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Chapter 1

Grassmannians

1.1. Linear Grassmannians

Suppose V is a real vector space of dimension n. For every 0 ≤ k ≤ n we denote by Grk(V )
the set of k-dimensional vector subspaces of V . We will say that Grk(V ) is the linear
Grassmannian of k-planes in E. When V = Rn we will write Gr(n, k) instead of Grk(Rn).

We would like to give several equivalent descriptions of the natural structure of smooth
manifold on Grk(V ). To do this it is very convenient to fix an Euclidean metric on V . We
will denote the corresponding inner product by •.

Any k-dimensional subspace L ⊂ V is uniquely determined by the orthogonal projection
onto L which we will denote by PL. Thus we can identify Grk(V ) with the set of rank k
projectors

Projk(V ) :=
{
P : V → V ; P ∗ = P = P 2, rankP = k

}
.

We have a natural map

P : Grk(V ) → Projk(V ), L 7→ PL

with inverse

P 7→ Range (P ).

Projk(V ) is a subset of the vector space of symmetric endomorphisms

End+(V ) :=
{

A ∈ End(V ), A∗ = A
}
.

End+(V ) is equipped with a natural inner product

(A,B) :=
1
2

tr(AB), ∀A,B ∈ End+(V ). (1.1)

The norm on End+(V ) induced by this inner product is 1/2 the norm of a symmetric
operator viewed as a bounded operator between Hilbert spaces.

Projk(V ) is a closed and bounded subset of End+(V ). The bijection P : Grk(V ) →
Projk(V ) induces a topology on Grk(V ). We want to show that Grk(V ) has a natural
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2 1. Grassmannians

structure of smooth manifold compatible with this topology. To see this we define for every
L ⊂ Grk(V ) the set

Grk(V,L) :=
{

U ∈ Grk(V ); U ∩ L⊥ = 0
}
.

Lemma 1.1.1. (a) Let L ∈ Grk(V ). Then

U ∩ L⊥ = 0 ⇐⇒ 1− PL + PU : V → V is an isomorphism. (1.2)

(b) Grk(V, L) is an open subset of Grk(V ).

Proof. (a) Note first that a dimension count implies that

U ∩ L⊥ = 0 ⇐⇒ U + L⊥ = V ⇐⇒ U⊥ ∩ L = 0.

Let us show that U ∩ L⊥ = 0 implies that 1 − PL + PL is an isomorphism. It suffices to
show that

ker(1− PL + PU ) = 0.
Suppose v ∈ ker(1− PL + PU ). Then

0 = PL(1− PL + PU )v = PLPUv = 0 =⇒ PUv ∈ U ∩ kerPL = U ∩ L⊥ = 0.

Hence PUv = 0 so that v ∈ U⊥. From the equality (1 − PL − PU )v = 0 we also deduce
(1− PL)v = 0 so that v ∈ L. Hence

v ∈ U⊥ ∩ L = 0.

Conversely, we will show that if 1− PL + PU = PL⊥ + PU onto then U + L⊥ = V . Indeed
let v ∈ V . Then there exists x ∈ V such that

v = PL⊥x + PUx ∈ L⊥ + U.

(b) We have to show that for every K ∈ Grk(V, L) there exists ε > 0 such that any U
satisfying

‖PU − PK‖ < ε

intersects L⊥ trivially. Since K ∈ Grk(V, L) we deduce from (a) that

1− PL − PK : V → V

is an isomorphism. Note that

‖(1− PL − PK)− (1− PL − PU )‖ = ‖PK − PU‖.
The space of isomorphisms of V is an open subset of End(V ). Hence there exists ε > 0 such
that for any U satisfying

‖PU − PK‖ < ε

the endomorphism (1− PL − PU ) is an isomorphism. We now conclude using part (a). ut

Since L ∈ Grk(V, L), ∀L ∈ Grk(V ) we have an open cover of Grk(V )

Grk(V ) =
⋃

L∈Grk(V )

Grk(V, L).

Note that for every L ∈ Grk(V ) we have a natural map

Γ : Hom(L,L⊥) → Grk(V, L),



1.1. Linear Grassmannians 3

which associates to each linear map S : L → L⊥ its graph (see Figure 1.1)

ΓS = {x + Sx ∈ L + L⊥ = V ; x ∈ L}.
We will show that this is a homeomorphism by providing an explicit description of the
orthogonal projection PΓS

v
v

v x

Sx

L
L

L

L S
Γ

Figure 1.1. Subspaces as graphs of linear operators.

Observe first that the orthogonal complement of ΓS is the graph of −S∗ : L⊥ → L.
More precisely

Γ⊥S = Γ−S∗ =
{
y − S∗y ∈ L⊥ + L = V ; y ∈ L⊥

}
.

Let v = PLv + PL⊥v = vL + vL+ ∈ V (see Figure 1.1). Then

PΓS
v = x + Sx, x ∈ L ⇐⇒ v − (x + Sx) ∈ Γ⊥S

⇐⇒ ∃x ∈ L, y ∈ L⊥ such that
{

x + S∗y = vL

Sx− y = vL⊥
.

Consider the operator S : L⊕ L⊥ → L⊕ L⊥ which has the block decomposition

S =
[
1L S∗

S −1⊥L

]
.

Then the above linear system can be rewritten as

S ·
[

x
y

]
=

[
vL

vL⊥

]
.

Now observe that

S2 =
[
1L + S∗S 0

0 1L⊥ + SS∗

]
.

Hence S is invertible and

S−1 =
[

(1L + S∗S)−1 0
0 (1L⊥ + SS∗)−1

]
· S

=
[

(1L + S∗S)−1 (1L + S∗S)−1S∗

(1L⊥ + SS∗)−1S −(1L⊥ + SS∗)−1

]
.

We deduce
x = (1L + S∗S)−1vL + (1L + S∗S)−1S∗vL⊥



4 1. Grassmannians

and

PΓS
v =

[
x

Sx

]
.

Hence PΓS
has the block decomposition

PΓS
=

[
1L

S

]
· [(1L + S∗S)−1 (1L + S∗S)−1S∗]

=
[

(1L + S∗S)−1 (1L + S∗S)−1S∗

S(1L + S∗S)−1 S(1L + S∗S)−1S∗

]
.

Note that if U ∈ Grk(V,L) and with respect to the decomposition V = L+L⊥ the projector
PU has the block form

PU =
[

A B
C D

]
=

[
PLPUIL PLPUIL⊥

PL⊥PUIL PLL⊥PUIL⊥

]

where for every subspace K ↪→ V we denoted by IK : K → V the canonical inclusion, then
U = ΓS , where S = CA−1. This shows that the graph map

Hom(L,L⊥) 3 S 7→ ΓS ∈ Grk(V )

is a homeomorphism. Moreover, the above formulæ show that if U ∈ Grk(V, L0)∩Grk(V, L1)
then we can represent U in two was,

U = ΓS0 = ΓS1 , Si ∈ Hom(Li, L
⊥
i ), i = 0, 1

and the map
S0 → S1

is smooth. This shows that Grk(V ) has a natural structure of smooth manifold of dimension

dimGrk(V ) = dim Hom(L,L⊥) = k(n− k).

The above considerations shows that via the projection map U 7→ PU we can regard Grk(V )
as a submanifold of End+(V ). The Euclidean metric (1.1) on End(V ) induces a metric
h = hn,k on Grk(V ).

Denote by O(V ) the group of orthogonal transformations of V . The group O(V ) acts
smoothly and transitively on Grk(V )

O(V )×Grk(V ) 3 (g, L) 7→ g(L) ∈ Grk(V ).

Note that
PgL = gPLg−1.

The action of O(V ) on End+(V ) by conjugation preserves the inner product on End−(V )
and thus we deduce the action of O(V ) on Grk(V ) preserves the metric ĥ.

We would like to express this metric in the graph coordinates. Consider L ∈ Grk(V )
and S ∈ Hom(L, L⊥). Then, for every t ∈ R, we have

Ut := ΓtS ∈ Grk(V, L).

If U̇0 denotes the tangent to the path t 7→ Ut at t = 0, then

ĥ(U̇0, U̇0) =
1
2

tr(Ṗ 2
0 ), Ṗ0 :=

d

dt
|t=0PΓtS

,
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If we write Pt := PΓtS
we deduce

Pt =
[

(1L + t2S∗S)−1 t(1L + t2S∗S)−1S∗

tS(1L + t2S∗S)−1 t2S(1L + t2S∗S)−1S∗

]
.

Hence

Ṗt=0 =
[

0 S∗

S 0

]
= S∗PL⊥ + SPL. (1.3)

so that

ĥ(U̇0, U̇0) =
1
2
(
tr(SS∗) + tr(S∗S)

)
= tr(SS∗).

We can be even more concrete by choosing an orthonormal basis (~ei)1≤i≤k of L and an
orthonormal basis (eα)k<α≤n of L⊥.

With respect to these bases the map S : L → L⊥ is described by a matrix (sαi)1≤i≤k<α≤n

and then
tr(SS∗) = tr(S∗S) =

∑

i,α

|sαi|2.

We can think of the collection (sαi) as defining local coordinates on Grk(V, L). Hence

ĥ(U̇0, U̇0) =
∑

i,α

|sαi|2. (1.4)

In integral geometric computations we will find convenient to relate the above coor-
dinates to the classical language of moving frames. In the sequel we make the following
notational conventions.

• We will use small Latin letters i, j, k, ... to denote indices in the range {1, ..., k}.
• We will use the Greek letters α, β, γ, ... do denote indices in the range {k + 1, · · · , n}.
• We will use Latin letters A, B,C, ... to denote indices in the range {1, · · · , n}.

Suppose we have a smooth 1-parameter family of orthonormal frames (eA) = (eA(t)) ,
|t| ¿ 1. This defines a smooth path

t 7→ Lt = span (ei(t) ) ∈ Grk(V ).

We would like to compute
ĥ(L̇0, L̇0).

Observe that we have a smooth path

t 7→ gt ∈ O(V ),

defined by
gteA(0) = eA(t).

With respect to the fixed frame (eA(0)) the orthogonal transformation gt is given my a
matrix (sAB(t)), where

sAB = eA(0) • (
gteB(0)

)
.

Observe that g0 = 1V . Let Pt denote the projection onto Lt. Then

Pt = gtP0g
−1
t
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so that if we set X = d
dt |t=0gt we have

Ṗ0 = [X, P0].

With respect to the decomposition V = L0 + L⊥0 the projector P0 has the block decompo-
sition

P0 =
[
1L0 0
0 0

]
.

X is represented by a skew-symmetric matrix with entries

xAB = ṡAB = eA • ėB

which has the block form

X =

[
XL0,L0 −X∗

L⊥0 ,L0

XL⊥0 ,L0
XL⊥0 ,L⊥0

]
,

where XL⊥0 ,L0
denotes a map L0 → L⊥0 etc. We deduce

[X, P0] =

[
0 X∗

L⊥0 ,L0

XL⊥0 ,L0
0

]
.

We deduce

ĥ(L̇0, L̇0) =
1
2

tr(Ṗ0, Ṗ0) = tr(XL⊥0 ,L0
X∗

L⊥0 ,L0
) =

∑

α,i

|ṡαi|2. (1.5)

We will find it convenient later on to interpret the above computations in the language of
moving frames.

Suppose M is a smooth m-dimensional manifold and L : M → Grk(V ) is a smooth
map. Fix a point p0 ∈ M and local coordinates (ui)1≤i≤m near p0 such that ui(p0) = 0.

The map Lt can be described near p0 via a moving frame, i.e. an orthonormal frame
(eA) depending smoothly on (ui) such that

L(u) = span (ei(u) ).

The above computations show that the differential of L at p0 is described by the (n−k)×k
matrix of 1-forms on M

Dp0L = (θαi), θαi = eα • dei.

This means that if X = (u̇a) ∈ Tp0M then

Dp0L(X) = (xαi) ∈ TL(0) Grk(V ), xαi =
∑

a

eα • ∂ei

∂ua
u̇a. (1.6)

If M happens to be an open subset of Grk(V ) then we can use the forms θαi to describe
the metric h. More precisely, the equalities (1.4) and (1.5) show that

h =
∑

α,i

θαi ⊗ θαi. (1.7)
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1.2. Densities and integration

On an orientable manifold M we can obtain Borel measures in a simple fashion. We fix
an orientation on M . Then, any nowhere vanishing, top dimensional differential form ω
on M compatible with the orientation (which maps positively oriented frames to positive
numbers) defines a positive Borel measure µω on M via the equality

µω(U) :=
∫

U
ω.

Unfortunately, this trick does not work on Grassmannians since many of them are not
orientable. To produce Borel measures we must abandon working with differential forms
and instead work with densities.

If V is a finite dimensional real vector space we denote by detV the top exterior power
of V , i.e. the one dimensional space Λdim V V . Given a real number s we define an s-density
on V to be a map

λ : detV → R, λ(tΩ) = |t|sλ(Ω), ∀t ∈ R∗, Ω ∈ det V.

We denote by |Λ|s(V ) the one dimensional space of s-densities. Note that we have a canon-
ical identification |Λ|0(E) = R. We will refer to 1-densities simply as densities and denote
the corresponding space by |Λ|(V ). We say that an s-density λ : detV → R is positive if

λ(detV \ 0) ⊂ (0,∞).

We denote by |Λ|+s (V ) the cone of positive densities.
Note that any basis (v1, · · · , vn) of V defines linear isomorphisms

|Λ|sV → R, λ 7→ λ(v1 ∧ · · · ∧ vn).

In particular, we have a canonical identification

|Λ|s(Rn) ∼= R, λ 7→ λ(e1 ∧ · · · ∧ en)

where (e1, · · · , en) is the canonical basis of Rn.
If V0 and V1 are vector spaces of the same dimension n and g : V0 → V1 is a linear

isomorphism then we get a linear map

g∗ : |Λ|s(V1) → |Λ|s(V0), |Λ|s(V1) 3 λ 7→ g∗λ,

where
(g∗λ) (∧ivi) = λ

(∧i(gvi)
)
, ∀v1, · · · , vn ∈ V0.

If V0 = V1 = V so that g ∈ Aut(EV ) then

g∗λ = | det g|sλ.

For every g, h ∈ Aut(V ) we gave (gh)∗ = h∗g∗ and thus we have a left action of Aut(V ) on
|Λ|s(V )

Aut(V )× |Λ|s(V ) → |Λ|s(V ),

Aut(V )× |Λ|s(V ) 3 (g, λ) 7→ g∗λ = (g−1)∗λ = | det g|−sλ.

Observe that we have bilinear maps

|Λ|s(V )⊗ |Λ|t(V ) → |Λ|s+t(V ), (λ, µ) 7→ λ · µ.
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Note that to any short exact sequence of vector spaces

0 → U
α→ V

β→ W → 0, dimU = m, dimV = m, dimW = p

we can associate maps
\ : |Λ|+s (U)⊗ |Λ|s(V ) → |Λ|s(W ),

/ : |Λ|s(V )⊗ |Λ|+s (W ) → |Λ|s(U),

and
× : |Λ|s(U)⊗ |Λ|s(W ) → |Λ|s(V )

as follows.

• Let µ ∈ |Λ|+s (U) and λ ∈ |Λ|s(V ) and suppose (wj)1≤j≤p is a basis of W . Now
choose lifts vj ∈ V of wj such that β(vj) = wj and a basis (ui)1≤i≤m of U such
that {

u1, . . . , um, w̃1, . . . , w̃p,
}

is a basis of V and we set

(µ\λ)
(∧jwj

)
:=

λ
(
(∧iui) ∧ (∧jvj)

)

µ
(∧iui

) .

It is easily seen that the above definition is independent of the choices of v’s and
u’s.

• Let λ ∈ |Λ|s(V ) and ν ∈ |Λ|+s (W ). Given a basis (ui)1≤i≤m of U , extend the
linearly independent set

(
α(ui)

) ⊂ V to a basis
{

α(u1), . . . , α(um), v1, · · · , vp,
}

of V and now define

(λ/ν)
(∧iui

)
:=

λ
(
(∧iα(ui)) ∧ (∧jvj)

)

ν
(∧jβ(vj)

) .

Again it is easily verified that the above definition is independent of the various
choices.

• Let µ ∈ |Λ|s(U) and ν ∈ |Λ|s(W ). To define µ×ν : detV → R it suffices to indicate
its value on a single nonzero vector of the line detV . Fix a basis (ui)1≤i≤m of U
and a basis (wj)1≤j≤p of W . Choose lifts (vj) of wj to V . Then we set

(µ× ν)
(
(∧iui) ∧ (∧jwj)

)
= µ(∧iui)ν(∧jvj).

Note that for a different choice of lifts v′j of wj we have

(∧iui) ∧ (∧jvj) = (∧iui) ∧ (∧jv
′
j).

Again one can check that this is independent of the various bases (ui) and (wj).

Example 1.2.1. Consider the short exact sequence

0 → U = R α−→ V = R2 β−→ W = R→ 0

given by
α(s) = (4s, 10s), β(x, y) = 5x− 2y.
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Denote by e the canonical basis of U , by (e1,e2) the canonical basis of V and by f the
canonical basis of W . We obtain canonical densities λU on U , λV on V and λW on W given
by

λU (e) = λV (e1 ∧ e2) = λW (f) = 1.

We would like to describe the density λV /β∗λW on V . Set

f1 = α(e) = (2, 3).

We choose f2 ∈ V such that β(f2) = f , for example, f2 = (1, 2). Then

λV /β∗λW (e) = λV (f1 ∧ f2)/λW (f) =
∣∣∣∣det

[
4 10
1 2

∣∣∣∣
∣∣∣∣ = 2.

Hence λV /β∗λW = 2λU . ut

Suppose now that E → M is a real vector bundle of rank n over the smooth manifold
M . Assume it is given by the open cover (Uα) and gluing cocycle

gβα : Uαβ → Aut(V ),

where V is a fixed real vector space of dimension n. Then the bundle of s-densities associated
to E is the real line bundle |Λ|sE given by the open cover (Uα) and gluing cocycle

| det gβα|−s : Uαβ → Aut( |Λ|s(V ) ).

We denote by C∞(|Λ|sE ) the space of smooth sections of |Λ|sE. Such a section is given by
a collection of smooth maps

λα : Uα → |Λ|s(V )
satisfying the gluing conditions

λβ(x) = |det gβα|−sλβ(x), ∀α, β, x ∈ Uαβ.

Let us point out that if V = Rn then we have a canonical identification |Λ|s(Rn) → R and
in this case a density can be regarded as a collection of smooth functions λα : Uα → R
satisfying the above gluing conditions.

An s-density λ ∈ C∞(|Λ|s E) is called positive if for every x ∈ M we have λ(x) ∈
|Λ|+s (Ex).

If φ : N → M is a smooth map and E → M is a smooth real vector bundle, we obtain
the pullback bundle π∗E → N . We have canonical isomorphisms

|Λ|s π∗E ∼= π∗ |Λ|s E

and a natural pullback map

φ∗ : C∞(|Λ|s E) → C∞(π∗ |Λ|s E) ∼= C∞(|Λ|s π∗E).

Given a short exact sequence of vector bundles

0 → E0 → E1 → E2 → 0

over E we obtain maps

\ : C∞(|Λ|+s E0)× C∞(|Λ|s E1) → C∞(|Λ|s E2)

/ : C∞(|Λ|s E1)× C∞(|Λ|s E2) → C∞(|Λ|s E0)
× : C∞(|Λ|s E0)× C∞(|Λ|s E2) → C∞(|Λ|s E1).
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Observe that for every positive smooth function f : M → (0,∞) we have

(fµ)\λ = (f−1(µ\λ), λ/(fν) = (f−1)(µ/λ).

Moreover, for µ ∈ C∞(|Λ|+s E0), ν ∈ C∞(|Λ|+s E2) we have

µ\(µ× ν) = ν, (µ× ν)/ν = µ.

In the sequel we will almost exclusively need a special case of the above construction, when
E is the tangent bundle of the smooth manifold M . We will denote by |Λ|s(M) the line
bundle |Λ|s(TM) and we will refer to its sections as (smooth) s-densities on M . When
s = 1 we will use the simpler notation |Λ|M to denote |Λ|1(M).

To give a local description of s-densities we first fix a coordinate atlas (Uα, (xi
α) ) where

xi
α : Uα → R, i = 1, · · · , n = dimM

are local coordinates on Uα. Suppose p ∈ Uαβ . A tangent vector v ∈ TpM has coordinate
decompositions ∑

i

Xi
α∂xi

α
= v =

∑

j

Xj
β∂

xj
β
.

Using the identity

∂xi
α

=
∑

j

∂xj
β

∂xi
α

∂
xj

β

we deduce
∑

j

Xj
β∂

xj
β

=
∑

j

(∑

i

Xi
α

∂xj
β

∂xi
α

)
∂

xj
β

=⇒ Xj
β =

∑

i

∂xj
β

∂xi
α

Xi
α.

This proves that the tangent bundle TM is given by the open cover (Uα) and gluing maps

gβα : Uαβ → GL(n,R), gβα =
( ∂xj

β

∂xi
α

)
1≤i,j≤n

∈ GL(n,R)

We deduce that an s-density on M is described by a coordinate atlas
(
Uα, (xi

α)
)
,

and smooth functions
λα : Uα → R

satisfying the conditions

λβ = |dβα|−sλα, where dβα = det

(
∂xj

β

∂xi
α

)

1≤i,j≤n

. (1.8)

We deduce that the smooth 0-densities on M are precisely the smooth functions.

Example 1.2.2. (a) Suppose ω ∈ Ωn(M) is a top degree differential form on M . Then in
a coordinate atlas (Uα, (xi

α) ) this form is described by a collection of forms

ωα = λαdx1
α ∧ · · · ∧ sxn

α.

