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ABSTRACT 
We discuss a novel nano-electronic computing paradigm 
in which cells composed of interacting quantum dots are 
employed in a locally-interconnected architecture. We 
develop a network-theoretic description in terms of 
appropriate local state variables in each cell. 

1. INTRODUCTION 
Since its inception a few decades ago, silicon ULSI 

technology has seen an exponential improvement in vir- 
tually any figure of merit, as described by Moore’s Law. 
However, there are indications now that this progress 
will slow, or even come to a still-stand, as fundamental 
limits are being reached. This slow-down of silicon 
technoIogy may provide an opportunity for alternative 
devices. In this paper, we will describe some ideas of the 
Notre Dame NanoDevices Group on a possible nano- 
electronic computing technology based on cells of cou- 
pled quantum dots, which we call Quantum-Dot 
Cellular Automata [I]. 

The miniaturization of semiconductor devices has 
resulted in structures which exhibit novel physical 
effects due to the emerging quantum mechanical nature 
of the electrons. In a subsequent chapter, we will briefly 
outline the fabrication techniques which are utilized to 
create such quantum dots [2]. We will then discuss how 
these dots may be arranged in cells with interesting 
computational properties. 

The arrangement of quantum-dot cells in locally- 
connected arrays is similar to the architecture used in 
Cellular Nonlinear Networks (CNNs) [3}. We will show 
that the quantum mechanical equations of motion for the 
quantum-dot cells may be cast in a form which explic- 
itly shows the connection to CNN dynamics. 

2. LOW-DIMENSIONAL SEMICONDUCTOR 
STRUCTURES 

Advanced semiconductor growth techniques, such 
as molecular beam epitaxy (MBE), allow the fabrication 
of semiconductor sandwich structures with interfaces of 
virtually atomic precision [4]. This control in the growth 
direction allows the realization of artificial crystals with 
desired electronic and optical properties. A schematic 
picture of such a sandwich structure is shown in Fig. 
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l(a). The various layers can be made to posses different 
properties by choosing appropriate material combina- 
tions during growth. In particular, it is possible to fabri- 
cate layer structures with an effective confining 
potential for the electrons. This technique is referred to 
as bandgap engineering and has been used extensively 
to taylor device structures. The layers can be grown so 
thin that quantum mechanical confinement effect 
become important. This may lead to the formation of a 
quasi two-dimensional electronic gas (2DEG) in the 
quantum well layer. 
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Figure 1: Schematic of semiconductor heterostructures; 
(a) quantum well, (b) quantum wire, and (c) quantum dot. 
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Starting from such a 2DEG, control in the lateral 
directions can be achieved by conventional patterning 
techniques, such as optical or electron-beam lithogra- 
phy. Subsequent processing steps, such as etching, can 
then selectively remove material to define line- or dot- 
patterns, as schematically shown in Figs. l(b) and l(c). 
This processing further confines the 2DEG into quasi 
one-dimensional systems (so-called quantum wires) or 
even quasi zero-dimensional systems (so-called quan- 
tum dots). 

A different approach of further confining a 2DEG is 
to use electrostatic confinement. As schematically 
shown in Fig. 2, one may use lateral patteming tech- 
niques to structure a metallic layer on top of the MBE- 
grown structure. Applying a negative bias to the gates 
will deplete the 2DEG underneath the metallic elec- 
trodes. In this fashion, one may create quantum wires by 
using two gates as schematically shown. Using this so- 
called split-gate design, quantum dots may be realized 
in a similar fashion by appropriately-shaped electrodes. 
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Figure 2: Schematic diagram of split-gate technology using 
metallic electrodes for the lateral patteming of a 2DEG. 

3. QUANTUM-DOT CELLULAR AUTOMATA 
Based upon the emerging technology of quantum- 

dot fabrication, the Notre Dame group has proposed a 
scheme for computing with cells of coupled dots [I], 
which will be described below. The coupling between 
the cells is given by their physical interaction, and not 
by wires. The mechanisms available for the interactions 
between nanoelectronic structures are the Coulomb 
interaction and quantum-mechanical tunneling. To our 
knowledge, this is the first concrete proposal to utilize 
quantum dots for computing. 

