
THE EULER CHARACTERISTIC

LIVIU I. NICOLAESCU

Abstract. I will describe a few basic properties of the Euler characteristic and then I use them
to prove special case of a cute formula due to Bernstein-Khovanskii-Koushnirenko.

1. Basic properties of the Euler characteristic

The Euler characteristic is a function χ which associates to each reasonable1 topological space
X an integer χ(X). For us a reasonable space would be a space which admits a finite simplicial
decomposition (a.k.a. triangulation.) For example, all algebraic varieties are reasonable. In the
sequel we will tacitly assume that all spaces are reasonable and so we will drop this attribute
from our discourse.

More explicitly, the Euler characteristic of X is defined as the alternating sum

χ(X) =
∑

k≥0

(−1)k dimRHk
c (X,R),

where H•
c (X,R) denotes the cohomology with compact supports and real coefficients of the

space X.
The Euler characteristic is uniquely determined by the following properties.

• Normalization.
χ({point}) = 1.

• Topological invariance.

χ(X) = χ(Y ) if X is homeomorphic to Y .

• Proper homotopy invariance

χ(X) = χ(Y ) for any homotopic compact spaces X and Y .

• Excision.
χ(X) = χ(C) + χ(X \ C), for every closed subset C ⊂ X.

The excision property has a dual form

χ(X) = χ(U) + χ(X \ U) for every open subset U ⊂ X.

• Multiplicativity.
χ(X × Y ) = χ(X)χ(Y ).

The excision property is frequently used under the guise of the inclusion-exclusion formula.
More precisely, if X is a union of two closed sets X = S1 ∪ S2 then

χ(X) = χ(S1) + χ(S2)− χ(S1 ∩ S2).
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1For example, every space defined by polynomial equalities and inequalities is reasonable. The technical term

would be subanalytic.
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Indeed

χ(X) = χ(S1) + χ(X \ S1) = χ(S1) + χ(S2 \ S1 ∩ S2) = χ(S1) + χ(S2)− χ(S1 ∩ S2).

We have a similar formula with closed replaced by locally closed2.
Let us compute the Euler characteristic of a few reasonable spaces. Note first that the Euler

characteristic of a finite set (equipped with the discrete topology) is equal to the cardinality of
that set.

Denote by ∆n the closed n-dimensional simplex. Thus ∆0 is a point, ∆1 is a segment, ∆2 is
a triangle, ∆3 is a tetrahedron etc. Every simplex ∆n is homotopic to a point and thus
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Figure 1. Simplices.

χ(∆n) = 1, ∀n ≥ 0.

Observe that ∂∆n is homeomorphic to the (n−1)-sphere Sn−1. Since S0 is a union of two points
we deduce χ(S0) = 2. In general, the n-dimensional sphere is a union of two closed hemispheres
intersecting along the Equator which is a (n− 1) sphere. Hence,

χ(Sn) = 2χ(∆n)− χ(Sn−1) = 2− χ(Sn−1).

We deduce inductively

2 = χ(Sn) + χ(Sn−1) = χ(Sn−1) + χ(Sn−2) = · · · = χ(S1) + χ(S0)

so that

χ(Sn) = 1 + (−1)n =
{

2 if n ∈ 2Z
0 if n ∈ 2Z+ 1 .

Now observe that the interior of ∆n is homeomorphic to Rn so that

χ(Rn) = χ(∆n)− χ(∂∆n) = 1− χ(Sn−1) = 1− (1 + (−1)n−1) = (−1)n.

The excision property implies the following useful formula. Suppose

∅ ⊂ X(0) ⊂ X(1) ⊂ · · · ⊂ X(N) = X

is an increasing filtration of X by closed subsets. Then

χ(X) = χ(X(0)) + χ(X(1) \X(0)) + · · ·+ χ(X(N) \X(N−1)).

