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For a quantum state undergoing unitary Schrödinger time evolution, the von Neumann entropy is constant.
Yet the second law of thermodynamics, and our experience, show that entropy increases with time. Ingarden
introduced the quantum operator entropy, which is the Shannon entropy of the probability distribution for the
eigenvalues of a Hermitian operator [R. S. Ingarden, Quantum information theory, Rep. Math. Phys. 10, 43
(1976)]. These entropies characterize the missing information about a particular observable inherent in the
quantum state itself. The von Neumann entropy is the quantum operator entropy for the case when the operator
is the density matrix. We examine pure state unitary evolution in a simple model system composed of a set of
highly interconnected topologically disordered states and a time-independent Hamiltonian. An initially confined
state is subject to free expansion into available states. The time development is completely reversible with no
loss of quantum information and no course graining is applied. The positional entropy increases in time in a way
that is consistent with both the classical statistical mechanical entropy and the second law.
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I. INTRODUCTION

Entropy as a concept was defined in historical order by
Clausius, Boltzmann, Gibbs, von Neumann, and Shannon.
Conceptually, it would have been clearer if the order were
reversed. The Shannon information-theoretic definition is the
most fundamental, which can then be applied to physical
quantum systems, with classical statistical mechanics follow-
ing as the classical limit of the quantum case.

Shannon chose to use the word “entropy” from the field
of statistical mechanics for a quantity he variously described
as measuring “choice,” “information,” “uncertainty,” or “sur-
prise” [1]. As the mathematical theory of communication he
invented became the field of information theory, and in due
course was turned back onto analyzing statistical mechanics,
the layering of these various concepts often became confus-
ing. Information and uncertainty, for example, seem to be
opposites of one another. The more information one has, the
less uncertainty. Whose choice is involved in the entropy of a
physical system?

Ben-Naim has done the world a great favor by relentlessly
clarifying the quantity defined by Shannon as a measure of the
missing information associated with a probability distribution
[2]. If all one knows is the probability distribution for a finite
set of discrete possible events, the Shannon measure quantifies
the amount of information, measured in bits, that one is miss-
ing. It is the difference between the incomplete knowledge
captured in a probability distribution, and certainty about
which event will occur. What Ben-Naim prefers to call the
Shannon measure of information (SMI) (or Shannon missing
information) represents, as it were, the part of the graduated
cylinder that is empty of fluid. The SMI is the more general
concept; the thermodynamic entropy S is a special case of
the SMI applied to a particular class of physical problems.
Ben-Naim also rightly inveighs against interpreting physical

entropy as a measure of “disorder,” a concept too vague to
be scientifically quantifiable. What counts as order is entirely
subjective. Ben-Naim builds on the work of Jaynes, who,
reversing the historical sequence, showed specifically how
statistical mechanical entropy was a particular application of
Shannon’s information theoretic entropy [3–5].

Here we focus on the quantum mechanical operator en-
tropy SQ, associated with a Hermitian operator Q̂, as formu-
lated by Ingarden [6] and described in Sec. II. This opera-
tor entropy quantifies the amount of information about the
property Q that is missing in the (pure or mixed) quantum
state. For example, the position operator X̂ generates an
associated entropy Sx which captures how much information
about position is missing. The familiar von Neumann entropy
is then seen to be the special case of quantum operator entropy
when the operator is the density matrix ρ̂. Though the von
Neumann entropy is zero for a pure state and constant under
unitary time evolution, other operator entropies need not
be.

We examine the interpretation of these quantities in a
model system with topological disorder. Section III examines
the free expansion of an initially localized system, tracking
several operator entropies. We see the increase in the position
entropy in time which parallels classical second law behavior
even in purely unitary time evolution with no coarse graining
[7] or loss of quantum information. The position entropy
saturates at levels that can be predicted by sampling random
superpositions of energy eigenstates (RaSEE; we pronounce
this “racy”). In this way the behavior is connected to the
notions of typicality that are proving so helpful in quantum
statistical mechanics [8]. In Sec. IV we discuss the second
law of thermodynamics and time reversibility for this system.
Results for thermal equilibrium in the model system are
briefly discussed in Sec. V.
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II. QUANTUM OPERATOR ENTROPY

A. Definition

We follow Ben-Naim in defining the SMI, in bits,
as Shannon’s measure on a probability distribution P =
[P1, P2, . . . , PN ] over N possible outcomes:

SMI(P) = −
N∑

k

Pk log2(Pk ). (1)

The notation is useful here to distinguish this quantity from
the physical or thermodynamic entropy S; it is simply a
measure on a probability distribution.

