On the curvature of singular complex hypersurfaces

Liviu I. Nicolaescu*

September 22, 2003

Abstract

We study the behavior of the Gauss-Bonnet integrand on the level sets of a holomorphic function in a neighborhood of an isolated critical point. This is a survey of some older results of Griffiths, Langevin, Lê and Teissier. It is a blend of classical integral geometry and complex Morse theory (a.k.a Picard-Lefschetz theory).

Motivation

Consider the family of plane complex curves

$$
\left.C_{t}=\{(x, y)) \in \mathbb{C}^{2} ; \quad x y=t,|x|^{2}+|y|^{2} \leq 1\right\}, \quad|t| \ll 1 .
$$

C_{t} is non-singular for $t \neq 0$, while for $t=0$ the complex curve C_{0} consists of the two plane disks

$$
D_{x}=\{(x, 0) ;|x|=1\}, \quad D_{y}=\{(0, y) ;|y| \leq 1\} .
$$

Denote by g_{t} the metric on C_{t} induces by the Euclidean metric on \mathbb{C}^{2}. The boundary of C_{t} is

$$
\partial C_{t}:=C_{t} \cap S_{1}(0),
$$

where $S_{r}(p)$ denotes the sphere of radius r centered at $p \in \mathbb{C}^{2}$. Observe that ∂C_{t} consists of two boundary components corresponding to the two solutions of the equation (see Figure 1)

$$
\sqrt{\rho^{2}+\frac{|t|^{2}}{\rho^{2}}}=1 \Longleftrightarrow \rho^{4}+|t|^{2}=\rho^{2}, \quad \rho>0 .
$$

For $t \neq 0$ the Riemann surface C_{t} is homotopy equivalent with the vanishing circle (see Figure 1)

$$
\delta_{t}=\left\{(x, y) \in C_{t} ; \quad|x|=|y|=\sqrt{|t|}\right\} .
$$

Thus

$$
\chi\left(C_{t}\right)=\chi\left(\delta_{t}\right)=0 .
$$

Clearly $\chi\left(C_{0}\right)=\chi(\mathrm{pt})=1$ so that

$$
\lim _{t \rightarrow 0} \chi\left(C_{t}\right) \neq \chi\left(C_{0}\right) .
$$

Denote by K_{t} the sectional curvature of the Riemann surface $\left(C_{t}, g_{t}\right)$ and by κ_{t} the geodesic curvature of $\partial C_{t} \hookrightarrow C_{t}$ (see [9, vol 3, Chap. 4] or [10, §4.1] for a definition of

[^0]

Figure 1: A family of degenerating plane curves
the geodesic curvature). Note that $K_{0} \equiv 0$ and $\kappa_{0} \equiv 1$. The Gauss-Bonnet theorem states that

$$
\frac{1}{2 \pi} \int_{C_{t}} K_{t} d V_{t}+\frac{1}{2 \pi} \int_{\partial C_{t}} \kappa_{t} d s=\chi\left(V_{t}\right), \quad \forall t \neq 0
$$

For every $r>0$ set

$$
\left.C_{t}(r):=\left\{(x, y) \in C_{t}\right) ; \quad|x|^{2}+|y|^{2} \leq r\right\}
$$

For fixed $\varepsilon>0$ we have

$$
\lim _{t \rightarrow 0} \int_{C_{t} \backslash C_{t}(\varepsilon)} K_{t} d V_{g_{t}}=\int_{C_{0} \backslash C_{0}(\varepsilon)} K_{0} d V_{0}=0
$$

On the other hand

$$
\lim _{t \rightarrow 0} \int_{\partial C_{t}} \kappa_{t} d s=\int_{\partial C_{0}} \kappa_{0} d s=\operatorname{length}\left(\partial C_{t}\right)=4 \pi
$$

We have

$$
0=2 \pi \chi\left(C_{t}\right)=\int_{C_{t}(\varepsilon)} K_{t} d V_{t}+\int_{C_{t} \backslash C_{t}(\varepsilon)} K_{t} d V_{t}+\int_{\partial C_{t}} \kappa_{t} d s
$$

If we let $t \rightarrow 0$ we deduce that

$$
\begin{equation*}
\frac{1}{2 \pi} \lim _{t \rightarrow 0} \int_{C_{t}(\varepsilon)} K_{t} d V_{t}=-2, \quad \forall \varepsilon>0 \tag{*}
\end{equation*}
$$

The above observations show that the curvature of C_{t} concentrates in the region $C_{t}(\varepsilon)$ whose area is of the order $2 \pi \varepsilon^{2}$. Thus the average of the curvature over this region is $\approx-\frac{1}{\pi \varepsilon^{2}}$.

To put the equality $(*)$ in some perspective let us rewrite it as

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{C_{t}} K_{t} d V_{t}-\int_{C_{0} \backslash 0} K_{0} d V_{0}=\lim _{\varepsilon \rightarrow 0} \lim _{t \rightarrow 0} \int_{C_{t}(\varepsilon)} K_{t} d V_{t}=-2 \tag{**}
\end{equation*}
$$

This shows two things. First, the integral of the curvature on C_{t} does not converge to the integral of the curvature on C_{0} as one would expect to be the case if C_{0} were smooth. Second, the difference between the limit and the actual integral over the singular level set is an integer.

We see that the limit has a topological meaning! To explain it consider the restriction of the polynomial $f(x, y)=x y$ to a generic line $y=m x$. It is $f^{(1)}(x)=m x^{2}$. Observe that

$$
\chi:=\chi(f=t)=0, \quad \chi^{(1)}:=\chi\left(f^{(1)}=s\right)=2
$$

and we can rephrase $(* *)$ as

$$
\lim _{t \rightarrow 0} \int_{\{f=t\}} K_{t} d V_{t}-\int_{\{f=0\}} K_{0} d V_{0}=\lim _{\varepsilon \rightarrow 0} \lim _{t \rightarrow 0} \int_{\{f=t\} \cap B_{\varepsilon}(0)} K_{t} d V_{t}=\chi-\chi^{(1)}
$$

We want to show that a similar result holds for any polynomial f in any number of variables with an isolated singularity at the origin, where K_{t} is replaced by the GaussBonnet integrand and $f^{(1)}$ is replaced by the restriction of f to a generic hyperplane.