The functions λα satisfy the gluing conditions

λβ = d−1
βαλα
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and thus we deduce that the collection of functions |λα|s defines an s-density on M which
we will denote by |ω|s. Because of this fact the densities are traditionally described as
collections

λα|dxα|s, dxα := dx1
α ∧ · · · ∧ dxn

α.

(b) Suppose M is an orientable manifold. By fixing an orientation we choose an atlas
(Uα, (xi

α) ) so that all the determinants dβα are positive. If ω is a top dimensional form
on M described locally by forms

ωα = λαdxα

then the collection of functions λα defines a density on M . Thus a choice of orientation
produces an linear map

Ωn(M) → C∞(|Λ|(M) ).
As explained in [N, §3.4.2] this map is a bijection.

(c) Any Riemann metric g on M defines a canonical density on M denoted by |dVg| and
called the volume density. It is locally described by√

|gα||dxα|,
where gα denotes the symmetric matrix representing the metric g in the coordinates (xi

α).
ut

Observe that we cannot speak of its value of a given density at a point p ∈ M . However,
as any section of a vector bundle, a density has a well defined zero set. The support of
density is by definition the closure of the complement of its zero set. We then denote by
C0(|Λ|(M) ) the space of continuous densities with compact support.

The densities on a manifold serve a major purpose: they can be integrated. More
precisely there is a natural linear map∫

M
: C0(|Λ|(M) ) → R, |dµ| 7→

∫
|dµ|

defined as follows. Represent |dµ| as a collection

µα|dxα|
associated to a coordinate atlas (Uα, (xi

α) ). Next, choose a partition of unity subordinated
to the cover (Uα), i.e. a collection of compactly supported smooth functions

ηk : C∞
0 (M) → [0, 1],

such that for every k there exists α = α(k) so that supp ηk ⊂ Uα(ik) and
∑

k

ηk = 1.

The density ηk|dµ| is supported in Uα = Uα(k) where it is described by

ηkµα|dxα|.
Now regard Uα as an open subset of the Euclidean space Rn with Euclidean coordinates
(xi

α). Then interpret |dxα| as the Lebesgue measure on Rn and then∫
ηkµα|dxα|
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as the Lebesgue integral of the function

ηkµα : Uα ⊂ Rn → R.

Define ∫

M
|dµ| :=

∑

k

∫
ηkµα(k)|dxα(k)|.

We refer to [N, §3.4.1] For a proof that the above definition is independent of the various
choices.

Note that if f is a continuous, compactly supported function on M and |dµ| is a density
then f |dµ| is a continuous compactly supported density and thus there is a well defined
integral ∫

M
f |dµ|.

Thus there is a natural pairing

C0(M)× C(|Λ|M ), (f, |dµ|) 7→
∫

M
f |dµ|.

Let us observe that if |dρ| and |dτ | are two positive densities then there exists a positive
function f such that

|dρ| = f |dτ |.
The existence of this function follows from the Radon-Nicodym theorem and for every
x ∈ M we have

f(x) = lim
U→{x}

∫
U |dρ∫
U |dτ | ,

where the above limit is taken the open sets shrinking to x. We will use the notation

f =
|dρ|
|dτ | .

If φ : M → N is a diffeomorphism and |dρ| = (Uα, ρα|dyα|) is a density on N , then we
define the pullback of |dρ| by φ to be the density φ∗|dρ| on M defined by

φ∗|dρ| = (
φ−1(Uα), ρα|dyα|), yi

α = xi
α ◦ φ.

The classical change in variables formula now takes the form
∫

N
|dρ| =

∫

M
φ∗|dρ|.

Example 1.2.3. Suppose φ : M → N is a diffeomorphism between two smooth m-
dimensional manifolds, ω ∈ Ωm(M) and |ω| is the associated density. Then

φ∗|ω| = |φ∗ω|.
ut

Suppose a Lie group acts smoothly on M . Then for every g ∈ G and any density |dρ|
we get a new density g∗|dρ|. The density |dρ| is called G-invariant if

g∗|dρ| = |dρ, ∀g ∈ G.



1.2. Densities and integration 13

Note that a density is invariant if and only if the associated Borel measure is g-invariant.
A positive density is invariant if the jacobian |dρ|

|dρ|g is identically equal to 1.

Proposition 1.2.4. Suppose |dρ| and |dτ | are two G-invariant positive densities. Then the
jacobian |dρ|

|dτ | is a G-invariant smooth, positive function on G.

Proof. Let x ∈ M and g ∈ G. Then for every open neighborhood U of x we have
∫

U
|dρ| =

∫

g(U)
|dρ|,

∫

U
|dτ | =

∫

g(U)
|dτ | =⇒

∫
U |dτ |∫
U |dρ| =

∫
g(U) |dτ |∫
g(U) |dρ|

and then letting U → {x} we deduce

J(x) = J(gx), ∀x ∈ M, g ∈ G.

ut

Corollary 1.2.5. If G acts smoothly transitively on the smooth manifold M then, up to a
positive multiplicative constant there exists at most one invariant positive density. ut

Suppose Φ : M → B is a submersion. The kernels of the differentials of Φ form a vector
subbundle T V M ↪→ TM consisting of the planes tangent to the fibers of Φ. We will refer to
it as the vertical bundle. Since Φ is a submersion we have a short exact sequence of bundles
over M .

0 → T V M
DΦ−→ Φ∗TB → 0.

Observe that any (positive) density |dν| on B defines by pullback a (positive) density Φ∗|dν|
on the bundle Φ∗TB → M . If λ is a density on T V M then we obtain a density λ× Φ∗|dν|
on M .

Suppose |dµ| is a density on M such that Φ is proper on the support of |dµ|. Set
k = dimB, r = dimM − dimB. We would like to describe a density Φ∗|dµ| on B called
the pushforward of |dµ| by Φ. Intuitively, Φ∗|dµ| is the unique density on B such that for
any open subset U ⊂ B we have ∫

U
Φ∗|dµ| =

∫

Φ−1(U)
|dµ|.

Proposition 1.2.6. There exists a smooth density Φ∗|dµ| on B uniquely characterized by
the following condition. For every density |dν| on B we have

Φ∗|dµ| = Vν |dν|
where Vν ∈ C∞(B) is given by

Vν(b) =
∫

Φ−1(b)
|dµ|/Φ∗|dν|.

Proof. Fix a positive density |dν| on B. Along every fiber Mb we have a density |dµ|b/Φ∗|dν|.
To understand this density fix x ∈ Mb. Then we can find local coordinates (yj)1≤j≤k near
b ∈ B and smooth functions (xi)1≤i≤r defined in a neighborhood V of x in M such that the
collection of functions (xi, yj) defines local coordinates near x on M and in these coordinates
the map Φ is given by the projection (x, y) 7→ y.
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In the coordinates y on B we can write

|dν| = ρB(y)|dy| and |dµ| = ρM (x, y)|dx ∧ dy|.
Then along the fibers y = const. we have

|dµ|b/Φ∗|dν| = ρM (x, y)
ρB(y)

|dx|.

We set

Vν(b) :=
∫

Mb

|dµ|b/Φ∗|dν|

Vν is a smooth function on B. We can form the density Vν |dν| which a priori depends on ν.
Observe that if |dν̂| is another density, then there exists a positive smooth function

w : B → R such that
|dν̂| = w|dν|.

Then
|dµ|b/Φ∗|dν̂| = w−1|dµ|b/Φ∗|dν|, Vν̂ = w−1Vν

so that
Vν̂ |dν̂| = Vν |dν|.

In other words the density Vν |dν| on B is independent on ν. It depends only on |dµ|. ut

Using partitions of unity and the classical Fubini theorem we obtain the identity
∫

Φ−1(U)
|dµ| =

∫

U
Φ∗|dµ|, for any open subset U ⊂ B. (1.9)

Remark 1.2.7. Very often the submersion Φ : M → B satisfies the following condition.

For every point on the base b ∈ B there exist an open neighborhood U of b in B, a
nowhere vanishing form ω ∈ Ωk(U), a nowhere vanishing form Ω ∈ Ωk+r(MU ), (MU :=
Φ−1(U)), and a form η ∈ Ωr(U) such that

Ω = η ∧ π∗ω.

Then we can write
|dµ| = ρ|Ω|

for some ρ ∈ C∞(MU )
Φ∗|dµ| = f |ω|

and then for every u ∈ U ⊂ B we have

f(u) =
∫

Mu

ρ|η|.

In particular ∫

MU

|dµ| =
∫

U
f(u)|ω| =

∫

U

(∫

Mu

ρ|η|
)
|ω|.

ut
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Example 1.2.8 (Co-area formula). Suppose (M, g) is a Riemann manifold of dimension
m + 1, and f : M → R is a smooth function without critical points. On M we have a
volume density |dVg|. We would like to compute the pushforward density f∗|dVg| on R. We
seek f∗|dVg| in the form

f∗|dVg| = ρ(t)|dt|
where |dt| is the Euclidean volume density on R, and ρ is a smooth function.

For t ∈ R we set Mt := f−1(t). Mt is a codimension 1 submanifold of M . We denote
by |dVt| the volume density on Mt defined by the induced metric gt := g|Mt . We denote by
∇f the g-gradient of f , and we set n := 1

|∇f |∇f .

Fix t0 ∈ R. For every point p ∈ Mt0 we have df(p) 6= 0, and from the implicit func-
tion theorem we deduce that we can find an open neighborhood U , and smooth function
x1, . . . , xm such that (f, x1, . . . , xm) are local coordinates on U . Then along U we can write

|dVg| = ω|df ∧ dx1 ∧ · · · ∧ dxm|.
is a unit normal vector field along Mt0 ∩ U , and we have

|dVt0 | ºU∩Mt0
= ω|n (df ∧ dx1 ∧ · · · ∧ dxm) ºU∩Mt0

| = ω|∇f ||(dx1 ∧ · · · ∧ dxm) ºU∩Mt0
|

Now observe that along U we have

|dVg|/f∗|dt| = ω|(dx1 ∧ · · · ∧ dxm)|
so that

|dVt0 | ºU∩Mt0
= |∇f ||dVg|/f∗|dt|

so that

|dVg|/f∗|dt| = 1
|∇f | |dVt0 | ºU∩Mt0

.

Hence

f∗|dVg| = ρ(t)|dt|, ρ(t) =
∫

Mt

1
|∇f | |dVt|, (1.10)

and obtain in this fashion the co-area formula
∫

M
|dVg| =

∫

R

(∫

Mt

1
|∇f | |dVt|

)
|dt| (1.11)

To see how this works in practice consider the unit sphere Sn ⊂ Rn+1. We denote the
coordinates in Rn+1 by (t, x1, . . . , xn). We let P± ∈ Sn denote the poles given t = ±1.

We denote by |dVn| the volume density on Sn and by π : Sn → R the natural projection
given by

(t, x1, . . . , xn) 7→ t.

π is a submersion on M = Sn \ {P±} and π(M) = (−1, 1). We want to compute π∗|dVn|.
Observe that π−1(t) is the (n − 1)-dimensional sphere of radius (1 − t2)1/2. To find the
gradient ∇π observe that for every p ∈ Sn the tangent vector ∇π(p) is the projection of
the vector ∂t on the tangent space TpS

n, because ∂t is the gradient of the function linear
function π : Rn+1 → R, π(t, xi) = t with respect to the Euclidean metric on Rn+1. Denote
by θ the angle between ∂t and TpS

n, set p′ = π(p) and denote by t the coordinate of p′ (see



16 1. Grassmannians

t0

p

1

1

t
θ

θ

p'

Figure 1.2. Slicing a sphere by hyperplanes

Figure 3.1). Then θ is equal to the angle at p between the radius [0, p] and the segment
[p, p′]. We deduce

cos θ = length [p, p′] = (1− t2)1/2.

Hence

|∇π(p)| = (1− t2)1/2.

Hence ∫

π−1(t)

1
|∇π| |dVt| = (1− t2)−1/2

∫

π−1(t)
|dVt| = σn−1(1− t2)

n−2
2 ,

where σm denotes the m-dimensional area of the unit m-dimensional. The last formula
implies

σn = 2σn

∫ 1

0
(1− t2)

n−2
2 |dt| = σn−1

∫ 1

0
(1− s)

n−2
2 s−1/2|ds| = σn−1B

(
1
2
,
n

2

)
,

where B denotes the Beta function

B(p, q) =
∫ 1

0
sp−1(1− s)q−1ds, p, q > 0. (1.12)

It is known (see ) that

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

, (1.13)

where Γ(x) denotes Euler’s gamma function

Γ(x) =
∫ ∞

0
e−ttx−1dt.

We deduce

σn =
2Γ(1

2)n+1

Γ(n+1
2 )

. (1.14)

ut
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1.3. Invariant measures on linear Grassmannians

On the Grassmannian Grk(V ) we have an O(V )-invariant metric h = hn,k. The associated
Riemannian volume defines an invariant density. We will denote by |dγn,k|, where n =
dimV . It is called the kinematic density on Grk(V ). Since the action of the group O(V ) is
transitive, we deduce that any other invariant density is equivalent to a constant multiple
of this metric density. We would like to give a local description of |dγn,k|.

Fix consider a small open set O ⊂ Grk(V ). Set n := dimV . If O is sufficiently small
we can find smooth maps

eA : O → V, A = 1, · · · , n

with the following properties.

• For every L ∈ O the collection (eA(L))1≤A≤n is an orthonormal frame of V .
• For every L ∈ O the collection (ei(L))1≤i≤k is an orthonormal frame of L.

For every 1 ≤ i ≤ k and every k + 1 ≤ α ≤ 1 we have a 1-form

θαi ∈ Ω1(O), θαi = deα • ei.

As explained in the previous subsection, the metric h is described along O by

h =
∑

α,i

θαi ⊗ θαi

and the associated volume density is described by

|dγn,k| =
∣∣∏

α,i

θαi

∣∣ :=
∣∣∧

α,i

θαi

∣∣.

Example 1.3.1. To understand the above construction it is helpful to consider a special
case, Gr1(R2), the Grassmannian of lines through the origin in R2. This space is also known
as the real projective line and as such it is also denoted by RP1.

A line L in R2 is uniquely determined by the angle θ ∈ [0, π] it forms with the x axis.
For such an angle θ we denote by Lθ the corresponding line. Lθ is also represented by the
the orthonormal frame

e1(θ) = (cos θ, sin θ), e2(θ) = (− sin θ, cos θ), Lθ = span (e1(θ) ).

Then
θ21 = e2 • de1 = dθ

and
|dγ2,1| = |dθ|. ut

1.4. The volumes of the linear Grassmannians

We would like to compute the volumes of the Grassmannian Grk(V ), dimV = n with
respect to the density dνn,k, i.e. we would like to compute

Cn,k :=
∫

Grk(V )
|dγn,k|.
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Denote by ωn the volume of the unit ball Bn ⊂ Rn and by σn−1 the (n − 1)-dimensional
“surface area” of the unit sphere Sn−1. Then

σn−1 = nωn

and

ωn =
Γ(1/2)n

Γ(1 + n/2)
=





πk

k!
n = 2k

22k+1πkk!
(2k + 1)!

n = 2k + 1

,

where Γ(x) is the gamma function. We list below the values of ωn for small n.

n 0 1 2 3 4
ωn 1 2 π 4π

3
π2

2

.

To compute the volume of the Grassmannians we need to give yet another description for
the Grassmannians, as a homogeneous space.

Fix L0 ∈ Grk(V ). Then the stabilizer of L0 with respect to the action of O(V ) on
Grk(V ) is the subgroup O(L0)×O(L⊥0 ) and thus we can identify Grk(V ) with the homo-
geneous space O(V )/O(L0)×O(L⊥0 ).

The computation of Cn,k is carried out in three steps.

Step 1. We equip the orthogonal groups O(Rn) with a canonical invariant density |dγn|
called the kinematic density on O(n). Set

Cn :=
∫

O(Rn)
|dγn|.

Step 2. We show that

Cn,k =
Cn

CkCn−k
.

Step 3. We show that

Cn,1 =
1
2
σn−1 =

nωn

2
.

and then compute Cn inductively using the recurrence relation from Step 2

Cn+1 = (C1Cn,1)Cn,

and the initial condition
C2 = vol (O(2) ) = 2σ1.

Step 1. The group O(V ) is a submanifold of End(V ) consisting of endomorphisms S
satisfying SS∗ = S∗S = 1V . We equip End(V ) with the inner product

〈A,B〉 =
1
2

tr(AB∗).

This metric induces an invariant metric h on O(V ). We would like to give a more concrete
description of this metric.
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Denote by End−(V ) the subspace of End(V ) consisting of skew-symmetric operators.
If For S0 ∈ O(V ) we have a map

expS0
: End−(V ) → O(V ), End−(V ) 7−→ S0 · exp(X).

This defines a diffeomorphism from a neighborhood of 0 in End−(V ) to a neighborhood of
S0 in O(V ). Two skewsymmetric endomorphisms X,Y ∈ End−(V ) define paths

γX , γY : R→ O(V ), γX(t) = S0 exp(tX), γY (t) = S0 exp(tY )

originating at S0. We set

Ẋ = γ̇X(0) ∈ TS0O(V ) ⊂ End(V ), Ẏ = γ̇Y (0) ∈ TS0O(V ) ⊂ End(V ).

Then
Ẋ = S0X, Ẏ = S0Y,

h(Ẋ, Ẏ ) =
1
2

tr
(
(S0X)(S0Y )∗

)
=

1
2

tr
(
S0XY ∗S∗0

)
=

1
2

tr
(
S∗0S0XY ∗ )

=
1
2

tr
(
XY ∗ )

If we choose an orthonormal basis (eA) of V so that X and Y are given by the skew
symmetric matrices (xAB), (yAB) then we deduce

h(Ẋ, Ẏ ) =
∑

A>B

xAByAB.

If we set
fA(t) := exp(tX)eA

then we deduce
xAB = eA • ḟB(0) = fA(0) • ḟB(0).

More generally, we define

fA : O(V ) → V, fA(S) = SeA

we obtain the angular forms
θAB = fA • dfB.

Then the above metric has the description

h =
∑

A>B

θAB ⊗ θAB.

The associated volume density is

|dγn| =
∣∣∣

∧

A>B

θAB

∣∣∣.

Step 2. Fix an orthonormal frame (eA) of V such that L0 = span (ei; 1 ≤ i ≤ k). We
can identify V with Rn, O(V ) with O(n) and L0 with the subspace Rn ⊕ 0n−k ⊂ Rn. An
orthogonal n×n matrix T is uniquely determined by the orthonormal frame (TeA) via the
equalities

TAB = eA • TeB.

Define
p : O(n) → Grk(V ), p(T ) = T (L0).
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More explicitly we have
p(T ) = span (Tei)1≤i≤k.

We will prove that we have a principal fibration

O(k)×O(n− k) O(n)

Grk(Rn)

y w

u

p ,

and that
p∗|dγn| = CkCn−k|dγn,k|.

Once we have this we deduce from the Fubini theorem that

Cn = CkCn−kCn,k.

Let us prove the above facts.
For every sufficiently small open subset U ⊂ Grk(V ) we can find a smooth section

φ : U → O(n)

of p : O(n) → Grk(V ). The section can be identified with a smooth family of frames
(φA(L), L ∈ U)1≤A≤n such that

L = span (φi(L); 1 ≤ i ≤ k).

To such a frame we associate the orthogonal matrix φ(L) ∈ O(n) which maps the fixed
frame

(
eA

)
to the frame

(
φB

)
. It is a given by a matrix with entries

φ(L)AB = eA • φB.

Then we have a diffeomorphism

Ψ : O(k)×O(n− k)× U → O(n)

defined as follows.

• Given (s, t, L) ∈ O(k) × O(n − k) × U express s as a k × k matrix s = (si
j) and t

as a (n− k)× (n− k) matrix (tαβ).

• Define the frame of V .

( fA ) = (φB) ∗ (s, t),

via the equalities

f i = f i(s, L) =
∑

j

sj
iφj(L) ∈ L, 1 ≤ i ≤ k (1.15)

fα = fα(t, L) =
∑

β

tβαφβ(L) ∈ L⊥, k + 1 ≤ α ≤ n. (1.16)

• Now define Ψ = Ψ(s, t, L) to be the orthogonal transformation of V which maps
the frame (eA) to the frame (fB), i.e.

fA = ΨeA, ∀A.
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The map Ψ is a homeomorphism with inverse

O(n) 3 T 7→ Ψ−1(T ) = (s, t;L) ∈ O(k)×O(n− k)× L

defined as follows. We set fA = fA(T ) = TeA, 1 ≤ A ≤ n. Then

L = LT = span (f i)1≤i≤k

while the matrices (si
j) and (tαβ) are obtained via (1.15) and (1.16). More precisely, we have

si
j = φi(LT ) • f j , sα

β = φα(LT ) • fβ.

Observe that, ∀s0, s1 ∈ O(k), t0, t1 ∈ O(n− k), we have
(
(φB) ∗ (s0, t0)

) ∗ (s1, t1) = (φB) ∗ (s0s1, t0t1).

This means that Ψ is equivariant with respect to the right actions of O(k) × O(n − k) on
O(k)×O(n− k)× U and O(n). We have a commutative diagram

O(k)×O(n− k)× U p−1(U)

U ⊂ Grk(V )

wΨ

hhhhhjπ

''''''* p

In particular, this shows that p defines a principal O(k)×O(n− k)-bundle.
Observe now that p∗|dγn| is an invariant density on Grk(Rn) and thus there exists a

constant c such that
p∗|dγn| = c|dγn,k|.