To apply the Shannon measure of information in the quan-
tum mechanical case we consider a Hermitian operator Q̂
written in its eigenbasis:

Q̂ =
∑

k

|ϕqk 〉qk〈ϕqk |. (2)

We assume that the set of states {|ϕqk 〉} is chosen to form
an orthonormal basis. If a measurement of Q is made, the
result will be one of the eigenvalues of {q1, q2, . . . qk . . . qN }
with probabilities {pq1 , pq2 , . . . pqk . . . pqN }. It is natural then
to define the Shannon measure on this set of probabilities as
the entropy associated with Q:

SQ ≡ SMI({pqk }) = −
∑

k

pqk log2(pqk ). (3)

This quantity was introduced by Ingarden [6] and has been
studied by Anza and Vedral [9], Hu et al. [10], and others.

If the system is in a pure quantum state |ψ〉, then the
probability that a measurement of Q yields qk is given by the
Born rule:

pqk = |〈ϕqk | ψ〉|2. (4)

Thus,

SQ(ψ ) = −
∑

k

|〈ϕqk | ψ〉|2 log2(|〈ϕqk | ψ〉|2). (5)

Entropy quantifies missing information, so what infor-
mation is missing? For an observable Q and a pure state
|ψ〉, SQ measures the number of bits of information that are
missing from the universe concerning what value of Q will
be obtained if a measurement of Q is made. The quantum
state of the system |ψ (t )〉 contains everything there is to
know about the system at time t . Because of fundamental
quantum indeterminism, that is not enough to pin down which
eigenvalue of Q̂ will be measured (unless, of course, |ψ〉
happens to be an eigenstate of Q̂). We now know from recent
Bell test experiments that this indeterminism is a fundamental
feature of reality [11–14]. It is not just a feature of quantum
mechanics as we currently understand it, nor is it just an
expression of the limited information of an observer. The
quantum operator entropy SQ therefore reflects information
about the observable Q that is missing from the physical
world. It is, in that somewhat strange sense, an objective prop-
erty of the physical system and not a subjective property of the
observer’s knowledge. Perhaps one can speak of Shannon’s
notion of “choice” applying here. When confronted with a
measurement of Q, the physical world has SQ bits of choice

in the outcome that are unconstrained by the physical law,
a law which has determined the present |ψ (t )〉. The missing
information about Q in (5) is really missing.

A mixed state describes a system S which either is coupled
dynamically to a reservoir system R or has been so in the past.
The quantum state of the composite system is not in general
simply a direct product of the state of each subsystem but
rather an entangled state |ψSR〉. The density operator for the
composite system is defined by

ρ̂SR = |ψSR〉〈ψSR|. (6)

The density operator for the system alone is defined using the
partial trace over the reservoir degrees of freedom:

ρ̂ ≡ TrR(ρ̂SR). (7)

We can write the density operator in the basis of its own
eigenstates:

ρ̂ =
∑

k

|νk〉ρk〈νk|. (8)

For a pure state only one of the ρk’s is nonzero.
The probability pqk that a measurement of Q for the system

yields qk can be calculated for the mixed state using the
density operator and the projection operator onto the kth
eigenstate of Q̂:

pqk = Tr(ρ̂ [ |φqk 〉〈φqk | ]). (9)

The quantum operator entropy for a mixed (or pure) state is
then given by applying (3) to (9):

SQ(ρ̂) ≡
−

∑

k

Tr(ρ̂ [ |φqk 〉〈φqk | ]) log2{Tr(ρ̂ [ |φqk 〉〈φqk | ])}.

(10)

The expression in (10) includes the previous expression in (5)
as a special case when ρ represents a pure state.

Again, SQ is providing a measure (in bits) of missing
information. For a mixed state, the source of this missing
information is twofold. Quantum indeterminacy still limits
the information about a future measurement that is present in
the current state of the system. But in addition there is also
information missing about the reservoir’s state and the mutual
information characterizing the entanglement between system
and reservoir. The system’s reduced density matrix ρ̂ is not
a complete description of the quantum state of the system,
but it is the best possible local description. For the physical
world, there is a fact of the matter about the global quantum
state that includes both system and reservoir |ψSR〉. But the
local description of the system alone represented by ρ̂ has less
information.

B. Examples of quantum operator entropies

If we use a basis set of discrete position eigenstates |xk〉 we
can define the quantum operator entropy for X̂ , the position
operator:

Sx(ρ̂ ) = −
∑

k

Tr(ρ̂ |xk〉〈xk| ]) log2{Tr(ρ̂ [ |xk〉〈xk| ])}.
(11)
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The quantum operator entropy for the Hamiltonian Ĥ with
allowed energies Ek and eigenstates |Ek〉 is

SE (ρ̂) = −
∑

k

Tr(ρ̂ [ |Ek〉〈Ek| ]) log2{Tr(ρ̂ [ |Ek〉〈Ek |])}.
(12)

The quantum operator entropy for the density operator ρ̂

itself, from (8), is

Sρ (ρ̂) = −
∑

k

Tr(ρ̂ [ |νk〉〈νk| ]) log2{Tr(ρ̂ [ |νk〉〈νk| ])}.
(13)

