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We have previously proposed a way of using coupled quantum dots to construct digital com-
puting elements—quantum-dot cellular automata. Here we consider a different approach to
using coupled quantum-dot cells in an architecture which, rather than reproducing Boolean
logic, uses a physical near-neighbor connectivity to construct an analog cellular neural
network.
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1. Introduction

We discuss a computing paradigm in which cells composed of interacting quantum dots are employed in
a cellular neural network (CNN) architecture. Communication between cells is only through the Coulomb
interaction. The cells and their basic behavior are the same as we have previously discussed in the context
of the quantum-dot cellular automata (QCA) architecture. The key differences here are that in the quantum
CNN (Q-CNN) approach: (1) each cell is used to encode a continuous rather than binary degree of freedom;
(2) we focus on the time-dependent problem instead of the ground state; (3) the time-dependent Schr¨odinger
equation can be transformed into the CNN state equations.

We have constructed a simple quantum model of a Q-CNN composed of quantum-dot cells. Each cell
contains one classical degree of freedom, the cell polarization, and one quantum degree of freedom, a quantum
mechanical phase difference. Mapping onto the CNN paradigm maintains phase information within the cell
but no quantum coherence exists between cells. Thus though dynamics is accomplished through the quantum
degrees of freedom, information is only carried across the array in classical degrees of freedom.

Our hope is that by connecting the problem of coupled quantum cells to a circuit architecture developed
for exploiting conventional analog integrated circuits, we might be able to open up a new solution domain for
interconnected quantum devices. Because local connectivity is natural in ultra-small quantum devices, CNNs
may prove a natural extension to the QCA architecture and allow a move into non-digital domains.

In Section 2 we briefly review the CNN paradigm. In Section 3 a quantum treatment of a cellular array
will be described. In Section 4 the connection between the quantum problem and the CNN approach will
be demonstrated. In Section 5 we discuss the generalization of our simple model to a more general class of
Q-CNNs.
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Fig. 1. Cell polarization is treated as a continuous variable.

2. The CNN paradigm

The CNN, invented by L. O. Chua and L. Yang [2] and generalized in subsequent work [3, 4], is a two
or three dimensional, usually regular array of analogous cells. Each cell, indexed byκ, has dynamical state
variablesExκ , external inputsEuκ , and internal constant cell dataEzκ . Each cell is influenced by its neighbors
through a synaptic inputI s

κ which depends on the values of cell states and cell inputs within a sphereSκ

centered on cellκ. A CNN synaptic lawdescribes the effect of other cells on the synaptic input.

I s
κ =

∑
λ

Aλ
κ Exκ+λ +

∑
λ

Bλ
κ f (Exκ , Exκ+λ) +

∑
λ

Cλ
κ Euκ+λ. (1)

The cell dynamics are determined by aCNN state equationgiving the rate of change of state variables as the
non-linearfunction of the state of the cell itself, the synaptic input from neighboring cells, and the external
inputs.

∂

∂t
Exκ = −g(Exκ , Ezκ , Euκ , I s

κ ). (2)

If the no external inputs exist then the CNN is calledautonomous. The CNN is then defined by (1) the synaptic
law, (2) the state equation, (3) initial conditions, and (4) boundary conditions. Unlike neural networks in case
of the CNN the cells are primarilylocally interconnected, thus the practical realization is much easier, than
in the case of a fully interconnected neural network.

3. Quantum model of cell array

We consider here a simple model of an array of interacting quantum cells. Each cell contains four quantum
dots and two extra electrons as shown schematically in Fig. 1. The electrons tend to localize on a particular
dot but can tunnel between dots. No tunneling occurs between cells. The polarizationP of the cell is defined
from the expectation values of the charge on each dot

P ≡ (ρ1 + ρ3) − (ρ2 + ρ4)

ρ1 + ρ2 + ρ3 + ρ4
. (3)

P can vary continuously between−1 and+1 as shown in Fig. 1. We describe the quantum state of a cell
using two basis states|φ1〉 and|φ2〉 which are completely polarized.

|9〉 = α|ϕ1〉 + β|ϕ2〉 9 =
[

α

β

]
. (4)

Using these two components the cell polarization is given by

P = |α|2 − |β|2. (5)

The Coulomb interaction between adjacent cells increases the energy of the configuration if the two cell
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Fig. 2. The energy cost of neighboring cells having opposite attraction.

polarizations differ. This can be accounted for by including an energy shift corresponding to the weighted
sum of the neighboring polarizations. We define this weighted sumP̄ as follows;

P̄κ =
∑
λ∈Sκ

w(Rκ − Rλ)Pλ (6)

where the sum is over an appropriate neighborhoodSκ about cellκ. The Hamiltonian for each cell can then
be written as

