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Effect of Stray Charge on Quantum Cellular Automata
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We study the operation of quantum cellular automata (QCA) devices in the presence of stray charge. The
operation of linear arrays of QCA cells, called binary wires, relies on Coulombic interaction between the cells,
which is affected by the presence of such stray charge. The position of the charge determines whether or not
the devices function properly, and it is possible to determine the “forbidden” region near the array in which the
presence of stray charge causes device failure. We calculate this forbidden region by directly diagonalizing the
Hamiltonian for the system including the stray charge. We find that the QCA binary wire is unaffected by stray
charge at a distance greater than the intercellular repeat distance of the wire.
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1. Introduction

We have proposed a new computer architecture
called quantum cellular automata (QCA), in which two-
electron quantum dot molecules serve as the cells of a cel-
lular automata array.’™® A schematic of such a molecule,
or cell, is shown in Fig. 1(a). The two electrons are al-
lowed to tunnel between the five sites, but the interdot
barriers are high enough that each electron is largely lo-
calized on a single quantum dot. The Hamiltonian used
to describe this model cell is
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The Coulombic interaction between the two electrons
within a cell causes them to align in one of the two an-
tipodal states shown schematically in Fig. 1(b). Interac-
tions between nearby cells cause the state of the cell to
switch between these two states in a very nonlinear man-
ner. We call such behavior bistable saturation, since a
very slight polarization of one cell can induce full polar-
ization in neighboring cells. This behavior is analogous
to gain in conventional digital devices, and allows the
array to overcome local decreases in polarization.

Figure 2 shows two lines of such cells, each being driven
by a cell of different polarization from the left end. It is
important to note that Fig. 2 is not schematic; it shows
the actual result of a calculation of the ground state of
the system. The radius of each dot is proportional to the
charge density located at that site. In Fig. 2(a), a line
of cells, or “binary wire”, is being driven from the left
by a cell of polarization 0.8. This driver cell is almost
completely polarized, and it drives the line so that the
state of the cell on the right matches that of the driver
cell. Thus the information contained in the state of the
driver cell is transmitted to the other end of the binary
wire. In Fig. 2(b), the wire is being driven by a very
weakly polarized cell with P = 0.02. Even though this
cell is weakly polarized, the bistable saturation behavior
of the cells composing the line causes them to rapidly
return to their fully polarized state. Thus, it is possible
to recover from a local decrease in the polarization while

transmitting information down a binary wire.

2. Effects of Stray Charge

Clearly, Coulombic interaction between cells of a bi-
nary wire is critical to the correct transmission of infor-
mation. The presence of stray charges due to fabrication
imperfections can cause such binary wires to fail, but
total elimination of such charges may be difficult. We
calculate the ground state of the electrons in a binary
wire in the presence of a stray charge and determine in
what situations the charge will cause the device to fail
and in what situations the device will operate correctly
despite the stray charge.

Figure 3 shows the result of many such calculations
of the operation of a binary wire in the presence of a
stray charge. The position of the stray charge is varied,
and its sign and magnitude are identical to those of an
electron. Due to the bistable saturation behavior of the
cells composing the binary wire, the output of the wire
is never indeterminate; it is always completely polarized
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Fig. 1. A model QCA cell. (a) A schematic of the model cell.
Two electrons tunnel between the five sites of each cell. (b)
The two polarization states. The Coulombic interaction between
electrons causes the cell to align in one of the two states shown,
indicated by P = +1 and P = —1.
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Fig. 2. Binary wires. (a) The information in the fixed driver cell
(with the darker border) is transmitted to the other end of the
wire. (b) Bistable saturation allows the weakly polarized cell to
drive the wire to full polarization.

(a) p=08

4373



4374

Jpn. J. Appl. Phys. Vol. 34 (1995) Pt. 1, No. 8B

™

d*—]{—d
Y
A / —

Wire functions
despite stray
charge.

Stray charge
destroys wire.

Fig. 3. Effect of stray charge on a single binary wire. An electron
in the forbidden white region surrounding the wire will cause
the system to fail, but the system will operate correctly in the
presence of an electron in the shaded region. While the cells
are schematic, the shape of the transition is the result of many
actual binary wire simulations.

in one of the two directions. Depending on its agreement
or disagreement with the driver cell, the wire can be said
to have completely worked or completely failed.

