriented hypersurface, and
g denotes the induced metric, then

- 1
X(M) =2deg Gy = W/MP]‘(—@

More explicitly, if (e1,...,eapn) is a local, positively oriented orthonormal frame of TM,
then
1 h
Pf(-0,) = m Z (H (25 -1)p(2§) (25 —1)o (2 -))dVM (2.17a)
(a,cp)ES'QhXS’ j=1
= D e(9)Opwye(x) Nt A Opan-1)p(an); (2.17b)
PESY),

where 8, denotes the set of permutations ¢ of {1,...,2h} such that
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8! denotes the set of permutations ¢ € 8], such that
p(1) <@(3) <+ < p(2h—1),
and
©ij = Y Rijre" N 6" 0
k<t
Example 2.4.5. (a) If dim M = 2 then
Pf(—04) = Ri212dV = (the Gaussian curvature of M) x dViy

(b) If dim M = 4 then 8/ consists of 3 permutations

1,2,3,4, e =1 — Ry212R3434,

1,3,2,4, e= -1 — —Ri312R2434

1,4,2,3, e =1 — Ris12R2334

We deduce
Pf(—0y) = 012 NO34 — 013 N O24 + O14 A O23
(¢c) We can choose the positively oriented local orthonormal frame (eq,...,e;,) so that it
diagonalizes Sjs at a given point x € M. Then the eigenvalues of Sy; at x are called the
principal curvatures at x and are denoted by k1(x),. .., Km(x). Then
Pf(—0) = pdVy, peC>®(M),
where

p(z) = (2h — 1) ﬁ ki(z), Vx € M.
k=1

Definition 2.4.6. If (M, g) is an oriented, even dimensional, Riemann manifold, then the
top dimensional form

1 1
Pf(-0,) € Q*"(M), h=-dimM
(277')h .f( g) € ( )7 2 un ’
is called the Fuler form associated with the metric and the orientation. We will denote it
by e(M, g). O

Remark 2.4.7. Although P f(—0,) was described in terms of a positively oriented local
orthonormal frame, one can very that the definition is independent of the choice of the
frame. O

2.5. Gauss-Bonnet theorem for domains in an
Euclidean space

Suppose D is a relatively compact open subset of an Euclidean space R™*! with smooth
boundary dD. We denote by n the outer normal vector field along the boundary. It defines
an oriented Gauss map

gD:aD—nS’m.
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We denote by dA,, the area form on the unit sphere S™ so that

. 1 q
degGp = - GpdA,.
m JOD

If m is even then the Gauss-Bonnet theorem for the hypersurface 0D implies

1 > 1
— HdAy, = =x(0D).
om o 9p 2X( )
Using the Poincaré dulaity for the oriented manifold with boundary D we deduce x(0D) =

2x(D), so that
1 -
— ShdA, = x(D), m € 2Z.
Om JoD
We want to prove that the above equality holds even when m is odd. Therefore in the

remainder of this section we assume m is odd.

Let us first describe the integrand gBdAm. Let Sp denote the second fundamental form
of the hypersurface

Sp(X,Y)=ne(DxY)=-Xe(Dyn), VX,Y € Vect(dD).
We deduce ) .
—G5dAy, = — det(—Sp)dVap,

m Om
where dVyp denotes the volume form on 0D.

A smooth vector field on D,
X :D — R™!
is called admissible if along the boundary points towards the exterior of D,

Xen >0, on 9D.

For an admissible vector field X define

_ _ 1
X:0D— S X(p)=-———X(p), VpeoD.
| X (p)]
Let us observe that the map X is homotopic to the map §D. Indeed, for ¢ € [0, 1] define
1 _
Y;: 0D — S™, Yi(p) = —((1 -t tX

Observe that this map is well defined since
(1—tn+tX]? =2+ (1—-t)2+2t(1 —t)(ne X) > 0.
Hence B
degGp = deg X
for any admissible vector field X.

Suppose X is a nondegenerate admissible vector field which means that X has a finite
numbemer of stationary points

Z',X' = {plv s ’pl/}a X(pl) = Oa
and all of them are nondegenerate, i.e., for any p € Zx the linear map

AX,p: T,R™ — T,R™ T R™ 54 (D, X)(p)
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is invertible. Define
ex : Zx — {1}, €(p) = sign det Ax .
For any € > 0 sufficiently small the closed balls of radius € centered at the points in Zx are
disjoint. Set
D.=D\ ] B.(p).
PEZx
X does not vanish on D, and we obtain a map

o _ 1
X:D m-l X = X,
6_>S bl ‘X|

Set

Q= L)_(”‘dAm.

Om
Observe that

1 -
dQ) = —X"d(dA,,) =0 on D..

Om
Stokes theorem then implies that

/ Q:/ dQ:0:>deg§D:/ Q= Z/ Q,
dD. B oD 0B:(p)

PEZX

where the spheres 0B, (p) are oriented as boundaries of the balls B:(p). If we let ¢ — 0 we
deduce
degGp = > ex(p), (2.18)
PELx
for any nondegenerate admissible vector field X.

To give an interpretation of the right-hand side of the above equality consider the double
of D. This is the smooth manifold D obtained by gluing D along 0D to a copy of itself
equipped with the opposite orientation,

D = DUyp (-D).

D is equipped with an orientation reversing involution ¢ : D — D whose fixed point set is
0D. In particular, along 0D C D we have a (p-invariant decomposition

TD|pp =TOD & L,

where L is a real line bundle along which the differential of ¢ acts as —1. The normal
vector field n defines a basis of L. If X is a vector field on D which is equal to n along 0D,
then we obtain a vector field X on D by setting

N X on D
X =
—p«(X) on —D.

If X is nondegenerate, then so is X, where the nondegeneracy of X is defined in terms of
an arbitrary connection on T'D. More precisely, if V is a connection on T'D and ¢ € Z,
then ¢ is nondegenerate if the map

A

Xq° T,D —TyD, v V,X
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is an isomorphism. This map is independent of the connection V, and we denote by € (q)
the sign of its determinant. Moreover

Z’X =2Zx U QD(Zx),
and, because m is odd, the map
€g 1 g — {£1}
satisfies

Hence

2.18 >
S @ =2 ex(e) = 2deg 5p.
qEZ.X peELx
On the other hand, the general Poincaré-Hopf theorem implies that
> exla) =x(D).
QGZX

Using the Mayer-Vietoris theorem we deduce

N

x(D) = 2x(D) = x(9D).
Since 0D is odd dimensional and oriented we deduce that x(0D) = 0, and therefore
2x(D) = x(D) =2 ) ex(q) =2degGp.
PELx
We have thus proved the following result.

Theorem 2.5.1 (Gauss-Bonnet for domains). Supp(ise D is a relatively compact open subset
of R™+1 with smooth boundary 0D. We denote by Gp the oriented Gauss map
Sp: 0D — S™, 8D 3 p— n(p) = unit outer normal,
and by Sp the second fundamental form of 0D,
Sp(X,)Y)=ne(DxY), VX,Y € Vect(0D).
Then

det(—Sp)dVap = deg §p = x(D).
Om JOD






Chapter 3

Curvature measures

We can now formulate and prove the key result of these notes, the tube formula, which will
produce some interesting metric invariants of a Riemann manifold. We will then describe
their reproducing properties, also known as Crofton fomule.

3.1. Invariants of the orthogonal group

In the proof of the tube formula we will need to use H.-Weyl’s characterization of polynomials
invariant under the orthogonal group.

Suppose V is a finite dimensional Euclidean space with metric (—,—). We denote by
(—, —) the canonical pairing

(—, =) V*xV =R, (Av)=Av), YvoeV, A€ V*=Hom(V,R).