Let’s apply this in the case when X is a simplicial complex. We denote by X(k) the union of the
simplices of dimension ≤ k. Then X(k) \X(k−1) is the union of the interiors of the k-dimensional
simplices. We denote by fk(X) the number of such simplices. Each of them is homeomorphic

2A subset of a topological space is called locally closed if is the intersection of an open subset with a closed
subset
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to Rk and thus its Euler characteristic is equal to (−1)k. Hence χ(X(k) \X(k−1)) = (−1)kfk(X)
so that

χ(X) =
∑

k≥0

(−1)kfk(X).

Suppose π : X → Y is a d : 1 covering map. Then we can find an increasing filtration of Y by
closed subsets

Y (0) ⊂ · · · ⊂ Y (k) ⊂ Y (k+1) ⊂ · · · ⊂ Y

such that over Y (k) \ Y (k−1) the projection π is a trivial covering map. If we set

X(k) = π−1(Y (k))

then X(k) \X(k−1) is homeomorphic to a product F × (Y (k) \ Y (k−1)), where F is a finite set of
cardinality d. Hence χ(X(k) \X(k−1)) = dχ(Y (k) \ Y (k−1)) and we deduce

χ(X) = dχ(Y ).

More generally, suppose f : X → Y is a reasonable3, proper, continuous map with finite fibers.
Denote by Y (k) the subset of Y consisting of points y such that the fiber f has cardinality k.
We set

X(k) := f−1
(
Y (k)

)
.

The map f : X(k) → Y (k) is a k : 1 cover and we deduce

χ(X(k)) = k · χ(Y (k)).

Summing over k we deduce the slicing formula

χ(X) =
∑

k≥0

kχ(Y (k)) =
∑

k≥0

k · χ( {y ∈ Y ; |f−1(y)| = k} )
. (1.1)

2. A Bézout type formula

To put things into perspective we start with a classic elementary fact. Suppose we are given
a polynomial with complex coefficients in one complex variable

A(z) = akz
k + · · ·+ anzn, k < n, ak · an 6= 0.

Then for generic choices of coefficients the number of nonzero roots of P is equal to n− k. We
want to rephrase this in a more sophisticated way.

For a polynomial P in ν complex variables ~z = (z1, · · · , zν)

Z∗P := {~z ∈ (C∗)ν ; P (~z) = 0}.
In our special case the number of nonzero roots of A is the Euler characteristic of Z∗A.

To every nonzero monomial aα~zα = aαzα1
1 · · · znναν of P we associate the point

α = (α1, · · · , αν) ∈ Zν ⊂ Rν .

We obtain in this fashion a finite set of lattice points denoted by suppP ⊂ Rν . The Newton
polytope of P is by definition the convex hull of suppP . We denote it by ∆(P ). For example,

suppA(z) = {k, k + 1, · · · , n} ⊂ R1,

and ∆(A) is the line segment connecting the points k, n ∈ R. The fact that a generic polynomial
A with Newton polytope [k, n] has (n − k) nonzero roots can be rewritten in the following
sophisticated fashion

χ(Z∗A) = vol1
(
∆(A)

)
.

3A reasonable map would be for example a real analytic map.
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Above, vol1 denotes the 1-dimensional volume of the segment [k, n], i.e. its length. The above
equality is a special case of the following general result.

Theorem 2.1 (Bernstein-Khovanskii-Koushnirenko). Fix a convex polytope in Rν with vertices
in (Z≥0)ν then for a generic polynomial P such that ∆(P ) = ∆ we have

χ(Z∗P ) = (−1)ν−1ν! · volν(∆),

where volν denotes the ν-dimensional Euclidean volume in Rν . ut

Let us prove this theorem in a special case when ν = 2 and

P = ax4 + bx3y4 + cy5 + d.

The Newton polytope of P is depicted in Figure 2.
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Figure 2. The Newton polygon of ax4 + bx3y4 + cy5 + d.