Hκ =
[

E0 − 1
2 P̄κ Ek −γ

−γ E0 + 1
2 P̄κ Ek

]
(7)

whereγ is the interdot tunneling energy andEk is the electrostatic energy cost of two adjacent fully polarized
cells having opposite polarization as shown in Fig. 2. If we assume that there are no quantum entanglements
between cells, then the dynamics of the array is simply given by a set of coupled Schr¨odinger equations for
each cell

i h̄
∂

∂t
|9κ〉 = Hκ |9κ〉. (8)

This approximation treats exchange and correlation effects exactly within each cell (for the model) and
treats intercellular interactions at the level of Hartree–Fock. Allowing correlation effects that produced mixed
intercellular states would make connecting to a CNN description impossible because of the need for local
cell state information. Moreover, in our simulations of dynamic switching of cellular arrays we found that
including the correlations between cells did not alter the qualitative behavior (though it did increase the speed
of the intercellular responses).

4. Formulating quantum dynamics as CNN dynamics

To transform the quantum mechanical description of an array into a CNN-style description the first step
is to reduce the number of local dynamical variables describing each cell. The two-state approximation of
eqn (4) requires two complex numbers,α andβ, to describe a state. This entails four real degrees of freedom.
One degree of freedom can be removed by noting that the overall quantum phase of the state is arbitrary (again
here the condition of no intercellular mixed states is required). A second degree of freedom is removed by
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using the normalization condition

1 = |α|2 + |β|2. (9)

It is then possible to rewrite the state description in terms of two real degrees of freedom,P andφ

9 =
 √

1+P
2√

1−P
2 ei ϕ

. (10)

Notice thatP represents a classical degree of freedom—it is related to expectation values of observables.
By contrastφ is a fundamentally quantum variable, a quantum mechanical phase. The dynamical equations
derived from the Schr¨odinger eqn (8) can be rewritten as equations forP andφ

h̄
∂

∂t
P = −2γ

√
1 − P2 sinϕ (11)

h̄
∂

∂t
ϕ = −P̄ Ek + 2γ

P√
1 − P2

cosϕ. (12)

Equations (11) and (12) are the Q-CNN state equation, analogous to eqn (2). We can see by comparing (12)
with the Hamiltonian (7) that the synaptic law is given by:

I s
λ = Ek P̄λ =

∑
λ∈Sκ

w(Rκ − Rλ)Pλ. (13)

We have shown [1] that a line of cells has a stable self-polarization at a valueP = ±Psat where Psat is
determined by the intercellular Coulomb coupling and the tunneling. Using (11) and (12) we can find a closed
form expression forPsat

Psat =
√

1 −
(

γ

Ek

)2

. (14)

We have previously calculated the properties of a line of cells using a complete many-particle basis consisting
of 25 states per cell. We examined the line both with and without intercellular correlations [5]. The primary
feature of interest was the propagation of a switched pulse along the line.A priori it is not obvious that a
treatment as simple as the two state model we describe here is sufficient to capture this behavior. The solutions
to the dynamic equation shown in Fig. 3 demonstrates that it does indeed. A pulse is seen to propagate down
the line. If we neglect the quantum mechanical dynamical variableφ, this propagation does not occur. It can
be seen from the figure as well as from eqn (11) that the sign ofφ determines the time derivative ofP and
thus the direction of wave propagation.

5. Generalization of quantum cellular neural networks

Although we have employed a fairly simple model for demonstrating Q-CNN behavior, the general features
of the paradigm are clear.

(i) Each cell is a quantum system. The specification of the quantum system can distinguishNc classical
degrees of freedom andNq quantum degrees of freedom.

(ii) The interaction between cells, the synaptic input, depends only on the classical degrees of freedom.
This corresponds to an intercellular Hartree–Fock approximation. The precise form of the synaptic law
is determined by the physics of the intercellular interaction.

(iii) The state equations are derived from the time-dependent Schr¨odinger equation. One state equation exists
for each classical and quantum degree of freedom.
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Fig. 3. Wave front motion in a simple Q-CNN. The first cell is switched abruptly from−Psat to Psat. Snapshots ofP andφ for the
line show the line of cells switching as the pulse moves from left to right.

It is notable that the classical degrees of freedom carry the information from cell to cell but the quantum
degrees of freedom are necessary to carry information from the one time to the next. This can be seen in the
example shown in Fig. 3 for which the direction of pulse propagation is encoded in the phase variable.

6. Conclusions

We have defined the Q-CNN paradigm and examined it in the case of a simple two-state model of the cell.
The system is sufficiently rich to reproduce the wave propagation behavior seen in a fuller quantum treatment.
The general features of Q-CNN architecture have been outlined. Of particular interest is the distinction between
information-bearing classical degrees of freedom and quantum degrees of freedom which are necessary for
proper temporal evolution.

In making the connection between coupled quantum cells and the existing CNN paradigm we have made
the first, very preliminary, step in appropriating the results of work in classical CNN circuit theory for use in
quantum device applications. Further investigation of 2D is the next essential step.
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