This constant is given by the integral of the density |dγn|/p∗|dγn,k| along the fiber p−1(L0).
Recall the if we define fA : O(n) → Rn by

fA(T ) := TeA,

and
θAB := fA • dfB,

then
|dγn| = |

∧

A>B

θAB|.

We write this as ∣∣∣
(∧

i>j

θij

)
∧

( ∧

α>β

θαβ

)
∧

( ∧

α,i

θα,i

)∣∣∣.

The form
(∧

α,i θα,i

)
is the pullback of a nowhere vanishing form defined in a neighborhood

of L0 in Rk whose associated density id |dγn,k|. We now find ourselves in the situation
described in Remark 1.2.7. We deduce

c =
∫

p−1(L0)

∣∣∣
(∧

i>j

θij

)
∧

( ∧

α>β

θαβ

)∣∣∣

=
(∫

O(k)
|dγk|

)(∫

O(n−k)
|dγn−k| = CkCn−k.



22 1. Grassmannians

Step 3. Fix an orthonormal basis {eA} of V and denote by Sn−1
+ the open hemisphere

Sn−1
+ =

{
~v ∈ V ; |~v| = 1, ~v •~1 > 0

}
.

Note that Gr1(V ) ∼= RPn−1 is the Grassmannian of lines in V . The set of lines which do
not intersect Sn−1

+ is a smooth hypersurface of Gr1(V ) diffeomorphic to RPn−2 and thus
has kinematic measure zero. We denote by Gr1(V )∗ the open subset consisting of lines
intersecting Sn−1

+ . We thus have a map

ψ : Gr∗1(V ) → Sn−1
+ , ` 7→ ` ∩ Sn−1

+ .

This map is a diffeomorphism and we have

Cn,1 =
∫

Gr1(V )
|dγn,1| =

∫

Gr∗1(V )
|dγn,1| =

∫

Sn−1
+

|dγn,1|ψ.

Now observe that ψ is in fact an isometry and thus we deduce

Cn,1 =
1
2
area (Sn−1) =

σn−1

2
nωn

2
.

Hence
Cn+1 = CnC1Cn+1,1 = σnCn.

And we deduce

Cn = σn−1 · · ·σ2C2 = 2
n−1∏

k=1

σk =
n−1∏

j=0

σj .

In particular, we deduce the following result.

Proposition 1.4.1. For every 1 ≤ k < n we have

Cn,k =
∫

Grk(Rn)
|dγn,k| =

∏n−1
j=0 σj( ∏k−1

i=0 σi

) · ( ∏n−k−1
j=0 σj

) =
(

n

k

) ∏n
j=1 ωj( ∏k

i=1 ωi

) · (∏n−k
j=1 ωj

) .

Following [KR] we set

[n] :=
1
2

σn−1

ωn−1
=

nωn

2ωn−1
, [n]! :=

n∏

k=1

[k] =
ωnn!
2n

,

[
n

k

]
:=

[n]!
([k]!)([n− k]!)

=
(

n

k

)
ωn

ωkωn−k
. (1.17)

Denote by |dνn,k| the unique invariant density on Grk(V ), dimV = n such that
∫

Grk(V )
|dνn,k| =

[
n

k

]
. (1.18)

We have

|dνn,k| =
[
n
k

]

Cn,k
|dγnk

|.
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Example 1.4.2. Using the computation in Example 1.3.1 we deduce

|dγ2,1| = |dθ|, 0 ≤ θ < π.

and we deduce

C2,1 =
∫ π

0
|dθ| = 2

ω2

ω2
1

,

as predicted by Proposition 1.4.1. We have[
2
1

]
= 2

ω2

ω2
1

= C2,1,

so that |dν2,1| = |dγ2,1|. ut

1.5. Affine Grassmannians

We denote by Graffk(V ) the set of k-dimensional affine subspaces of V . We would like to
describe a natural structure of smooth manifold on Graffk(V ).

Note that we have tautological vector bundle U = Un,k → Grk(V ). It is naturally
a subbundle of the trivial vector bundle V = V × Grk(V ) → Grk(V ) whose fiber over
∈ Grk(V ) is the vector subspace L. The trivial vector bundle V is equipped with a natural
metric and we denote by U⊥ → Grk(V ) the orthogonal complement of U in V .

The fiber of U⊥ over L ∈ Grk(V ) is canonically identified with the orthogonal comple-
ment L⊥ of L in V . The points of U⊥ are pairs (~c, L), where L ∈ Grk(V ), and ~c is a vector
in L⊥.

Observe that we have a natural map A : U⊥ → Graffk(V ) given by

(~c, L) 7→ ~r + L.

This map is a bijection with inverse

Graffk(V ) 3 S 7→ (S ∩ [S]⊥, [S]),

where [S] ∈ Grk(V ) denotes the vector subspace S − S parallel to S. We set

~c(S) := S ∩ [S]⊥

and we say that ~c(S) is the center of the affine plane S.
We equip Graffk(V ) with the structure of smooth manifold which makes A a diffeo-

morphism. Thus, we identify Graffk(V ) with a vector subbundle of the trivial bundle
V ×Grk(V ) described by

U⊥ =
{
(~c, L) ∈ V ×Grk(V ); PL~c = 0

}
,

where PL denotes the orthogonal projection onto L.
The projection π : U⊥ → Grk(V ) is a submersion. The fiber of this submersion over

L ∈ Grk(V ) is canonically identified with the vector subspace L⊥ ⊂ V . As such is equipped
with a volume density dVL⊥ . We obtain in this fashion a density dVL⊥ on the horizontal
subbundle kerDπ ⊂ TU⊥.

The base Grk(V ) of the submersion π is equipped with a density |dγn,k| and thus we
obtain a density

|dγ̃n,k| = |dvL⊥ | × π∗|dγn,k|.
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Let us provide a local description for this density. Fix a small open subset O ⊂ Grk(V )
and denote by Õ its preimage in Graffk(V ) via the projection π. Then we can find smooth
maps

eA : O → V, ~r : Õ → V

with the following properties

• For every S ∈ Õ, (eA(S) ) is an orthonormal frame of V and

[L] = span
(
ei([L])

)
.

• For every S ∈ Õ we have

S = ~r(S) + [S].

We rewrite the last equality as

S = S(~r, ei).

Observe that the center of this affine plane is the projection of ~r onto [S]⊥

~c(S) =
∑
α

( eα • ~r )eα.

Following the tradition we introduce the (locally defined) 1-forms

θα := eα • d~r, θαi := eα • dei.

For fixed L ∈ Grk(V ) the density on the fiber U⊥L = L⊥ is given by

dVL⊥ =
∣∣∣
∧

θα

∣∣∣.
The volume density on Graffk(V ) is described along Õ by

|dγ̃n,k| =
∣∣∣
(∧

α

θα

)
∧

(∧

α,i

θαi

) ∣∣∣.

Theorem 1.5.1. Suppose f : Graffk(V ) → R is a compactly supported |dγ̂n,k|-integrable
function. Then

∫

Graffk(V )
f(S)|dγ̃n,k(S)| =

∫

Grk(V )

( ∫

L⊥
f(p + L)dVL⊥(p)

)
|dγn,k(L)|,

where dVL⊥ denotes the Euclidean volume density on L⊥.

Denote by Iso(V ) the group of affine isometries of V , i.e. the subgroup of the group
of affine transformations generated by translations and rotations about a fixed point. Any
affine isometry T : V → V is described by a unique pair (t, S) ∈ V × V so that

T (v) = Sv + t, ∀v ∈ V.

The group Iso(V ) acts in an obvious fashion on Graffk(V ) and a simple computation shows
that the associated volume density |dγ̃n,k| is Iso(V ) invariant.

If instead of the density |dγn,k| on Grk(V ) we use the density |dνn,k|, we obtain a density
|dν̃n,k| on Graffk(V ) which is a constant multiple of |dγ̃n,k|.

|dν̃n,k| =
[
n
k

]

Cn,k
|dγ̃nk

|. (1.19)
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Example 1.5.2. Let us unravel the above definition in the special case Graff1(R2), the
Grassmannians of affine lines in R2. Such a line L is determined by two quantities: the
angle θ ∈ [0, π) is makes with the x-axis, and the signed distance ρ ∈ (−∞,∞) from the
origin. More precisely, for every ρ ∈ R and θ ∈ [0, π) we denote by Lθ,ρ the line is given in
Euclidean coordinates by the equation

x sin θ − y cos θ = ρ

As a manifold, the Grassmannian Graff1(R2) is diffeomorphic to the interior of the Möbius
band. The Fubini formula in Theorem 1.5.1 can now be rewritten∫

Graff1(R2)
f(L) |dγ̃2,1|(L) =

∫ ∞

−∞

(∫ π

0
f(Lθ,ρ)|dθ|

)
|dρ|,

∀f ∈ C∞
cpt(Graff1(R2) ). ut





Chapter 2

A brief survey of
Riemannian geometry

2.1. The Levi-Civita connection and its
curvature

Let M be a smooth, connected manifold. We denote by Vect(M) the space of smooth vector
fields on M . For any smooth vector bundle E → M we denote and by EndE the vector
bundle whose fiber over x ∈ M is End(Ex), by C∞(E) the space of smooth sections of E
and by Ωp(E) the space of smooth differential forms of degree p on M with coefficients in
E i.e., the space of smooth sections of ΛpT ∗M ⊗E.

Definition 2.1.1. (a) A connection on the smooth vector bundle E → M is an R-bilinear
map

∇ : Vect(M)× C∞(E) → C∞(E), Vect(M)× C∞(E) 3 (X, u) 7→ ∇Xu

satisfying
∇fXu = f(∇Xu), ∇X(fu) = (Xf)Y u + f∇Xu,

∀f ∈ C∞(M), X ∈ Vect(M), u ∈ C∞(E). ∇Xu is called the covariant derivative of the
section u in the direction of X.
(b) The torsion of a connection ∇ on TM is the R-bilinear map

T = T∇ : Vect(M)×Vect(M) → Vect(M),

(X, Y ) 7→ T (X, Y ) := ∇XY −∇Y X − [X, Y ], ∀X, Y ∈ Vect(M).

The connection is called symmetric if its torsion is zero.
(c) The curvature of a connection ∇ on the vectur bundle E → M is the R-bilinear map

R = R∇ : Vect(M)×Vect(M) → C∞( EndE ),

(X, Y ) 7→ R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ], ∀X, Y ∈ Vect(M).

More precisely

R(X,Y )u := ∇X∇Y u−∇Y∇XZ −∇[X,Y ]u, u ∈ C∞(E).

27
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(d) A connection ∇ on TM is called compatible with a Riemann metric g on M if

X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), ∀X,Y, Z ∈ Vect(M).

When the Riemann metric is clear from the context, we will simply say that ∇ is a metric
connection.

We denote by C(M) the space of connections on TM and by C(M, g) ⊂ C(M, g) the space
of connections compatible with the Riemann metric g. The following facts are immediate
consequences of the above definitions.

Proposition 2.1.2. Suppose ∇ ∈ C(M). Then the following hold.

(a) The torsion T = T∇ is a tensor T ∈ Ω2(TM) i.e.,

T (X, Y ) = −T (Y, X), T (fX, Y ) = T (X, fY ) = fT (X,Y ),

∀X, Y ∈ Vect(M), f ∈ C∞(M).
(b) The curvature R = R∇ is a tensor R ∈ Ω2(EndTM) i.e.,

R(X,Y ) = −R(Y, X), R(fX, Y ) = R(X, fY ) = fR(X, Y ),

∀X, Y ∈ Vect(M), f ∈ C∞(M) . ut

Example 2.1.3. The Euclidean space is equipped with a natural connection D = DRn
.

If (x1, . . . , xn) are the natural coordinates on Rn, and we set ∂i := ∂xi then for any vector
fields

X =
∑

i

Xi∂i, Y =
∑

j

Y j∂j

we have
DX Y =

∑

i

Xi D∂i
Y =

∑

j

(∑

i

Xi∂iY
j
)
∂j .

Both the torsion, and the curvature of D are equal to zero. We will refer to D as the trivial
connection on Rn. ut

For any Riemann metric g on M we denote by End−g TM the bundle of skew-symmetric
endomorphisms of TM . The fiber of End−g TM over x ∈ M consists of endomorphisms of
TxM which are skew-symmetric with respect to the inner product gx on TxM .

Proposition 2.1.4. (a) If nonempty, C(M) is affine space modelled by Ω1(EndTM).
(b) If nonempty, C(M, g) is an affine space modelled by Ω1(End−g TM).

Proof. Let ∇0,∇1 ∈ C(M) define

A = ∇1 −∇0 : Vect(M)×Vect(M) → Vect(M)

by
Vect(M)×Vect(M) 3 (X, Y ) 7→ AXY := ∇1

XY −∇0
XY.

Observe that

AX(fY ) = fAXY, ∀f ∈ C∞(M) =⇒ AX ∈ C∞(EndTM).
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Clearly AfX = fAX , ∀f ∈ C∞(M) which shows that A ∈ Ω1(EndTM). Conversely let
∇ ∈ C(M) and A ∈ Ω1(EndTM). For X,Y ∈ Vect(M) define

∇′XY := ∇Y
X + AXY.

Then ∇′ is a connection on TM .
(b) Let ∇0,∇1 ∈ C(M, g) and set A = ∇1 − ∇0. We want to show that for every

X ∈ Vect(M) the endomorphism AX ∈ C∞(EndTM) is skew-symmetric i.e.,

g(AXY,Z) + g(Y AXZ) = 0, ∀Y, Z ∈ Vect(M).

To see this note that

0 = Xg(Y, Z)−Xg(Y, Z) = g(∇1
XY, Z) + g(Y∇1

XZ)− g(∇0
XY, Z)− g(Y,∇0

XZ)

= g(AXY, Z) + g(Y AXZ).

Conversely, if ∇ ∈ C(M, g) and A ∈ Ω1(End−g TM) the if we define

∇′XY := ∇XY + AXY,

and one can check easily that ∇′ ∈ C(M, g). ut

Example 2.1.5. Suppose ∇ ∈ C(M). Fix local coordinates (x1, . . . , xm), m = dimM
defined on an open subset U ⊂ M . We can then regard U as an subset of Rm. We write
∂i := ∂xi and we observe that the collection (∂i)1≤i≤m trivializes TU = TM |U .

The trivial connection on TRm defines a connection D on TU and we can write

∇ = D + Γ, Γ ∈ Ω1(EndTU) ∼= Ω1(U)⊗ End(Rm).

More precisely, if we set
∇i := ∇∂i , Di := D∂i , Γi := Γ∂i

then Γi can be identified with an m×m matrix Γi = (Γj
ik)1≤j,k≤m and we have

∇i∂k = Di∂k +
∑

j

Γj
ik∂j =

∑

j

Γj
ik∂j .

The quantities Γj
ik are known classically as the Christoffel symbols and uniquely determine

the action of the connection ∇ over U .
If T denotes the torsion of ∇ then

T (∂i, ∂j) = ∇i∂j −∇j∂i − [∂i, ∂j ] = ∇i∂j −∇j∂i =
∑

k

(Γk
ij − Γk

ji)∂k.

The connection is symmetric (i.e. T = 0) if and only if Γk
ij = Γk

ji, ∀k. If R denotes the
curvature of ∇ then using the equality [∂i, ∂j ] = 0 we deduce

R(∂i, ∂j)∂k = [∇i,∇j ]∂k = ∇i

(∑
s

Γs
jk∂s

)
−∇j

(∑
s

Γs
ik∂s

)

=
∑

s

(
(∂iΓs

jk)∂s + Γs
jk(∇i∂s)

)
−

∑
s

(
(∂jΓs

ik)∂s + Γs
ij(∇j∂s)

)

=
∑

s

(∂iΓs
jk − ∂jΓs

ik)∂s +
∑

s,`

(
Γs

jkΓ
`
is − Γs

ijΓ
`
js

)
∂`
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=
∑

`

(
(
∂iΓ`

jk − ∂jΓ`
ik

)
+

∑
s

(
Γs

jkΓ
`
is − Γs

ijΓ
`
js

))

︸ ︷︷ ︸
=:R`

kij

∂` =
∑

`

R`
kij∂`.

ut

Einstein Convention To reduce the notational overload when operating with tensors we
will use Einstein’s convention. Thus, when summing over a parameter which appears twice,
as a subscript and as a superscript we will omit the summation symbol. For example, with
this convention the expression

∑

`

(
∂iΓ`

jk − ∂jΓ`
ik

)
∂` +

∑

s,`

(
Γs

jkΓ
`
is − Γs

ijΓ
`
js

)
∂`

can be rewritten as
( ∂iΓ`

jk − ∂jΓ`
ik )∂` +

(
Γs

jkΓ
`
is − Γs

ijΓ
`
js

)
∂`. ut

A connection ∇ ∈ C(M) can be used to derivate vector fields along a smooth path in
M . Suppose γ : (a, b) → M is a smooth path. Then a vector field along γ is a section of the
pullback bundle γ∗TM → (a, b). For example, the velocity γ̇ is a vector field along γ. For
any vector field X along γ, its derivative along γ is another vector field along γ denoted by
∇γ̇X. Its value at t0 ∈ (a, b) is a vector ∇γ̇X|t=t0 ∈ Tγ(t0)M determined as follows.

• Choose local coordinates (xi) on M near γ(t0) such that xi(γ(t0)) = 0, ∀i.
• In these coordinates, γ is described by a collection of smooth functions xi(t) defined in
an open neighborhood of t0. The vector field X has the local description

X =
∑

i

Xi∂i,

where Xi are smooth function of t, while the velocity γ̇ has the local description

γ̇ =
∑

i

ẋi∂i.

• If Γi
jk denote the Christoffel symbols of ∇ in the coordinates (xi) then

∇γ̇X =
∑

k

(
Ẋk +

∑

i,j

Γk
ij ẋ

iXj

)
∂k.

One can check that ∇γ̇X defined as above is independent of coordinates. Note alos that
the above system of ODE’s is linear in the unknown Xk.

Definition 2.1.6. Let ∇ ∈ C(M). A smooth path γ in M is called autoparallel with respect
to ∇ if ∇γ̇ γ̇ = 0. ut

Example 2.1.7. Suppose ∇ is a connection on M , described in local coordinates (xi) by
the Christoffel symbols (Γi

jk). Then a smooth path gamma : [0, 1] → M described in local



2.1. The Levi-Civita connection and its curvature 31

coordinates by smooth functions (xi(t)) is autoparallel if and only if the functions Xi(t)
satisfy the nonlinear system of second order ODE’s

ẍi +
∑

j,k

Γi
jkẋ

j ẋk = 0, ∀i. ut

Remark 2.1.8. A connection ∇ ∈ C(M) defines connections on all the tensor bundles of
M by requiring that the product rule be satisfied for any natural product between tensors.
For simplicity will all be denoted by ∇. For example, the covariant derivative of a 1-form
α ∈ Ω1(M) along the vector field X is defined so that the product rule is satisfied

X · (α(Y )
)

= (∇Xα)(Y ) + α(∇XY )

so that
(∇Xα)(Y ) = X · ( α(Y )

)− α(∇XY ), X, Y ∈ Vect(M). (2.1)
If S ∈ C∞(EndTM) is an endomorphism of TM , and X ∈ Vect(M) then the covaraint
derivative of S along S is the endomorphism ∇XS defined by product rule requirement

∇X(SY ) = (∇XS)Y + S(∇XY, ∀Y ∈ Vect(M)

so that
(∇XS)Y = ∇X(SY )− S(∇XY ) ∀X, Y ∈ Vect(M). (2.2)

This last equality is often written in the commutator form

∇XS = [∇X , S]. ut
Proposition 2.1.9. Let ∇0,∇1 ∈ C(M, g). Then

∇0 = ∇1 ⇐⇒ T∇0 = T∇0 .

Proof. Let
T := T∇1 − T∇0 , A = ∇1 −∇0.

Then
T (X,Y ) = ∇1

XY −∇0
XY − (∇1

Y X −∇0
Y X

)
= AXY −AY X.

On the other hand for every X,Y, Z ∈ Vect(M) we have

0 = g(AZX, Y ) + g(X,AZY )−
(

g(AY X, Z) + g(X,AY Z)
)

+ g(AX , Y ) + g(Y, AXZ)

= g(X,AZY −AY Z) + g(AXY −AY X, Z) + g(Y, AZX + AXZ)
= g(X, T (Z, Y )) + g(T (X, Y ), Z) + g(Y,AZX + AXZ).
= g(Y,AZX + AXZ) + g(T (X,Y ), Z)− g(X, T (Y, Z).

On the other hand

AXZ −AZX = T (X,Z) =⇒ g(Y, T (X, Z)) = g(Y,AXZ −AZY )

so that

g(Y, T (X, Z)) = g(Y, AXZ −AZX) + g(Y, AZX + AXZ) + g(T (X,Y ), Z)− g(X, T (Y, Z) )

= 2g(Y, AXZ) + g(T (X, Y ), Z)− g(X, T (Y,Z) ).
We deduce

2g(Y, AXZ) = g(Y, T (X, Z)) + g(X, T (Y, Z))− g(Z, T (X,Y )).

This proves that A = 0 ⇐⇒ T = 0. ut
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The above result implies that that there exists at most one symmetric, metric connection
with trivial torsion.

Proposition 2.1.10. Suppose g is a Riemann metric on the smooth manifold. Then there
exists precisely one symmetric metric connection ∇ on M . This is known as the Levi-Civita
connection associated to the metric g.