3.1 A Quantum-Dot Cell: 
The Notre Dame proposal is based on a cell which 

contains five quantum dots, as schematically shown in 
Fig. 3. The dots are shown as the circles which represent 
the confining electronic potential. In the ideal case, this 
cell is occupied by two electrons, which are schemati- 
cally shown as the solid dots. The electrons are allowed 
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Figure 3: Schematic diagram of cells (squares) composed 
of quantum dots (circles). Each cell is occupied by two 
electrons (solid dots). There are two ground-state configu- 
rations, corresponding to “polarizations” of +1 and -1. 

to “jump” between the individual dots in a cell by the 
mechanism of quantum mechanical tunneling. Tunnel- 
ing is possible on the nano-meter scale when there is 
sufficient leaking of the electronic wavefunction out of 
the confining potential of each dot, and the rate of these 
jumps may be controlled during fabrication by the phys- 
ical separation between neighboring dots. 

This quantum-dot cell represents an interesting 
dynamical system. The two electrons experience their 
mutual Coulombic repulsion, yet they are constrained to 
occupy the dots. If left alone, they will seek the configu- 
ration corresponding to the physical ground state of the 
cell. It is easy to see that the ground state of the system 
will be an equal superposition of the two basic configu- 
rations with electrons at opposite corners, as shown in 
Fig. 3. We may associate a “polarization” of P=+l and 
P=-1 with either arrangement. 

3.2 Cell-Cell Coupling 
The properties of an isolated cell were discussed 

above. Here, we study the interactions between two 
cells. The electrons are allowed to tunnel between the 
dots in the same cell, but not between different cells. 
Coupling between the two cells is provided by the Cou- 
lomb interaction between the electrons in different cells. 

Figure 4 shows how one cell is influenced by the 
state of its neighbor. The inset shows two cells where 
the polarization of cell 1 (P,) is determined by the polar- 
ization of its neighbor (P2). The polarization of cell 2 is 
presumed to be fixed at a given value, corresponding to 
a certain arrangement of charges in cell 2, and this 
charge distribution exerts its influence on cell 1, thus 
determining its polarization PI. The figure shows that 
cell 1 is almost completely polarized even though cell 2 
might only be partially polarized. The abruptness of the 
cell-cell response function depends upon the ratio of the 
strength of the tunneling energy to the Coulomb energy 
for electrons on neighboring sites [51. 
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Figure 4: Cell-cell interaction. Note the highly nonlinear 
nature of the coupling, which represents gain. 

This bistable saturation is the basis for the applica- 
tion of such quantum-dot cells for computing structures. 
The nonlinear saturation replaces the gain in conven- 
tional circuits. Note that no power dissipation is 
required in this case. One can think of the saturation lev- 
els of the polarization as the “signal rails.” 

These general conclusions regarding cell behavior 
and cell-cell coupling are not specific to the five-dot cell 
discussed so far. Similar behavior is also found for alter- 
nate cell designs, such as with four dots in the corners as 
opposed to the five discussed so far [ 5 ] .  

3.3 QCA Logic 
Based upon the bistable behavior of the cell-cell 

coupling, the cell polarization can be used to encode 
binary information. The physical interactions between 
cells may be used to realize elementary Boolean logic 
functions [6].  

Figure 5 shows examples of simple cell arrays. In 
each case, the polarization of the cell at the edge of the 
array is kept fixed; this is the so-called driver cell and it 
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Figure 5: Examples of simple QCA structures. 
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Figure 6: QCA majority logic structure. 

is plotted with a thick border. We call it the driver since 
it determines the state of the whole array. Each figure 
shows the cell polarizations for the physical ground state 
configuration of the whole array. 

Fig. 5(a) shows that a line of cells allows the propa- 
gation of information, thus realizing a binary wire. Note 
that only information but no electric current flows down 
the line, which results in low power dissipation. Infor- 
mation can also1 flow around corners, as shown in Fig 
5(b), and fan-out is possible, compare Fig. 5(c). A spe- 
cific arrangement of cells, such as the one shown in Fig. 
5(d), may be used to realize an inverter. 