We denote by O(V) the group of orthogonal transformations of the Euclidean space V.
By definition, an O(V)-module is a pair (E, p), where E is a finite dimensional real vector
space, while p is a group morphism

p:O(V) — Aut(E), g+ p(g).

A morphism of O(V)-modules (E;, p;), i = 0,1, is a linear map A : Ey — FEj such that for
every g € O(V) the diagram below is commutative

EOL’El

po(g) { Pl (9)

Ey —— E1

We will denote by Homgy)(Eo, E1) the spaces of morphisms of O(V)-modules.

The vector space V has a tautological structure of O(V')-module given by

7:0(V) = Aut(V), 7(9)v=gv, Yge OV), veV.
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It induces a structure of O(V)-module on V* = Hom(V,R) given by
ph:O(V) — Aut(V*), g pl(g),
where
(P"(9A ) = (A, g 'v), YA€V, v e V.
In particular, we obtain an action on (V*)®"
(PN)*": O(V) — Aut((VH)®"), g pl(g)™".

We denote by (V*)%?V) the subspace consisting of invariant tensors,

BRS (V*)%?V) — (p;)®"w =w, Yge O(V).

Observe that (V*)®" can be identified with the vector space of multi-linear maps
w: V=V x---xV >R
—_———
n

so that (V*)%?V) can be identified with the subspace of O(V)-invariant multilinear maps
V™ — R.
Hermann Weyl has produced in his classic monograph [W2] an explicit description

of (V*)%?V). We would like to present here, without proof, this beautiful result of Weyl

since it will play an important role in the future. We follow the elegant and more modern
presentation in [ABP, Appendix I] to which we refer for proofs.

Observe first that the metric duality defines a natural isomorphism of vector spaces
D:VV* vl
defined by
(W' u) = (v,u), Yu,veV.
This isomorphism induces an isomorphism of O(V')-modules
D:(V,p) — (V¥ p).
We conclude that for ever nonnegative integers r, s we have isomorphisms of G-modules
(V)20T) = (V*@r) @ VE* =2 Hom(V®", V&)
In particular,

((V*)Be+) Yoy = (Hom(VE, VE)) | = Homo, (VE, VE5).

o)

Let us observe that if we denote by §, the group of permutations of {1,...,r}, then for
every ¢ € §, we obtain a morphism of O(V')-modules

Ty € Homo(v)(V®T, VEN, To(v1 @+ ®@u,) = V(1) ® *** @ V()
Weyl’s First Main Theorem of Invariant Theory states that
Homo(v)(V@)T, VO £ =1 =s,

and that

Homo(v)(V@", Ve =R[8,] := { Z co Ty, cop €R, }
PES,
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We can translate this result in terms of invariant multi-linear forms. Thus

(Vo) # 0= n=2r, €L,

and (V*)%%(/) is spanned by the multilinear forms

P,: V¥ SR, (p€8,),
defined by
Py(ui,...,upvy,...,v,) = (ul,'v@(l)) (ur,vw(r) )
The above has an immediate consequence. Suppose we have a map
i Vx-ooxV-=SR, (v1,...,05) — f(vr,...,0,),
n

which is a homogeneous polynomial of degree d; in the variable v;, Vi = 1,...,n. This form
determines a multilinear form

Polf: V¥ x ... x Vi - R

obtained by polarization in each variables separately,

1 di. .1 d
Pol¢(uy, ..., ul"s...;v,,...,0")

= the coeflicient of the monomial ¢11t12---t14, - - - tn1 - - - tna, in the polynomial

di dn
Pf(tll,tlg, e ,tldl, . ,tnla e atndn) = f<Ztijuj1, .. .,Ztnjugl).
=1 =1

Observe that
f(v1,...,v,) =Polg(vi,...,01,...,0p,...,0,),
dq dn
and f is O(V)-invariant if and only if Pol; is O(V') invariant.

Note that every function

f:Vx.--xV-oR
—_—
n
which is polynomial in each of the variables is a linear combination of functions which is
polynomial and homogeneous in each of the variables. For every 1 < i < j < n we define
qij : Vx. - xV— R, qij(vl,...,vn) = ('vi,'vj).
—_——
n

Theorem 3.1.1 (Weyl). If f : V x --- x V — R is a polynomial map then f is O(V)-
mwvariant if and only if there exists a polynomial P in the (";Ll) variables q;j such that

f(vl,...,vn):P(qij(vl,...,vn)lgigjgn). O

Example 3.1.2. (a) Consider the space E = V®*. Observe that a degree n homogeneous
polynomial P on E can by identified with an element in the symmetric tensor product

Symg(E*) © (V)52
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P is called a degree d orthogonal invariant of tensors T € V&F if it is invariant as an element
of (V*)®kn For example, Weyl’s theorem implies that the only degree 1 invariant of a tensor

T = Zﬂjei X e;e V®2
2%
tl“(T) = Zﬂ’jei Ke;= ZTM
i,j i
The space of degree 2 invariants is spanned by the polynomials

(te(T))%, QT)=> T2 QT)=> T;Ty. 0
@ 2,]

is the trace

3.2. The tube formula and the curvature
measures of closed submanifolds of an
Euclidean space

Suppose M is an m-dimensional submanifold of R™. We set
c:=codimM =n—m.

In this section we will assume that M is compact and without boundary but we will not
assume that it is orientable. For r > 0 we define the tube of radius r around M to be the
closed set

T, (M) :={xz € M; dist (z, M) <r},
and we denote by V (M, r) its volume.

Let N(M) denote the orthogonal complement of TM in (TR™)|ps, and we will call it
the normal bundle of M — R"™. We define

D, (R") :=={(v,p); peR", veT,R", v < 1"} Cc TR"

and we set

N, (M) :==N(M)ND,.(R").
D, (R™) is a bundle of n-dimensional disks over R™, while N,.(M) is a bundle of ¢-dimensional
disks over M.

The exponential map E : TR™ — R restricts to an exponential map
Ea i N(M) — R™.

Observe that because M is compact there exists ro = r9(M) > 0 such that for every
r € (0,79) the exponential map Ejys induces a diffeomorphism

Eps : Np(M) — T,.(M).
If we denote by |dV},| the volume density on R™ we deduce

V(M,r) = vol (T,(M)) :/ |an\:/ rldVil.
r (M) Ny (M)

If 7 : N;.(M) — M denotes the canonical projection, then we deduce from Fubini’s theorem
that

V(M,r) = / w L [dVa|. (3.1)
M
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We want to give a more explicit description of the density m.E},|dV;,|.

Fix a local orthonormal frame (e4) of (TR™)|ys defined in a neighborhood U C M of a
point pg € M such that for all 1 <4 < m vector field e; is tangent to U. We assume that
the orientation of R" is given by the ordered frame

(Emtly---s€n; €1y, €m)

Df = {t=(t*) = (""", t") eRG D [t*P<r}.
(6%

Note that we have a diffeomorphism
DE X U—N,(U) :=N,.(M)|y, (f,z) — (t%q(z),z) € N.(M),
and thus we can identify D¢ x U with the open subset 7=}(U) C N,.(M), and we can use
x € M and t € D¢ as local coordinates on 7~ (U). Define
T, (U) := Ep (N, (U)) € R",
and
ea: T (U)—R" by ea(z +t%eq) = ea().

We have thus extended in a special way the local frame (e4) of (TR™)|y to a local frame
of (TR")|r, (1) so that

D; es=0, Vo, A (3.2)
We denote by (OA) the coframe of T, (U) dual to €4. We will continue to use the indexing
conventions we have used in Section 2.3.