Because

Tr(ρ̂ [ |νk〉〈νk| ]) = ρk, (14)

we can write

Sρ (ρ̂) = −
∑

k

ρk log2(ρk ) = SMI({ρk}). (15)

The quantum operator entropy for the density operator is
the SMI of the diagonal elements of the density matrix. We
recognize (15) as the expectation value of − log2(ρ̂), and so
write

Sρ (ρ̂) = 〈− log2(ρ̂)〉 = − Tr[ρ̂ log2(ρ̂ )] = SvN (ρ). (16)

The entropy Sρ is identical to the von Neumann entropy SvN

(in bits). For a pure state, the entropy Sρ = SvN is zero.
In general each operator entropy SQ can take on different

values because each quantifies something different. If what
is known about the system is ρ̂, Sx(ρ̂) is the amount of
information that is missing about position or, more precisely,
about the outcome of position measurements. It is the answer
to the following question: How many bits of information are
not known about the outcome of a position measurement if all
one knows is ρ̂? SE (ρ̂ ) is the amount of information about
energy that is missing. Sρ (ρ̂) is the amount of information
that is missing about which quantum state the system will
be found in. It measures the “mixedness” or purity of the
state. Sρ (ρ̂), the von Neumann entropy, is invariant under
unitary transformations of the basis. Other operator entropies
SQ(ρ̂) are not invariant—they are tied to the eigenbasis of the
particular operator Q̂.

III. ENTROPY CHANGE OF A PURE STATE UNDER
UNITARY EVOLUTION

A. Model system

We consider here a model problem of unitary evolution
of a pure state in a closed system with a time-independent
Hamiltonian. The purpose is to examine the different roles
played by the von Neumann entropy SvN = Sρ , the energy
entropy SE , and the positional entropy Sx.

The system consists of a random array of N = 1024 fixed
sites. Each site is labeled with an index k = [1, 2, 3, . . . , N]
and is at a randomly chosen position rk = (xk, yk ) in a unit
square. The site positions are shown graphically in Fig. 1(a)
as dots. We use as basis states for the system the set of all the
position eigenstates localized on each site, {|rk〉}. The on-site
energy for each is E0.

Off-diagonal elements of the Hamiltonian couple each site
to several nearby sites with a fixed coupling matrix element
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FIG. 1. The geometry and connectivity of a model system with
1024 randomly positioned sites. (a) The position of each site k is
indicated as a dot at rk . For six representative sites, the connections
to nearby sites are indicated by lines. For each site, connections are
made to a randomly chosen subset of the 50 nearest other sites.
(b) Site-to-site connectivity is shown by a dot on the kth row and
k′th column if the site k is connected to site k′. A connection means
that there is a corresponding nonzero Hamiltonian matrix element
〈rk | Ĥ | rk′ 〉 = γ0. The number of connections for each site (the
number of dots in a row or column) varies between a minimum of
10 and a maximum of 32, with a mean value of 18.

γ0 = 〈rk | Ĥ | rk′ 〉. Each site is coupled to a randomly chosen
subset of its 50 nearest sites. The coupling to neighbors for six
representative sites is shown in Fig. 1(a) as lines connecting
the dots. Figure 1(b) shows the connectivity of the sites with
a dot on row k, column k′, if site k is coupled to site k′.

The Hamiltonian for the system is

Ĥ =
∑

k

|rk〉E0〈rk| −
∑

k,k′
γ (rk, rk′ )[|rk〉〈rk′ | + |rk′ 〉〈rk|].

(17)
Here γ (rk, rk′ ) = γ0 if two sites are connected and zero if they
are not.

The randomness in this model minimizes the artifacts of
geometric regularity on the dynamics. We want to see how
these different operator entropies change due to fundamental
unitary dynamics without the patterns of constructive and
destructive interference that dominate, for example, the evolu-
tion of a similar system on a regular lattice. This topologically
disordered model is similar to, but distinct from, the Lifshitz
model for disordered semiconductors [15] for which γ is
simply a function of the distance between sites. The high
multiple connectivity also lets us generalize the interpretation
of the model as will be discussed below.

To construct the connections between sites, nine passes
through all the sites are made, adding a connection between
each site and another site randomly chosen from among its 50
closest neighbors. The result is that the number of connections
for each site varies between 10 and 32, with a mean of 18.
(The situation is complicated by the fact that site k might have
site j as one of its 50 nearest neighbors, while site j does not
have site k as one of its 50 nearest neighbors.)