Contents

Motivation
1 A Crofton type formula
2 Chern forms of smooth submanifolds in \mathbb{C}^{N}

3 The Langevin formula

1 A Crofton type formula

For $0 \leq k \leq n$ denote by $G_{k}:=G_{k}\left(\mathbb{P}^{n}\right)$ the grassmanian of k-dimensional projective subspaces of \mathbb{P}^{n}. We have

$$
G_{k}\left(\mathbb{P}^{n}\right) \cong G_{k+1}\left(\mathbb{C}^{n+1}\right)
$$

The $U(n+1)$ acts on G_{k} is a symmetric space with isometry group isomorphic to $U(n+1)$. Denote by $d S$ the unique $U(n+1)$-invariant measure on G_{k} with total volume 1.

Denote by Ω_{H} the Fubini-Study form on \mathbb{P}^{n} normalized as in [4, p.30-31]. Observe that for every k-dimensional projective subspace $S \subset \mathbb{P}^{n}$ we have

$$
\int_{S} \Omega_{H}^{k}=1
$$

Theorem 1.1 (Crofton formula). Suppose V is a bounded open subset of \mathbb{C}^{n-k} and $F: V \rightarrow \mathbb{P}^{n}$ is a holomorphic map. Then

$$
\begin{equation*}
\int_{V} F^{*} \Omega_{H}^{n-k}=\int_{G_{k}\left(\mathbb{P}^{n}\right)} \#(F(V) \cap S) d S \tag{1.1}
\end{equation*}
$$

Remark 1.2. The above identity can be loosely rephrased as saying that Ω_{H}^{n-k} computes the average of intersection of k-planes per unit of $(n-k)$-dimensional volume. If we choose local holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ and we choose V to be the very
small piece of surface $z^{n}=\cdots=z_{n-k+1}=0$ of size $d z_{i}, 1 \leq i \leq n-k$, then we deduce that the quantity

$$
\Omega_{H}^{n-k}\left(\partial_{z_{1}}, \partial_{\bar{z}_{1}}, \cdots, \partial_{z_{n-k}}, \partial_{\bar{z}_{n-k}}\right) d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n-k} \wedge d \bar{z}_{n-k}
$$

is the average number of intersections of the projective k-planes with the $(n-k)$ dimensional patch

$$
\left[z_{1}, z_{1}+d z_{1}\right] \times \cdots\left[z_{n-k}, z_{n-k}+d z_{n-k}\right] \times\left\{z_{n=k+1}=\cdots=z_{n}=0\right\}
$$

Proof of Crofton's formula We will follow the approach in [3, p. 475-478].
Fix a k-plane $S_{0} \hookrightarrow \mathbb{P}^{n}$. Then the cohomology class dual to S_{0} is Ω_{H}^{n-k} that is

$$
\int_{S_{0}} \alpha=\int_{\mathbb{P}^{n}} \alpha \wedge \Omega_{H}^{n-k}, \quad \forall \alpha \in \Omega^{k}\left(\mathbb{P}^{n}\right), \quad d \alpha=0
$$

Denote by G_{0} the stabilizer of S_{0} with respect to the $U(n+1)$ action on \mathbb{P}^{n}. Note that

$$
G_{0} \cong U(k+1) \times U(n-k) \hookrightarrow U(n+1) .
$$

The region $\mathbb{P}^{n} \backslash S_{0}$ is G_{0}-invariant and so is the form Ω_{H}^{n-k}. Denote by $N_{r}\left(S_{0}\right)$ the tube of radius r around S, i.e.

$$
N_{r}\left(L S_{0}\right)=\left\{p \in \mathbb{P}^{n} ; \quad \operatorname{dist}\left(p, S_{0}\right)<r\right\}
$$

where the distance is measured with respect to the Fubini-Study metric. For $r \ll 1$ this tube is G_{0}-invariant. Choose a closed $2(n-k)$-form δ_{0}^{r} supported in $N_{r}\left(L_{0}\right)$ representing the Poincaré dual of L_{0}. For the existence of such forms we refer to [8, Lemma 7.3.10]. Averaging over G_{0} we can assume that δ_{0}^{r} is also G_{0}-invariant. We can thus find a smooth $(2 n-3)$-form η_{0}^{r} such that

$$
d \eta_{0}^{r}=\Omega_{H}^{n-k}-\delta_{0}^{r}
$$

Averaging the above equality over G_{0} we can assume that η_{0}^{r} is G_{0}-invariant as well.
Observe that if S is another k-plane in \mathbb{P}^{n} and $g, h \in U(n+1)$ are such that $g S=h S=S_{0}$ then $g h^{-1} \in G_{0}$ so that

$$
g^{*} \delta_{0}^{r}=h^{*} \delta_{0}^{r}, \quad g^{*} \eta_{0}^{r}=h^{*} \eta_{0}^{r}
$$

so that these differential forms depend only on the plane S. We denote them by δ_{S}^{r} and η_{S}^{r}. The resulting correspondences $S \mapsto \delta_{S}^{r}, \eta_{S}^{r}$ a $U(n+1)$-equivariant, i.e.

$$
\delta_{g^{-1} S}:=g^{*} \delta_{S}, \quad \eta_{g^{-1} S}:=g^{*} \eta_{S}, \quad \forall g \in U(n+1)
$$

If we denote by G_{S} the stabilizer of the k-lane S we deduce that for every S and every $r \ll 1$ the form η_{S}^{r} is G_{S}-invariant, it is supported inside $N_{r}(S)$ and satisfies the equality

$$
\begin{equation*}
d \eta_{S}^{r}=\Omega_{H}^{n-k}-\delta_{S}^{r} \tag{1.2}
\end{equation*}
$$

Consider now manifold

$$
z:=V \times \mathbb{P}^{n} \times G_{k}\left(\mathbb{P}^{n}\right)
$$

and the submanifolds

$$
\Gamma_{F}:=\{(v, F(v), S) \in Z ; \quad v \in V\}, \quad I:=\{(v, p, S) \in \mathcal{Z} ; p \in S\}
$$

Then $\Gamma_{F} \pitchfork I$ and we denote their intersection by y. We set $\pi_{0}:=\pi \mid y$ where $\pi: Z \rightarrow$ $G_{k}\left(\mathbb{P}^{n}\right)$ is the natural projection. Then for $S \in G_{k}\left(\mathbb{P}^{n}\right)$

$$
\pi_{0}^{-1}(S):=\{(v, p, S) \in Z ; \quad p=F(v), \quad p \in S\} \cong F^{-1}(S)
$$