Over D¢ x U we have a local frame (dsa, e;) with dual coframe (¢*) defined by

O =70, P = dt®.
Consider the 1-forms ©4 € Q! (T,(U)) associated to the Levi-Civita connection D by the
frame (é4) on T,(U), and set

Ofp = éc 103, Vi,
so that

D, ep= @éBeA.
Using (3.2) we deduce ‘

045 =0, Ya = 04 = 046" (3.3)
Finally set
o =1 (05m) € Q' N, (U)), @i =" (Ofplv) € CZN(U)).
The equalities (3.3) imply
Op = Bjpo'.
On N,.(M)|y we use (f,z) as coordinates and we have
Enr(t%eq(z),x) = x + t%eq.
We have ‘
04 =D (eaeDe,Ear)¢' + > (ea o OaFpr)dt®

— ZeA o (e; +1“ D, ea)qbi + Z&Aadto‘
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= 019" + 1D, ¢ + S a0 dt™
Hence .
B3 07 = ¢/ +1°0] ¢' = ¢/ = Y 17®e’, Ej,6° = di.
(e}
We find it convenient to set

Oy = (P, @) : U = R,
so that
B3 07 = ¢/ =) (Fedy)d'.
Define the m x m symmetric matrix Z
S=S(tx)= (fo D;5(x) )1§i,j§m
Note that the volume density on R" is
AV | = 0™ A - AP AGE A A O™
E4dV, = |det(1 — S(,z) )| |dE A do| = det(1 — S(E,z) ) |dE A dg), (3.4)
dt = dt™ A AdEY, de = ddt A - A dp™.
Recalling that |d@"|ys| is the volume density on M, we deduce
ldVi| = det(1 — S(E, ) ) |dE] x 7*[dV],

where |dt| denotes the volume density on R®. For simplicity we write |dVj;| instead of
m*dVar|. Now set

1.
= |t|, w:= -1,
p =] p

and denote by |dw| the area density on the unit sphere in R¢. Then

Ey/|dVy,| = det(1 — pS(w,x))pC_1|dp| X |dw| % |dVir]. (3.5)
Observe that .
det(1 — pS(w,z)) = Z(—l)”p”Py(CI)ij(a;) cw),
v=0

where P, denotes a homogeneous polynomial of degree v in the m? variables
u;; € RS 1<4,5 <m.
We set
B, (4(x)) ::/ Py (d1)(z) o w )dw.

Sc—1
Above, F,j(uij ) is an O(c)-invariant, homogeneous polynomial of degree v in the variables
u;; € R 1 <4,7 < m. We conclude,

m

Eigldvil =3 ;”:TWPV(%(Q:) ) |dVas (). (3.6)

v=0
We would like to determine the invariant polynomials Fy(uij )

Theorem 3.1.1 implies that P, must be a polynomial in the quantities

Qi j k0 = Wik ® WUjy.
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Because these quantities are homogeneous of degree 2 in the variables u;; we deduce P,=0
if v is odd. Assume therefore v = 2h, h € Z>o.

For every t € R¢ = span (Em41,---»€m+e) We form the linear operator
Ulugj,t) : R™ — R™
given by the matrix (u;; F)1§i,j§m, we deduce that
(=1)"P,(u; ot) = tr AU (uyy, 1)
= the sum of all the v x v minors of U(f) symmetric with respect to the diagonal.

These minors are parameterized by the subsets I C {1,...,m} of cardinality #I = v. We
denote by pr(u;j @ w) the corresponding minor, and by fi; its average,

fir(wij) := /S  p(ug e w)dw.

iy is an O(c)-invariant polynomial in the variables {w;;}; jer.
Let
I={1<i<ig<- - <igp <m} C{l,...,m},
and denote by 87 the group of permutations of I. For o € 87 we set

w;=p(i;), Vj=1,...,2h.
For any o,p € 8; we denote by €(o, ¢) the signature of the permutation o o ¢~
(), the invariant polynomial

h

h
Qrop = H Qpoj_1,p25,02j-1,02; = H Upyj 10951 ® U)o+
j=1 j=1

1 and by

Lemma 3.2.1. There exists a constant § = & . depending only on m,v and ¢ such that

ir=£8Qr Qri= Y €0,0)Qrop

(P,O'GSI
Proof. We regard 7i; as a function on the vector space of m x m matrices U with entries
in R¢
U = [uijli<ij<m.
We observe that 1i; satisfies the following determinant like properties.
e 7i; changes sign if we switch two rows (or columns).
e [i; is separately linear in each of the variables u;;.

e 7i; is a homogeneous polynomial of degree h in the variables g; ; ¢
We deduce that fi; is a linear combination of monomials of the form

Qky ko 01,82 " " Qhop_1kop,lon—1,02n>
where
{kl, Ce ,/{:Qh} and {51, N ,fgh}

are permutations of I. The skew-symmetry of fi; with respect to the permutations of rows
and columns now implies that 7i; must be a multiple of Q7.

O
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The constant & satisfies

Py (wij) ¢
m,v,c — s Vu, e R
€ Y, Ql(uz]) J

so it suffices to compute the numerator and denominator of the above fraction for some

special values of u;;. We can assume I = {1,2,...,2h} and we choose
1
0
Ui = . € R
0
Then, if we set
nl
L . 1.
t= . eRE w=—=t
: ]
tC
we deduce
tt 0 0
0o t .. 0
Ulwg,t)= | . . |, wi(uget) =|t'".
0 0 - t
Hence
i) = [ e, (3.7)
On the other hand, we have
h
Qlop = H Upyj 10951 ® Upgjon;
j=1

which is nonzero if and only if o = ¢. We conclude that for this particular choice of u;; we
have

Qr = (2h).
Hence

1 12k
m,v,c — T dw.
Smve = (o) /Scl i

At this point we invoke the following result whose proof is deferred to the end of this section.

Lemma 3.2.2. For any even, nonnegative integers 2hy,...,2h. we have

2h1+1 2h+1
/ |w1‘2h1_“|wc’2hcdw:2r( : )F( 2+ )
Sc—1

2
where h = hy + - + he.

F(c—i—22h) ’
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We deduce (2h+1) 1/2) )
B 20 (=5 )I(1/2)c
gm,Qh,c - (2h)'F(#) ; (38)
and B
Py(uij) = émone Y Qrluy). (3.9)

#I=v
We denote by 85 the group of permutations of a linearly ordered set with two elements.
We observe that every element
T:(Tl,...,Th)EGZSQ X« X 89
—_—
R

defines a permutation of I by regarding 71 as a permutation of {iy, s}, 72 as a permutation
of {iz,i4} etc. Thus G is naturally a subgroup of 8;. The space 8j/G of left cosets of this
group can be identified with the subset 8} C 8; consisting of bijections ¢ : I — I satisfying
the conditions

P1 <2, P3<P45--+; P2r-1 < P2h-
We deduce that if u;; = Sj;(x) then for every o € 8y we have

Z 6(07 QD)Q],J,@ = Z 6(0’, QDT)QLU’@T

pEST @ES/I,TEG

=Y (o)

IS J

h
= 6(0’ QO) HRW2j71992j0'2j—10'2j
/

(q@Qj—l:<P2j70'2j—laU2j - q@2j7¢2j71702j—1,02j)

—

1

peS, Jj=1
Using the skew-symmetry R;jre = —R;ji we deduce
Z e(o, Qlago Z Z g,¥ H P2j 19250251025
o,pEST o€81 peS, Jj=1
= Z 6(07—7 90) H R<,02j—1</72j02j—102j
oe8,7eCG Jj=1
h
=2" Z 6(0’, (,0) H R<P2j—1902j02j—102j
0,0€8) Jj=1
=:97(R)
We conclude that
Pu(¥ij) = 2"6mone Y Qu(R). (3.10)
#I1=2h
Using (3.1) and (3.6) we deduce that
m/2] e, on
V(M,r) = vol (T C+2h mc/Q )| dVag|.
( 7T) VO Z Wet2nT c+2h wc+2h h | M|
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Let us observe that the constant
2h§m,2h,c
(C + 2h)wc+2h
is independent of the codimension c. It depends only on h. Indeed, we have