B. Unitary free expansion

The dynamic problem we solve is the expansion of the state
from an initially spatially confined state. The initial state has
an equal probability distributed among the 64 sites that are
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FIG. 2. Expansion of the probability distribution under unitary
evolution for the system shown in Fig. 1. The initial state is a pure
quantum state with uniform probability over the 64 sites closest to the
origin (lower left of each panel). The time development is calculated
from Eq. (18). The system is at all times isolated and remains in a
pure quantum state. Panels (a)–(d) show snapshots of the probability
distribution at various times. The time scale is measured in units of
τ = π h̄/γ0. The area of each dot is proportional to the probability
of the system being found on that site. The system as modeled
cannot dissipate energy so quantum interference effects persist and
the distribution will never become completely homogeneous. The
evolution is reminiscent of the free expansion of an ideal gas, but
because it is unitary the von Neumann entropy is constant and the
motion is entirely reversible.

closest to the origin. We solve for the time development of the
state function using the unitary time development operator:

|ψ (t )〉 = e−iĤt/h̄|ψ (0)〉. (18)

The expansion of the state into the surrounding state space is
shown by the snapshots of the probability density in Fig. 2.
The time scale is set by the characteristic tunneling time
between connected sites:

τ = π h̄/γ0. (19)

The figure shows how the probability expands much like a
classical gas into the available states. Since the expectation
value of the energy is constant during unitary evolution, the
system cannot deexcite, and quantum interference fluctuations
persist indefinitely.

Figure 3 shows the calculated entropies Sx, SE , and SvN =
Sρ , the von Neumann entropy, during the expansion shown
in Fig. 2. The von Neumann entropy is, of course, constant
during the unitary evolution and is in fact zero because the
state is always pure.
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FIG. 3. Quantum operator entropies for the unitary expansion
shown in Fig. 2 on the geometry shown in Fig. 1. The system
evolves from the localized state of Fig. 2(a) according to Eq. (18)
with the Hamiltonian given by (17). The time scale is measured in
units of τ = π h̄/γ0. The von Neumann entropy (dotted line) is zero
throughout because it is a measure of the purity or mixedness of
the quantum state. The state here is always a pure quantum state
and the evolution is reversible. The energy entropy SE is a measure
of the amount of missing information about the state’s energy. Be-
cause the state is not a stationary state, but rather a linear combination
of stationary states, several outcomes of an energy measurement
are possible. The value of SE is the answer to the following ques-
tion: How many bits of information about the results of an energy
measurement are missing, if all one knows is the quantum state
|ψ (t )〉? Here the answer is 4.86 bits, and is constant in time because
unitary time evolution preserves the values of projections onto energy
eigenstates. The value of the position entropy Sx (solid line) is
similarly the amount of missing information about the outcomes of a
position measurement, given the quantum state. The position entropy
resembles the behavior of the classical entropy of an ideal gas which
increases logarithmically with volume. The dashed line shows the
average value of Sx over 300 samples of RaSEE, as described in
Sec. III E, with a value of 9.39 bits.

The energy entropy SE is also constant during the expan-
sion, but it is not zero. The energy eigenstate occupation
probabilities cannot change during unitary time development
so SE is independent of time. SE is 4.86 bits (rather than zero)
because the initial state is not a Hamiltonian eigenstate, so
there are many energy eigenvalues that could be measured.
SE characterizes the missing information in the probability
distribution of those energy measurements, shown in Fig. 4.

The positional entropy Sx characterizes the missing infor-
mation about position. At t = 0, it is exactly 6 bits because
the probability is uniformly distributed among 64 = 26 sites.
As the expansion progresses it increase to a value between 9
and 10. If the distribution were distributed completely evenly
among the 1024 = 210 sites, Sx would be 10. The initial quan-
tum confinement means that the isolated system is excited and
it has no way of deexciting. If it did, Sx would approach a
value of 10 bits. Nevertheless, it is clear that the increase in
the quantum mechanical measure Sx resembles the increase
in the classical thermodynamic entropy of an ideal gas for
which 
S = log2(Vf /Vi ) bits. Expanding the volume by a
factor of 16 would increase the classical statistical mechanical
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FIG. 4. Probability distribution in energy. For the state shown in
Fig. 2, the probability of finding the system in the kth energy eigen-
state, with scaled energy eigenvalue Ek

s = (Ek − E1)/γ , is shown by
the bar chart for the lowest 50 eigenstates. These probabilities do
not change in time during unitary evolution. The position entropy
Sx shown in Fig. 3 rises in the expansion to a roughly steady-
state level, and this might be described as “thermalization,” but the
probability distribution in energy is clearly not that of a thermal
equilibrium state. The line is a thermal Boltzmann distribution shown
for comparison. The energy entropy SE is the Shannon entropy of this
probability distribution.

entropy by 
S = log2(16) = 4 bits. The dashed line in Fig. 3
is the position entropy of a random superposition of energy
eigenstates, as discussed further in Sec. III E.

We emphasize that despite the increase in position entropy
Sx shown in Fig. 3 the system is evolving in a completely
reversible way. No information about the quantum state is
being lost. Equation (18) can be inverted so we could use
the state |ψ (t )〉 at any time t to reconstruct precisely the
initial state |ψ (0)〉. The constant purity of the state is precisely
reflected in the unchanging value of the von Neumann entropy
SvN . What is changing is the amount of missing information
in the quantum state about position, and precisely that is
quantified by Sx.