We deduce that $\# \pi_{0}^{-1}(S)=\# F(V) \cap S$. From Sard's theorem we deduce that the critical set of π_{0} has zero measure, that is

$$
F(V) \text { intersects almost all } k \text {-planes transversally. }
$$

Observe next that both sides of (1.1) are additive with respect to partitions of V so that upon subdividing we may assume it is a complex submanifold with boundary. Suppose S is a k-plane which intersects $F(V)$ transversally. Fix r sufficiently small such that

$$
V \cap F^{-1}\left(N_{r}(S)\right) \subset \operatorname{int}(V)
$$

Since δ_{S}^{r} represents the Poincaré dual of S and is supported in a very thin neighborhood of S we deduce from [8, Lemma 7.3.12] that

$$
\int_{V} F^{*} \delta_{S}^{r}=\#(F(V) \cap S)
$$

Integrating (1.2) over V we deduce

$$
\int_{V} F^{*} \Omega_{H}^{n-k}=\int_{\partial V} F^{*} \eta_{S}^{r}+\#(V \cap S)
$$

The above equality is valid for almost all k-planes S. Hence

$$
\int_{G_{k}\left(\mathbb{P}^{n}\right)}\left(\int_{V} F^{*} \Omega_{H}^{n-k}\right) d S=\int_{G_{k}\left(\mathbb{P}^{n}\right)} \#(F(V) \cap S) d S+\int_{G_{k}\left(\mathbb{P}^{n}\right)}\left(\int_{\partial V} F^{*} \eta_{S}^{r}\right) d S
$$

so that

$$
\begin{equation*}
\int_{V} F^{*} \Omega_{H}^{n-k}=\int_{G_{k}\left(\mathbb{P}^{n}\right)} \#(F(V) \cap S) d S+\int_{G_{k}\left(\mathbb{P}^{n}\right)}\left(\int_{\partial V} F^{*} \eta_{S}^{r}\right) d S \tag{1.3}
\end{equation*}
$$

Now observe that up to a multiplicative constant C we have

$$
\begin{gathered}
\int_{G_{k}\left(\mathbb{P}^{n}\right)}\left(\int_{\partial V} F^{*} \eta_{S}^{r}\right) d S=\int_{\partial V} F^{*}\left(\int_{G_{k}\left(\mathbb{P}^{n}\right)} \eta_{S}^{r} d S\right) \\
=C \int_{\partial V} F^{*} \int_{U(n+1)}\left(\int_{\partial V} g^{*} \eta_{0}^{r}\right) d g=C \int_{\partial V} F^{*} \underbrace{\left(\int_{U(n+1)} g^{*} \eta_{0}^{r} d g\right)}_{:=\left\langle\eta^{r}\right\rangle}
\end{gathered}
$$

$\left\langle\eta^{r}\right\rangle$ is a smooth, odd-degree, $U(n+1)$-invariant form on the symmetric space $\mathbb{P}^{n}=$ $U(n+1) /(U(1) \times U(n)$. The space of invariant forms on a compact symmetric space is isomorphic to the deRham cohomology of the space (see [8, §7.4]). On our symmetric space the deRham cohomology vanishes in odd degrees so that

$$
\left\langle\eta^{r}\right\rangle \equiv 0 .
$$

Using this information in (1.3) we obtain Crofton formula.
Let us say a few words about integration on analytic subvarieties. Suppose V is an n-dimensional complex subvariety defined in an open subset $U \subset \mathbb{C}^{N}$. Denote by V^{*} the smooth part of V and by $V_{\text {sing }}$ its singular part. We denote by $\Omega_{c}^{k}(U)$ the vector space of compactly supported, complex valued k-forms on U. We have the following result. For a proof we refer to [4, p. 31-33].

Theorem 1.3 (Lelong). V defines a closed (n, n)-current, i.e the following hold.
(i) For any $2 n$-form $\alpha \in \Omega_{c}^{2 n}(U)$ the integral $\int_{V^{*}} \alpha$ is absolutely convergent.
(ii) For any $\alpha \in \Omega_{c}^{2 n-1}(U)$ we have

$$
\int_{V^{*}} d \alpha=0
$$

(iii) If $\alpha \in \Omega_{c}^{p .2 n-p}(U), p \neq n$ then

$$
\int_{V^{*}} \alpha=0 .
$$

We will denote by [V] the current of integration defined in the above theorem.

2 Chern forms of smooth submanifolds in \mathbb{C}^{N}

Suppose $M^{n} \hookrightarrow \mathbb{C}^{N}$ is a smooth complex submanifold in \mathbb{C}^{N}. As such it is equipped with a natural Kähler metric. Let $F_{M} \in \Omega^{1,1}\left(T^{1,0} M\right)$ denote the curvature of the associated Chern connection on the holomorphic tangent bundle $T^{1,0} M$. The Chern forms $c_{k}(M)$ are then defined by the equality

$$
c_{t}(M):=\sum_{k=0}^{n} c_{k}(M) t^{k}=\operatorname{det}\left(1+\frac{t \mathbf{i}}{2 \pi} F_{M}\right), \quad \mathbf{i}:=\sqrt{-1}
$$

In particular $c_{n}(M)$ coincides with the Euler form of M with the induced Riemann metric.