2h§m,2h,c o 2h§m,2h,c o 2h 211(%)11(1/2)6_1
(c+2h)weron  Oeron-1  Fepon-1  (20)IT(52R)
2" (h 4 1/2) ~(2h) 1

[(1/2)1420(2p)! — wh(2h)!  (2m)hR!”
We have thus obtained the following result.
Theorem 3.2.3 (Tube formula). Suppose M is a closed, compact submanifold of R™,

dimM = m, ¢ = n —m. Denote by R the Riemann curvature of the induced metric
on M. Then for all r > 0 sufficiently small we have

Lm/2]
V(M,r)=vol (T Z Weyon T i _on (M),

tn—2n (M) = Wl)hh, /M Qu(R)[dVim|

(2
where Qp, is a polynomial of degree h in the curvature. By choosing a local, orthonormal
frame (e, ...,en) of TM we can express the polynomial Qn(R) as
> (R
#1=2h

where for every I = {i; <19 < --- <igp} C {1l,...,m} we define

h
Q(R) = Z H p(izj—1)p(izg)o(izj—1)0o(i25)" 0

o,p€S) Jj=1
Example 3.2.4. (a) If h =0 then
tm (M) = vol (M).
(b) Assume now that m is even, m = 2h, and oriented. Then ¢ + 2h = m + ¢ =n and
(M) = (271r)h /M %Qh(R)dVM.
Comparing the definition of Qj(R) with (2.17a) we deduce that the top dimensional form
11
(2m)h h!

is precisely the Euler form associated with the orientation of M and the induced metric, so
that

9, (R)dViyy € Q2h (M)

po(M, g) = /Me(M,g)~ (3.11)
(c) Suppose now that M is a hypersurface. Consider the second fundamental form

S = (Sij)i<ij<m, Sij = (De, €;) ® €1,
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where we recall that e, is in fact the oriented unit normal vector field along M. Fix a
point g € M and assume that at this point the frame (e, ..., e,,) diagonalizes the second
fundamental form so that

Sij == ﬁiéij-
The eigenvalues K1, . .., Ky, are the principal curvatures at the point 9. We denote by ¢, (k)
the elementary symmetric polynomial of degree v in the variables k;. In this case ¢ = 1 and

we have
m

EjrdVmn = det(1 — tg)dt AdViy =Y (=1)"t"c,(k)dt A dViy
v=0
m r [m/2] oh+1
T EydVRm+1 = Z(/ t dt)c,,(/i)dVM =2 hZO ot 102h(H)dVM

v=0 -r

so that
|m/2) [m/2] " an+1

Z wigont T2 o (M) = V(M, 1) = 2 Z 1
h=0 =0

/M eon(R)dVar.

We conclude that
2
Pon—2n (M) = / con(R)dV, o2p, = (2h + 1)wi42p.
O2h JM

If M = S™ < R™*! is the unit sphere then x; = 1 and we deduce that
Om (M
_op(ST) =2 . 3.12
- (87) =222 (1) (3.12)

(d) Using the definition (2.3) of the scalar curvature we deduce that for any m-dimensional
submanifold M™ — R"™ we have

:um—2(Mag) = ConStm/ Sg|d‘/b|,
M

where s denotes the scalar curvature of the induced metric g, and const,, is an universal
constant, depending only on m. We see that the map g — pm,m—2(M,g) is precisely the
Finstein functional.

To find const,, we compute fy,—2(M) when M = S™. Using (3.12) we deduce

2
20m (V) constm/ Sround|dVsm |,
(o] 2h M

where S;oung denotes the scalar curvature of the round metric on the unit sphere. Using
the definition (2.3) we deduce

m
Sround = ZRijij = Zl = 2(2>
i,J ,J

Hence 9 1 1
const,, = ;2 =5 = pm—2(M,g) = Gy /M sgldVy|.

(e) The polynomial Qs still has a “reasonable form”

QR)= > 9

#I=4
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Then #8) = 6 and
Q = Z €(0, 0) Ro10s010s Rosousen
o,0€8)
= Z R01020102R03040304 =+ Z 6(07 SO)R0102<P1<P2R03U4<P3AO4'
oe8; o£pes)
The first sum has only three different monomials, each of them appearing twice is them

sum. The second sum has (g) different monomials (corresponding to subsets of cardinality
2 of §)) and each of them appears twice. O

Definition 3.2.5. If (M, g) is a closed, compact, oriented, Riemann manifold, m = dim M,
and w is nonnegative integer. If m —w is odd we set

p (M) = 0.
If m — w is an even, nonnegative integer, m — w = 2h, then we set

(M, g) = (2;),%, /M O (R)|dVay].

We will say that p,, (M, g) is the weight w curvature measure of (M, g). We set

1
| = ——=9(R)|dVs],
|| o) h(R)|dVa|
and we will refer to it as the (weight w) curvature density. O

Remark 3.2.6. Let us observe that for any Riemann manifold M, orientable or not, the
quantities |dp., | are indeed well defined, i.e. independent of the choice of local frames used in
their definition. The fastest way to argue this is by invoking Nash embedding theorem which
implies that any compact manifold is can be isometrically embedded in an Euclidean space.
For submanifolds of R™, the proof of the tube formula then implies that these densities are
indeed well defined.

We can prove this by much elementary means by observing that, for any finite set I, the
relative signature €(o, ¢) of two permutations ¢,o : I — I is defined by choosing a linear
ordering on I, but it is independent of this choice. a

Proof of Lemma 3.2.2. Consider the integral
I(hi,....he) = / e—\ﬂ2’t1|2h1 o [t Phedt
Re

2 2 2
We have e~ lt1? = e—It+17 ... o=1t° g5 that

I(hl,...,hc):H(/oo

[

678282hjd5> _ 2cH</ 675282h]~d5)

j=1 7= j=1 "0
(u=s%
ST ) =TI
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On the other hand, using spherical coordinates, p = ]ﬂ , W= ﬁt_: and recalling that h =
hi+ -+ he, we deduce that

I(hy,...,he) = (/S ) w2 .. |wc|2hcdw) </00 6_92p2h+c_1d,0)
- 0

(u=p?)
1 & c
=2 reas) [T e
2 Sec—1 0
1 2h
_ 7F(c+ )(/ w2 |WC|2thw>' 0
2 2 Sec—1
3.3. Gauss-Bonnet formula for arbitrary
submanifolds

Suppose M™ C R™ is a closed, compact submanifold of R™. As usual, set ¢ = n — m, and
we denote by ¢ the induced metric on M. For every sufficiently small positive real number
T we set
M, = {x e R"; dist(xz, M) =r} =0T, (M).

M, is a compact hypersurface of R” and we denote by ¢, the induced metric. Observe that
for r and ¢ sufficiently small we have

Te(My) = Trye(M) — T (M)
so that

V(My,e)=V(M,r+¢)—V(M,r—e¢)

which implies that

> wipone™ 1 _on (M, gr)

h>0
=> wc+2k{(r +e) T —(r - 5)C+2k}l~bn—c—2k(Ma 9)-
k>0
We deduce
2 c+ 2k _ _
,U/n7172h(Mrvgr) = Witan ch+2k <1 4 2h> re L2k ZhUnfcf2k<M7g)'

k>0
We make a change in variables. We set
p:=n—1—2h, w=n—c—2k=m—2k.