Figure 6 shows a majority logic gate, which just 
consists of an intersection of lines and the “device cell” 
is simply the one in the center. If we view three of the 
neighbors as inputs (kept fixed), then the polarization of 
the output cell is the one which “computes” the majority 
votes of the inputs. Using conventional circuitry, the 
design of a majority logic gate would be significantly 
more complicated. The new physics of quantum 
mechanics gives rise to new functionality, which allows 
a very compact realization of majority logic. 

Note that conventional AND and OR gates are hid- 
den in the majority logic gate. Inspection of the major- 
ity-logic truth table reveals, that if input A is kept fixed 
at 0, the remaining two inputs B and C realize an AND 
gate. Conversely, if A is held at 1, B and C realize a 
binary OR gate. In other words, majority logic gates 
may be viewed as programmable AND and OR gates. 

4. QUANTUM-DOT CELLULAR NONLINEAR 
NETWORKS 

We consider here a simple model for the quantum 
states in each cell and show how the quantum dynamics 
can be transformed into a CNN-style description [7]. 

4.1 Quantum Model of Cell Array 

two basis states 
We describe the quantum state in each cell using 

and I + p  which are completely 
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polarized. 

Within this two-state model, the properties of each 
cell are completely specified by the quantum mechani- 
cal amplitudes a and p. In particular, P, the cell polariza- 
tion is given by: 

The Coulomb interaction between adjacent cells 
increases the energy of the configuration if the two cell 
polarizations differ. This can be accounted for by an 
energy shift corresponding to the weighted sum of the 
neighboring polarizations, which we denote by P E. The 
cell dynamics is then given by the Schrodinger equation, 

iR 6/6t 1%- = H I”> 

where H represents the cell Hamiltonian. 

4.2 Formulating CNN-Like Quantum Dynamics 
In order to transform the quantum mechanical 

description of an array into a CNN-style description, we 
perform a transformation from the quantum-mechanical 
state variables to a set of state variables which contains 
the classical cell polarization, P, and a quantum mechan- 
ical phase angle, cp : 

IY>=(a,p) ___) IY>=(P,cp) 

This is accomplished by the following relations: 

a = f W  

p =  @TjE 2 9  
With this, the dynamical equations derived from the 
Schrodinger can be rewritten as equations for the new 
state variables P and cp 

The term H E accounts for the cell-cell interaction and y 
is the tunneling matrix element between dots. 

It can be shown that the resulting dynamics for each 
cell is governed by a Liapounov function V(P, cp) which 
is given by: 

V(P, cp) = 2 ycos cp fm + P F E  

4.3 Cellular Network Model of Quantum-Dot Array 
In case of a two-dimensional array, each cell pos- 

sesses an equivalent CNN-cell model described by the 
differential equations given above, thus this array is a 
special case of cellular nonlinear networks [8]. The 
equivalent circuit describing a cell is composed of two 
linear capacitors, four nonlinear controlled sources and 
eight linear controlled sources representing the interac- 
tions between the cell and its eight neighbors. This net- 
work model simulates the dynamics of the polarization 
and the phase of the coupled cellular array. If the polar- 
ization of the driver cells of an array (plotted with thick 
border on Figures 5 and 6) in equilibrium is changed in 
time, a dynamics of the polarizations and phases of the 
cells is launched in the whole array. This dynamics of 
different arrays has been studied, and a class of spatio- 
temporal wave-phenomena [9] was identified and 
explored. 

In the framework of the CNN model, ground-state 
computing by the Quantum Cellular Array corresponds 
to transients between equilibrium states. Let us assume 
that in an equilibrium state the configuration of the array 
is a binary string s. If at t=O the polarization of a few 
driver cells is abruptly changed from -1 to +1 or from +1 
to -1, then a transient emerges. If we wait till the a new 
equilibrium is reached, we get a new configuration f(s) 
of the binary cells. We can say that the array “mapped” s 
to f(s). In this sense the cellular network model simu- 
lates the functions of the quantum-dot cellular automata, 
including the QCA Logic described in 3.3. 
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