On the other hand we have a Gauss map

$$
\mathcal{G}_{M}: M \rightarrow G_{n}\left(\mathbb{C}^{N}\right)=\text { the grassmanian of } n \text {-dimensional subspaces in } \mathbb{C}^{N}
$$

We denote by $E_{n} \rightarrow G_{n}\left(\mathbb{C}^{N}\right)$ the tautological vector bundle. It is equipped with a natural hermitian metric, and we denote by F_{n} its curvature. Define the Chern forms as before

$$
\sum_{k=1}^{n} c_{k}\left(G_{n}\right) t^{k}=\operatorname{det}\left(1+\frac{t \mathbf{i}}{2 \pi} F_{n}\right)
$$

We have the following result, [3, §3].
Theorem 2.1 (Theorema Egregium - The complex case).

$$
\begin{equation*}
\mathcal{G}_{M}^{*} c_{t}\left(G_{n}\right)=c_{t}(M) \tag{2.1}
\end{equation*}
$$

The above theorem has one interesting consequence.
Proposition 2.2. Suppose $V^{n} \hookrightarrow \mathbb{C}^{N}$ is a pure n-dimensional complex subvariety of \mathbb{C}^{N}. Denote by $V_{\text {reg }}$ the regular part of V and by $c_{n}\left(V_{\text {reg }}\right)$ the n-th Chern class (with respect to the induced Kähler metric. Then for any open set $U \subset V_{\text {reg }}$ which is bounded in \mathbb{C}^{N} we have

$$
\int_{U} c_{n}\left(V_{r e g}\right)<\infty
$$

Remark 2.3. Observe that the conclusion of the above proposition does not follow from Lelong's theorem since $c_{n}\left(V_{\text {reg }}\right)$ is defined only on $V_{\text {reg }}$. To apply Lelong's theorem we need to know that $c_{n}\left(V_{\text {reg }}\right)$ is the restriction to $V_{\text {reg }}$ of an (n, n)-form defined in some open neighborhood of V in \mathbb{C}^{N}. It is not at all obvious that this is indeed the case.

Proof Consider the Gauss map

$$
\mathcal{G}: V_{\text {reg }} \rightarrow G_{n}\left(\mathbb{C}^{N}\right)
$$

Its graph is an n-dimensional subvariety $\Gamma \subset \mathbb{C}^{N} \times G_{n}\left(\mathbb{C}^{N}\right)$

$$
\Gamma=\left\{(p, E) \in \mathbb{C}^{N} \times G_{n}\left(\mathbb{C}^{N}\right) ; \quad p \in V_{\text {reg }}, \quad T_{p} V_{\text {reg }}=E\right\}
$$

Denote by \imath the obvious inclusion $\imath: V_{\text {reg }} \hookrightarrow \Gamma$ and by π the obvious projection

$$
\pi: \mathbb{C}^{N} \times G_{n}\left(\mathbb{C}^{N}\right) \rightarrow G_{n}\left(\mathbb{C}^{N}\right)
$$

Observe that $\mathcal{G}=\pi \circ \imath$ so that $\mathcal{G}^{*}=\imath^{*} \circ \pi^{*}$. The form $\pi^{*} c_{n}\left(G_{n}\right) \in \Omega^{n, n}\left(\mathbb{C}^{N} \times G_{n}\left(\mathbb{C}^{N}\right)\right)$ is locally integrable along Γ by Lelong's theorem.

Let $U \subset V_{r e g}$ be a bounded open subset and set $\hat{U}=\imath(U) \subset \Gamma$. Then

$$
\begin{aligned}
& \int_{U} c_{n}\left(V_{r e g}\right) \stackrel{(2.1)}{=} \int_{U} \mathcal{G}^{*} c_{n}\left(G_{n}\right)=\int_{U} \imath^{*}\left(\pi^{*} c_{n}\left(G_{n}\right)\right) \\
&=\int_{\hat{U}} \pi^{*} c_{n}\left(G_{n}\right)<\infty
\end{aligned}
$$

We conclude this section with a discussion of a rather confusing issue. Consider a complex $n+1$-dimensional vector space V and denote by $G_{k}(V)$ the grassmanian of k-dimensional subspaces of V. We have a natural biholomorphic map

$$
G_{k}(V) \rightarrow G_{n+1-k}\left(V^{*}\right), \quad V \supset E \mapsto E^{0}:=\left\{v^{*} \in V^{*} ; \quad v^{*}(e)=0, \quad \forall e \in E\right\} \subset V^{*}
$$

In particular we have a natural biholomorphic map

$$
\delta: \mathbb{P}\left(V^{*}\right) \cong G_{1}\left(V^{*}\right) \rightarrow G_{n}(V)
$$

We denote by $E_{n}=E_{n}(V)$ the tautological vector bundle over $G_{n}(V) . E_{n}$ is a subbundle of the trivial bundle $\underline{V} \cong \underline{\mathbb{C}}^{n+1}$ and we set $Q_{n}=Q_{n}(V):=\underline{V} / E_{n}$. Denote by $E_{1}=E_{1}\left(V^{*}\right)$ the tautological line bundle over $\mathbb{P}\left(V^{*}\right)$.

Lemma 2.4.

$$
\delta^{*} Q_{n} \cong E_{1}^{*}
$$

Proof The map δ has the form $\ell \mapsto \ell^{0}$ for any line in V^{*}. We need to produce a map $\Delta: E_{1}^{*} \rightarrow Q_{n}$ such that the diagram below is commutative

and which is linear along the fibers.

More precisely, for any line $\ell \subset V^{*}$ the restriction on Δ to the fiber of E_{1}^{*} over ℓ coincides with the tautological isomorphism

$$
\Delta_{\ell}: \ell^{*} \rightarrow V / \ell^{0}
$$

defined by the natural pairing

$$
\ell \times V / \ell^{0} \rightarrow \mathbb{C}
$$

From the short exact sequence of vector bundles over $G_{n}(V)$

$$
0 \rightarrow E_{n} \rightarrow \underline{V} \rightarrow Q_{n} \rightarrow 0
$$

we deduce

$$
1=c(\underline{V})=c\left(E_{n}\right) c\left(Q_{n}\right)
$$

Denote by H the image of the hyperplane class in $H^{2}\left(\mathbb{P}\left(V^{*}\right)\right)$ via $\left(\delta^{-1}\right)^{*}$. Lemma 2.4 now implies

$$
1=c\left(E_{n}\right)\left(1+H^{*}\right) \Longrightarrow c\left(E_{n}\right)=\sum_{k \geq 0}(-1)^{k} H^{k}
$$

In particular

$$
\begin{equation*}
c_{n}\left(E_{n}\right)=(-1)^{n} H^{n} \tag{2.2}
\end{equation*}
$$

3 The Langevin formula

To formulate and prove our promised generalization of (\dagger) we need to review some facts concerning the isolated singularities of complex hypersurfaces.

Suppose $f=f\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ is a holomorphic function of $n+1$-variables defined in a neighborhood of the origin such that the origin $0 \in \mathbb{C}^{n+1}$ is an isolated critical point. Denote by $\mathcal{O}_{0}=\mathcal{O}_{\mathbb{C}^{n+1}, 0}$ the ring of germs at $0 \in \mathbb{C}^{n+1}$ of holomorphic functions and by \mathfrak{m} its maximal ideal.