Then c+2k=n—w,14+2h=n—p, c+ 2k —1—2h = p — w so that we can rewrite the
above formula as

m
n—w)\wWnp— _
(M, g) =23 (n—p) ", (M, g). (3.13)
w=0

Wn—p

In the above equality it is understood that p, (M) = 0 if m — w is odd. In particular, we
deduce that if the codimension of M is odd then

lir%up(Mr,gr) =2u,(M,g), V0 <p<m =dimM. (3.14)
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If in the formula (3.13) we assume that the manifold M is a point, then we deduce that M,
is the (n — 1)-dimensional sphere of radius r, M, = S?~!, and we conclude that

pp(SPY) = 2<Z> n = 2w, Lﬂ ., n—p=1 mod 2, (3.15)

where [Z} is defined by (1.17). The last equality agrees with our previous computation
(3.12).
If in the formula (3.13) we let p = 0 we deduce

po(M;, gr) = 2uo(M, g), Y0 <r <1, if codim M is odd.

Observe that the tube T, (M) is naturally oriented, even though the manifold M may not
be orientable. The Gauss-Bonnet theorem for oriented hypersurfaces implies

X(Mr) = ,UO(MMQT)
so that

1
wo(M,g) = §X(Mr)> VO <r< 1. (3.16)

Theorem 3.3.1 (Gauss-Bonnet). Suppose M is a closed, compact submanifold of an Fuclid-
ean space R™. Denote by g the induced metric. Then

po(M, g) = x(M).

Proof. If m = dim M is odd then both x (M) and po(M) are equal to zero and the identity
is trivial. Assume therefore that m is even. If the dimension n of the ambient space is odd
then the Poincaré duality for the oriented n-dimensional manifold with boundary T, (M)
implies
X(Mr) = X( aTT‘(M) ) = 2X( TT‘(M) ) - 2X(M)
and the theorem follows from (3.16).
If n is even, we apply the above argument to the embedding

M — R" < Rn+1,

where we observe that the metric induced by the embedding M < R™*! coincides with the
metric induced by the original embedding M — R™. a

Remark 3.3.2. We want emphasize that in the above theorem we did not require that M
be orientable which is the traditional assumption in the Gauss-Bonnet theorem. O
Let us record for later use the following corollary of the above proof.

Corollary 3.3.3. For every closed compact, smooth submanifold M of an FEuclidean space
V' such that dim'V — dim M s odd we have

(M) = 2x(T,(M)), Y0 <7 < 1. 0
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3.4. Curvature measures of domains in an
Euclidean space

The second fundamental form of a submanifold is in fact a bilinear form with values in
the normal bundle. If the submanifold happens to be the boundary of a domain, then the
normal bundle admits a canonical trivialization and the second fundamental form will be a
scalar valued form. The next definition formalizaes this observation.

Definition 3.4.1. For any relatively compact open subset D of an Euclidean space V we
define the co-oriented second fundamental form of D to be the symmetric bilinear map

Sp : Vect(0D) x Vect(0D) — C*°(0D),
Sp(X,Y)=(DxY)en, X,Y € Vect(dD),

where n : 9D — V denotes the outer unit normal vector field along dD. O

Suppose D C R™*! is an open, relatively compact subset with smooth boundary M :=
0D. We denote by n the unit outer normal vector field along M := 0D and by S = Sp
the co-oriented second fundamental form of D. For every symmetric bilinear form B on
an Euclidean space V' we define tr;(B) the j-th elementary symmetric polynomial in the
eigenvalues of B, i.e.,

Z 20 trj(B) = det(1y + zB).
Jj=0
Equivalently,
trj B = tr (AFB APV — APV
We define the tube of radius r around D to be
T, (D) := {z € R™"!; dist (z,D) <r}.
We denote by Ej; the exponential map
En : (TR™)| 3 — R™H,
(X,p) — Ey(X,p)=p+ X, pe M, X € T,R™.
For r > 0 we denote by A, C (TR™*1)|5; the closed set
Ar = {(tn(p),p); pe M, te0,r]}.
For sufficiently small r the map Ej; defines a diffeomorphism
Ey : A — T (D)\ D,
so that
vol (T, (D)) = vol (D) +/ EydVRma+1.

T

Fix pg € M and a local, positively oriented local orthonormal frame
(e1,...,em)
of T'M defined in a neighborhood U of pg in M, such that, for every p € U, the collection
(n(p),e1(p), ..., em(p))

is a positively oriented, orthonormal frame of R”. We obtain a dual coframe 6,8",...,0".
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As in the previous section, the pullback of E},dVgm+1 to A, has the description
EydVem+1 = det(]l —tSy )dt AdOL A - A O™

= | > trj(=Sm)t? | dtAdO' AN O™
j=1

We deduce
/ 5 o (], m-smava)
ATM Rm+1 jZOJ‘i'l M] M)aVy
Define
1
Hmfj(D) = — </ tl"j(—SM)dVM> , 0<3<m,
and

tm41(D) = vol (D)
so that using the equality o; = (j + 1)w; we deduce the tube formula for domains,

m+1

vol (To(D)) = Y wimg1—rr™ ' F (D). (3.17)
k=0

Theorem 2.5.1 shows that, just as in the case of submanifolds, we have ug(D) = x (D).

Definition 3.4.2. Suppose D is a relatively compact domain with smooth boundary of an
Euclidean space V, dimV = n. Then the curvature densities of D are the densities |dy;]
on 0D defined by

1
|dps| = —— trn—j(=Sp)ldVapl,

n=j

where |dVyp| denotes the volume density on 9D indiced by the Euclidean metric on V. O

We denote by D™ *+! the ball of radius 7 in R™*!. Then
TE(DT+1) — Dm—i—l

r+e

so that

wm+1(r + E)m+1 — Zwm+17k€m+1ikﬂk(ﬂ)?+l)-

k>0
We conclude
1 1
(DMLY = wm+1<m+ )rk = wy [m+ ]rk. (3.18)
Wntl-k \ K k

Suppose X «— R™*! is a closed, compact smooth submanifold. Then for every suffi-
ciently small » > 0, the tube D, := T,(X) is a compact domain with smooth boundary
and

Te(Dy) = Trie(X).
The tube formula for X implies that

Zw]'Eij-t,-l_j(Dr) = Zwk (7" + €)kum+1,k(X).
>0 k>0
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We deduce that

frm1-5 ( Zwk< ) 57 11 (X)

(.d
J k>j

We set n :=m + 1 and we make the change in variables
p:=n—j, w:=n-—k.

Then k — j = p — w and we obtain the following generalization of the tube formula

o (Tr(X) ) = : an—w<n_w)rp_wﬂw(X)

Wn—p < n—p
(3.19)
_ L
Seay ]
We deduce
lin(l),up(']l‘r(X)) = up(X), VO <p<dimX. (3.20)

3.5. Crofton Formulse for domains of an
Euclidean space

Suppose D is an open, relatively compact subset of the Euclidean space R”*! with smooth
boundary M = dD. We denote by g the induced metric on M, by Gr¢ the Grassmannian
of linear subspaces of R™*! of codimension ¢, and by Graff¢ the affine Grassmannian of
codimension ¢ affine subspaces of R™*1.

Recall that on Gr® we have a natural metric with volume density |d7.| and total volume
H;'nzo g
—1
(IT=o o) - (IT;Z o T5)

We rescale this volume density as in (1.18) to obtain a new volume density |dv.| with total

volume
1
/ | = [m+ } (3.21)
Gre C

As explained in Section 1.5 these two densities produce two invariant densities |d7.| and
|dD.| on Graff® which differ by a multiplicative constant.

Ve =

Theorem 3.5.1 (Crofton Formula). Let 1 < p < m — ¢ and consider the function
[ Graff = R, f(L)=p,(LND).
If the function f is |dv|-integrable then

{P ; c] Hpre(D) = /Graﬁ‘c (LN D)ld7e(L)]

Proof. For simplicity, we set V =Rl n=m 41 =dim V. We will carry out the proof
in several steps.
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Step 1. We will prove that there exists a constant & ,, depending only on m, ¢, and p such
that

nentipse(D) = [ (LN D)dn(L).
Graff®

Step 2. We will show that the constant ¢ is equal to [? ;C] by explicitly computing both
sides of the above equality in the special case D = D™+1,

Step 1. We will rely on a basic trick in integral geometry. For every S € Graff® we denote
by [S] € Gr,. the parallel translate of S containing the origin. We introduce the incidence
relation

J:{(U,S)EVXGraffc; UES}CVXGraﬁ'C.