Proof. Suppose ∇ is a symmetric metric connection on TM . For X,Y, Z ∈ Vect(M) we
have

Xg(Y, Z)− Zg(X, Y ) + Y g(Z, X)

= g(∇XY, Z) + g(Y,∇XZ)− g(∇ZX,Y )− g(X,∇ZY ) + g(∇Y Z, X) + g(Z,∇Y X)

= g(∇XY +∇Y X,Z) + g(∇XZ −∇ZX, Y ) + g(∇Y Z −∇ZY, X )

= g(2∇XY − [X, Y ], Z) + g([X, Z], Y ) + g([Y, Z], X),

so that
g(∇XY,Z) :=

1
2

{
Xg(Y,Z) + Y g(Z, X)− Zg(X,Y )

}

−1
2

{
g([X,Y ], Z)− g([Y,Z], X) + g([Z, X], Y )

}
, ∀Z ∈ Vect(M)

A simple computation shows that this defines a symmetric metric connection. ut

Remark 2.1.11. We can use the above identity to produce local descriptions of the Levi-
Civita connection. If (xi) are local coordinates on M such that in these coordinate the
metric g has the form

g = gijdxidxj

then the Christoffel symbols of ∇ in these coordinates are determined as follows. We have
(using Einstein’s convention)

∇i∂j = Γk
ij∂k,

so that
gk`Γk

ij = g(∇i∂j , ∂`) =
1
2
(
∂igj` + ∂jgi` − ∂`gij

)
.

We conclude
Γk

ij =
1
2
gk`

(
∂igj` + ∂jgi` − ∂`gij

)
.

From a computational standpoint this formula is too complex and we will rarely use it. ut

Definition 2.1.12. (a) A geodesic on a Riemann manifold is a path autoparalel with respect
to the Levi-Civita connection.

(b) The Riemann curvature of a Riemann metric is the curvature of the associated
Levi-Civita connection. ut

We see that the Riemann curvature is locally described by the metric tensor gij and its
partial derivatives up to order two.

In the sequel, unless otherwise indicated, we will work only with the Levi-Civita connec-
tion of a metric.
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Associated to the Riemann curvature R of a Riemann metric g on M is the Riemann
tensor. This is a section R† of the tensor bundle T ∗M⊗4 defined by

R†(U, V ;X,Y ) := g(U,R(X, Y )V ), ∀U, V, X, Y ∈ Vect(M).

In local coordinates Xi) on M , if g = (gij), then

R(∂k, ∂`)∂j = Ri
jk`∂i

and R† = (Rijk`), where

Rijk` = gisR
s
jk` = g(∂i, R(∂k, ∂`)∂j)

The Riemann curvature and tensor enjoy have many symmetries. The next result list the
fundamental symmetries relations of these tensors. For a proof we refer to [N, §4.2.1].

Proposition 2.1.13. The Riemann curvature R of a Riemann metric g on M satisfy the
following identities, for any U, V, X, Y, Z ∈ Vect(M).

(a)
R†(U, V ;X,Y ) = R†(U, V ;Y, X) = −R†(V, U ; X, Y ).

(b) (The first Bianchi identity)

R(X, Y )Z + R(Z, X)Y + R(Y, Z)X = 0.

(c)
R†(U, V ; X, Y ) = R†(X,Y ; U, V ).

(d) (The second Bianchi identity)

(∇XR)(Y, Z) + (∇Y R)(Z,X) + (∇ZR)(X, Y ) = 0. ut

In local coordinates the above identities take the form

Rk`ij = Rijk` = −Rjik` = −Rij`k,

Ri
jk` + Ri

k`j + Ri
`jk = 0.

Note that the Riemann curvature defines for every X,Y ∈ Vect(M) and endomorphism of
TM described by

Vect(M) 7−→ R(U,X)Y.

The trace of this endomorphism is a section Ricci = Riccig of T ∗M⊗2 called the Ricci
curvature of g. The symmetry of the Riemann curvature implies that Ricci is a symmetric
tensor, i.e.

Ricci(X,Y ) = Ricci(Y, X), ∀X, Y ∈ Vect(M).

In local coordinates the Ricci curvature is described by the quantities (Rij), where

Rij :=
∑

`

R`
j`i =

∑

`

R`
i`j =

∑

`

R`i`j .

Using the metric we obtain isomorphisms

T ∗M ∼= TM, T ∗M⊗2 ∼= T ∗M ⊗ TM ∼= EndTM
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and thus we can regard Ricci as an endomorphism of TM . As such, its trace is called the
scalar curvature and it is denoted by s = sg. In local coordinates s is described by

s =
∑

i,j

gijRij =
∑

i,j

Rijij , (2.3)

where (gij) denotes the inverse of the matrix (gij).
Fix a point p0 on the Riemann manifold M , γ : [0, 1] → M a smooth path staring at

p0, and X0 ∈ Tp0M . A parallel transport of X0 along γ is a parallel vector field X = X(t)
along γ such that X(0) = X0.

The existence and uniqueness results for initial value problems of linear ODE’s with
smooth coefficients implies that there exists a unique parallel transport of X0 ∈ Tp0M
along γ.

A connected Riemann manifold (M, g) is naturally a metric space, where the distance
between two points p, q ∈ M is defined by

dg(p, q) := inf
γ∈Pp,q

Lg(γ),

where Pp,q is the set of continuous, piecewise smooth paths γ : [0, 1] → M connecting p to
q, and for γ ∈ Pp,q we denoted by Lg(γ) its length

Lg(γ) :=
∫ 1

0
|γ̇(t)|gdt.

The topology induced by this metric coincides with the natural topology on M . For every
x ∈ M and r > 0 we set

BM (x, r) :=
{

y ∈ M ; dg(x, y) < r
}
.

Suppose γ : [a, b] → R is a geodesic on M then

d

dt
g( γ̇, γ̇ ) = 2g(∇γ̇ γ̇, γ̇) = 0

so that the speed |γ̇(t)| is a constant, σ = σ(γ). Hence the length of γ is

Lg(γ) = σ(γ)(b− a).

In particular

dg

(
γ(b), γ(a)

) ≤ σ(γ)(b− a). (2.4)

Observe that if γ : [a, b] → M is a geodesic with speed σ then the rescaled path

γ̃(s) := γ(s/σ), σa ≤ s ≤ σb

is also geodesic, but with unit speed. We will refer to the geodesics with unit speed as
geodesics parameterized by arclength.

The geodesics are locally defined by second order ode’s. The displacement inequal-
ity (2.4) and the standard existence and uniqueness results for such equations imply the
following result.
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Proposition 2.1.14. Let (M, g) be a connected Riemann manifold and p0 ∈ M . Then
there exists r = r(p0) > 0 such that for every tangent vector X ∈ Tp0M of length |X|g ≤ r,
there exists a unique geodesic

γ = γp0,X : [0, 1] → M

satisfying the initial conditions

γ(0) = p0, γ̇(0) = X. ut

The endpoint of the geodesic γp0,X postulated by the above result is denoted by expp0
(X).

The smooth dependence on initial conditions of solutions of ode’s implies that this map is
actually smooth shows that we have a smooth map

expTM → M, exp(X) = expp(Xp), ∀p ∈ M, X ∈ Vect(M).

We denote by DM (p0, r) the open disk in Tp0M of radius r centered at the origin. If r is
sufficiently small then the displacement inequality (2.4) implies

expp0

(
DM (p0, r)

) ⊂ BM (p0, r).

The differential of expp0
: D(p0, r) → M at 0 ∈ Tp0M is a linear map

D expp0
: T0(Tp0M) → Tp0M.

A simple computation shows that via the tautological identification T0(Tp0M) ∼= Tp0M we
can identify this linear map with the identity 1Tp0M . The implicit function theorem then
implies the following result.

Proposition 2.1.15. There exists ρ = ρ(p0) > 0 such that the exponential map

expp0
: DM (p0, ρ) → BMp0, ρ)

is a diffeomorphism onto an open neighborhood of p0 ∈ M . ut

A much more refined result is true.

Proposition 2.1.16. If ρ is as in Proposition 2.1.15 then expp0
defines a diffeomorphism

expp0

(
DM (p0, ρ)

)
= BM (p0, ρ).

Note that any choice of Euclidean coordinates (xi) in the tangent space Tp0M produces
local coordinates in some neighborhood of p0 which we continue to denote by (xi). The
local coordinates obtained in this fashion are called normal coordinates at p0. In these
coordinates we have

xi(p0) = 0, ∀i.
Γi

jk(p0) = 0, gij(x) = δij + O(2), ∀i, j, k
where δij denotes the Kronecker symbol, and for positive real number ν we denote by O(ν)
denotes a quantity bounded from above by const.

∑
i |xi|ν near p0.

Example 2.1.17. Consider the vector space Rn equipped with the Euclidean metric. Then
the exponential map

exp : TRn → Rn
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has the simple form

exp(v, x) = x + v, ∀x ∈ Rn, v ∈ TxRn = Rn.

In the sequel we will denote this Euclidean exponential map by E. ut

2.2. Cartan’s moving frames method

We want to describe a very useful method for computing the Riemann curvature in concrete
situations.

Suppose (M, g) is a Riemann manifold of dimension m. A local (or moving) frame on M
is a collection {e1, . . . , em} of smooth vector fields defined on an open subset U ⊂ M such
that for every u ∈ U the collection of vectors {e1(u), . . . ,em(u)} ⊂ TuM is an orthonormal
basis of TuM .

To any local frame (ei) defined on an open set U ⊂ M we can associate the dual coframe
which is the collection of 1-forms θi ∈ Ω1(U), 1 ≤ i ≤ m = dimM uniquely determined by
the requirements

θi(ej) = δi
j on U, ∀i, j.

Following E. Cartan we want to explain how to extract information about the Riemann
curvature from the knowledge of the exterior derivatives dθi. In the sequel we will use
Einstein’s convention.

Note the Levi-Civita connection determines 1-forms ωi
j ∈ Ω1(M) uniquely defined by

the equalities
∇kej = (ek ωi

j)ei = ωi
j(ek)ei, ∀j, k

where denotes the contraction of a differential form with a vector field. We can rewrite
the above equalities in the more compact form

∇ej = ωi
jei, ∀j (2.5)

We denote by ω the m ×m matrix with entries (ωi
j). We will refer to these forms as the

1-forms associated to ∇ by the frame (ei). Observe that because the Levi-Civita connection
is compatible with the metric the matrix ω is skew-symmetric,

ωi
j = −ωj

i .

We set
ωi

kj := ek ωi
j = ωi

j(ek).

If we now denote by ~e the matrix [e1, . . . ,em], then the equality (2.5) simplifies some more
to the equality

∇~e = ~e · ω.

The Levi-Civita connection enters into the differentials dθi through the back door. More
precisely we have the identity.

dθi(ej ,ek) = ejθ
i(ek)− ekθ

i(ej)− θi([ej , ek]) = −θi([ej , ek]). (2.6)

On the other hand, since the torsion of the Levi-Civita connection is zero we deduce

[ej , ek] = ∇ejek −∇ek
ej = ωs

jkes − ωs
kjes
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Hence
dθi(ej , ek) = −δi

sω
s
jk + δi

sω
s
kj = −ωi

jk + ωi
kj

If we consider the 2-form
ηi = θs ∧ ωi

s

then we observe that

ηi(ej , ek) = θs(ej)ωi
s(ek)− θs(ek)ωi

s(ej) = δs
jω

i
s(ek)− δs

kω
i
s(ej)

= ωi
kj − ωi

jk = dθi(ej , ek).
Hence

dθi = θs ∧ ωi
s = −ωi

s ∧ θs.

If we introduce the column vector

~θ =




θ1

...
θm




then we can rewrite the above equality as

d~θ = −ω ∧ ~θ. (2.7)

The last equality uniquely determines ω. More precisely, we have the following result.

Theorem 2.2.1 (Cartan). There exists a unique, skew-symmetric matrix ω with entries
1-forms on U such that

d~θ = −ω ∧ ~θ. (2.8)
Moreover, the curvature 2-form R ∈ Ω2(End−g TM) is given by the equality

R = dω + ω ∧ ω, (2.9)

where
(ω ∧ ω)i

j =
∑

k

ωi
k ∧ ωk

j .

The equalities (2.8) and (2.9) are known as Cartan’s structural equations.

Proof. We have already established the existence of such a matrix. Let us establish its
uniqueness. Observe first that there exist smooth functions gi

jk on U uniquely determined
by the equalities

dθi =
1
2
gi
jkθ

j ∧ θk, gi
jk = −gi

kj .

Suppose ω = (ωi
j) is a skew-symmetric matrix of 1-forms on U satisfying (2.7). Then we

can write each entry ωi
j as a linear combination of θ’s,

ωi
j = f i

jkθ
k, ∀i, j.

Since ω satisfies (2.7) we deduce

θj ∧ f i
jk = θj ∧ ωi

j = dθi = gi
jkθ

j ∧ θk

If we write
f̄ i

jk = (f i
jk − f i

kj)
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then we deduce
f̄ i

jk = gi
jk.

Since ω is skew symmetric we deduce

f i
jk = −f j

ik.

We have
gi
jk + gj

ki − gk
ij = f i

jk − f i
kj + f j

ki − f j
ik − fk

ij + fk
ji = 2f i

jk.

Hence, the coefficients f i
jk are uniquely determined by the g′s via

f i
jk =

1
2
(
gi
jk + gj

ki − gk
ij

)
.

To prove (2.9) we note that

R(e`, em)ej = [∇e`
,∇em ]ej −∇[e`,em]ej

Using the identity (2.6) we deduce that

[e`,em] =
∑

s

θs([e`, em])es = −
∑

s

dθs([e`,em])es

(2.8)
=

∑
s

∑

k

ωs
k ∧ θk([e`, em])es =

∑
s

∑

k

(
ωs

`kδ
k
m − ωs

mkδ
k
`

)
es =

∑
s

(
ωs

`m − ωs
m`

)
es.

Hence
∇[e`,em]ej =

∑
s

(
ωs

`m − ωs
m`

)∇esej =
∑

i

∑
s

(
ωs

`m − ωs
m`

)
ωi

sjei

Next, if we denote by Lei the Lie derivative along ei we deduce

[∇e`
,∇em ]ej = ∇e`

(∇emej)−∇em(∇e`
ej) = ∇e`

∑
s

ωs
mjes −∇em

∑
s

ωs
`jes

=
∑

s

(
Le`

ωs
mj − Lemωs

m`

)
es +

∑
s

∑

i

(
ωs

mjω
i
`s − ωs

`jω
i
ms

)
ei

=
∑

i

(
Le`

ωi
mj − Lemωi

m`

)
ei +

∑

i

∑
s

ωi
s ∧ ωj

j (e`, em)ej

On the other hand, using the formula

dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]), ∀η ∈ Ω1(M), ∀X, Y ∈ Vect(M)

we deduce
dωi

j(e`, em) = Le`
ωi

mj − Lemωi
m` − ωi

j([e`,em])

From the equality
[e`, em] =

∑
s

(
ωs

`m − ωs
m`

)
es

we get
ωi

j([e`,em]) =
∑

s

ωi
sj

(
ωs

`m − ωs
m`

)
.

Putting together all the above equalities we obtain Cartan’s structural equation (2.9). ut
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Example 2.2.2. Suppose U is an open set in the plane R2 and w : U → (0,∞) is a smooth
function. Consider the Riemann metric g on U defined by

g = w2(dx2 + dy2).

Then e1 = 1
w∂x, e2 = 1

w∂y is an orthonormal fram with dual coframe

θ1 = wdx, θ2 = wdy.

Then

~θ =
[

wdx
wdy

]
, d~θ =

[ −w′ydx ∧ dy

w′xdx ∧ dy

]
=

[
0 −w′y

w dx
w′x
w dy 0

]
∧

[
wdx
wdy

]

=
1
w

[
0 −w′ydx + w′xdy

w′ydx− w′xdy

]
∧

[
wdx
wdy

]

We deduce that

ω =
1
w

[
0 w′ydx− w′xdy

−w′ydx + w′xdy

]

=
[

0 ∂y(log w)dx− ∂x(log w)dy
−∂y(log w)dx + ∂x(log w)dy

]

The curvature 2-form is

R = dω + ω ∧ ω = dω =
[

0 −(∆ log w)dx ∧ dy
(∆ log w)dx ∧ dy 0

]
, ∆ := ∂2

x + ∂2
y .

Then the sectional curvature is

R1212 = g(e1, R(e1, e2)e2) = −(∆ log w)dx ∧ dy(e1, e2) = −∆log w

w2
.

For example, if U is the half-plane y > 0 and w(x, y) = y−1 then the corresponding metric
has constant sectional curvature = −1. This half-plane equipped with the metric h =
1
y2 (dx2 + y2) is known as the hyperbolic plane. ut

2.3. The shape operator and the second
fundamental form of a submanifold in Rn

Suppose M is an m-dimensional smooth submanifold of Rn. The Euclidean metric on Rn

induces a metric g on M . We would like to determine the Levi-Civita connection ∇M

and the curvature tensor of g. In the sequel, we will use without mentioning the Einstein
summation convention. We will use the following indexing conventions.

• We will use small Latin letters i, j, . . . to denote indices in the range

1 ≤ i, j ≤ m = dim M.

• We will use small Greek letters α, β, . . . to denote indices in the range

m < α, β, . . . ≤ n.

• We will use the capital Latin letters A,B,C to denote indices in the range

1 ≤ A, B,C ≤ n.
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To compute the Levi-Civita connection we will use Cartan’s moving frame method.
Denote by D the Levi-Civita connection of the Euclidean metric on Rn. Let us recall its
definition since it will come in handy a bit later.

Every vector field on Rn can be regarded as an n-uple of functions

X =




X1

...
Xn


 .

Then

D X =




dX1

...
dXn


 = dX.

The restriction to M of the tangent bundle TRn admits an orthogonal decomposition

(TRn)|M = TM ⊕ (TM)⊥.

Correspondingly, a section X of (TRn)|M decomposes into a tangential part Xτ and a
normal part Xν . Fix a a point p0 ∈ M , an open neighborhood U of p0 in Rn, and a local
orhonormal frame (~eA) of TRn along U . We denote by (θA) the dual coframe of (eA), i.e.

θA(eB) = eA • eB = δAB.

If X is a section of TRn
∣∣
M

then

Xτ = θi(X)ei, Xν = θα(X)eα.

We denote by ΘA
B the 1-forms associated to D by the frame (eA). They satisfy Cartan’s

equations
dθA = −ΘA

B ∧ θB, DeB = ΘA
BeA, ΘA

B = −ΘB
A .

Now observe that
θα|M = 0

from which we conclude that

(dθi)|M = −(Θi
j ∧ θj)|M .

If we write
φA := θA|M , ΦA

B := ΘA
B|M

we deduce from the equalities

dφi = −Φi
j ∧ φj , Φi

j = −Φj
i ,

and Cartan’s theorem that (Φi
j) are the 1-forms associated to the Levi-Civita connection

∇M by the local orthonormal frame (ei|M ). This implies that

∇Mej = Φi
jei = the tangential component of ΦA

j eA = D ej .

We have thus obtained the following result

Proposition 2.3.1. For every X, Y ∈ Vect(M) we have the equality

∇M
X Y = (DX Y )τ . ut
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Consider the Gauss map

G = GM : M → Grm(Rn), x 7→ TxM.

The shape operator of the submanifold M ↪→ Rn is, by definition, the differential of the
Gauss map. We denote it by SM and we would like to relate it to the structural coefficients
ΦA

B.
As explained in 1.1, in the neighborhood U of p0, the “moving plane” x 7→ TxM can be

represented by the orthonormal frame (eA) which has the property that the first m vectors
e1(x), . . . ,em(x) span TxM . The differential of the Gauss map at x ∈ U ∩ M is a linear
map

DG : TxM → TG(x) Grm(Rm) = Hom(TxM, (TxM)⊥).
As explained in (1.6), this differential described by the (n−m)×m matrix of 1-forms

(
eα •D ej ,

)
α,i

On the other hand
D ej = ΦA

j eA

so that
eα •D ej = Φα

j .

Define
ΦA

ij := ei ΦA
j ∈ Ω0(M ∩ U),

so that
ΦA

j = ΦA
ij ∧ φi.

We have thus obtained the following result.

Proposition 2.3.2. The shape operator of M , that is the differential of the Gauss map, is
locally described by the matrix of 1-forms (Φα

i )1≤i≤m<α<n. More precisely the operator

SM (ei) ∈ Hom(TxM, (TxM)⊥)

is given by
SM (ei)ej = (Dei ej)ν = Φα

ijeα, ∀i, j. ut

The torsion of D is trivial so that,

Dei ej −Dej ei = [ei, ej ].

Since the vector fields ei,ej are tangent to M , so is their bracket [ei, ej ] so that

[ei,ej ] • eα = 0, ∀1 ≤ i, j ≤ m < α < n.

We deduce
(Dei ej) • eα = (Dej ei) • eα, ∀i, j, α

The last equality can be rewritten as

(Dei ej)ν = (Dej ei)ν .

If we observe that

(Dfei
ej)ν =

(
Dei(fej)

)ν = f(Dei ej)ν , ∀i, j, f ∈ C∞(U ∩M)
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we deduce that the map

Vect(M)×Vect(M) → C∞(
(TM)⊥

)
, Vect(M)×Vect(M) 3 (X, Y ) 7→ (DX Y )ν

is C∞(M) bilinear and symmetric, i.e., ∀X, Y ∈ Vect(M), f ∈ C∞(M) we have

(DfX Y )ν = (DX(fY ))ν = f(DX Y )ν = f(DY X)ν .

This symmetric bilinear form is called the second fundamental form of the submanifold
M ↪→ Rn, and we will denote it by SM . Note that

SM (ei, ej) = φα(Dei ej)eα = Φα
ijeα = SM (ei)ej . (2.10)

From the equalities

0 = ei(ej • eα) = (Dei ej) • eα + ej • (Dei eα),

we deduce
ej • (Dei eα) = −(Dei ej) • eα = −eα • SM (ei,ej), ∀i, j, α. (2.11)

From Cartan’s structural equations (2.9) we deduce that the Riemann tensor satisfies

R = dΦ + Φ ∧ Φ ⇐⇒ Ri
j = dΦi

j + Φi
k ∧ Φk

j , ∀i, j.
Since the curvature of the Euclidean metric on Rn is trivial, we deduce from Cartan’s
structural equations that

dΘA
B + ΘA

C ∧ΘC
B = 0, ∀A,B.