The border between these two outcomes is very sharp;
moving the stray charge by less than a nanometer can
cause the outcome to change. Thus, the area around
the device can be divided into two parts: the region
in which the stray charge causes the device to fail (the
“forbidden” region) and that in which the device works
properly despite the stray charge (the “allowed” region).
Determination of the border between these two regions
requires many simulations of the binary wire with the
stray charge located at various positions. For each po-
sition, we consider both driver inputs, polarizations +1
and —1, and check for failure of the wire to transmit this
input.

Because of the Coulombic nature of the interaction be-
tween the binary wire and the stray charge, the strength
of the interaction depends on the distance from the wire
to the stray charge. When the charge is very close to the
wire, its effect is great, and it always causes the wire to
fail. As the stray charge is moved away from the wire,
the Coulombic interaction decreases until the effect of
the stray charge on the wire is completely negligible. In
between these two extremes is the transition point at
which the stray charge is far enough away from the wire
that it just barely operates correctly. There is a single
such transition distance from the wire for any given hori-
zontal position along the wire. Determination of a series
of these transition points for many horizontal positions
allows us to determine the shape of the border between
the forbidden region and the allowed region.

We determine each transition point by successively re-
fining an upper and a lower bound within which the
border point is contained. The upper point is always
in the allowed region, while the lower point is kept in
the forbidden region. The point midway between the
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Fig. 4. Effect of stray charge on a double binary wire. The for-
bidden region on each side of the wire is smaller for this more
reliable device, but the area required for the second wire actually
increases the size of the forbidden region.

two is simulated, and replaces either the upper or lower
point depending on whether the binary wire succeeded
or failed. Thus, the uncertainty in the position of the
transition point is halved with each new simulation. In
theory, this could determine the position of the transi-
tion to any precision, but we perform the calculation to
a tolerance of approximately one-tenth of a nanometer.
Each simulation involves finding the ground state of the
system by directly diagonalizing the Hamiltonian for the
entire wire in the presence of the stray charge.

Repetition of this calculation for a series of horizontal
positions gives a series of transition points and traces
out the two-dimensional region in which a stray charge
will cause the wire to fail. Since the simulated wire is
sufficiently long that edge effects are negligible near the
middle of the wire, the environment of a given cell is
almost identical to that of its neighbors. Therefore, the
pattern of the border between the two regions repeats
itself with each cell. It is only necessary, therefore, to
perform the calculation throughout a unit cell near the
middle of the array.

For this reason, the cells in Fig. 3 are shown schemati-
cally to indicate that the periodic nature of the border is
due to the fact that the simulated wire is considered to
continue infinitely in both directions. It is important to
note that although the cells in Fig. 3 are schematic, the
shape of the border is the result of the actual calculation
described above. The cells are drawn to scale with the
forbidden region, which is approximately as wide as the
intercellular spacing. The inward curve of the forbidden
region near the center of each cell is due to the symmetry
of the cells composing the wire; the effect of stray charge
is less when it is near the horizontal center of a cell, so
the allowed region is closer to the wire at those positions.

Figure 4 shows a similar calculation for a “double bi-
nary wire”. In this case, two parallel binary wires are
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placed close enough together that each reinforces the in-
formation carried by the other. Introducing an error in
such a wire requires twice as much energy as introduc-
ing an error in a single binary wire, so such double wires
have higher reliability than single wires. The same pro-
cedure was followed to determine the border between the
allowed region and the forbidden region in this case, and
the results show that the stray charge can come closer
to either side of the double wire than it could come to
the single wire. However, the extra width of the forbid-
den region introduced by the presence of the second wire
more than offsets this gain. We conclude that while dou-
ble wires may be more reliable than single wires, they
provide no extra insurance against errors due to stray
charges. In fact, a double wire produces a slightly larger
area in which a stray charge causes failure of the wire.

3. Conclusions

The effect of stray charge on single and double bi-
nary wires has been studied. We have found that the
transition between the allowed region and the forbid-
den region for stray charge is very sharp, and it occurs
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approximately one intercellular distance away from the
wire. This distance is slightly less for a double binary
wire, but the improvement is offset by the extra space
required for the second parallel wire.
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