Observe that we have a diffeomorphism
J—-VxGre I35 (v,S)— (v,[S]) € V x Gr°

with inverse
VxGr¢(V)> (v,L) — (v,v+ L) €.

We obtain a double fibration
J
/ X
|4

Graff®
we set
M) =0 M)={(v,8) €V x Graff; ve SNM}.
Since dimJ = dim V' 4 dim Gr® = n + ¢(n — ¢) we deduce
dimI(M)=n+c(n—c)—codimM =m+c(n—c)=m+c(m+1—c).

Again we have a diagram

I(M)
PN
M Graffe

The map r need not be a submersion. Fortunately, r fails to be a surjection on a rather
thin set.

Denote by Graff®(M) the set of codimension ¢ affine planes which intersect M transver-
sally. Then Sard’s theorem implies that Graff®(M) is open in Graff® and its complement
has measure zero. We set

J(M)* :=r~'( Graff‘(M)).
The set J(M)* is an open subset of J(M ), and we obtain a double fibration

J(M)*

/ ~ (3.22)

M Graff‘(M)

The fiber of r over L € Graff¢ is the slice My := L N M which is the boundary of the
domain Dy, := (LN D) C L.
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The vertical bundle of the fibration r : 7*(M) — Graff(M) is equipped with a natural
density given along a fiber L N M by curvature density |duy| of the the domain Dy. We
will denote this density by |duk|. As explained in Section 1.2, using the pullback r*|d7.| we
obtain a density

A = |dpy | r*|d7el
on J*(M) satistying

/ dA| = / (/ |dn£>|d%<L>r= / 1p(L 0 D)|dAe(L)].
J*(M) Graff¢(M) LM Graff®

To complete Step 1 in our strategy it suffices to prove that there exists a constant &,
depending only on m and c such that

ColdA[ = €ldpel,

where the curvature density is described in Definition 3.2.5.

Set h = (m — ¢). The points in J(M) are pairs (z, L) where z € M, and L is an affine
plane of dimension h + 1. Suppose (xg, Lg) € IJ*(M). Then we can parametrize a small
open neighborhood of (xg, Lo) in J*(M) by a family

(z,e0(5),e1(S),...,en(S),ent1(S),...,en(S)),

where z runs in a small neighborhood of g € M, S runs in a small neighborhood Uy of
[Lo] in Gr° so that the following hold for every S.

{eo(S),e1(S),...,en(S),ens1(9),...,en(S)}

is an orthonormal frame of R™.
S =span{eg,ei,...,ep},

TpoM NS = span{bey, - ,ep}.
A neighborhood of (zg, Lg) in J is parametrized by the family
(F, 80(5), 81(5), ce ,eh(S), €h+1(5), PN ,em(S)),

where 7 runs in a neighborhood of zy in the ambient space V.

We denote by Sp, the co-oriented second fundamental form of D and by S the co-
oriented second fundamental form of Dy C L, and by |dVrnn| the volume density on
LN M. Then, if we set k=dim L —p=m — ¢ — p, we deduce

1
L
|, | = or try(=SL) AV

In the sequel we will use the following conventions.

e i, j, k denote indices running in the set {0,...,h}.
e «, 3,7 denote indices running in the set {h +1,...,m}.

e A, B,C denote indices running in the set {0,1,...,m}.
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We denote by (64) the dual coframe of (e4), and set

Oap:=(Deyoep).

Then, the volume density of the natural metric on Gre is

|dye| = /\Hai .
Then
@3] = |\ D 7w ea| x [drl = |\ 6%  ldv]
and
L ~ 1 o
AN = Idp | x a5l = - det(~Szan) [AVien| % A\O°] x L. (3.23)

The fiber of £ : J(M) — M over x is described by
Gy = {(F, es(9)) € I(M), ¥=umx }
We set
Gy = Gy NT*(M).

G5, (M) can be identified with the space of linear subspaces S of codimension ¢ such that
TyoM + S =V, ie., the affine subspace zo + S intersects M transversally at .

Denote by n a smooth unit normal vector field defined in a neighborhood of xg in M,
ie.

n(x) L T, M, |n(z)|=1.

Lemma 3.5.2. Suppose xo+ S intersects M transversally at xo. We set eq = e4(S). Then
at the point g € M we have

(neey)|-|dVa| =10 A---AO™,
i.e., for any Xq,..., Xy, € Tyy M we have
(meeg)| - |dVar|(X1,..., Xm) = 0" A= AO™|(X1,. .., Xim).

Proof. It suffices to verify this for one basis X1, ..., X, of T, M which we can choose to
consists of the orthogonal projections fy,..., f,, of e1,...,en. These projections form a
basis since S intersects Ty, M transversally.
Observe that
fi=ei, V1<i<2h, f,=-eq—(eqon)n.
Then
AVl (1o Frn)? = det(fa o fp)i<aBem
We observe that
fiof;j=0ij, fiofoa=0, V1<u,j<2h<a
fo®f3="0a3 —nanf, ng:=mnee,.
We deduce
AVl (f1s-- -, Frn)? = det(1 = A),
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where A denotes the ¢ x ¢ symmetric matrix with entries nong, 2h < a, 8 < m. If we denote
by u the vector

N2h+1
U= : e R°
T2h,
which we also regard as a ¢ x 1, matrix then we deduce
A =i

This matrix has a ¢ — 1 dimensional kernel corresponding to vectors orthogonal to «. The
vector u itself is an eigenvector of A and the corresponding eigenvalue A is obtained from
the equality

Xi = |i*i == A= [i]> =) nl=|n|>— |neel’ =1~ |neel.
«

We conclude that
det(l—A)=|ne 60]2 = |dVm|(F1,-- s ) = In o€
On the other hand

0Y A A0 (Frse o Fr) = | det(en o fp)i<aBem]
We have again
e;of; =0y eof,=0, V1<i,j<2h<a
€a ® fg=10dap — nang,
so that
0" A O™ (Fs- s Fn) = I @ el

The lemma is now proved. O

Lemma 3.5.3 (Euler-Meusnier). Suppose L € Graff intersects M transversally and xo €
L. If n is a unit vector perpendicular to T, M, then

St = (neeo)Splr, AL

that 1is,
SL(ei,ej) = (’I’LO eo)SD(ei,ej), V]_ S ’i,j S 2h.

Proof. We have

SL(GZ', ej) = €pe (Dei ej)
Let us now observe that the vector (De, e;) is parallel with the plane L because the vectors
e; and e; lie in this plane. Thus, Dy, e; decomposes into two components, one component
parallel to ep, and one component (Deg,e;)” tangent to L N M. Hence

h
D¢, e; = St(es, ej)eo + Z Szkjek-
k=1
Taking the inner product with n we deduce

Sp(ei,ej) = (De, ej) en = £S1(e;, ej)(ep e n). O



74 3. Curvature measures

From the above lemma we deduce
tri(—=SLlze) = |1 @ €o|* tri(=Sp|r,, MriL))-
for any (zo, L) € J7*(M). In a neighborhood of (xo, Lg) € J*(M) we have

1 «
[AM(2, L) = - tri(=S0)|dVirw] ‘/a\e x |dvel

1 m
= ;k\n°60|k(t1‘k(—SD\Tsz[L]))’ /\ 9A‘ X |dryel
A=1
(use Lemma 3.5.2)

1
= ;k’n o eo|" " (tri(—=Splrarnm) ) ldVar| X |de|

This proves that along the fiber G we have

1
[dA[/|dVi| = ;k\n o eol " (b4 (=Splmy i) ) ldvel (1))

If we denote by 0([L], Ty, M) the angle between [L] and the hyperplane T, M we deduce

1
|[dA|/[dVa| = o | c0s O([L], Ty M) " (tri(=Splzy, arniz)) ) [dvel (1))
The map
Gy, 2 (2o, L) — [L] € Gr°
identifies G, with an open subset of Gr® whose complement has measure zero. We now

have the following result.