The origin is an isolated point of the analytic set

$$
\Delta:=\left\{\frac{\partial f}{\partial z_{0}}=\frac{\partial f}{\partial z_{1}}=\cdots=\frac{\partial f}{\partial z_{n}}=0\right\}
$$

If we denote by J_{f} the ideal in \mathcal{O}_{0} generated by $\left\{\frac{\partial f}{\partial z_{i}} ; 0 \leq i \leq n\right\}$ we deduce from the analytic Nullstelensatz, that

$$
\sqrt{J_{f}}=\mathfrak{m}
$$

so that $\mathfrak{m}^{\nu} \subset J_{f}$ for some integer ν and thus

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0} / J_{f}<\infty
$$

This integer is called the Milnor number of f at 0 or the Milnor number of the hypersurface X_{0} at 0 . It is denoted by $\mu(f, 0)$ or $\mu\left(X_{0}, 0\right)$.

For $t \in \mathbb{C},|t| \ll 1$, and any open set U we set

$$
X_{t}=\left\{\vec{z} \in \mathbb{C}^{n+1} ; \quad f(\vec{z})=t\right\}, \quad X_{t}^{U}:=X_{t} \cap U
$$

We have the following fundamental result.

Theorem 3.1 (Milnor). For every neighborhood U of $0 \in \mathbb{C}^{n+1}$ there exists $\tau=$ $\tau(U)>0$ such that for all $0<|t|<\tau$ the hypersurface X_{t}^{U} is homotopic to a wedge of μ spheres of dimension n,

$$
X_{t}^{U} \simeq \underbrace{S^{n} \vee \cdots \vee S^{n}}_{\mu} .
$$

We have

$$
X_{t}^{U} \cong_{C^{\infty}} X_{t}^{V}, \quad \forall 0<|t| \min (\tau(U), \tau(V))
$$

The manifold X_{t}^{U} is called the Milnor fiber of f.
For a proof we refer to the beautiful monograph [7].
Example 3.2. Consider polynomial $f=f_{p, q}(x, y)=x^{p}-y^{q}, p>q, \operatorname{gcd}(p, q)=1$. Then $J_{f}=\left(x^{p-1}, y^{p-1}\right)$ and we see that any germ at 0 of holomorphic function is congruent modulo J_{f} to a unique polynomial of the form

$$
\sum_{0 \leq i<p-1,0 \leq j<q-1} a_{i j} x^{i} y^{j}
$$

this shows

$$
\mu(f, 0)=(-1)(q-1)
$$

Denote by G the grassmanian $G_{n}\left(\mathbb{C}^{n+1}\right)$ of hyperplanes of \mathbb{C}^{n+1} containing the origin. For every neighborhood U of the origin we now construct a parameterized Gauss map

$$
\mathcal{G}=\mathcal{G}_{U}: U^{*}:=U \backslash 0 \rightarrow G, \quad p \mapsto T_{p} X_{f(p)}
$$

and denote by $\Gamma=\Gamma_{U}$ its graph

$$
\Gamma=\left\{(p, H) \in U \times G ; \quad p \neq 0, \quad H=T_{p} X_{f(p)}\right\}
$$

The function f induces a natural map

$$
\pi_{f}: U \times G \rightarrow \mathbb{C}, \quad(p, H) \mapsto f(p)
$$

Denote by $\hat{\Gamma}$ the closure of Γ in y. It is an analytic subspace (see [12, §16]). Set $\Gamma_{t}:=\Gamma \cap \pi_{f}^{-1}(t), \hat{\Gamma}_{t}:=\pi_{f}^{-1}(t) \cap \hat{\Gamma}$. More precisely Γ_{t} is the graph of the Gauss map

$$
X_{t} \backslash 0 \rightarrow G
$$

Denote by $\bar{\Gamma}_{0}$ the closure of Γ_{0} in $U \times G . \bar{\Gamma}_{0}$ is called the Nash blowup of X_{0}. The set

$$
\mathcal{L}:=\bar{\Gamma}_{0} \backslash \Gamma_{0} \subset\{0\} \times \mathbb{P}^{n}
$$

is called the space of limits of tangents planes.
Remark 3.3. More accurately, we denote by $\pi_{f}: \mathbf{B l}_{J_{f}}\left(\mathbb{C}^{n+1}\right) \rightarrow \mathbb{C}^{n+1}$ the blowup of \mathbb{C}^{n+1} along the scheme defined by the Jacobian ideal J_{f} (see [2, Prop. IV.22, p.169]). Then $\hat{\Gamma}_{0}$ which is the total transform of X_{0}, and $\bar{\Gamma}_{0}$ is the strict transform. The exceptional divisor of this blowup is the Cartier divisor defined as the preimage of the zero dimensional scheme described by the Jacobian ideal. It is called the Plücker defect.

Example 3.4. Consider the polynomial $f(x, y)=x^{p}-y^{q}, p>q$ of Example 3.2. Observe that the tangent spaces to the level sets of f are the kernels of $d f$ so the Gauss map can be given the description

$$
\mathcal{G}: U \backslash 0 \rightarrow \mathbb{P}^{1}, \quad(x, y) \mapsto\left[p x^{p-1}, q y^{q-1}\right] .
$$

With graph

$$
\Gamma=\left\{\left(x, y ;\left[p x^{p-1}, q y^{q-1}\right]\right) ; \quad(x, y) \neq(0,0)\right\}
$$

Since x^{p-1}, y^{p-1} is a regular sequence in $\mathbb{C}[x, y]$ we deduce from [2, Prop. IV.25] that closure in $\mathbb{C}^{2} \times \mathbb{P}^{1}$ is the subvariety described by the equation

$$
\bar{\Gamma}=\left\{(x, y ;[a, b]) ; \quad q y^{q-1} a=p x^{p-1} b\right\} .
$$

$\mathbb{C}^{2} \times \mathbb{P}^{1}$ is covered by two coordinate charts $U_{a}:=\{a \neq 0\}, U_{b}:=\{b \neq 0\}, a=1 / b$ on $U_{a} \cap U_{b}$. On U_{a} we have coordinates (x, y, b) and $\bar{\Gamma}$ is described by

$$
\bar{\Gamma}_{a}=\bar{\Gamma} \cap U_{a}=\left\{q y^{q-1}=p x^{p-1} b\right\}
$$