The Hamiltonian for the system given by (17) has eigen-
values Ek . It is helpful to scale energies relative to the ground
state in units of γ :

Es = (E − E1)/γ . (20)

The scaled energy eigenvalues for the particular Hamiltonian
(i.e., random interconnections) shown in Figs. 1–3 extend
from E1

s = 0 to E1024
s = 26.9. The expectation value of the

scaled energy is 〈Es〉 = 5.12, and is independent of time. This
energy reflects the kinetic energy of confining the system into
the initial Ninit = 64 states.

One might describe the apparent saturation of Sx(t ) as
the system “thermalization,” but it is important to note that
it is not in a thermal equilibrium state. Figure 4 shows the
probability distribution for the 50 lowest eigenenergies. The
line is a thermal Boltzmann distribution. Obviously the state is
far from being thermal in energy. Because the time evolution
is unitary, this probability distribution is constant in time.
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FIG. 5. Entropies during free expansion for different random
connectivities. The evolutions of entropies Sx (t ) and SE (t ) are shown
for free expansion from an initial state with uniform occupancy over
64 sites, as in Fig. 3, but with random local interconnections that
differ in detail. Results from ten different random configurations are
shown, each similar to that illustrated in Fig. 1. The Hamiltonian
is given by (17) and the time evolution is unitary. The total system
size is N = 1024. The von Neumann entropy is always zero. The
energy entropy SE is constant in time but assumes different values
for different connectivity configurations. The eigenvalue spectrum
for each case is distinct. The position entropy Sx rises from 6 bits to
more than 9 bits. Once near the saturation value, differences between
different configurations are comparable in magnitude to the quantum
oscillations for each case. The dashed line shows the average value
of Sx over 300 samples of RaSEE, as described in Sec. III E, with a
value of 9.39 bits.

C. Differing random configurations

The specific configuration of the random local connectivi-
ties of the Hamiltonian (17) affects the details of Sx(t ), but not
the overall shape of the saturation to a typical value. Figure 5
shows Sx(t ) and SE (t ) for ten different random configurations,
chosen in the same way as described above, with the initial
state localized uniformly across the 64 sites nearest to the
origin [hence Sx(0) = 6]. Because of the differences in (17),
the scaled energy expectation values 〈Es〉 vary between 3.38
and 5.88 across this set of configurations. The energy operator
entropy SE varies similarly between 4.28 and 5.46 bits and
is, of course, constant in time. The position entropy Sx in
each case increases and saturates around the same values,
despite the difference in the configurations. The variations in
time due to quantum interference fluctuations are of the same
magnitude as the differences between different configurations.
The dashed line in Fig. 5 shows the position entropy for the
average value of Sx over 300 RaSEE for the first of the ten
Hamiltonians, Sx = 9.39 bits. The exact value so obtained
varies slightly with the specifics of each configuration because
the eigenvalue spectrum of each is different in detail. But
again, the variation across configurations is comparable in
magnitude to that of the quantum fluctuations in time.

D. Differing initial confinements

Figure 6 shows the position entropy Sx(t ) under unitary
time evolution for different initial states. The Hamiltonian
(and random interconnectivity) is identical to that which
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FIG. 6. The position entropy Sx during free expansion for var-
ious initial confinements. The initial wave function was uniformly
distributed over the Ninit sites closest to the origin. Figure 2(a) shows
the initial state for Ninit = 64. Here we see the results for Ninit =
4, 8, 16, 32, 64, and 128, corresponding to Sx (0) = 2, 3, 4, 5, 6, and
7 bits (different curves can be identified by the value at t = 0). For
each of these cases the connectivity configuration, and therefore
the Hamiltonian, was the same as that for Figs. 2–4. The dashed
line shows the average value of Sx over 300 samples of RaSEE, as
described in Sec. III E, with a value of 9.39 bits.

produced the time development shown in Figs. 2 and 3.
The initial states are in each case chosen to be a uniform
distribution of the Ninit sites nearest the origin where

Ninit = 4, 8, 16, 32, 64, 128. (21)

The corresponding values of Sx(0) are 2, 3, 4, 5, 6, and 7 bits.
In contrast to the situation of Fig. 5, the Hamiltonian here
is exactly the same for all cases; only the initial condition
is varied. The tightly confined states have a higher energy
expectation value. For these initial states with Ninit from 4 to
128 we have

〈Es〉 = 18.2, 16.4, 14.2, 8.9, 5.11, 4.52. (22)

The behavior of Sx(t ) is basically the same in each case,
increasing to a value of about 9.4 bits, with persistent quantum
oscillations, as the probability expands to fill the available
state space. It is notable that the systems saturate to roughly
the same value, though the energy expectation values are very
different.

The dashed line in Fig. 6 shows the RaSEE position
entropy, averaged over 300 random superpositions of energy
eigenstates, with a resulting value of 9.39 ± 0.02. For the
ensemble of random superpositions, the expectation values
of the energy are high compared with (22), averaging 〈Es〉 =
18.7 ± 0.2. Nevertheless the RaSEE value is remarkably con-
sistent with the saturation value of Sx regardless of the initial
confinement.