Restricting this equality to M we deduce

dΦi
j = −Φj

C ∧ ΦC
j = −Φi

k ∧ Φk
j − Φi

α ∧ Φα
j

so that
Ri

j = dΦi
j + Φi

k ∧ Φk
j = −Φi

α ∧ Φα
j .

In particular, we deduce

g
(
ei, R(ek,e`)ej

)
= Ri

j(ek, e`) = −
∑
α

∣∣∣∣
Φi

kα Φi
`α

Φα
kj Φα

`j

∣∣∣∣

=
∑
α

∣∣∣∣
Φα

ki Φα
`i

Φα
kj Φα

`j

∣∣∣∣ = SM (ek, ei) • SM (e`,ej)− SM (ek,ej) • SM (e`, ei).

This implies the following result.

Theorem 2.3.3 (Gauss’ Golden Theorem). Suppose M is a submanifold of Rn. We denote
by g the induced metric on M and by SM the second fundamental form of the embedding
M ↪→ Rn. Denote by R the Riemann curvature of M with the induced metric. Then for
any X1, . . . , X4 ∈ Vect(M) we have

g(X1, R(X3, X4)X2) = SM (X3, X1) • SM (X4, X2)− SM (X3, X2) • SM (X4, X1),

where • denotes the inner product in Rn. ut
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2.4. The Gauss-Bonnet theorem for
hypersurfaces of an Euclidean space.

The results in the previous subsection have very surprising consequences.
Suppose M is a compact, orientable hypersurface of Rm+1. If fix on orientation on M

then we obtain a normal vector field

n : M → Rm+1, n(x) ⊥ TxM, |n(x)| = 1, ∀x ∈ M.

If we choose a local oriented orthonormal frame e1, . . . ,em of TM then n(x), e1(x), . . . , em

is an oriented orthonormal frame of Rm+1. In this case we can identify the second funda-
mental form with a genuine symmetric bilinear form

SM ∈ C∞(T ∗M⊗2, SM (X, Y ) = n • (DX Y ).

The Gauss map of M ↪→ Rm+1 can be given the description

GM : M → Grm(Rm+1), M 3 x 7→ 〈n(x)〉⊥ := the vector subspace orthogonal to n(x).

On the other hand, we have an oriented Gauss map
~GM : M → Sm, x → n(x),

and a double cover
π : Sm → Grm(Rm+1), Sm 3 ~u 7→ 〈~u〉⊥,

so that the diagram below is commutative

M Sm

Grm(Rm+1)

w~G

[
[
[
[]G

u

π

We fix an oriented orthonormal frame (~f0, ~f1, . . . , ~fm) of Rm+1, and we orient the unit sphere
Sm ⊂ Rm+1 so that the orientation of T~f0

Sm is given by the ordered frame

(~f1, . . . , ~fm).

Theorem 2.4.1 (Poincaré-Hopf-Morse). Suppose m = dimM is even. Then

deg ~GM =
1
2
χ(M) = Euler charactersitic of M.

Proof. Pick a regular value h0 ∈ Grm(Rm+1) of GM . Then π−1(h0) consists of two unit
vectors ±u0 ∈ Sm which are both regular values of ~GM . For every regular point x ∈ M of
~GM we set

εx :

{
1 Dx

~GM : TxM → Tn(x)S
m preserves orientations,

−1 Dx
~GM : TxM → Tn(x)S

m reverses orientations.
Then

deg ~GM =
∑

n(x)=u0

εx =
∑

n(x′)=−u0

εx′ .
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Consider now the function

ˆ̀ : Rm+1 → R, `(x) = u0 • x.

and denote by ` its restriction to M .

Lemma 2.4.2. (a) A point x ∈ M is a critical point of ` if and only if n(x) = ±u0.
(b) The function ` to M is a Morse function. Moreover, if x is a critical point of ` and
µ(x) is its Morse index then

εx = (−1)µ(x).

Proof. (a) Observe that u0 is the gradient of ˆ̀. We deduce that x ∈ M is a critical point
of L|M if and only if u0 ⊥ TxM , i.e., n(x) = ±u0.
(b) Suppose x0 ∈ M is a critical point of `, that is, n(x0) = ±u0. Choose a local, oriented
orthonormal moving frame x 7→ ~e(x) := (e1(x), . . . ,em(x)) of TM defined in a neighbor-
hood of x0. Then

~e(x0) := ( e1(x0), . . . , em(x0) )

is a positively oriented orthonormal frame of Tn(x0)S
m.

The Hessian of ` at x0 is the symmetric bilinear form Hx0 : Tx0M × Tx0M → R defined
by

Hx0( ei, ej ) = (LeiLej`)(x0),

where Lei denotes the Lie derivative along the vector field ei. We have

Lej` = Lej (u0 • x) = u0 • ej ,

LeiLej` = Lei(u0 • ej) = u0 • (Dei ej) =

{
SM (ei, ej) if n(x0) = u0

−SM (ei,ej) if n(x0) = −u0.

On the other hand, the differential at x0 of the oriented Gauss map is the linear map

Dx0
~GM : Tx0M → Tn(x0)S

m

which associates to ei(x0) ∈ Tx0M the orthogonal projection of the vector (Dei n)x0 onto
Tn(x0)S

m = span~e(x0). In other words,

Dx0
~GMei =

∑

j

(ej •Dei n)ei
(2.11)
= −

∑

j

SM (ei, ej)ej . (2.12)

Because n(x0) is a regular value of ~GM we deduce that the matrix
(
SM (ei,ej)

)
1≤i,j≤m

is
nonsingular. This implies that the Hessian of ` at x0 is also nonsingular and

(−1)µ(x0) = det Hx0 = (±1)m det
(
SM (ei, ej)

)
= det

(−SM (ei, ej)
)

= εx0 .

ut

From the above lemma we deduce

2 deg ~GM =
∑

n(x)=±x0

εx =
∑

d`(x)=0

(−1)µ(x) = χ(M),
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where at the last step we used the Morse (in)equalities for the Morse function `. This
concludes the proof of Theorem 2.4.1. ut

Remark 2.4.3. The above result has one interesting consequence, namely that the com-
pact, orientable hypersurfaces of an odd dimensional vector space have even Euler charac-
teristic. This shows for example that the complex projective plane CP2 cannot be embedded
smoothly in R5 because χ(CP2) = 3. ut

In the remainder of this subsection we will assume that m is even, m = 2h. Denote by
dAm the “area” form on the unit m-dimensional sphere Sm. Recall that σm denotes the
“area” of Sm. Hence ∫

Sm

1
σm

dAm = 1

so that
1

σm

∫

M

~G∗MdAm = deg GM =
1
2
χ(M).

We recall that

σ2h = (2h + 1)ω2r+1 =⇒ σ2h

2
=

22hπhh!
(2h)!

. (2.13)

Denote by g the induced metric on M and by R the curvature of g. We would like to prove
that the integrand ~G∗MdAm has the form

~G∗MdAm = P (RM )dVM ,

where dVM denotes the metric volume form on M and P (RM ) is a universal polynomial of
degree m

2 in the curvature R of M .
Fix a positively oriented orthonormal frame ~e = (e1, . . . ,em) of TM defined on some

open set U ⊂ M and denote by ~θ = (θ1, . . . , θm) the dual coframe. Observe that

dVM = θ1 ∧ · · · ∧ θm.

We set
Sij := SM (ei, ej) • n, Rijk` := g

(
ei, R(ek, e`)ej

)
.

Theorem 2.3.3 implies that

Rijk` = SikSj` − Si`Sjk =
∣∣∣∣

Sik Si`

Sjk Sj`

∣∣∣∣ . (2.14)

Observe that Rijk` 6= 0 =⇒ i 6= j, k 6= `, and in this case the matrix
[

Sik Si`

Sjk Sj`

]

is the 2 × 2 submatrix of S = (Sij)1≤i,j≤m obtained by intersection the rows i, j with the
columns k, `. We can rephrase the equality (2.14) in a more convenient form.

First, we regard the curvature Rijk` at a point x ∈ M as a linear map

Λ2TxM → Λ2T ∗xM, R(ek ∧ e`) =
∑

i<j

Rijk`θ
i ∧ θj .
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Next, regard S as a linear map

S : TxM → T ∗M, Sej = Sijθ
i.

Then S induces linear maps
ΛpS : ΛkTxM → ΛpT ∗M,

defined by

S(ei1 ∧ · · · ∧ eip) = (Sei1) ∧ · · · ∧ (Seip), ∀1 ≤ i1 < · · · < ip ≤ m.

The equality (2.14) can now be rephrased as

R = Λ2S. (2.15)

Along U we have the equality

(~G∗MdAM ) |U= ΛmS(e1 ∧ · · · ∧ em) = (detS)θ1 ∧ · · · ∧ θm = (detS)dVM .

We want to prove that detS can be described in terms of Λ2S. To see this observe that

(Λ2hS)(e1 ∧ e2 ∧ · · ·e2h−1 ∧ e2h) = (Λ2S)(e1 ∧ e2) ∧ · · · ∧ (Λ2S)(e2h−1 ∧ e2h)

=
h∧

s=1

(∑

i<j

Rij,2s−1,2sθ
i ∧ θj

)
=

∑

ϕ∈S′m

ε(ϕ)
( h∏

s=1

Rϕ(2s−1)ϕ(2s),2s−1,2s

)
dVM ,

where S′m denotes the set of permutations ϕ of {1, 2, . . . , m = 2h} such that

ϕ(1) < ϕ(2), . . . , ϕ(2h− 1) < ϕ(2h),

and ε(ϕ) = ±1 denotes the signature of a permutation. Observe that

#S′m =
(

2h

2

)
·
(

2h− 2
2

)
· · ·

(
2
2

)
=

(2h)!
2h

. (2.16)

We would like to give an alternate description of detS using the concept of pfaffian.
First of all, define

Θij =
∑

k<`

Rijk`θ
k ∧ θ` =

1
2

∑

k,`

Rijk`θ
k ∧ θ` = Λ2S(ei ∧ ej) ∈ Ω2(U).

We obtain in this fashion a m×m skew-symmetric matrix

Θ = Θg :=
(
Θij

)
1≤i,j≤m

whose entries are 2-forms on U . Note that we can also think of Θ as a 2-form whose
coefficients are skew-symmetric matrices. With the latter interpretation Θ is the curvature
2-form associated to the Levi-Civita connection

Θg = R∇g ∈ Ω2(End−g TM).

Define the pfaffian of Θ by the equality

Pf(Θ) :=
(−1)h

2hh!

∑

ϕ∈Sm

ε(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h) ∈ Ω2h(U),

where Sm denotes the group of permutations of {1, 2, . . . ,m}. Observe that

Pf(Θ) =
(−1)h

h!

∑

ϕ∈S′m

ε(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h),
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We can simplify this some more if we introduce the set S′′m consisting of permutations ϕ ∈ S′m
such that

ϕ(1) < ϕ(3) < · · · < ϕ(2h− 1).
Observe that

#S′m = (#S′′m)h! =⇒ #S′′m =
S′M
h!

=
(2h)!
2hh!

= 1 · 3 · · · (2h− 1) =: γ(2h).

Then
Pf(Θ) = (−1)h

∑

ϕ∈S′′m

ε(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h).

We have

Pf(−Θ) =
1
h!

∑

(σ,ϕ)∈S′m×S′m

ε(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)

)
dVM .

On the other hand
(Λ2hS)(e1 ∧ e2 ∧ · · · ∧ e2h−1 ∧ e2h)

=
1

#S′m

∑

ϕ∈S′m

ε(ϕ)ΛmS(eϕ(1) ∧ eϕ(2) ∧ · · · ∧ eϕ(2h−1) ∧ eϕ(2h))

=
1

#S′m

∑

ϕ∈S′m

ε(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h)

=
1

(#S′m)

∑

(σ,ϕ)∈S′m×S′m

ε(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)

)
dVM =

h!
#S′m

Pf(−Θ).

Hence
~G∗MdAM = (Λ2hS)(e1 ∧ e2 ∧ · · · ∧ e2h−1 ∧ e2h) =

h!
#S′m

Pf(−Θ),

so that

~G∗M
( 2
σ2h

dAM

)
=

2
σ2h

h!
#S′m

Pf(−Θ)
(2.13)
=

h!
#S′m

(2h)!
22hπhh!

Pf(−Θ)
(2.16)
=

1
(2π)h

Pf(−Θ)

We have thus obtained the following result.

Theorem 2.4.4 (Gauss-Bonnet). If M2h ⊂ R2h+1 is a compact, oriented hypersurface, and
g denotes the induced metric, then

χ(M) = 2 deg ~GM =
1

(2π)h

∫

M
Pf(−Θg).

More explicitly, if (e1, . . . ,e2h) is a local, positively oriented orthonormal frame of TM ,
then

Pf(−Θg) =
1
h!

∑

(σ,ϕ)∈S′2h×S′m

ε(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)

)
dVM (2.17a)

=
∑

ϕ∈S′′2h

ε(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h), (2.17b)

where S′2h denotes the set of permutations ϕ of {1, . . . , 2h} such that

ϕ(2j − 1) < ϕ(2j), ∀1 ≤ j ≤ h,
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S′′m denotes the set of permutations ϕ ∈ S′m such that

ϕ(1) < ϕ(3) < · · · < ϕ(2h− 1),

and
Θij =

∑

k<`

Rijk`θ
k ∧ θ`. ut

Example 2.4.5. (a) If dimM = 2 then

Pf(−Θg) = R1212dVM = (the Gaussian curvature of M)× dVM

(b) If dimM = 4 then S′′4 consists of 3 permutations

1, 2, 3, 4, ε = 1 −→ R1212R3434,

1, 3, 2, 4, ε = −1 −→ −R1312R2434

1, 4, 2, 3, ε = 1 −→ R1412R2334

We deduce
Pf(−Θg) = Θ12 ∧Θ34 −Θ13 ∧Θ24 + Θ14 ∧Θ23

(c) We can choose the positively oriented local orthonormal frame (e1, . . . , em) so that it
diagonalizes SM at a given point x ∈ M . Then the eigenvalues of SM at x are called the
principal curvatures at x and are denoted by κ1(x), . . . , κm(x). Then

Pf(−Θ) = ρdVM , ρ ∈ C∞(M),

where

ρ(x) = (2h− 1)!!
m∏

k=1

κi(x), ∀x ∈ M.

Definition 2.4.6. If (M, g) is an oriented, even dimensional, Riemann manifold, then the
top dimensional form

1
(2π)h

Pf(−Θg) ∈ Ω2h(M), h =
1
2

dimM,

is called the Euler form associated with the metric and the orientation. We will denote it
by e(M, g). ut

Remark 2.4.7. Although Pf(−Θg) was described in terms of a positively oriented local
orthonormal frame, one can very that the definition is independent of the choice of the
frame. ut

2.5. Gauss-Bonnet theorem for domains in an
Euclidean space

Suppose D is a relatively compact open subset of an Euclidean space Rm+1 with smooth
boundary ∂D. We denote by n the outer normal vector field along the boundary. It defines
an oriented Gauss map

~GD : ∂D → Sm.
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We denote by dAm the area form on the unit sphere Sm so that

deg ~GD =
1

σm

∫

∂D

~G∗DdAm.

If m is even then the Gauss-Bonnet theorem for the hypersurface ∂D implies
1

σm

∫

∂D

~G∗DdAm =
1
2
χ(∂D).

Using the Poincaré dulaity for the oriented manifold with boundary D we deduce χ(∂D) =
2χ(D), so that

1
σm

∫

∂D

~G∗DdAm = χ(D), m ∈ 2Z.

We want to prove that the above equality holds even when m is odd. Therefore in the
remainder of this section we assume m is odd.

Let us first describe the integrand ~G∗DdAm. Let SD denote the second fundamental form
of the hypersurface

SD(X, Y ) = n • (DX Y ) = −X • (DY n), ∀X,Y ∈ Vect(∂D).

We deduce
1

σm

~G∗DdAm =
1

σm
det(−SD)dV∂D,

where dV∂D denotes the volume form on ∂D.
A smooth vector field on D̄,

X : D̄ → Rm+1

is called admissible if along the boundary points towards the exterior of D,

X • n > 0, on ∂D.

For an admissible vector field X define

X̄ : ∂D → Sm, X̄(p) =
1

|X(p)|X(p), ∀p ∈ ∂D.

Let us observe that the map X̄ is homotopic to the map ~GD. Indeed, for t ∈ [0, 1] define

Yt : ∂D → Sm, Yt(p) =
1

|(1− t)n + tX̄|((1− t)n + tX̄

Observe that this map is well defined since

|(1− t)n + tX̄|2 = t2 + (1− t)2 + 2t(1− t)(n • X̄) > 0.

Hence
deg ~GD = deg X̄

for any admissible vector field X.
Suppose X is a nondegenerate admissible vector field which means that X has a finite

numbemer of stationary points

ZX = {p1, . . . , pν}, X(pi) = 0,

and all of them are nondegenerate, i.e., for any p ∈ ZX the linear map

AX, p : TpRm+1 → TpRm+1, TpRm+1 3 v 7→ (Dv X)(p)
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is invertible. Define
εX : ZX → {±1}, ε(p) = sign detAX,p.

For any ε > 0 sufficiently small the closed balls of radius ε centered at the points in ZX are
disjoint. Set

Dε = D \
⋃

p∈ZX

Bε(p).

X does not vanish on Dε and we obtain a map

X̄ : D̄ε → Sm−1, X̄ =
1
|X|X.

Set

Ω :=
1

σm
X̄∗dAm.

Observe that

dΩ =
1

σm
X̄∗d(dAm) = 0 on Dε.

Stokes theorem then implies that
∫

∂Dε

Ω =
∫

Dε

dΩ = 0 =⇒ deg ~GD =
∫

∂D
Ω =

∑

p∈ZX

∫

∂Bε(p)
Ω,

where the spheres ∂Bε(p) are oriented as boundaries of the balls Bε(p). If we let ε → 0 we
deduce

deg ~GD =
∑

p∈ZX

εX(p), (2.18)

for any nondegenerate admissible vector field X.
To give an interpretation of the right-hand side of the above equality consider the double

of D. This is the smooth manifold D̂ obtained by gluing D along ∂D to a copy of itself
equipped with the opposite orientation,

D̂ = D ∪∂D (−D).

D̂ is equipped with an orientation reversing involution ϕ : D̂ → D̂ whose fixed point set is
∂D. In particular, along ∂D ⊂ D̂ we have a ϕ-invariant decomposition

TD̂|∂D = T∂D ⊕ L,

where L is a real line bundle along which the differential of ϕ acts as −1L. The normal
vector field n defines a basis of L. If X is a vector field on D which is equal to n along ∂D,
then we obtain a vector field X̂ on D̂ by setting

X̂ :=

{
X on D

−ϕ∗(X) on −D.

If X is nondegenerate, then so is X̂, where the nondegeneracy of X̂ is defined in terms of
an arbitrary connection on TD̂. More precisely, if ∇ is a connection on TD̂ and q ∈ ZX̂ ,
then q is nondegenerate if the map

AX̂,q : TqD̂ → TqD̂, v 7→ ∇vX̂
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is an isomorphism. This map is independent of the connection ∇, and we denote by εX̂(q)
the sign of its determinant. Moreover

ZX̂ = ZX ∪ ϕ(ZX),

and, because m is odd, the map
εX̂ : ZX̂ → {±1}

satisfies
εX(p) = εX̂(ϕ(p)).

Hence ∑

q∈ZX̂

εX̂(q) = 2
∑

p∈ZX

εX(q)
(2.18)
= 2 deg ~GD.

On the other hand, the general Poincaré-Hopf theorem implies that∑

q∈ZX̂

εX̂(q) = χ(D̂).

Using the Mayer-Vietoris theorem we deduce

χ(D̂) = 2χ(D)− χ(∂D).

Since ∂D is odd dimensional and oriented we deduce that χ(∂D) = 0, and therefore

2χ(D) = χ(D̂) = 2
∑

p∈ZX

εX(q) = 2 deg ~GD.

We have thus proved the following result.

Theorem 2.5.1 (Gauss-Bonnet for domains). Suppose D is a relatively compact open subset
of Rm+1 with smooth boundary ∂D. We denote by ~GD the oriented Gauss map

~GD : ∂D → Sm, ∂D 3 p 7→ n(p) = unit outer normal,

and by SD the second fundamental form of ∂D,

SD(X, Y ) = n • (DX Y ), ∀X, Y ∈ Vect(∂D).

Then
1

σm

∫

∂D
det(−SD)dV∂D = deg ~GD = χ(D).
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Curvature measures

We can now formulate and prove the key result of these notes, the tube formula, which will
produce some interesting metric invariants of a Riemann manifold. We will then describe
their reproducing properties, also known as Crofton fomulæ.

3.1. Invariants of the orthogonal group

In the proof of the tube formula we will need to use H.Weyl’s characterization of polynomials
invariant under the orthogonal group.

Suppose V is a finite dimensional Euclidean space with metric (−,−). We denote by
〈−,−〉 the canonical pairing

〈−,−〉 : V ∗ × V → R, 〈λ, v〉 = λ(v), ∀v ∈ V, λ ∈ V ∗ = Hom(V,R).