On U_{b} we have the coordinates (x, y, a) and

$$
\bar{\Gamma}_{b}=\bar{\Gamma} \cap U_{b}=\left\{q y^{q-1} a=p x^{p-1}\right\} .
$$

The Nash blowup of $f=0$ is the subvariety of $\bar{\Gamma}$ described by

$$
\bar{\Gamma}_{0}=\left\{(x, y,[a, b]) ; \quad q y^{q-1} a-p x^{p-1} b=x^{p}-y^{q}=0\right\} .
$$

Let us point out that the blowup of the Jacobian ideal need not be normal. Consider for example the case $p=5, q=3$. In this case $\bar{\Gamma}$ is described on U_{a} by the equation

$$
x^{4} b=y^{2} .
$$

The ring $R=\mathbb{C}[x, y, b] / I, I=\left(x^{4} b-y^{2}\right)$ is an integral domain. The element $t=y / x^{2}$ satisfies the equation $t^{2}-b=0$ so that it is integral over R. On the other hand, it does not belong to R. The real part of this surface is depicted ${ }^{1}$ in Figure 2.

Figure 2: Blowing up the plane at the Jacobian ideal $\left(x^{4}, y^{2}\right)$.

[^1]Theorem 3.5 (Teissier, [11]). Fix a small neighborhood U of the origin $0 \in \mathbb{C}^{n+1}$ and set $X_{t}^{U}:=X_{t} \cap U$. Then the following hold.
(a) $H \in \mathbb{P}^{n} \backslash \mathcal{L}$ (i.e. H is not a limit of tangent planes) if and only if

- $X_{0}^{U} \cap H$ has an isolated singularity at the origin $0 \in H$. Denote by $\mu\left(X_{0} \cap H\right)$ the Milnor number of the hypersurface $X_{0} \cap H \subset H$.
- For any $H \in \Omega$ the Milnor number $\mu\left(X_{0} \cap H\right)$ is minimum amongst the Milnor numbers of hyperplane sections $X_{0} \cap H^{\prime}, H^{\prime} \in G$, with isolated singularities at the origin.

Definition 3.6. Define f^{\prime} to be the restriction of f to a generic hyperplane $H \subset \mathbb{C}^{n+1}$, $H \in \Omega$, and $\mu^{\prime}(f, 0)$ as the Milnor number of f^{\prime}. Iterating we define

$$
f^{(k+1)}:=\left(f^{(k)}\right)^{\prime}, \quad \mu^{(k+1)}(f, 0):=\mu^{\prime}\left(f^{(k)}, 0\right)
$$

The integers $\mu^{(k)}(f, 0), 0 \leq k \leq n$ are called the Milnor-Teissier numbers of the hypersurface $\operatorname{germ}(f=0)$.

We will denote by $\chi^{(k)}(f, 0)$ the Euler characteristic of the Milnor fiber of $f^{(k)}$. Using Milnor's theorem 3.1 we deduce that

$$
\chi^{(k)}=1+(-1)^{(n-k)} \mu^{(k)}(f, 0)
$$

so that

$$
\begin{equation*}
\chi(f, 0)-\chi^{\prime}(f, 0)=(-1)^{n}\left(\mu(f, 0)+\mu^{\prime}(f, 0)\right) \tag{3.1}
\end{equation*}
$$

Example 3.7. Consider polynomial $f=f_{p, q}(x, y)=x^{p}-y^{q}, p>q, \operatorname{gcd}(p, q)=1$. We know that $\mu(f, 0)=(p-1)(q-1)$. Then

$$
f^{(1)}(t)=\left.f\right|_{x=t, y=m t}=t^{p}-m^{q} t^{q}
$$

so that

$$
\mu^{\prime}(f, 0)=q-1
$$

For every linear functional $u: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ and any open neighborhood V of the origin define

$$
F_{u}: V \rightarrow \mathbb{C}^{2}, \quad \vec{z} \mapsto(f(\vec{z}), u(\vec{z})
$$

Observe that the fiber of F_{u} over $\left(t_{0}, u_{0}\right)$ is the hyperplane section

$$
X_{t_{0}, u_{0}}^{V}=X_{t_{0}}^{V} \cap\left\{u=u_{0}\right\}
$$

Observe that \vec{z} is a critical point of F_{0} iff $d f$ and $d u$ are linearly independent, i.e. if the tangent space at \vec{z} to the hypersurface $X_{f(\vec{z})}$ is parallel to the hyperplane $u=0$. We denote by C_{u} the critical locus of F_{u}, which is the scheme defined by the vanishing of the 2 -form $d f \wedge d u$.

For u in the generic set Ω of Theorem 3.5 the map F_{u} is flat, which in this case is equivalent to the fact that the fibers are complete intersections. We deduce from $[6$, Thm. 2.8 (iii)] that $\operatorname{dim} C_{u}=1$. We have the following nontrivial genericity result.
Theorem 3.8 (Hamm-Lê, [5]). There exists a Zariski open subset $\Omega^{\prime} \in \Omega$ with the following property.
For any linear functional $u: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ which describes a hyperplane $H \in \Omega^{\prime}$ there exists an open neighborhood $U=U_{H}$ of the origin and $\tau>0$ such that for every $0 \leq|t|<\tau$ the restriction of u to $X_{t}^{U} \backslash 0$ has only nondegenerate critical points.

Pick u as above. From the theory of discriminants we deduce that in a punctured neighborhood of the origin the critical locus C_{u} is reduced and smooth away from the origin. (see $[6, \S 4.5]$).
Example 3.9. Consider again the polynomial $f_{p, q}(x, y)=x^{p}-y^{q}$. We assume $p>q$, $\operatorname{gcd}(p, q)=1$. We denote by $X_{p, q}$ the germ at zero of the plane curve $x^{p}-y^{q}=0$.