E. RaSEE

We have seen in our model system that for different initial
confinements and for different random connectivities unitary
time evolution (18) drives the the position entropy Sx(t )
toward the same average value, about 9.39 bits, though with
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FIG. 7. Properties of RaSEE. A RaSEE state is constructed by
taking a randomly weighted sum of the first Ne � N Hamiltonian
eigenstates with random phases as defined by Eq. (23). We calculate
900 sample RaSEE states. (a) The values of Sx for the RaSEE states.
The average value of Sx for RaSEE states is 9.39 ± 0.02 bits. This
value matches the approximate saturation value of Sx (t ) obtained by
unitary time evolution as shown by dashed lines in Figs. 3, 5, and 6.
(b) The expectation values of position in the unit interval. Here 〈x〉 =
0.5 corresponds to the center of the square shown in Figs. 1(a) and 2.
(c) The scaled expectation value of the energy 〈Es〉 = (〈E〉 − E1)/γ ,
where E1 is the ground state. For each quantity we show 300 samples
each for the cases when Ne is 256, 512, and 1024 (the full spectrum).
Increasing Ne results in an upward shift in the energy expectation
values, a smaller variance in 〈x〉, and no apparent change in Sx .

small and persistent quantum oscillations. How could this
value be predicted prior to solving the detailed dynamics of
(18)?

For a given N-dimensional Hamiltonian H with eigenval-
ues Ek and eigenstates |Ek〉, we can construct a RaSEE. This
involves choosing points randomly and uniformly distributed
on the surface of the unit sphere in a Hilbert space of Ne

dimensions (Ne � N). To do this we use the method of
Marsaglia [16]. We first construct a vector w of length Ne

the components wk of which are random normal deviates with
unit variance. The vector is then normalized to unit length,
w′ = w/‖w‖, and random phase factors φk are chosen from a
uniform distribution over the interval [0, 2π ]. We construct
a RaSEE state as a weighted sum of the lowest Ne energy
eigenvectors:

|ψRaSEE〉 =
Ne∑

k

|w′
k|eiφk |Ek〉. (23)

Figure 7 shows the values of Sx, the expectation value of
position, and the expectation value of the scaled energy for
900 RaSEE states created using (23). We use the same Hamil-
tonian (with the same connectivity) as that used to calculate
the results of Figs. 3 and 6. The figure shows the results of
limiting the summation in (23) to the lowest Ne= 256, 512,
or 1024 energy eigenstates, the latter being the full spectrum.
The mean value of Sx for all the samples is 9.39 ± 0.02 bits.
Neither the mean value of Sx nor the variance is affected by
changing Ne. The mean value of 〈x〉 is 1/2 (centered in the
unit square), and as Ne is raised the variance decreases. The
mean value of 〈Es〉 over the RaSEE samples does increase as
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FIG. 8. Unitary time evolution of RaSEE states. RaSEE states
are not stationary states, but exhibit small quantum oscillations
around mean values. This suggests RaSEE states tend to stay in the
RaSEE subspace. Here ten RaSEE states are used an initial states
and evolve under (18). Panel (a) shows the position entropy Sx (t ),
and (b) and (c) show the expectation values for x and y.

larger swaths of the energy spectrum are sampled: 〈Es〉=13.2
for Ne=256, 15.3 for Ne=512, and 18.7 for Ne=1024.

The RaSEE states are not, of course, stationary states.
Figure 8 shows how Sx and position expectation values vary
in time under unitary evolution for ten different RaSEE initial
states. Position expectation values 〈x〉 and 〈y〉 fluctuate but
stay close to the mean of 1/2. The Sx values also vary in
time but remain close to the mean value of 9.39 bits. If the
system size is doubled to N = 2048 (not shown), the mean
RaSEE value of Sx becomes 10.39 ± 0.01 bits—one more bit
of missing position information and an even tighter variance.

What we see in Figs. 5 and 6 is that initially localized
states, regardless of how localized they are, expand and Sx(t )
increases and saturates around a “typical” value of 9.39 bits.
This value comes from the detailed unitary dynamics for
different initial states, but is independent of the details. In
fact, we can get a very good estimate of the saturation value
of Sx, without having to solve the full dynamics, by simply
picking a single RaSEE state using (23) and calculating the
corresponding Sx. If we construct a population of such states
we get an even better estimate of the Sx saturation value.
Even if the disorder is varied, so that the energy eigenvalues
and eigenstates are slightly different, as in Fig. 5, we see the
saturation value is well approximated by the RaSEE result for
any one of the configurations.

The vast majority of RaSEE states have “typical” values
of Sx, the same values to which unitary dynamics drives the
system regardless of its initial confinement, as in Fig. 6. But
RaSEE states are not typical in terms of energy expectation
values. For Ne=1024 (full spectrum) energy expectation val-
ues for RaSEE states are significantly higher than all but the
most confined states.