Lemma 3.5.4. V is an Fuclidean space, dimV =m + 1, H C V is a hyperplane through
the origin, and B : H x H — R a symmetric bilinear map. Denote by O(H) the subgroup
of orthogonal transformations of V- which map H to itself and suppose

f:Gr.— R
is an O(H) invariant function. Define
Gry = {S € Gr¢; S intersects H tmsversally}.

Then for every 0 < k < m — c there exists a constant & = &y, ¢k depending only on m, c
and k such that

B0 B) = [ 5() tru(Blans)dvel($) = Ementrn(B) [ 1ldel(S).

C
Grg;

Proof. Observe that for fixed f the map B — I;(f, B) is an O(H )-invariant homogeneous
polynomial of degree k in the entries of B. We can therefore express it as a polynomial
Ii(f,B) = P (tr1(B),...,trx(B))
= & trp(B) 4+ Qp(tri(B), ..., trp—1(B) ).
Let us prove that @y = 0. To do this, we apply the above formula to a symmetric bilinear

form B such that
dimker B > m — k.
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Thus, at least m — k + 1 of the m eigenvalues of B vanish, so that trix(B) = 0. For such
forms we have

Ik(fa B) = Q(trl(B)v s 7trk—1(B) )
On the other hand, for almost all S € Gr%; we have

dimSnNkerB >m—c—k.

The restriction of B to .S N H has m — ¢ eigenvalues, and from the above inequality we
deduce that at least m — ¢ — k of them are trivial. Hence

I(f,B) =0, VB, dimkerB>m —k = Q; =0.

Now choose B to be the bilinear form corresponding to the inner product on H. Then

tr(B) = <7Z> and tr,(B|mns) = (mk_c> VS € Gr5,

and we conclude that
m—c m
dve = . O
(") L s =e(7)

Now apply the above lemma in the special case
1
H=T,M, B=—-Sp, f(5)=—|cosf(S,H)|""
O

to conclude that
CildN] = Etre(—Sp)|dVar| = €l dpp+c]

s D) = [ = [ jin
M % (M)

—[ = pp(L 1 D) |3 (L).
Graff¢(M) Graff¢(M)

Thus, rescaling |d7.| to |dv.|, we deduce that there exists a constant ¢ depending only on
m and c such that

so that

€ipee(D) = | oy oD

Step 2. To determine the constant £ in the above equality we apply it in the special case
M =D"™. Using (3.18) we deduce

+1 w 1 m+1
DY — fw [m ] _ m+ < >
fﬂp—l—c( ) 13 p+c p+ec fmerlfcfp pte

Now observe that for L € Graff® we set r = r(L) = dist (L,0). Then L N D™ is empty if
r > 1, and it is a disk of dimension (m + 1 — ¢) = dim L and radius (1 —r2)Y/2 if r < 1. We
conclude that
1—r2)P2 r<l
L D) = g (1e) o LT
0 p>1.

We set

_ m+1—c Wint1— m+1—c
Hm,c,p :MP(Dm+1 C) :wp|: :| = m+€( )

p Wm+1l—c—p p
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Using Theorem 1.5.1 we deduce

| oo
Graff®

-/ (/ up(Dm“m<w+[L1>)|dvmu<x>>ducmL])
Gr¢ [L]+

= e | ( Lo 1(1—rx\2>p/2\de|<x>> dvel([L))
r¢ e , <

=:ecp

3.21 m+ 1
~imeplen a2 ieplen " 7|
Gr° C

Wm+1 m—+1 Wmtl—e (M+1—c m—+1
g = Ic,p .
Wmtl—c—p \ P+ C Wm+l—c—p p c

Using spherical coordinates on R¢ we deduce

1 1
Ip= /Rca — |z?)P2dVge = ac_l/o (1 — r2)P 2y szr? Oe—l /0 s (1 — 8)P/2ds

Hence

2
(112) Oc-1 (g’ ., 1) (113) Oc—1 F(%)F(Cl +§) (19 g jo)e I'(1 + §)p _ Wpre
2 272 2 T(1+5+%) Fl+5+%5) wp

Hence

m—+1 Wmtl—cWpte |m+1| fm+1—c

EWm+t1 =——

p+c wp c p

_ WhppiWpte (m+ 1) fm+1—c

N WpWe c P
We deduce

e e (") wpi (p+c> _ {pﬂ

= wywe (m+1) (m+1—c) - WpWe P P

ptc p

O

We now describe a simple situation when the function Graff® 5 L — po(L N M) is
integrable.

Proposition 3.5.5. If the domain D with smooth boundary is also semialgebraic (see Ap-
pendiz B) then the function

Graff° > L — x(LN D)

18 bounded and semialgebraic. In particular, it is integrable so that

1e(D) = /G (L0 D)as|(L).
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3.6. Zero order Crofton formulase for
submanifolds in an Euclidean space

Suppose M is a closed, compact smooth submanifold of dimension m of the Euclidean
space R™. We continue to denote by Graff® the Grassmannian of affine planes in R™ of
codimension ¢. We want to prove the following result.

Theorem 3.6.1 (General Crofton Formula). If the manifold M is also semialgebraic, then
the function
Graff‘'s L — x(LNM) e Z

is |dv.|-integrable and

peM) = [ (L0 M) jdz(D)

Proof. We can assume that & = codim M < 1. For every z € R" set d(z) := dist (x, M).
Fix R > 0 such that for x € Tr(M) there exists a unique point & € M such that

|z — z| = d(x).
For every r < R consider the tube of radius r, around M,
D, =T (M),
and set M, = OT,(M). From (3.14) we deduce
pe(M) = lim y1c(Dy).

D, is a semialgebraic domain with smooth boundary, and Theorem 3.5.1 implies

ne(Dy) = /G (D).

Thus it suffices to show that

pe(M) = tim [ (@A Danl(D) = [ o(Znanja)
=0 JGraffe Graff¢

For r € (0, R) we define

fr: Graff® = R, f,(L) = (LN D,).
For uniformity we set fo(L) = x(L N M).
Lemma 3.6.2. There exists C' > 0 such that

|fr(L)| < C, VL € Graff®, r € [0, R).

Proof. Use semialgebraicity. To be included later

Let
Graff®(M) := {L C Graff®; L intersects M transversally },
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and define Graff®(M,) similarly. Observe that Graff¢(M) is an open subset of Graff®
with negligible complement. For every r» > 0 we set

X, = {L € Graff®(M); L € Graff®(M;); x(LNDs)=x(LNM), Vse (0,r]}

Observe that
Graff‘(M,r) C Graff‘(M,rq), Vri > ro.

To proceed further we need the following technical result, whose proof will presented at the
end of this section.

Lemma 3.6.3. The sets X, are measurable in Graff® and

| X, = Graffe(M).

r>0

Set
Graff{ = {L € Graff®; LN Dpg # 0}.