For each $m \in \mathbb{C}$ consider a line H_{m} in \mathbb{C}^{2} of slope $m, y=m x$ and consider the associated linear functional $u_{m}: \mathbb{C}^{2} \rightarrow \mathbb{C}, u_{m}(x, y)=m x-y$. We make the change in coordinates

$$
v=y, \quad u=m x-y \Longleftrightarrow y=v, \quad x=\frac{u+v}{m}
$$

In these coordinates H_{m} is given by $u=0$. Define

$$
F_{m}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad(u, v) \mapsto(t, s)=\left(\frac{(u+v)^{p}}{m^{p}}-v^{q}, u\right)
$$

Finally we introduce new coordinates $w=u+v, v=v$ so that $u=w-v$ and

$$
F_{m}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad(v, w) \mapsto(t, s)=\left(\frac{w^{p}}{m^{p}}-v^{q}, w-v\right)
$$

The polar curve (critical locus) corresponding to this slope is given by

$$
C_{m}=\left\{F_{m}^{*}(d t \wedge d s)=0\right\}=\left\{\frac{p}{m^{p}} w^{p-1}-q v^{q-1}=0\right\}
$$

One can prove that the function $q v^{q-1}-\frac{p}{m^{p}} w^{p-1}$ defines an irreducible germ in $\mathcal{O}_{\mathbb{C}^{2}, 0}$. Its zero locus is smooth in a punctured neighborhood of the origin. Away from 0 it admits the parametrization

$$
v=\tau^{p-1}, \quad w=(c \tau)^{q-1}, \quad \text { where } c^{(p-1)(q-1)}=\frac{q m^{p}}{p}
$$

Observe that along this curve we have

$$
f(x, y)=f(v, w)=f\left(\tau^{p-1},(c \tau)^{q-1}\right)=\frac{(c \tau)^{p(q-1)}}{m^{p}}-\tau^{q(p-1)}
$$

Thus the order of f at zero along this curve is

$$
p(q-1)=(p-1)(q-1)+(q-1)=\mu\left(f_{p, q}, 0\right)+\mu^{\prime}\left(f_{p, q}, 0\right)
$$

Equivalently, the multiplicity of the intersection $X_{p, q} \cap C_{m}$ at zero is

$$
\left(X_{p, q}, C_{m}\right)_{0}=\mu\left(f_{p, q}, 0\right)+\mu^{\prime}\left(f_{p, q}, 0\right)
$$

This implies that for generic t_{0} there are exactly $\mu\left(f_{p, q}, 0\right)+\mu^{\prime}\left(f_{p, q}, 0\right)$ points on the Milnor fiber $f=t_{0}$ in a small neighborhood of the origin where the tangent line has slope m.

Theorem 3.10 (Langevin, [4]). Suppose $f \in \mathcal{O}_{\mathbb{C}^{n+1}, 0}$ has an isolated singularity at the origin. Then for every sufficiently small neighborhood V of $0 \in \mathbb{C}^{n+1}$ we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{X_{t}^{V}} c_{n}\left(X_{t}\right)-\int_{X_{0}^{V}} c_{n}\left(X_{0}\right)=\lim _{W} \lim _{t \rightarrow 0} \int_{X_{t}^{U}} c_{n}\left(X_{t}\right)=\chi(f, 0)-\chi^{\prime}(f, 0) \tag{3.2}
\end{equation*}
$$

where W is the filter of neighborhoods of $0 \in \mathbb{C}^{n+1}$.

Proof Fix a small neighborhood V of the origin. Denote by G the grassmanian of hyperplanes in \mathbb{C}^{n+1} through the origin, by $E \rightarrow G$ the tautological rank n bundle over G and by $c_{n}(E)$ the n-th Chern form of E equipped with the natural hermitian metric. Using the identification $G \cong \mathbb{P}\left(\left(\mathbb{C}^{n+1}\right)^{*}\right)$ we deduce that

$$
c_{n}(E)=(-1)^{n} \Omega^{n}
$$

where Ω is the Fubini-Study form normalized so that its integral over each projective line is 1 . In particular Ω^{n} defines a volume form on G which we denote by $d H$. For every $|t| \ll 1$ we gave a Gauss map

$$
\mathcal{G}_{t}: X_{t}^{V} \backslash 0 \rightarrow G
$$

Using Theorema Egregium we deduce

$$
\int_{X_{t}^{V}} c_{n}\left(X_{t}\right)=\int_{X_{t}^{V}} \mathcal{G}_{t}^{*} c_{n}(E)=(-1)^{n} \int_{X_{t}^{V}} \mathcal{G}_{t}^{*} \Omega^{n}
$$

For any open set \mathcal{O} we set

$$
c_{H}(t, \mathcal{O})=\#\left(\mathcal{G}_{t}^{-1}(H) \cap \mathcal{O} \backslash 0\right)
$$

Crofton's formula now implies that

$$
\begin{equation*}
\int_{X_{t}^{V}} c_{n}\left(X_{t}\right)=(-1)^{n} \int_{G} c_{H}(t, V) d H \tag{3.3}
\end{equation*}
$$

We want to prove that for any $H \in \Omega^{\prime}$ there exists a small neighborhood W of $0 \in \mathbb{C}^{n+1}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} c_{H}(t, W)=\mu(f, 0)+\mu^{\prime}(f, 0) \tag{3.4}
\end{equation*}
$$

This is equivalent to the condition that for every $H \in \Omega^{\prime}$ we have

$$
\begin{equation*}
\lim _{W} \lim _{t \rightarrow 0} c_{H}(t, W)=\mu(f, 0)+\mu^{\prime}(f, 0) \tag{3.5}
\end{equation*}
$$

Fix a hyperplane $H \in \Omega^{\prime}$ and a linear function $u: V \rightarrow \mathbb{C}$ defining it. For every t_{0}, u_{0} and any open set \mathcal{O} we define

$$
X_{t_{0}, u_{0}}=\left(X_{t_{0}} \cap\left\{u=u_{0}\right\}\right), \quad X_{t_{0}, u_{0}}^{\mathcal{O}}=X_{t_{0}, u_{0}} \cap \mathcal{O}, \quad c(t, \mathcal{O})=c_{H}(t, \mathcal{O})
$$

Then $c(t, \mathcal{O})$ is the number of points in $X_{t} \cap \mathcal{O}$ where the tangent plane is parallel to H. Equivalently, it is the number of critical points of the restriction of the linear function u to $X_{t} \cap \mathcal{O}$. In terms of the critical curve C_{u} we have

$$
c(t, \mathcal{O})=\#\left(C_{u} \cap X_{t}^{\mathcal{O}}\right)
$$

Due to our choice of H all these critical points inside a small neighborhood \mathcal{O} of the origin are nondegenerate.
Remark 3.11. The definition of the intersection numbers in analytic geometry implies that there exists a small neighborhood W of the origin such that

$$
\lim _{t \rightarrow 0} \#\left(C_{u} \cap X_{t}^{W}\right)=\left(C_{u} \cdot X_{0}\right)_{0}=\text { the mutiplicity at } 0 \text { of the intersection } C_{u} \cap X_{0}
$$

Thus we can rephrase (3.5) as saying that

$$
\left(C_{u} \cdot X_{0}\right)_{0}=\mu(f, 0)+\mu^{\prime}(f, 0)
$$

When $n=1$ so that X_{0} is a plane curve this is an old result going back to the Plücker in the 19th century (see the beautiful discussion in [1, III.9.1]). The general case is more recent and is due to Teissier, [11] who proved it by algebraic means. Below we present a topological proof.