One might expect that the same typical value of Sx could
be obtained by any unbiased sampling of the surface of

the unit sphere in the N-dimensional Hilbert space of the
problem, using the eigenstates of any observable. They are
connected by a unitary transformation, so all would seem
to be equivalent. That would be true if we were calculating
the expectation value of an observable, which cannot depend
on the basis used. But the operator entropy (5) is not an
expectation value and is in fact a very nonlinear function of
the state. If we construct, for example, a random superposition
of position eigenstates rather than energy eigenstates, we get
a typical value of Sx= 8.95 bits, which does not match the
temporal saturation value. The fact that the saturation value
of Sx(t ) is accurately generated by sampling the RaSEE states
is presumably related to the special role of energy in the time
propagation of (18).

IV. SECOND LAW OF THERMODYNAMICS

The increase in entropy associated with the free expansion
of the system we have seen in Figs. 3 and 5 suggests a con-
nection to the second law of thermodynamics. We should note
that the von Neumann entropy is constant in these cases. Also,
many limit entropy as a thermodynamic concept to systems
in thermal equilibrium with the environment. This is not the
case here (though see Sec. V)—any of the quantum operator
entropies are simply properties of a quantum state determined
by (5) or (10) and vary in time as the state varies in time.
Each entropy characterizes a quantum state at a particular time
(how much information of a particular kind is missing), but an
entropy is not an expectation value of an observable.

As Lesovik has pointed out [17], the microscopic origin of
the increase of entropy can be attributed to the dynamics of the
Schrödinger equation itself. The spreading of the wave packet,
of which the current model is an elaboration, is a feature of the
basic structure of the Hamiltonian and the time development
operator.

One then has to deal with the apparent paradox of the
time reversibility of (18) in light of the second law. It is
helpful to illustrate this in the current model with its attendant
complexity. Let us start with a confined (localized) state with
uniform probability over the 64 sites closest to the origin, such
as is shown in Fig. 2(a), and which we will denote |ψLoc〉.
Now define a state |ψ0〉 constructed by using the time-reversed
version of (18), moving backward in time 10τ with our model
Hamiltonian:

|ψ0〉 = e+iĤ (10τ )/h̄|ψLoc〉. (24)

We now use this state as an initial state, |ψ (0)〉 = |ψ0〉, and
solve (18) forward in time. The resultant Sx(t ) is shown in
Fig. 9. We do indeed see second law violating behavior for
Sx(t ) inasmuch as there is an abrupt drop in the entropy
from its steady-state value to a value of 6 bits as the precise
combination of magnitudes, phases, and interference recon-
structs the localized state at t = 10τ . Moreover, the quantum
fluctuations prior to and after that point cause Sx to move both
up and down around the typical level of 9.39 bits (which is
a feature of almost any RaSEE state). So the change in the
position entropy moment by moment is not monotonically
non-negative even away from the sudden recovery of local-
ization.
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FIG. 9. Tuning the initial state to achieve momentary localiza-
tion. We construct a state |ψ0〉 from the time-reversed evolution
of the confined state shown in Fig. 2(a) and use it as an initial
state for subsequent forward time propagation. Because of the time
symmetry of unitary evolution, there is a spontaneous reduction of
the position entropy from the typical Sx=9.29 bits to Sx = 6 bits
as the complex interference results in localization at t = 10τ . The
dashed line shows the position entropy for RaSEE states. If the
initial state is not so carefully prepared, but is |ψ (0)〉 ∝ |ψ0〉 +√

δ|ψRaSEE〉, the entropy reduction is not as great. The inset shows
Sx evaluated at the localization time 10τ as a function of δ. As δ

becomes larger, the position entropy increases to the steady-state
value and the localization event is destroyed. Small values of δ do
not suppress the localization completely, indicating that the initial
state need not be exquisitely tuned to see the momentary violation of
the second law of thermodynamics.

If one could control all the phases and amplitudes that
define the quantum state, nothing in the physical law prevents
one from constructing a state like |ψ0〉 that behaves in this
second law violating way. Indeed, for a small number of
bits Lesovik and coworkers have done just that on the IBM
quantum computer [18]. The time symmetry is broken, not
by (18) or by a cosmological condition, but by the difficulty
of constructing, artificially or naturally, an initial state suffi-
ciently well tuned in phases and magnitudes to produce even
the brief and fleeting reduction in entropy we see here. This
point was made by Lesovik in [17] and is underscored by the
present model behavior.