We denote by O(V ) the group of orthogonal transformations of the Euclidean space V .
By definition, an O(V )-module is a pair (E, ρ), where E is a finite dimensional real vector
space, while ρ is a group morphism

ρ : O(V ) → Aut(E), g 7→ ρ(g).

A morphism of O(V )-modules (Ei, ρi), i = 0, 1, is a linear map A : E0 → E1 such that for
every g ∈ O(V ) the diagram below is commutative

E0 E1

E0 E1

wA

u
ρ0(g)

u
ρ1(g)

w
A

We will denote by HomO(V )(E0, E1) the spaces of morphisms of O(V )-modules.
The vector space V has a tautological structure of O(V )-module given by

τ : O(V ) → Aut(V ), τ(g)v = gv, ∀g ∈ O(V ), v ∈ V.

53
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It induces a structure of O(V )-module on V ∗ = Hom(V,R) given by

ρ† : O(V ) → Aut(V ∗), g 7→ ρ†(g),

where
〈ρ†(g)λ,v〉 = 〈λ, g−1v〉, ∀λ ∈ V ∗,v ∈ V.

In particular, we obtain an action on (V ∗)⊗n,

(ρ†)⊗n : O(V ) → Aut
(
(V ∗)⊗n

)
, g 7→ ρ†(g)⊗n.

We denote by (V ∗)⊗n
O(V ) the subspace consisting of invariant tensors,

ω ∈ (V ∗)⊗n
O(V ) ⇐⇒ (ρ†g)

⊗nω = ω, ∀g ∈ O(V ).

Observe that (V ∗)⊗n can be identified with the vector space of multi-linear maps

ω : V n = V × · · · × V︸ ︷︷ ︸
n

→ R

so that (V ∗)⊗n
O(V ) can be identified with the subspace of O(V )-invariant multilinear maps

V n → R.
Hermann Weyl has produced in his classic monograph [W2] an explicit description

of (V ∗)⊗n
O(V ). We would like to present here, without proof, this beautiful result of Weyl

since it will play an important role in the future. We follow the elegant and more modern
presentation in [ABP, Appendix I] to which we refer for proofs.

Observe first that the metric duality defines a natural isomorphism of vector spaces

D : V → V ∗, v 7→ v†

defined by
〈v†, u〉 = (v, u), ∀u, v ∈ V.

This isomorphism induces an isomorphism of O(V )-modules

D : (V, ρ) → (V ∗, ρ†).

We conclude that for ever nonnegative integers r, s we have isomorphisms of G-modules

(V ∗)⊗(r+s) ∼= (V ∗⊗r)⊗ V ⊗s ∼= Hom(V ⊗r, V ⊗s)

In particular,
(
(V ∗)⊗(r+s)

)
O(V )

∼=
(
Hom(V ⊗r, V ⊗s)

)
O(V )

= HomO(V )(V
⊗r, V ⊗s).

Let us observe that if we denote by Sr the group of permutations of {1, . . . , r}, then for
every ϕ ∈ Sr we obtain a morphism of O(V )-modules

Tφ ∈ HomO(V )(V
⊗r, V ⊗r), Tϕ(v1 ⊗ · · · ⊗ vr) = vϕ(1) ⊗ · · · ⊗ vϕ(r).

Weyl’s First Main Theorem of Invariant Theory states that

HomO(V )(V
⊗r, V ⊗s) 6= 0 ⇐⇒ r = s,

and that
HomO(V )(V

⊗r, V ⊗r) = R[Sr] :=
{ ∑

ϕ∈Sr

cϕTϕ; cϕϕ ∈ R,
}

.
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We can translate this result in terms of invariant multi-linear forms. Thus

(V ∗)⊗n
O(V ) 6= 0 ⇐⇒ n = 2r, r ∈ Z≥0,

and (V ∗)⊗2r
O(V ) is spanned by the multilinear forms

Pϕ : V 2r → R, (ϕ ∈ Sr),

defined by
Pϕ(u1, . . . , ur,v1, . . . ,vr) =

(
u1, vϕ(1)

) · · · (ur, vϕ(r)

)
.

The above has an immediate consequence. Suppose we have a map

f : V × · · · × V︸ ︷︷ ︸
n

→ R, (v1, . . . ,vn) 7→ f(v1, . . . ,vn),

which is a homogeneous polynomial of degree di in the variable vi, ∀i = 1, . . . , n. This form
determines a multilinear form

Polf : V d1 × · · · × V dn → R

obtained by polarization in each variables separately,

Polf (u1
1, . . . ,u

d1
1 ; . . . ; v1

n, . . . ,vdn
n )

= the coefficient of the monomial t11t12 · · · t1d1 · · · tn1 · · · tndn in the polynomial

Pf (t11, t12, . . . , t1d1 , . . . , tn1, . . . , tndn) = f
( d1∑

j=1

tiju
j
1, . . . ,

dn∑

j=1

tnju
j
n

)
.

Observe that
f(v1, . . . , vn) = Polf (v1, . . . ,v1︸ ︷︷ ︸

d1

, . . . ,vn, . . . , vn︸ ︷︷ ︸
dn

),

and f is O(V )-invariant if and only if Polf is O(V ) invariant.
Note that every function

f : V × · · · × V︸ ︷︷ ︸
n

→ R

which is polynomial in each of the variables is a linear combination of functions which is
polynomial and homogeneous in each of the variables. For every 1 ≤ i ≤ j ≤ n we define

qij : V × · · · × V︸ ︷︷ ︸
n

→ R, qij(v1, . . . ,vn) := (vi, vj).

Theorem 3.1.1 (Weyl). If f : V × · · · × V → R is a polynomial map then f is O(V )-
invariant if and only if there exists a polynomial P in the

(
n+1

2

)
variables qij such that

f(v1, . . . ,vn) = P ( qij(v1, . . . ,vn)1≤i≤j≤n ). ut

Example 3.1.2. (a) Consider the space E = V ⊗k. Observe that a degree n homogeneous
polynomial P on E can by identified with an element in the symmetric tensor product

Symd(E
∗) ⊂ (V ∗)⊗2kn.
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P is called a degree d orthogonal invariant of tensors T ∈ V ⊗k if it is invariant as an element
of (V ∗)⊗kn. For example, Weyl’s theorem implies that the only degree 1 invariant of a tensor

T =
∑

i,j

Tijei ⊗ ej ∈ V ⊗2

is the trace
tr(T ) =

∑

i,j

Ti,jei ⊗ ej =
∑

i

Tii.

The space of degree 2 invariants is spanned by the polynomials

(tr(T ))2, Q(T ) =
∑

ij

T 2
ij , Q̃(T ) =

∑

i,j

TijTji. ut

3.2. The tube formula and the curvature
measures of closed submanifolds of an
Euclidean space

Suppose M is an m-dimensional submanifold of Rn. We set

c := codimM = n−m.

In this section we will assume that M is compact and without boundary but we will not
assume that it is orientable. For r > 0 we define the tube of radius r around M to be the
closed set

Tr(M) :=
{
x ∈ M ; dist (x,M) ≤ r

}
,

and we denote by V (M, r) its volume.
Let N(M) denote the orthogonal complement of TM in (TRn)|M , and we will call it

the normal bundle of M ↪→ Rn. We define

Dr(Rn) := {(v, p); p ∈ Rn, v ∈ TpRn, |v| ≤ r
} ⊂ TRn

and we set
Nr(M) := N(M) ∩ Dr(Rn).

Dr(Rn) is a bundle of n-dimensional disks over Rn, while Nr(M) is a bundle of c-dimensional
disks over M .

The exponential map E : TRn → Rn restricts to an exponential map

EM : N(M) → Rn.

Observe that because M is compact there exists r0 = r0(M) > 0 such that for every
r ∈ (0, r0) the exponential map EM induces a diffeomorphism

EM : Nr(M) → Tr(M).

If we denote by |dVn| the volume density on Rn we deduce

V (M, r) = vol
(
Tr(M)

)
=

∫

Tr(M)
|dVn| =

∫

Nr(M)
E∗M |dVn|.

If π : Nr(M) → M denotes the canonical projection, then we deduce from Fubini’s theorem
that

V (M, r) =
∫

M
π∗E∗M |dVn|. (3.1)
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We want to give a more explicit description of the density π∗E∗M |dVn|.
Fix a local orthonormal frame (eA) of (TRn)|M defined in a neighborhood U ⊂ M of a

point p0 ∈ M such that for all 1 ≤ i ≤ m vector field ei is tangent to U . We assume that
the orientation of Rn is given by the ordered frame

(em+1, . . . ,en; e1, . . . ,em).

Dc
r :=

{
~t = (tα) = (tm+1, . . . , tn) ∈ Rc;

∑
α

|tα|2 ≤ r
}
.

Note that we have a diffeomorphism

Dc
r × U−→Nr(U) := Nr(M)|U , (~t, x) 7→ (tαeα(x), x) ∈ Nr(M),

and thus we can identify Dc
r × U with the open subset π−1(U) ⊂ Nr(M), and we can use

x ∈ M and ~t ∈ Dc
r as local coordinates on π−1(U). Define

Tr(U) := EM ( Nr(U) ) ⊂ Rn,

and
ẽA : Tr(U) → Rn by ẽA(x + tαeα) = eA(x).

We have thus extended in a special way the local frame (eA) of (TRn)|U to a local frame
of (TRn)|Tr(U) so that

Dẽα ẽA = 0, ∀α, A. (3.2)
We denote by (θA) the coframe of Tr(U) dual to ẽA. We will continue to use the indexing
conventions we have used in Section 2.3.

Over Dc
r × U we have a local frame (∂tα , ei) with dual coframe (φA) defined by

φi = π∗θi, φα = dtα.

Consider the 1-forms ΘA
B ∈ Ω1

(
Tr(U)

)
associated to the Levi-Civita connection D by the

frame (ẽA) on Tr(U), and set
ΘA

CB = ẽC ΘA
B, ∀i,

so that
DeC eB = ΘA

CBeA.

Using (3.2) we deduce
ΘA

αB = 0, ∀α =⇒ ΘA
B = ΘA

iBθi. (3.3)
Finally set

ΦA
B = π∗(ΘA

B|M ) ∈ Ω1(Nr(U)), ΦA
iB := π∗(ΘA

iB|U ) ∈ C∞(Nr(U) ).

The equalities (3.3) imply
ΦA

B = ΦA
iBφi.

On Nr(M)|U we use (~t, x) as coordinates and we have

EM (tαeα(x), x) = x + tαeα.

We have
E∗MθA =

∑

i

(eA •Dei EM )φi +
∑
α

(eA • ∂tαEM )dtα

=
∑

i

eA • (ei + tα Dei eα)φi +
∑
α

δAαdtα
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= δAiφ
i + tαΦA

iαφi + δAαdtα

Hence
E∗Mθj = φj + tαΦj

iαφi = φj −
∑
α

tαΦα
ijφ

i, E∗Mθβ = dtβ.

We find it convenient to set

Φij = (Φm+1
ij , . . . , Φn

ij) : U → Rc,

so that
E∗Mθj = φj −

∑

i

(~t • Φij)φi.

Define the m×m symmetric matrix

S = S(~t, x) =
(
~t • Φij(x)

)
1≤i,j≤m

Note that the volume density on Rn is

|dVn| = |θm+1 ∧ · · · ∧ θn ∧ θ1 ∧ · · · ∧ θm.|
E∗MdVn = | det(1− S(~t, x)

)| |d~t ∧ dφ| = det(1− S(~t, x)
) |d~t ∧ dφ|, (3.4)

d~t = dtm+1 ∧ · · · ∧ dtn, dφ = dφ1 ∧ · · · ∧ dφm.

Recalling that |dθi|M | is the volume density on M , we deduce

E∗M |dVn| = det(1− S(~t, x)
)|d~t| × π∗|dVM |,

where |d~t| denotes the volume density on Rc. For simplicity we write |dVM | instead of
π∗|dVM |. Now set

ρ := |~t|, ω :=
1
ρ
~t,

and denote by |dω| the area density on the unit sphere in Rc. Then

E∗M |dVn| = det(1− ρS(ω, x)
)
ρc−1|dρ| × |dω| × |dVM |. (3.5)

Observe that

det(1− ρS(ω, x)
)

=
m∑

ν=0

(−1)νρνPν

(
Φij(x) • ω

)
,

where Pν denotes a homogeneous polynomial of degree ν in the m2 variables

uij ∈ Rc, 1 ≤ i, j ≤ m.

We set
P ν

(
Φij(x)

)
:=

∫

Sc−1

Pν

(
Φij(x) • ω

)
dω.

Above, P ν

(
uij

)
is an O(c)-invariant, homogeneous polynomial of degree ν in the variables

uij ∈ Rc, 1 ≤ i, j ≤ m. We conclude,

π∗E∗M |dVn| =
m∑

ν=0

(−1)ν

c + ν
rc+νP ν

(
Φij(x)

)|dVM (x)|. (3.6)

We would like to determine the invariant polynomials P ν

(
uij

)
.

Theorem 3.1.1 implies that P ν must be a polynomial in the quantities

qi,j,k,` := uik • uj`.
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Because these quantities are homogeneous of degree 2 in the variables uij we deduce P ν = 0
if ν is odd. Assume therefore ν = 2h, h ∈ Z≥0.

For every ~t ∈ Rc = span (em+1, . . . , em+c) we form the linear operator

U(uij ,~t) : Rm → Rm

given by the matrix (uij • ~t )1≤i,j≤m, we deduce that

(−1)νPν( uij • ~t ) = tr ΛνU(uij ,~t)

= the sum of all the ν × ν minors of U(~t) symmetric with respect to the diagonal.
These minors are parameterized by the subsets I ⊂ {1, . . . ,m} of cardinality #I = ν. We
denote by µI( uij • ω ) the corresponding minor, and by µI its average,

µI(uij) :=
∫

Sc−1

µI( uij • ω )dω.

µI is an O(c)-invariant polynomial in the variables {uij}i,j∈I .
Let

I = {1 ≤ i1 < i2 < · · · < i2h ≤ m} ⊂ {1, . . . , m},
and denote by SI the group of permutations of I. For σ ∈ SI we set

ϕj := ϕ(ij), ∀j = 1, . . . , 2h.

For any σ, ϕ ∈ SI we denote by ε(σ, ϕ) the signature of the permutation σ ◦ ϕ−1, and by
Qσ,ϕ the invariant polynomial

QI,σ,ϕ =
h∏

j=1

qϕ2j−1,ϕ2j ,σ2j−1,σ2j =
h∏

j=1

uϕ2j−1σ2j−1 • uϕ2j)σ2j
.

Lemma 3.2.1. There exists a constant ξ = ξm,ν,c depending only on m, ν and c such that

µ̄I = ξQI , QI :=
∑

ϕ,σ∈SI

ε(σ, ϕ)QI,σ,ϕ.

Proof. We regard µI as a function on the vector space of m ×m matrices U with entries
in Rc

U = [uij ]1≤i,j≤m.

We observe that µI satisfies the following determinant like properties.

• µI changes sign if we switch two rows (or columns).
• µI is separately linear in each of the variables uij .
• µI is a homogeneous polynomial of degree h in the variables qi,j,k,`.

We deduce that µI is a linear combination of monomials of the form

qk1,k2,`1,`2 · · · qk2h−1k2h,`2h−1,`2h
,

where
{k1, . . . , k2h} and {`1, . . . , `2h}

are permutations of I. The skew-symmetry of µI with respect to the permutations of rows
and columns now implies that µI must be a multiple of QI .

ut
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The constant ξ satisfies

ξm,ν,c =
µI(uij)
QI(uij)

, ∀uij ∈ Rc

so it suffices to compute the numerator and denominator of the above fraction for some
special values of uij . We can assume I = {1, 2, . . . , 2h} and we choose

uij =




1
0
...
0


 ∈ R

c.

Then, if we set

~t =




t1

t2

...
tc


 ∈ R

c, ω =
1
|~t|

~t

we deduce

U(uij ,~t) =




t1 0 · · · 0
0 t1 · · · 0
...

...
. . .

...
0 0 · · · t1


 , µI(uij • ~t) = |t1|ν .

Hence

µI(uij) =
∫

Sc−1

|ω1|2hdω. (3.7)

On the other hand, we have

QI,σ,ϕ =
h∏

j=1

uϕ2j−1σ2j−1 • uϕ2jσ2j

which is nonzero if and only if σ = ϕ. We conclude that for this particular choice of uij we
have

QI = (2h)!.

Hence

ξm,ν,c =
1

(2h)!

∫

Sc−1

|ω1|2hdω.

At this point we invoke the following result whose proof is deferred to the end of this section.

Lemma 3.2.2. For any even, nonnegative integers 2h1, . . . , 2hc we have
∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω =
2Γ(2h1+1

2 ) · · ·Γ(2hc+1
2 )

Γ( c+2h
2 )

,

where h = h1 + · · ·+ hc.
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We deduce

ξm,2h,c =
2Γ(2h+1

2 )Γ(1/2)c−1

(2h)!Γ( c+2h
2 )

, (3.8)

and
P ν(uij) = ξm,2h,c

∑

#I=ν

QI(uij). (3.9)

We denote by S2 the group of permutations of a linearly ordered set with two elements.
We observe that every element

τ = (τ1, . . . , τh) ∈ G = S2 × · · · × S2︸ ︷︷ ︸
h

defines a permutation of I by regarding τ1 as a permutation of {i1, i2}, τ2 as a permutation
of {i3, i4} etc. Thus G is naturally a subgroup of SI . The space Sk/G of left cosets of this
group can be identified with the subset S′I ⊂ SI consisting of bijections ϕ : I → I satisfying
the conditions

ϕ1 < ϕ2, ϕ3 < ϕ4, . . . , ϕ2h−1 < ϕ2h.

We deduce that if uij = Sij(x) then for every σ ∈ SI we have
∑

ϕ∈SI

ε(σ, ϕ)QI,σ,ϕ =
∑

ϕ∈S′I ,τ∈G

ε(σ, ϕτ)QI,σ,ϕτ

=
∑

ϕ∈S′I

ε(σ, ϕ)
h∏

j=1

(
qϕ2j−1,ϕ2j ,σ2j−1,σ2j − qϕ2j ,ϕ2j−1,σ2j−1,σ2j

)

=
∑

ϕ∈S′I

ε(σ, ϕ)
h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

Using the skew-symmetry Rijk` = −Rij`k we deduce

∑

σ,ϕ∈SI

ε(σ, ϕ)QI,σ,ϕ =
∑

σ∈SI

∑

ϕ∈S′I

ε(σ, ϕ)
h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

=
∑

σ∈S′I ,τ∈G

ε(στ, ϕ)
h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

= 2h
∑

σ,ϕ∈S′I

ε(σ, ϕ)
h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

︸ ︷︷ ︸
=:QI(R)

We conclude that
P ν(ψij) = 2hξm,2h,c

∑

#I=2h

QI(R). (3.10)

Using (3.1) and (3.6) we deduce that

V (M, r) = vol (Tr(M)) =
bm/2c∑

h=0

ωc+2hrc+2h 2hξm,2h,c

(c + 2h)ωc+2h

∫

M
Qh(R)|dVM |.
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Let us observe that the constant
2hξm,2h,c

(c + 2h)ωc+2h

is independent of the codimension c. It depends only on h. Indeed, we have

2hξm,2h,c

(c + 2h)ωc+2h
=

2hξm,2h,c

σc+2h−1
=

2h

σc+2h−1

2Γ(2h+1
2 )Γ(1/2)c−1

(2h)!Γ( c+2h
2 )

=
2hΓ(h + 1/2)

Γ(1/2)1+2h(2h)!
=

γ(2h)
πh(2h)!

=
1

(2π)hh!
.

We have thus obtained the following result.

Theorem 3.2.3 (Tube formula). Suppose M is a closed, compact submanifold of Rn,
dimM = m, c = n − m. Denote by R the Riemann curvature of the induced metric
on M . Then for all r > 0 sufficiently small we have

V (M, r) = vol (Tr(M)) =
bm/2c∑

h=0

ωc+2hrc+2hµm−2h(M),

µm−2h(M) =
1

(2π)hh!

∫

M
Qh(R)|dVM |

where Qh is a polynomial of degree h in the curvature. By choosing a local, orthonormal
frame (e1, . . . ,em) of TM we can express the polynomial Qh(R) as

Qh(R) :=
∑

#I=2h

QI(R),

where for every I = {i1 < i2 < · · · < i2h} ⊂ {1, . . . , m} we define

QI(R) =
∑

σ,ϕ∈S′I

ε(σ, ϕ)
h∏

j=1

Rϕ(i2j−1)ϕ(i2j)σ(i2j−1)σ(i2j). ut

Example 3.2.4. (a) If h = 0 then

µm(M) = vol (M).

(b) Assume now that m is even, m = 2h, and oriented. Then c + 2h = m + c = n and

µ0(M) =
1

(2π)h

∫

M

1
h!

Qh(R)dVM .

Comparing the definition of Qh(R) with (2.17a) we deduce that the top dimensional form
1

(2π)h

1
h!

Qh(R)dVM ∈ Ω2h(M)

is precisely the Euler form associated with the orientation of M and the induced metric, so
that

µ0(M, g) =
∫

M
e(M, g). (3.11)

(c) Suppose now that M is a hypersurface. Consider the second fundamental form

S = (Sij)1≤i,j≤m, Sij = (Dei ej) • em+1,
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where we recall that em+1 is in fact the oriented unit normal vector field along M . Fix a
point x0 ∈ M and assume that at this point the frame (e1, . . . , em) diagonalizes the second
fundamental form so that

Sij = κiδij .