We will need the following technical result.
Lemma 3.12. There exists a small neighborhood W of the origin such that $u\left(X_{t} \cap W\right) \subset$ \mathbb{C} is a disk centered at the origin for all $0<|t| \ll 1$.
Proof Consider the holomorphic map

$$
F_{u}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{2}, \quad \vec{z} \mapsto(f(\vec{z}), u(\vec{z}))
$$

Due to our generic choice of u the map F_{u} is flat in a neighborhood U^{\prime} of the origin and thus it is open on U^{\prime}. Choose a polydisk

$$
\mathbb{D}=\left\{|f|<r_{1}\right\} \times\left\{|u|<r_{2}\right\} \subset F_{u}\left(U^{\prime}\right) \subset \mathbb{C}^{2}
$$

Now set

$$
W=U^{\prime} \cap F_{u}^{-1}(\mathbb{D})
$$

Then for every $|t|<r_{1}$ we have $u\left(X_{t} \cap W\right)=\left\{\left|z_{0}\right|<r_{2}\right\}$.
Proof of (3.5). For $0<|t| \ll 1$ the hypersurface X_{t}^{W} is diffeomorphic to the Milnor fiber so that

$$
\chi\left(X_{t}^{W}\right)=\chi(f, 0)=1+(-1)^{n} \mu(f, 0)
$$

Set $U_{t}=u\left(X_{t}^{W}\right)$. We know that U_{t} is a disk in \mathbb{C}. The choice of u shows that for t sufficiently small the plane section $X_{t, 0}^{W}$ is smooth and is diffeomorphic to the Milnor fiber of the hyperplane section $\left.f\right|_{H}$ so that

$$
\chi\left(X_{t, 0}^{W}\right)=\chi^{\prime}(f, 0)
$$

Denote by $C_{t} \subset U_{t}$ the set of critical values of $u: X_{t}^{W} \rightarrow U_{t} . C_{t}$ is a finite set. Then

$$
\chi(f, 0)=\chi\left(X_{t, 0}^{W}\right) \cdot \chi\left(U_{t} \backslash C_{t}\right)+\sum_{v \in C_{t}} \chi\left(X_{t, v}^{\varepsilon}\right)
$$

Since the critical points are nondegenerate we deduce that each of them corresponds to a vanishing $(n-1)$-sphere in $X_{t, 0}^{W}$. Hence

$$
\sum_{v \in C_{t}} \chi\left(X_{t, v}^{W}\right)=\sum_{v \in C_{t}} \chi\left(X_{t, 0}^{W}\right)-(-1)^{n-1} c\left(X_{t}, 0, \varepsilon\right)=\left|C_{t}\right| \chi^{\prime}(f, 0)+(-1)^{n} c\left(X_{t}, 0, \varepsilon\right)
$$

Lemma 3.12 implies that $\chi\left(U_{t}\right)=1$ so that $\chi\left(U_{t} \backslash C_{t}\right)=1-\left|C_{t}\right|$ and thus

$$
\chi(f, 0)=\chi^{\prime}(f, 0)+(-1)^{n} c\left(X_{t}, 0, \varepsilon\right), \quad \forall 0<|t| \ll 1
$$

This proves (3.5).
Langevin's formula now follows by passing to the limit^{2} in (3.3) and using (3.4).

[^2]
References

[1] E. Brieskorn, H. Knörer: Plane Algebraic Curves, Birkhäuser, 1986.
[2] D. Eisenbud, J. Harris: The Geometry of Schemes, Graduate Texts in Mathematics, vol. 197, Springer Verlag, 2000.
[3] P.A. Griffiths: Complex differential and integral geometry and curvature integrals associated to singular varieties of complex analytic varieties, Duke Math. J., 45(1978), 427-512.
[4] P. Griffiths, J. Harris: Principles of Algebraic Geometry, John Wiley\& Sons, 1978.
[5] H. Hamm, D.T. Lê: Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup., 6(1973), 317-355.
[6] E.J.N. Looijenga: Isolated Singular Points on Complete Intersections, London Math. Soc. Lect. Notes, vol. 77, Cambridge University Press, 1984.
[7] J. Milnor: Isolated singularities of Complex Hypersurfaces, Ann. Math. Studies, vol. 61, 1968.
[8] L.I. Nicolaescu: Lectures on the Geometry of Manifolds, World Sci. Pub. Co. 1996.
[9] M. Spivak: A Comprehensive Introduction to Differential Geometry, vol. 1-5, Publish or Perish.
[10] D. J. Struik: Lectures on Classical Differential Geometry, Dover Publications, 1988.
[11] B. Teissier: Cycles évanescentes, sections planes et conditions de Whitney in "Singularités à Cargese", Asterisque 7-8 (1973), 285-362.
[12] H. Whitney: Tangents to an analytic variety, Ann. of Math., 81(1965), 496-549.

[^0]: *Talk at the Felix Klein Seminar, Notre Dame, Fall 2003.

[^1]: ${ }^{1}$ We generated Figure 2 using $M A P L E$ and the normalization map $\mathbb{C}^{2} \rightarrow \bar{\Gamma}_{a}$ described by $x=s, y=t s^{2}$, $b=t^{2}$.

[^2]: ${ }^{2}$ We need to invoke the dominated convergence theorem to conclude

 $$
 \lim _{W} \lim _{t \rightarrow 0} \int_{G} c_{H}(t, W) d H=\int_{G} \lim _{W} \lim _{t \rightarrow 0} c_{H}(t, W)
 $$