One might suspect that the complex interference that re-
sults in the reduction of Sx from about 9.39 to 6 is fragile, in
the sense that any small perturbation of the initial state |ψ0〉
would destroy it. To test the resilience of the drop in entropy,
we alter the initial state |ψ0〉 by adding to it a fraction of a
RaSEE state and renormalizing:

|ψ (0)〉 = |ψ0〉 + √
δ|ψRaSEE〉

‖|ψ0〉 + √
δ|ψRaSEE〉‖ . (25)

Here the real scalar δ ∈ [0, 1] determines the amount of of
the RaSEE state in the initial state. The inset of Fig. 9 shows
Sx(10τ ), the value of the position entropy at the moment of
localization recovery, as a function of δ. For small values of
δ, Sx at this minimum increases linearly, recovering to the
steady-state (and RaSEE) value of 9.39 bits by about δ = 0.3.
Different disordered connectivities produce essentially identi-
cal results. Thus, achieving the sudden moment of localization

does not in fact require an exquisite tuning of the initial state.
Getting the initial state slightly wrong will not wipe out the
later localization, just diminish it.

Nevertheless, it is worth observing that the momentary
localization of the state is very brief, lasting only about τ .
Thus in the long history of this carefully prepared system,
there is a fleeting blip in time when it spontaneously localizes
for a moment. That moment, if achieved, will almost certainly
not be repeated in many lifetimes of the universe.

V. THERMAL GROUND STATE

We have considered the time evolution of a pure quantum
state during free expansion. We now briefly describe the
application of quantum operator entropies to a state in thermal
equilibrium with a reservoir at temperature T . In that case,
the system degrees of freedom interact with the reservoir
degrees of freedom so that energy flows between system and
reservoir and their quantum states become entangled. The best
local quantum description one can give for the system is then
a reduced density matrix (7) where the unknown reservoir
degrees of freedom have been traced out. As Jaynes showed,
the optimal reduced density matrix in this case is the one
which maximizes the von Neumann entropy over variations
of each element of the density matrix [3]. This is the right
entropy to maximize because the effect of the reservoir is
precisely to mix system states through entanglement with the
reservoir and it is this mixedness that is quantified by the
von Neumann entropy. The result of the maximum entropy
procedure is the canonical expression for the density operator:

ρ̂ = e−Ĥ/(kBT )

Tr[e−Ĥ/(kBT )]
. (26)

The density matrix is diagonal in the basis of Hamiltonian
eigenstates for the system. The von Neumann entropy is the
Shannon entropy of the diagonal elements of ρ, and is there-
fore equal to the energy entropy, SE = SvN . The off-diagonal
elements of the density operator in the position basis do not
vanish, and the position entropy Sx remains as a measure of
the missing information about position for the state defined
by (26).

Figure 10 shows the position entropy, von Neumann en-
tropy, and the expectation value of the scaled energy 〈Es〉
as a function of temperature for the model system described
by Figs. 1, 2, and 3. In the low temperature limit SvN −→ 0
and 〈Es〉 −→ 0 as the system cools to the ground state. The
position entropy of the ground state is in this case Sx =
9.8 bits (notably larger than the RaSEE value). In the high
temperature limit both Sx and SvN go to 10 bits, the completely
delocalized state over 1024 sites.

VI. DISCUSSION

The topologically disordered model described here is of
more general applicability than it might at first seem. It is clear
that the actual positions of the sites rk , the eigenvalues of the
position operator, play a limited role in the Hamiltonian (17).
These positions yield a simple algorithm for determining the
connectivity between the basis states—random choices from
among the 50 nearest neighbors—and a way of visualizing the
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FIG. 10. Operator entropies and energy expectation values in
thermal equilibrium. The position entropy Sx , the von Neumann
entropy SvN , and the scaled energy expectation value 〈E〉 (right
axis) are computed from the equilibrium density matrix (26) at
temperature T . In the low temperature limit only the ground state is
occupied and SvN → 0, while Sx → 9.8 bits. In the high temperature
limit both entropies saturate at 10 bits, consistent with delocalization
over all 1024 sites.

evolution as in Fig. 2. But what really matters is just the con-
nectivity that is shown in Fig. 1(b) and the coupling strengths.

We could, for example, reinterpret each basis state |rk〉 as
representing a particular many-body nuclear and electronic
configuration for a molecule. For each configuration there is
a set of other accessible configurations that are dynamically
coupled by the Hamiltonian, giving a sense of “nearby states,”
but without a regular pattern. The essential point is that the
increase in Sx(t ) is capturing quantitatively the very familiar
feature of unitary evolution that a localized wave function
tends to spread out into accessible states, however the states
are defined. Nevertheless, in many cases position eigenstates
are especially selected for survival by decoherence through
environmental entanglement [19,20], so it is not a mistake to
focus on them here.

Different operator entropy measures allow us to capture
different aspects of the dynamics. The von Neumann entropy
Sρ captures the mixedness of a state, which is constant under
unitary evolution. We have seen that by contrast the positional
entropy Sx increases in a way consistent with the second law
of thermodynamics, without recourse to a course-graining
procedure. The second law must ultimately be a feature of
physical dynamics. There is no law of nature that says systems
move from less probable states to more probable states. There
is rather just the dynamics of the Schrödinger equation applied
to the relevant state space.
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