The eigenvalues κ1, . . . , κm are the principal curvatures at the point x0. We denote by cν(κ)
the elementary symmetric polynomial of degree ν in the variables κi. In this case c = 1 and
we have

E∗MdVRm+1 = det(1− tS)dt ∧ dVM =
m∑

ν=0

(−1)νtνcν(κ)dt ∧ dVM

π∗E∗MdVRm+1 =
m∑

ν=0

(∫ r

−r
tνdt

)
cν(κ)dVM = 2

bm/2c∑

h=0

r2h+1

2h + 1
c2h(κ)dVM

so that
bm/2c∑

h=0

ω1+2hr1+2hµm−2h(M) = V (M, r) = 2
bm/2c∑

h=0

r2h+1

2h + 1

∫

M
c2h(κ)dVM .

We conclude that

µm−2h(M) =
2

σ2h

∫

M
c2h(κ)dVM , σ2h = (2h + 1)ω1+2h.

If M = Sm ↪→ Rm+1 is the unit sphere then κi = 1 and we deduce that

µm−2h(Sm) = 2
σm

σ2h

(
m

2h

)
. (3.12)

(d) Using the definition (2.3) of the scalar curvature we deduce that for any m-dimensional
submanifold Mm ↪→ Rn we have

µm−2(M, g) = constm

∫

M
sg|dVg|,

where s denotes the scalar curvature of the induced metric g, and constm is an universal
constant, depending only on m. We see that the map g → µm−2(M, g) is precisely the
Einstein functional.

To find constm we compute µm−2(M) when M = Sm. Using (3.12) we deduce

2σm

σ2

(
m

2h

)
= constm

∫

M
sround|dVSm |,

where sround denotes the scalar curvature of the round metric on the unit sphere. Using
the definition (2.3) we deduce

sround =
∑

i,j

Rijij =
∑

i,j

1 = 2
(

m

2

)
.

Hence
constm =

2
σ2

=
1
2π

=⇒ µm−2(M, g) =
1
2π

∫

M
sg|dVg|.

(e) The polynomial Q2 still has a “reasonable form”

Q2(R) =
∑

#I=4

QI
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Then #S′I = 6 and

QI =
∑

σ,ϕ∈S′I

ε(σ, ϕ)Rσ1σ2ϕ1ϕ2Rσ3σ4ϕ3ϕ4

=
∑

σ∈S′I

Rσ1σ2σ1σ2Rσ3σ4σ3σ4 +
∑

σ 6=ϕ∈S′I

ε(σ, ϕ)Rσ1σ2ϕ1ϕ2Rσ3σ4ϕ3ϕ4 .

The first sum has only three different monomials, each of them appearing twice is them
sum. The second sum has

(
6
2

)
different monomials (corresponding to subsets of cardinality

2 of S′I) and each of them appears twice. ut

Definition 3.2.5. If (M, g) is a closed, compact, oriented, Riemann manifold, m = dimM ,
and w is nonnegative integer. If m− w is odd we set

µw(M) = 0.

If m− w is an even, nonnegative integer, m− w = 2h, then we set

µw(M, g) =
1

(2π)hh!

∫

M
Qh(R)|dVM |.

We will say that µw(M, g) is the weight w curvature measure of (M, g). We set

|dµw| := 1
(2π)hh!

Qh(R)|dVM |,

and we will refer to it as the (weight w) curvature density. ut

Remark 3.2.6. Let us observe that for any Riemann manifold M , orientable or not, the
quantities |dµw| are indeed well defined, i.e. independent of the choice of local frames used in
their definition. The fastest way to argue this is by invoking Nash embedding theorem which
implies that any compact manifold is can be isometrically embedded in an Euclidean space.
For submanifolds of Rn, the proof of the tube formula then implies that these densities are
indeed well defined.

We can prove this by much elementary means by observing that, for any finite set I, the
relative signature ε(σ, ϕ) of two permutations ϕ, σ : I → I is defined by choosing a linear
ordering on I, but it is independent of this choice. ut

Proof of Lemma 3.2.2. Consider the integral

I(h1, . . . , hc) =
∫

Rc

e−|~t|
2 |t1|2h1 · · · |tc|2hcdt.

We have e−|~t|2 = e−|t+1|2 · · · e−|tc|2 so that

I(h1, . . . , hc) =
c∏

j=1

(∫ ∞

−∞
e−s2

s2hjds
)

= 2c
c∏

j=1

(∫ ∞

0
e−s2

s2hjds
)

(u = s2)

=
c∏

j=1

(∫ ∞

0
e−uthj−1/2du

)
=

c∏

j=1

Γ
(2hj + 1

2

)
.
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On the other hand, using spherical coordinates, ρ = |~t|, ω = 1
|~t|

~t, and recalling that h =
h1 + · · ·+ hc, we deduce that

I(h1, . . . , hc) =
(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
)(∫ ∞

0
e−ρ2

ρ2h+c−1dρ
)

(u = ρ2)

=
1
2

(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
)∫ ∞

0
e−uu

c+2h
2
−1du

=
1
2
Γ
(c + 2h

2

)(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
)
. ut

3.3. Gauss-Bonnet formula for arbitrary
submanifolds

Suppose Mm ⊂ Rn is a closed, compact submanifold of Rn. As usual, set c = n −m, and
we denote by g the induced metric on M . For every sufficiently small positive real number
r we set

Mr := {x ∈ Rn; dist (x,M) = r} = ∂Tr(M).

Mr is a compact hypersurface of Rn and we denote by gr the induced metric. Observe that
for r and ε sufficiently small we have

Tε(Mr) = Tr+ε(M)− Tr−ε(M)

so that
V (Mr, ε) = V (M, r + ε)− V (M, r − ε)

which implies that ∑

h≥0

ω1+2hε1+2hµn−1−2h(Mr, gr)

=
∑

k≥0

ωc+2k

{
(r + ε)c+2k − (r − ε)c+2k

}
µn−c−2k(M, g).

We deduce

µn−1−2h(Mr, gr) =
2

ω1+2h

∑

k≥0

ωc+2k

(
c + 2k

1 + 2h

)
rc−1+2k−2hµn−c−2k(M, g).

We make a change in variables. We set

p := n− 1− 2h, w = n− c− 2k = m− 2k.

Then c + 2k = n− w, 1 + 2h = n− p, c + 2k − 1− 2h = p− w so that we can rewrite the
above formula as

µp(Mr, gr) = 2
m∑

w=0

(
n− w

n− p

)
ωn−w

ωn−p
rp−wµw(M, g). (3.13)

In the above equality it is understood that µw(M) = 0 if m − w is odd. In particular, we
deduce that if the codimension of M is odd then

lim
r→0

µp(Mr, gr) = 2µp(M, g), ∀0 ≤ p ≤ m = dimM. (3.14)
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If in the formula (3.13) we assume that the manifold M is a point, then we deduce that Mr

is the (n− 1)-dimensional sphere of radius r, Mr = Sn−1
r , and we conclude that

µp(Sn−1
r ) = 2

(
n

p

)
ωn

ωn−p
rp = 2ωp

[
n

p

]
rp, n− p ≡ 1 mod 2, (3.15)

where
[
n
p

]
is defined by (1.17). The last equality agrees with our previous computation

(3.12).
If in the formula (3.13) we let p = 0 we deduce

µ0(Mr, gr) = 2µ0(M, g), ∀0 < r ¿ 1, if codim M is odd.

Observe that the tube Tr(M) is naturally oriented, even though the manifold M may not
be orientable. The Gauss-Bonnet theorem for oriented hypersurfaces implies

χ(Mr) = µ0(Mr, gr)

so that

µ0(M, g) =
1
2
χ(Mr), ∀0 < r ¿ 1. (3.16)

Theorem 3.3.1 (Gauss-Bonnet). Suppose M is a closed, compact submanifold of an Euclid-
ean space Rn. Denote by g the induced metric. Then

µ0(M, g) = χ(M).

Proof. If m = dimM is odd then both χ(M) and µ0(M) are equal to zero and the identity
is trivial. Assume therefore that m is even. If the dimension n of the ambient space is odd
then the Poincaré duality for the oriented n-dimensional manifold with boundary Tr(M)
implies

χ(Mr) = χ( ∂Tr(M) ) = 2χ(Tr(M) ) = 2χ(M)

and the theorem follows from (3.16).
If n is even, we apply the above argument to the embedding

M ↪→ Rn ↪→ Rn+1,

where we observe that the metric induced by the embedding M ↪→ Rn+1 coincides with the
metric induced by the original embedding M ↪→ Rn. ut

Remark 3.3.2. We want emphasize that in the above theorem we did not require that M
be orientable which is the traditional assumption in the Gauss-Bonnet theorem. ut

Let us record for later use the following corollary of the above proof.

Corollary 3.3.3. For every closed compact, smooth submanifold M of an Euclidean space
V such that dimV − dimM is odd we have

χ(M) = 2χ( ∂Tr(M) ), ∀0 < r ¿ 1. ut
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3.4. Curvature measures of domains in an
Euclidean space

The second fundamental form of a submanifold is in fact a bilinear form with values in
the normal bundle. If the submanifold happens to be the boundary of a domain, then the
normal bundle admits a canonical trivialization and the second fundamental form will be a
scalar valued form. The next definition formalizaes this observation.

Definition 3.4.1. For any relatively compact open subset D of an Euclidean space V we
define the co-oriented second fundamental form of D to be the symmetric bilinear map

SD : Vect(∂D)×Vect(∂D) → C∞(∂D),

SD(X, Y ) = (DX Y ) • n, X, Y ∈ Vect(∂D),
where n : ∂D → V denotes the outer unit normal vector field along ∂D. ut

Suppose D ⊂ Rm+1 is an open, relatively compact subset with smooth boundary M :=
∂D. We denote by n the unit outer normal vector field along M := ∂D and by S = SD

the co-oriented second fundamental form of D. For every symmetric bilinear form B on
an Euclidean space V we define trj(B) the j-th elementary symmetric polynomial in the
eigenvalues of B, i.e., ∑

j≥0

zj trj(B) = det(1V + zB).

Equivalently,
trj B = tr

(
ΛkB : ΛkV → ΛkV

)
.

We define the tube of radius r around D to be

Tr(D) :=
{
x ∈ Rm+1; dist (x,D) ≤ r

}
.

We denote by EM the exponential map

EM : (TRm+1)|M → Rm+1,

(X, p) 7−→ EM (X, p) = p + X, p ∈ M, X ∈ TpRm+1.

For r > 0 we denote by ∆r ⊂ (TRm+1)|M the closed set

∆r :=
{
(tn(p), p); p ∈ M, t ∈ [0, r]

}
.

For sufficiently small r the map EM defines a diffeomorphism

EM : ∆r → Tr(D) \D,

so that
vol (Tr(D) ) = vol (D) +

∫

∆r

E∗MdVRm+1 .

Fix p0 ∈ M and a local, positively oriented local orthonormal frame

(e1, . . . ,em)

of TM defined in a neighborhood U of p0 in M , such that, for every p ∈ U , the collection

(n(p),e1(p), . . . , em(p))

is a positively oriented, orthonormal frame of Rn. We obtain a dual coframe θ,θ1, . . . , θn.
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As in the previous section, the pullback of E∗MdVRm+1 to ∆r has the description

E∗MdVRm+1 = det
(
1− tSM

)
dt ∧ dθ1 ∧ · · · ∧ θm

=




m∑

j=1

trj(−SM )tj


 dt ∧ dθ1 ∧ · · · ∧ θm.

We deduce ∫

∆r

E∗MdVRm+1 =
∑

j≥0

rj+1

j + 1

(∫

M
trj(−SM )dVM

)
.

Define

µm−j(D) :=
1
σj

(∫

M
trj(−SM )dVM

)
, 0 ≤ j ≤ m,

and
µm+1(D) := vol (D)

so that using the equality σj = (j + 1)ωj we deduce the tube formula for domains,

vol
(
Tr(D)

)
=

m+1∑

k=0

ωm+1−kr
m+1−kµk(D). (3.17)

Theorem 2.5.1 shows that, just as in the case of submanifolds, we have µ0(D) = χ(D).

Definition 3.4.2. Suppose D is a relatively compact domain with smooth boundary of an
Euclidean space V , dim V = n. Then the curvature densities of D are the densities |dµj |
on ∂D defined by

|dµj | := 1
σn−j

trn−j(−SD)|dV∂D|,

where |dV∂D| denotes the volume density on ∂D indiced by the Euclidean metric on V . ut

We denote by Dm+1
r the ball of radius r in Rm+1. Then

Tε(Dm+1
r ) = Dm+1

r+ε

so that
ωm+1(r + ε)m+1 =

∑

k≥0

ωm+1−kε
m+1−kµk(Dm+1

r ).

We conclude

µk(Dm+1
r ) =

ωm+1

ωm+1−k

(
m + 1

k

)
rk = ωk

[
m + 1

k

]
rk. (3.18)

Suppose X ↪→ Rm+1 is a closed, compact smooth submanifold. Then for every suffi-
ciently small r > 0, the tube Dr := Tr(X) is a compact domain with smooth boundary
and

Tε(Dr) = Tr+ε(X).

The tube formula for X implies that
∑

j≥0

ωjε
jµm+1−j(Dr) =

∑

k≥0

ωk

(
r + ε)kµm+1−k(X).
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We deduce that

µm+1−j(Dr) =
1
ωj

∑

k≥j

ωk

(
k

j

)
rk−jµm+1−k(X)

We set n := m + 1 and we make the change in variables

p := n− j, w := n− k.

Then k − j = p− w and we obtain the following generalization of the tube formula

µp

(
Tr(X)

)
=

1
ωn−p

∑
w

ωn−w

(
n− w

n− p

)
rp−wµw(X)

=
∑
w

ωp−w

[
n− w

p− w

]
rp−wµw(X).

(3.19)

We deduce
lim
r→0

µp

(
Tr(X)

)
= µp(X), ∀0 ≤ p ≤ dimX. (3.20)

3.5. Crofton Formulæ for domains of an
Euclidean space

Suppose D is an open, relatively compact subset of the Euclidean space Rm+1 with smooth
boundary M = ∂D. We denote by g the induced metric on M , by Grc the Grassmannian
of linear subspaces of Rm+1 of codimension c, and by Graff c the affine Grassmannian of
codimension c affine subspaces of Rm+1.

Recall that on Grc we have a natural metric with volume density |dγc| and total volume

Vc :=

∏m
j=0 σj( ∏c−1

i=0 σi

) · ( ∏m−c
j=0 σj

) .

We rescale this volume density as in (1.18) to obtain a new volume density |dνc| with total
volume ∫

Grc
|dνc| =

[
m + 1

c

]
. (3.21)

As explained in Section 1.5 these two densities produce two invariant densities |dγ̃c| and
|dν̃c| on Graff c which differ by a multiplicative constant.

Theorem 3.5.1 (Crofton Formula). Let 1 ≤ p ≤ m− c and consider the function

f : Graff c → R, f(L) = µp(L ∩D).

If the function f is |dν̃|-integrable then
[
p + c

p

]
µp+c(D) =

∫

Graffc
µp(L ∩D)|dν̃c(L)|.

Proof. For simplicity, we set V = Rm+1, n = m + 1 = dimV . We will carry out the proof
in several steps.
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Step 1. We will prove that there exists a constant ξc,p, depending only on m, c, and p such
that

ξm,c,pµp+c(D) =
∫

Graffc
µp(L ∩D)|dν̃c(L)|.

Step 2. We will show that the constant ξ is equal to
[
p+c
p

]
by explicitly computing both

sides of the above equality in the special case D = Dm+1.

Step 1. We will rely on a basic trick in integral geometry. For every S ∈ Graff c we denote
by [S] ∈ Grc the parallel translate of S containing the origin. We introduce the incidence
relation

I =
{

(v, S) ∈ V ×Graff c; v ∈ S
} ⊂ V ×Graff c .

Observe that we have a diffeomorphism

I → V ×Grc, I 3 (v, S) 7−→ (v, [S]) ∈ V ×Grc

with inverse
V ×Grc(V ) 3 (v, L) 7−→ (v, v + L) ∈ I.

We obtain a double fibration

I

V Graff c

�
���
`

[
[[]r

we set
I(M) := `−1(M) =

{
(v, S) ∈ V ×Graff c; v ∈ S ∩M

}
.

Since dim I = dim V + dimGrc = n + c(n− c) we deduce

dim I(M) = n + c(n− c)− codimM = m + c(n− c) = m + c(m + 1− c).

Again we have a diagram
I(M)

M Graff c

[[[̂
`

'
'')r

The map r need not be a submersion. Fortunately, r fails to be a surjection on a rather
thin set.

Denote by Graff c(M) the set of codimension c affine planes which intersect M transver-
sally. Then Sard’s theorem implies that Graff c(M) is open in Graff c and its complement
has measure zero. We set

I(M)∗ := r−1
(
Graff c(M)

)
.

The set I(M)∗ is an open subset of I(M), and we obtain a double fibration

I(M)∗

M Graff c(M)

AAAAD
`

�r (3.22)

The fiber of r over L ∈ Graff c is the slice ML := L ∩ M which is the boundary of the
domain DL := (L ∩D) ⊂ L.
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The vertical bundle of the fibration r : I∗(M) → Graff c(M) is equipped with a natural
density given along a fiber L ∩ M by curvature density |dµk| of the the domain DL. We
will denote this density by |dµL

k |. As explained in Section 1.2, using the pullback r∗|dγ̃c| we
obtain a density

|dλ| = |dµL
p | × r∗|dγ̃c|

on I∗(M) satisfying
∫

I∗(M)
|dλ| =

∫

Graffc(M)

(∫

L∩M
|dµL

p |
)
|dγ̃c(L)| =

∫

Graffc
µp(L ∩D)|dγ̃c(L)|.

To complete Step 1 in our strategy it suffices to prove that there exists a constant ξ,
depending only on m and c such that

`∗|dλ| = ξ|dµc|,
where the curvature density is described in Definition 3.2.5.

Set h = (m − c). The points in I(M) are pairs (x, L) where x ∈ M , and L is an affine
plane of dimension h + 1. Suppose (x0, L0) ∈ I∗(M). Then we can parametrize a small
open neighborhood of (x0, L0) in I∗(M) by a family

(x, e0(S), e1(S), . . . ,eh(S), eh+1(S), . . . , em(S)),

where x runs in a small neighborhood of x0 ∈ M , S runs in a small neighborhood U0 of
[L0] in Grc so that the following hold for every S.

•
{e0(S), e1(S), . . . ,eh(S),eh+1(S), . . . ,em(S)}

is an orthonormal frame of Rn.

•
S = span {e0, e1, . . . ,eh},

•
Tx0M ∩ S = span {be1, · · · , eh}.

A neighborhood of (x0, L0) in I is parametrized by the family

(~r, e0(S), e1(S), . . . ,eh(S),eh+1(S), . . . ,em(S)),

where ~r runs in a neighborhood of x0 in the ambient space V .
We denote by SD, the co-oriented second fundamental form of D and by SL the co-

oriented second fundamental form of DL ⊂ L, and by |dVL∩M | the volume density on
L ∩M . Then, if we set k = dim L− p = m− c− p, we deduce

|dµL
p | =

1
σk

trk(−SL)|dVL∩M |.

In the sequel we will use the following conventions.

• i, j, k denote indices running in the set {0, . . . , h}.
• α, β, γ denote indices running in the set {h + 1, . . . ,m}.
• A,B, C denote indices running in the set {0, 1, . . . , m}.
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We denote by (θA) the dual coframe of (eA), and set

θAB := (D eA • eB).

Then, the volume density of the natural metric on Grc is

|dγc| =
∣∣∣
∧

α,i

θαi

∣∣∣.

Then
|dγ̃c| =

∣∣∣
∧
α

D ~r • eα

∣∣∣× |dγc| =
∣∣∣
∧
α

θα
∣∣∣× |dγc|

and
|dλ| = |dµL

p | × |dγ̃c| = 1
σk

det(−SL∩M )|dVL∩M | ×
∣∣∣
∧
α

θα
∣∣∣× |dγc|. (3.23)

The fiber of ` : I(M) → M over x0 is described by

Gx0 :=
{
(~r, eA(S)) ∈ I(M), ~r = x0

}
.

We set
G∗

x0
:= Gx0 ∩ I∗(M).

G∗
x0

(M) can be identified with the space of linear subspaces S of codimension c such that
Tx0M + S = V , i.e., the affine subspace x0 + S intersects M transversally at x0.

Denote by n a smooth unit normal vector field defined in a neighborhood of x0 in M ,
i.e.

n(x) ⊥ TxM, |n(x)| = 1.

Lemma 3.5.2. Suppose x0+S intersects M transversally at x0. We set eA = eA(S). Then
at the point x0 ∈ M we have

|(n • e0)| · |dVM | = |θ1 ∧ · · · ∧ θm|,
i.e., for any X1, . . . , Xm ∈ Tx0M we have

|(n • e0)| · |dVM |(X1, . . . , Xm) = |θ1 ∧ · · · ∧ θm|(X1, . . . , Xm).

Proof. It suffices to verify this for one basis X1, . . . , Xm of Tx0M which we can choose to
consists of the orthogonal projections f1, . . . , fm of e1, . . . ,em. These projections form a
basis since S intersects Tx0M transversally.

Observe that
f i = ei, ∀1 ≤ i ≤ 2h, fα = eα − (eα • n)n.

Then
|dVM |(f1, . . . , fm)2 = det(fA • fB)1≤A,B≤m

We observe that
f i • f j = δij , f i • fα = 0, ∀1 ≤ i, j ≤ 2h < α

fα • fβ = δαβ − nαnβ, nα := n • eα.

We deduce
|dVM |(f1, . . . ,fm)2 = det(1−A),
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where A denotes the c×c symmetric matrix with entries nαnβ, 2h < α, β < m. If we denote
by u the vector

~u =




n2h+1
...

n2hc


 ∈ Rc

which we also regard as a c× 1, matrix then we deduce

A = ~u~ut.