Graff{(M) is a relatively compact subset of Graff¢, and thus it has finite measure. Define
Xy =X, N Graff;, Y, = Graff{\X;.
For 0 < r < R we have

peD) = [ ol = [ iz

c
Gr¢

:/xﬁ fr(L)’dﬂcH'/ﬁ fr(L)|doe| :Q/aq fO(L)\dﬂcl+/ﬂ fr(L)]dv|
Hence

peM) = [ o)z

We now let r — 0, and since vol (Y;) — 0 we conclude that

M) =l (D) = iy [ ol = [ ot

< A (D)) < Ovol (5.

raff¢

This concludes the proof of Theorem 3.6.1. O

Proof of Lemma 3.6.3. We will prove that for any given Ly € Graff®(M) there exists
and p = p(Lo) such that
Ly € DCP.

The measurability! follows from the fact that X, is described using countably many boolean
operations on measurable sets.

Consider the normal bundle
N = (TM)*+ — M.
For x in M we denote by N, the fiber of NV over z.
Let y € Lo N M. We denote by NS the orthogonal complement in Lg of T, (Lo N M),

N0 =Lon (Ty(Lon M)) ™.

LWith a little bit of work one can show that the sets X, are in fact semi-algebraic, and in particular, measurable.
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We think of N;} as an affine subspace of R" containing y. Because L intersects M transver-
sally we have

dim N, = dim N, = k = codim M.
For every r > 0 we set Nz?(r) = NS N D,.

Figure 3.1. Slicing the tube D, around the submanifold M by a plane L.

The collection (Ng)ye Lon forms a vector subbundle N° — LoN M of (TR™)|,qn. We
have an exponential map
Eronar : N° — L.
Denote by 6 the pullback to N of the distance function z + d(x) = dist (z, M),
61, =doErynr: N = R.

The zero section Lo N M — NV is a Bott nondegenerate critical submanifold of § because
for every y € Lg N M the restriction to Ng of the Hessian of d at y is positive definite.
Hence there exists p = p(Lg) sufficiently small such that the map
IELOQM : {(5 < ,0} — Ly ﬂDp
is a diffeomorphism. We deduce that we have a natural projection
m:LoND,— LoN M,
which is continuous and defines a locally trivial fibration with fibers NS (p).

For every y € Lo N M the fiber Ng(p) is homeomorphic to a disk of dimension k,
because we have a proper Morse function Nz?(p) 3> x — d(zx), with a unique critical point,
its minimum y. Thus Lo N D, is homeomorphic to a tube in Ly around Lo N M C Lo so
that

x(Lo N Dp) = x(Lo N M).
The downward gradient flow of the restriction to Lo N D, of the distance function d(x)
produces diffeomorphisms of manifolds with boundary

LoﬁDp 2 LoND,, Vre (O,p).
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Hence

X(LO N Dr) = X(LO N DP) = X(LO N M)a Vr € (07:0}'
Since the restriction to Lo N D, of the distance function d(z) has no critical points other
than the minima y € Lo N M, we deduce that Lg is transversal to the level sets

{d(z)=r}=M,, Vre(0,p]
This proves Lg € X,. O

Corollary 3.6.4. Suppose C' C R? is a smooth, closed, compact semialgebraic curve. For
every line L € Gry(R?) = Gr!(R?) we set

no(L) == #(LNC).
Then the function L — nc (L) belongs to L°°(Gr1(R?), |di|1), has compact support and

length (C') = / no(L)|dig|(L). O
Gri (R?)

More stuff to come...#

3.7. Higher order Crofton formulse

More stuff to come...#



Chapter 4

The symplectic
geometry of the
cotangent bundle

4.1. Symplectic linear algebra

A symplectic pairing on a finite dimensional real vector space V is a skew-symmetric,
nondegenerate bilinear map
w:VxV =R, (v1,v2) = w(v,v1) = —w(ve,v1), Yvi,v2 €V.
More precisely, w is an element w € A2V* such that the linear map
I,: V-V Vovr— [,(v)=viwe V"

is a linear isomorphism. This map is called the symplectic duality. A symplectic vector space
is a pair (V,w), V is a finite dimensional real vector space and w is a symplectic pairing on
V.

Example 4.1.1. (a) (The canonical symplectic pairing.) Suppose U is a finite dimen-
sional vector space, denote by

(—,—=):U"xU—R
the canonical pairing, and set V := U* x U = T*U. Then the bilinear map

Q:VxV =R, Q((Elv“l)? (52”“2)) = (&1, u2) — (&g, u1)
We will say that €2 is the canonical symplectic pairing on U* x U. Observe that V* = U xU*,
and the symplectic duality
In:U"xU—-UxU*"
is given by
Io(§,u) = (—u,§)
Indeed,

<IQ(£17U’1)7 (52>U2)> = <(_u17€1>7 (527U2)> = Q((Elaul)v (527U2))-
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(b) Suppose (V;,w;), i = 0,1 are symplectic vector spaces. Then the bilinear form w; X (—wy)
on V; x Vp is a symplectic pairing. O

Definition 4.1.2. A morphism of symplectic vector spaces (V;,w;), i = 0,1, is a linear map
T : Vo — Vi such that

w1(Tuo, Two) = wo(uo, vo), Vuo,vo € Vp. O
We will also say that T is a symplectomorphism.

Remark 4.1.3. Observe that any symplectomorphism must be an injective map. O

Suppose (V,w) is a symplectic vector space. For every vector subspace U C V we set
U:={&eV* (£,u)=0, VueU},
and we define the symplectic annihilator to be
U= I100) = {veV; wwu) =0, YuecU}.
Observe that
dimU” = dimU = dimV — dim U, (U")’ =0

Definition 4.1.4. Suppose (V,w) is a symplectic vector space, and U is a subspace of V.
Then U is called isotropic if U C U”, co-isotropic (or involutive) if U° c U, and Lagragian,
if U is simultaneously, isotropic and involutive, i.e.,

U=U". 0

Observe that
U isotropic <= U > involutive.

We denote by J_(V,w) the set of isotropic subspaces, by J;(V,w) the set of involutive
subspaces, and by

Lag(V,w) i= T (V,w) N L4 (V,w)
the set of Lagrangian subspaces. Observe that J_ (V') is nonempty because it contains all
the one-dimensional subspaces. The set J_(V') is ordered by inclusion.

Proposition 4.1.5. Lag(V) coincides with the subset of mazimal elements of I_(V). In
particular, Lag(V') is non-empty.

Proof. Clearly, a Lagrangian subspace L is maximal isotropic because any isotropic sub-
space U satisfies 2dim U < dim U + dim U” = dim V, and in particular

dim L = dim I’ = %dim V.

Conversely, assume L is a maximal isotropic subspace. Then L = L, because for any vector
velb \ L the subspace L + v is still isotropic. O

Example 4.1.6. (a) Suppose U is a vector space, and V = U* x U is equipped with the
canonical symplectic structure €2. Then for any subspace S C U the subspace

Lg=S8Sx8ScU*xU

is Lagrangian.
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(b) Suppose A : U — U* is a linear map. We define its graph as the subspace
Iy={(Au,u) eU*xU; uweU}.

Then I' 4 is Lagrangian if and only if A is symmetric, i.e. A = A*, where A* is the adjoint
of A

A* (U =U—U™.
To see this observe that

Ly ={(-v,A*) e UxU"}

so that

1% = I, (T4) = Tax.
(¢) Suppose (V;,w;), i = 0,1 are two symplectic spaces. Then a linear map T : Vj — Vi is
a symplectic morphism, if and only if its graph

Ir:= {(T'U[),’Uo); vy € Vo} cVixW

is Lagrangian with respect to the symplectic pairing wy x (—wp). O

Suppose L is a Lagrangian subspace of the symplectic space (V,w). Observe that for
every v € L the linear functional I,v vanishes on L so that it induces a linear functional
on V/L. In particular, we have a natural map

L,(L) = (V/L)",
which is an isomorphism since L is Lagrangian.
4.2. Lagrangian submanifolds

4.3. Distributions and their singularities

4.4. Fourier integral operators
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