To compute the area of this polygon we decompose it into two triangles OAB and OBC and
we have

2Area (OABC) = 2Area (OAB) + 2Area (OBC) =
∣∣∣∣

4 0
3 0

∣∣∣∣ +
∣∣∣∣

3 0
4 5

∣∣∣∣ = 16 + 15 = 31.

Consider the curve
ZP = {(x, y) ∈ C2; P (x, y) = 0, y 6= 0}.

and set Z0
P = {(0, y) ∈ ZP } = {(0, y); cy5 + d = 0}. For generic (c, d) we have χ(ZP ) = 5 so

that
χ(Z∗P ) = χ(ZP )− χ(Z0

P ) = χ(ZP )− 5.

To compute the Euler characteristic of ZP we use the slicing formula (1.1) applied to the map

f : ZP → C∗, ZP 3 (x, y) 7→ y.

Note that for every y0 ∈ C the fiber f−1(y0) is the intersection of the horizontal line y = y0

with the curve ZP . The points on this intersection are found by solving the polynomial equation
in x

ax4 + bx3y4
0 + cy5

0 + d = 0.

For all but finitely many y0’s this equation has exactly 4 distinct solutions. The intersection
contains less than 4 points precisely when the horizontal line y = y0 is tangent to the curve ZP ,
i.e. y0 is a critical value of the map π (see Figure 3). Denote by S∗ the set of y0 ∈ C∗ such that
the line y = y0 intersects the curve ZP transversally. The discriminant set is D = C∗ \ S∗.
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Figure 3. Slicing the curve Z∗P .

For generic coefficients a, b, c, d the curve ZP can be represented near a horizontal tangency
point as the graph of the implicit function y = y(x). The horizontal tangency condition can be
rewritten as

dy

dx
= 0.

Derivating the equation P = 0 with respect to x we deduce

y3(4bx3 + 5cy)
dy

dx
= −x2(4ax + 3by4), xy 6= 0.

The points with horizontal tangents on ZP are obtained by solving the system

ax4 + bx3y4 + cy5 + d = 0, x2(4ax + 3by4) = 0, xy 6= 0. (2.1)

We distinguish two cases, x = 0 and x 6= 0.

• If x = 0 then cy5 + d = 0. For general c, d this equation has five distinct roots. If ŷ is one
of them then the intersection of the line y = ŷ with the curve ZP consists of two points (x, ŷ)
found by solving for x the equation

x3(ax + bŷ4) = 0.

• If x 6= 0 then (2.1) implies x = −3by4

4a and using this in the equation P (x, y) = 0 we obtain a
degree 16 equation in y

R(y) = P (−3by4

4a
, y) = 0.

If the coefficients (a, b, c, d) are generic then the equation R(y) = 6 has 16 different roots and
for every solution ŷ of R(y) = 0 the polynomial x 7→ P (x, ŷ) has a double root at

x̂ = −3bŷ4

4a

Thus for every root ŷ of R(y) = 0 the equation P (x, ŷ) = 0 has exactly three solutions.

We have thus decomposed the discriminant set D into two parts

D = D1 ∪D2 = {R(y) = 0} ∪ {cy5 + d = 0}.
These two parts are disjoint for general coefficients. Note that

χ(D1) = 16, χ(D2) = 5

χ(f−1(y)) = 3, ∀y ∈ D1, χ(f−1(y)) = 2, ∀y ∈ D2.
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Since χ(f−1(y)) = 4 for y ∈ S∗ we deduce from the slicing formula (1.1) that

χ(ZP ) = 4χ(S∗) + 3χ(D1) + 2χ(D2)

= 4χ(C∗ \D) + 3 · 16 + 2 · 5
= 4 · (0− 16− 5) + 48 + 10 = −26.

Hence
χ(Z∗P ) = χ(ZP )− 5 = −26− 5 = −31 = −2Area (OABC)

as predicted by Theorem 2.1.
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