This matrix has a c− 1 dimensional kernel corresponding to vectors orthogonal to ~u. The
vector ~u itself is an eigenvector of A and the corresponding eigenvalue λ is obtained from
the equality

λ~u = |~u|2~u =⇒ λ = |~u|2 =
∑
α

n2
α = |n|2 − |n • e0|2 = 1− |n • e0|2.

We conclude that

det(1−A) = |n • e0|2 =⇒ |dVM |(f1, . . . , fm) = |n • e0|.
On the other hand

|θ1 ∧ · · · ∧ θm|(f1, . . . ,fm) = | det(eA • fB)1≤A,B≤m|
We have again

ei • f j = δij , ei • fα = 0, ∀1 ≤ i, j ≤ 2h < α

eα • fβ = δαβ − nαnβ,

so that
|θ1 ∧ · · · ∧ θm|(f1, . . . , fm) = |n • e0|2.

The lemma is now proved. ut

Lemma 3.5.3 (Euler-Meusnier). Suppose L ∈ Graff c intersects M transversally and x0 ∈
L. If n is a unit vector perpendicular to Tx0M , then

SL = (n • e0)SD|Tx0∩[L],

that is,
SL(ei, ej) = (n • e0)SD(ei, ej), ∀1 ≤ i, j ≤ 2h.

Proof. We have
SL(ei,ej) = e0 • (Dei ej)

Let us now observe that the vector (Dei ej) is parallel with the plane L because the vectors
ei and ej lie in this plane. Thus, Dei ej decomposes into two components, one component
parallel to e0, and one component (Deeiej)τ tangent to L ∩M . Hence

Dei ej = SL(ei, ej)e0 +
h∑

k=1

Sk
ijek.

Taking the inner product with n we deduce

SD(ei, ej) = (Dei ej) • n = ±SL(ei, ej)(e0 • n). ut
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From the above lemma we deduce

trk(−SL|x0) = |n • e0|k trk(−SD|Tx0M∩[L]).

for any (x0, L) ∈ I∗(M). In a neighborhood of (x0, L0) ∈ I∗(M) we have

|dλ|(x, L) =
1

σk
trk(−SL)|dVL∩M | ×

∣∣∣
∧
α

θα
∣∣∣× |dγc|

=
1

σk
|n • e0|k

(
trk(−SD|TxM∩[L])

)∣∣∣
m∧

A=1

θA
∣∣∣× |dγc|

(use Lemma 3.5.2)

=
1

σk
|n • e0|k+1

(
trk(−SD|TxM∩[L])

)|dVM | × |dγc|
This proves that along the fiber G∗

x0
we have

|dλ|/|dVM | = 1
σk
|n • e0|k+1

(
trk(−SD|Tx0M∩[L])

)|dγc|([L])

If we denote by θ([L], Tx0M) the angle between [L] and the hyperplane Tx0M we deduce

|dλ|/|dVM | = 1
σk

· | cos θ([L], Tx0M)|k+1
(
trk(−SD|Tx0M∩[L])

)|dγc|([L]).

The map
G∗

x0
3 (x0, L) 7−→ [L] ∈ Grc

identifies G∗
x0

with an open subset of Grc whose complement has measure zero. We now
have the following result.

Lemma 3.5.4. V is an Euclidean space, dimV = m + 1, H ⊂ V is a hyperplane through
the origin, and B : H ×H → R a symmetric bilinear map. Denote by O(H) the subgroup
of orthogonal transformations of V which map H to itself and suppose

f : Grc → R

is an O(H) invariant function. Define

Grc
H =

{
S ∈ Grc; S intersects H trasversally

}
.

Then for every 0 ≤ k ≤ m − c there exists a constant ξ = ξm,c,k depending only on m, c
and k such that

Ik(f, B) :=
∫

Grc
H

f(S) trk(B|H∩S)|dγc|(S) = ξm,c,k trk(B)
∫

Grc
f |dγc|(S).

Proof. Observe that for fixed f the map B → Ik(f,B) is an O(H)-invariant homogeneous
polynomial of degree k in the entries of B. We can therefore express it as a polynomial

Ik(f,B) = Pf

(
tr1(B), . . . , trk(B)

)

= ξf trk(B) + Qf

(
tr1(B), . . . , trk−1(B)

)
.

Let us prove that Qf ≡ 0. To do this, we apply the above formula to a symmetric bilinear
form B such that

dimkerB > m− k.
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Thus, at least m − k + 1 of the m eigenvalues of B vanish, so that trk(B) = 0. For such
forms we have

Ik(f,B) = Q
(
tr1(B), . . . , trk−1(B)

)
.

On the other hand, for almost all S ∈ Grc
H we have

dimS ∩ kerB > m− c− k.

The restriction of B to S ∩ H has m − c eigenvalues, and from the above inequality we
deduce that at least m− c− k of them are trivial. Hence

Ik(f,B) = 0, ∀B, dimkerB > m− k =⇒ Qf = 0.

Now choose B to be the bilinear form corresponding to the inner product on H. Then

trk(B) =
(

m

k

)
and trk(B|H∩S) =

(
m− c

k

)
, ∀S ∈ Grc

H ,

and we conclude that (
m− c

k

)∫

Grc
f |dγc|(S) = ξf

(
m

k

)
. ut

Now apply the above lemma in the special case

H = Tx0M, B = −SD, f(S) =
1

σk
| cos θ(S,H)|k+1

to conclude that
`∗|dλ| = ξ trk(−SD)|dVM | = ξ|dµp+c|

so that

ξµp+c(D) =
∫

M
`∗|dλ| =

∫

I∗(M)
|dλ|

=
∫

Graffc(M)
r∗|dλ| =

∫

Graffc(M)
µp(L ∩D)|dγ̃c|(L).

Thus, rescaling |dγ̃c| to |dν̃c|, we deduce that there exists a constant ξ depending only on
m and c such that

ξµp+c(D) =
∫

Graffc(M)
µp(L ∩D)|dν̃c|(L).

Step 2. To determine the constant ξ in the above equality we apply it in the special case
M = Dm. Using (3.18) we deduce

ξµp+c(Dm+1) = ξωp+c

[
m + 1
p + c

]
= ξ

ωm+1

ωm+1−c−p

(
m + 1
p + c

)
.

Now observe that for L ∈ Graff c we set r = r(L) = dist (L, 0). Then L ∩Dm+1 is empty if
r > 1, and it is a disk of dimension (m + 1− c) = dimL and radius (1− r2)1/2 if r < 1. We
conclude that

µp(L ∩ Dm+1) = µp(Dm+1−c)×
{

(1− r2)p/2 r < 1
0 p > 1.

We set

µm,c,p = µp(Dm+1−c) = ωp

[
m + 1− c

p

]
=

ωm+1−c

ωm+1−c−p

(
m + 1− c

p

)
.
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Using Theorem 1.5.1 we deduce
∫

Graffc
µp(L ∩ Dm+1)|dν̃c|(L)

=
∫

Grc

(∫

[L]⊥
µp

(
Dm+1 ∩ (x + [L])

)|dV[L]⊥ |(x)

)
|dνc|([L])

= µm,c,p

∫

Grc

(∫

x∈[L]⊥, |x|<1
(1− |x|2)p/2|dV[L]⊥ |(x)

)

︸ ︷︷ ︸
=:Ic,p

|dνc|([L])

= µm,c,pIc,p

∫

Grc
|dνc(S)| (3.21)

= µm,c,pIc,p

[
m + 1

c

]
.

Hence

ξ
ωm+1

ωm+1−c−p

(
m + 1
p + c

)
=

ωm+1−c

ωm+1−c−p

(
m + 1− c

p

)
Ic,p

[
m + 1

c

]
.

Using spherical coordinates on Rc we deduce

Ic,p =
∫

Rc

(1− |x|2)p/2dVRc = σc−1

∫ 1

0
rc−1(1− r2)p/2dr

s=r2

=
σc−1

2

∫ 1

0
s

c−2
2 (1− s)p/2ds

(1.12)
=

σc−1

2
B

( c

2
,
p

2
+ 1

)
(1.13)
=

σc−1

2
Γ( c

2)Γ(1 + p
2)

Γ(1 + c
2 + p

2)
(1.14)
= Γ(1/2)c Γ(1 + p

2)
Γ(1 + c

2 + p
2)

=
ωp+c

ωp
.

Hence

ξωm+1

(
m + 1
p + c

)
=

ωm+1−cωp+c

ωp

[
m + 1

c

](
m + 1− c

p

)

=
ωm+1ωp+c

ωpωc

(
m + 1

c

)(
m + 1− c

p

)

We deduce

ξ =
ωp+c

ωpωc

(
m+1

c

)
(
m+1
p+c

)(
m+1−c

p

) =
ωp+c

ωpωc

(
p + c

p

)
=

[
p + c

p

]

ut

We now describe a simple situation when the function Graff c 3 L 7→ µ0(L ∩ M) is
integrable.

Proposition 3.5.5. If the domain D with smooth boundary is also semialgebraic (see Ap-
pendix B) then the function

Graff c 3 L 7→ χ(L ∩D)

is bounded and semialgebraic. In particular, it is integrable so that

µc(D) =
∫

Graffc
µ0(L ∩D)|dν̃|(L).
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3.6. Zero order Crofton formulæ for
submanifolds in an Euclidean space

Suppose M is a closed, compact smooth submanifold of dimension m of the Euclidean
space Rn. We continue to denote by Graff c the Grassmannian of affine planes in Rn of
codimension c. We want to prove the following result.

Theorem 3.6.1 (General Crofton Formula). If the manifold M is also semialgebraic, then
the function

Graff c 3 L 7→ χ(L ∩M) ∈ Z
is |dνc|-integrable and

µc(M) =
∫

Graffc
χ(L ∩M)|dν̃c|(L).

Proof. We can assume that k = codimM < 1. For every x ∈ Rn set d(x) := dist (x,M).
Fix R > 0 such that for x ∈ TR(M) there exists a unique point x̄ ∈ M such that

|x− x̄| = d(x).

For every r < R consider the tube of radius r, around M ,

Dr := Tr(M),

and set Mr = ∂Tr(M). From (3.14) we deduce

µc(M) = lim
r→0

µc(Dr).

Dr is a semialgebraic domain with smooth boundary, and Theorem 3.5.1 implies

µc(Dr) =
∫

Graffc
χ(L ∩Dr)|dνc|(L).

Thus it suffices to show that

µc(M) = lim
r→0

∫

Graffc
χ(L ∩Dr)|dνc|(L) =

∫

Graffc
µ0(L ∩M)|dν̃c|(L).

For r ∈ (0, R) we define

fr : Graff c → R, fr(L) = χ(L ∩Dr).

For uniformity we set f0(L) = χ(L ∩M).

Lemma 3.6.2. There exists C > 0 such that

|fr(L)| ≤ C, ∀L ∈ Graff c, r ∈ [0, R).

Proof. Use semialgebraicity. To be included later
ut

Let
Graff c(M) :=

{
L ⊂ Graff c; L intersects M transversally

}
,
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and define Graff c(Mr) similarly. Observe that Graff c(M) is an open subset of Graff c

with negligible complement. For every r > 0 we set

Xr =
{
L ∈ Graff c(M); L ∈ Graff c(Ms); χ(L ∩Ds) = χ(L ∩M), ∀s ∈ (0, r]

}

Observe that
Graff c(M, r1) ⊂ Graff c(M, r0), ∀r1 ≥ r0.

To proceed further we need the following technical result, whose proof will presented at the
end of this section.

Lemma 3.6.3. The sets Xr are measurable in Graff c and⋃

r>0

Xr = Graff c(M).

Set
Graff c

∗ =
{
L ∈ Graff c; L ∩DR 6= ∅}.

Graff c
∗(M) is a relatively compact subset of Graff c, and thus it has finite measure. Define

X∗r := Xr ∩Graff c
∗, Yr

∗ = Graff c
∗ \X∗r .

For 0 < r < R we have

µc(Dr) =
∫

Graffc
fr(L)|dν̃c|(L) =

∫

Grc∗
fr(L)|dν̃c|(L)

=
∫

X∗r
fr(L)|dν̃c|+

∫

Y∗r
fr(L)|dν̃c| = 2

∫

X∗r
f0(L)|dν̃c|+

∫

Y∗r
fr(L)|dν̃c|

Hence ∣∣∣∣∣µc(Mr)−
∫

X∗r
f0(L)|dν̃c|

∣∣∣∣∣ ≤
∫

Y∗r
|fr(L)||dν̃c| ≤ Cvol (Y∗r).

We now let r → 0, and since vol (Y∗r) → 0 we conclude that

µc(M) = lim
r→0

µc(Dr) = lim
r→0

∫

X∗r
f0(L)|dν̃c| =

∫

Graffc
f0(L)|dν̃c|.

This concludes the proof of Theorem 3.6.1. ut

Proof of Lemma 3.6.3. We will prove that for any given L0 ∈ Graff c(M) there exists
and ρ = ρ(L0) such that

L0 ∈ Xρ.

The measurability1 follows from the fact that Xr is described using countably many boolean
operations on measurable sets.

Consider the normal bundle

N = (TM)⊥ → M.

For x in M we denote by Nx the fiber of N over x.
Let y ∈ L0 ∩M . We denote by N0

y the orthogonal complement in L0 of Ty(L0 ∩M),

N0
y = L0 ∩

(
Ty(L0 ∩M)

)⊥
.

1With a little bit of work one can show that the sets Xr are in fact semi-algebraic, and in particular, measurable.



Zero order Crofton formulæ 79

We think of N0
y as an affine subspace of Rn containing y. Because L0 intersects M transver-

sally we have
dimNy = dimN0

y = k = codimM.

For every r > 0 we set N0
y (r) := N0

y ∩Dr.

L0

M

y

N (r)y
0

rD

Figure 3.1. Slicing the tube Dr around the submanifold M by a plane L0.

The collection (N0
y )y∈L0∩M forms a vector subbundle N0 → L0∩M of (TRn)|L0∩M . We

have an exponential map
EL0∩M : N0 → L0.

Denote by δ the pullback to N0 of the distance function x 7→ d(x) = dist (x,M),

δL0 = d ◦ EL0∩M : N0 → R.

The zero section L0 ∩M ↪→ N0 is a Bott nondegenerate critical submanifold of δ because
for every y ∈ L0 ∩ M the restriction to N0

y of the Hessian of d at y is positive definite.
Hence there exists ρ = ρ(L0) sufficiently small such that the map

EL0∩M : {δ ≤ ρ} → L0 ∩Dρ

is a diffeomorphism. We deduce that we have a natural projection

π : L0 ∩Dρ → L0 ∩M,

which is continuous and defines a locally trivial fibration with fibers N0
y (ρ).

For every y ∈ L0 ∩ M the fiber N0
y (ρ) is homeomorphic to a disk of dimension k,

because we have a proper Morse function N0
y (ρ) 3 x 7→ d(x), with a unique critical point,

its minimum y. Thus L0 ∩ Dρ is homeomorphic to a tube in L0 around L0 ∩M ⊂ L0 so
that

χ(L0 ∩Dρ) = χ(L0 ∩M).

The downward gradient flow of the restriction to L0 ∩ Dρ of the distance function d(x)
produces diffeomorphisms of manifolds with boundary

L0 ∩Dρ
∼= L0 ∩Dr, ∀r ∈ (0, ρ).
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Hence
χ(L0 ∩Dr) = χ(L0 ∩Dρ) = χ(L0 ∩M), ∀r ∈ (0, ρ].

Since the restriction to L0 ∩ Dρ of the distance function d(x) has no critical points other
than the minima y ∈ L0 ∩M , we deduce that L0 is transversal to the level sets

{ d(x) = r } = Mr, ∀r ∈ (0, ρ].

This proves L0 ∈ Xρ. ut

Corollary 3.6.4. Suppose C ⊂ R2 is a smooth, closed, compact semialgebraic curve. For
every line L ∈ Gr1(R2) = Gr1(R2) we set

nC(L) := #(L ∩ C).

Then the function L 7→ nC(L) belongs to L∞(Gr1(R2), |dν̃|2,1), has compact support and

length (C) =
∫

Gr1(R2)
nC(L)|dν̃2,1|(L). ut

More stuff to come...-

3.7. Higher order Crofton formulæ

More stuff to come...-



Chapter 4

The symplectic
geometry of the
cotangent bundle

4.1. Symplectic linear algebra

A symplectic pairing on a finite dimensional real vector space V is a skew-symmetric,
nondegenerate bilinear map

ω : V × V → R, (v1,v2) 7→ ω(v2, v1) = −ω(v2, v1), ∀v1,v2 ∈ V.

More precisely, ω is an element ω ∈ Λ2V ∗ such that the linear map

Iω : V → V ∗, V 3 v 7−→ Iω(v) = v ω ∈ V ∗

is a linear isomorphism. This map is called the symplectic duality. A symplectic vector space
is a pair (V, ω), V is a finite dimensional real vector space and ω is a symplectic pairing on
V .

Example 4.1.1. (a) (The canonical symplectic pairing.) Suppose U is a finite dimen-
sional vector space, denote by

〈−,−〉 : U∗ × U → R
the canonical pairing, and set V := U∗ × U = T ∗U . Then the bilinear map

Ω : V × V → R, Ω
(
(ξ1, u1), (ξ2, u2)

)
:= 〈ξ1, u2〉 − 〈ξ2, u1〉

We will say that Ω is the canonical symplectic pairing on U∗×U . Observe that V ∗ ∼= U×U∗,
and the symplectic duality

IΩ : U∗ × U → U × U∗

is given by
IΩ(ξ,u) = (−u, ξ)

Indeed,
〈
IΩ(ξ1, u1), (ξ2, u2)

〉
=

〈
(−u1, ξ1), (ξ2, u2)

〉
= Ω

(
(ξ1,u1), (ξ2,u2)

)
.

81
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(b) Suppose (Vi, ωi), i = 0, 1 are symplectic vector spaces. Then the bilinear form ω1×(−ω0)
on V1 × V0 is a symplectic pairing. ut

Definition 4.1.2. A morphism of symplectic vector spaces (Vi, ωi), i = 0, 1, is a linear map
T : V0 → V1 such that

ω1(Tu0, Tv0) = ω0(u0, v0), ∀u0,v0 ∈ V0. ut
We will also say that T is a symplectomorphism.

Remark 4.1.3. Observe that any symplectomorphism must be an injective map. ut

Suppose (V, ω) is a symplectic vector space. For every vector subspace U ⊂ V we set

Ǔ :=
{

ξ ∈ V ∗; 〈ξ, u〉 = 0, ∀u ∈ U
}
,

and we define the symplectic annihilator to be

U [ := I−1
ω (Ǔ) =

{
v ∈ V ; ω(v, u) = 0, ∀u ∈ U

}
.

Observe that
dimU [ = dim Ǔ = dim V − dimU, (U [)[ = 0

Definition 4.1.4. Suppose (V, ω) is a symplectic vector space, and U is a subspace of V .
Then U is called isotropic if U ⊂ U [, co-isotropic (or involutive) if U [ ⊂ U , and Lagragian,
if U is simultaneously, isotropic and involutive, i.e.,

U = U [. ut

Observe that
U isotropic ⇐⇒ U [ involutive.

We denote by I−(V, ω) the set of isotropic subspaces, by I+(V, ω) the set of involutive
subspaces, and by

Lag(V, ω) := I−(V, ω) ∩ I+(V, ω)
the set of Lagrangian subspaces. Observe that I−(V ) is nonempty because it contains all
the one-dimensional subspaces. The set I−(V ) is ordered by inclusion.

Proposition 4.1.5. Lag(V ) coincides with the subset of maximal elements of I−(V ). In
particular, Lag(V ) is non-empty.

Proof. Clearly, a Lagrangian subspace L is maximal isotropic because any isotropic sub-
space U satisfies 2 dimU ≤ dimU + dimU [ = dimV , and in particular

dimL = dimL[ =
1
2

dimV.

Conversely, assume L is a maximal isotropic subspace. Then L = L[, because for any vector
v ∈ L[ \ L the subspace L + v is still isotropic. ut

Example 4.1.6. (a) Suppose U is a vector space, and V = U∗ × U is equipped with the
canonical symplectic structure Ω. Then for any subspace S ⊂ U the subspace

LS = Š × S ⊂ U∗ × U

is Lagrangian.
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(b) Suppose A : U → U∗ is a linear map. We define its graph as the subspace

ΓA =
{

(Au, u) ∈ U∗ × U ; u ∈ U
}
.

Then ΓA is Lagrangian if and only if A is symmetric, i.e. A = A∗, where A∗ is the adjoint
of A

A∗ : (U∗)∗ = U−→U∗.
To see this observe that

Γ̌A =
{
(−v, A∗v) ∈ U × U∗ }

so that
Γ[

A = I−1
Ω (Γ̌A) = ΓA∗ .

(c) Suppose (Vi, ωi), i = 0, 1 are two symplectic spaces. Then a linear map T : V0 → V1 is
a symplectic morphism, if and only if its graph

ΓT :=
{

(Tv0,v0); v0 ∈ V0

} ⊂ V1 × V0

is Lagrangian with respect to the symplectic pairing ω1 × (−ω0). ut

Suppose L is a Lagrangian subspace of the symplectic space (V, ω). Observe that for
every v ∈ L the linear functional Iωv vanishes on L so that it induces a linear functional
on V/L. In particular, we have a natural map

Iω(L) → (V/L)∗,

which is an isomorphism since L is Lagrangian.

4.2. Lagrangian submanifolds

4.3. Distributions and their singularities

4.4. Fourier integral operators





Chapter 5

The conormal cycle of
a definable set
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Definable sets
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A brief trip in
geometric measure
theory
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