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We examine the dynamic behavior of quantum cellular automata, arrays of artificial quantum-dot
cells that can be used to perform useful computations. The dynamics of the array can be solved
directly, retaining the full many-electron degrees of freedom only for small array sizes. For larger
arrays, we develop several approximate techniques for reducing the size of the basis set required.
We examine the effect of intercellular quantum correlations on the switching response. Several
important examples of switching behavior are solved using the techniques develope®96©
American Institute of Physic§S0021-897@6)04220-X]

I. INTRODUCTION tional architectures as device size decred®es. Edge-
driven computation means that power is only supplied at the
Devices based on quantum mechanical principles hol@édges of the device, so neither power nor information needs
the promise of faster speeds and greatly reduced Sizest  to be supplied to the interior of the QCA array. As device
quantum devices that have been proposed essentially try &izes shrink, the relevant energies increase and higher tem-
reproduce the current switching behavior of conventionaberature operation becomes possible. In principle, QCA
transistors and insert quantum devices into conventiondmplementations could be shrunk to the size of molecules.
transistor-based circuit architectures. For example, one major Needless to say, many questions remain to be worked
difficulty shared by many quantum devices has been drivingut concerning the behavior of ideal arrays as well as the
one device with the output of similar devicé$The input of  many barriers to practical implementation. Most of the work
such a device is typically a voltage which must change byto date has been an investigation of the time-independent
several millivolts, while the change in the output current camature of QCA array$-° Due to the basic device paradigm,
be measured in nanoamperes. The unique features of quathe desired result depends only on the ground state of the
tum devices require the development of new computer archisystem. For this reason, it has been important to first study
tectures matched to their capabilities and limitations. the time-independent behavior of these arrays. We now turn
We have proposed a new type of device combined withpo examining time-independent behavior.
an integrated architecture which we have termed quantum As stated above, the QCA approach is fundamentally
cellular automat#QCA). Experiments are underway to try to concerned with the ground state of the multicell array. The
realize this system in semiconductors. We have explored thghysical ground state is mapped to the logical solution of the
theoretical behavior of QCA arrays in the steady-statgyroblem. The details of the dynamic behavior of the system
regimé® and here extend that analysis to include time-as it is evolving toward its ground state are secondary to the
dependent response. mapping itself. This is one of the strengths of the QCA
Quantum cellular automata are arrays of Coulomb-approach—the details of the evolution of the system, which
COUp|Ed quantum-dot cells. Electrons within each cell haVQnay be hard to ControL are not essential in getung the com-
well-defined states with different associated charge distribupytation right. The dynamics of the system afeing the
tions. The state of each cell is determined by its interactionomputing only in the sense that they move the system to its
with neighboring cells through the Coulomb interaction. ney ground state. The computing is performed by the rela-
Tunneling between cells is assumed to be completely suionship of the ground state to the solution state.
pressed by intercellular barriers. The array is then a many- Why then is an exploration of the dynamics important?
electron system whose overall state is determined by th@ne reasons are twofold. First, it is of interest to try to un-
boundary conditions on edge cells which act as the inpufjerstand the inherent limits on the switching speed of the
channels. The state of the edge cells can be set by electrgayice or array. Second, the dynamics could become critical
static interaction with control electrodes. Computation is af+f he system cannot actually get to its ground state because it
fected because one can design the layout of the cells so thgbcomes stuck in a metastable state. In that case, the map-
the ground state of the many-electron problem correspondsing hetween the ground state and the solution state is irrel-
to the solution state of the computational problem. We haveyant because the system never arrives at the ground state.
shown that simple design rules allow the layout of cellular e actual dynamical evolution of the system is compli-
arrays which can perform significant and general computagateq enormously by its contact with the rest of the world.
tional tasks. _ That the system is in contact with the environment is, of
The QCA scheme has many appealing features. Locglyrse very important because it is by dissipating energy to
connectivity through the Coulomb interaction solves theye enyironment that the system relaxes to its ground state.
well-known interconnection problem which plagues conven-gp, the other hand, describing this relaxation involves mod-
eling the time evolution of a quantum system in contact with
dElectronic mail: lent@callisto.ee.nd.edu a thermal reservoir. This time evolution then depends on the
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specific details of the coupling to the reservoir—for example, 4 1

the precise coupling through specific phonon modes, and the ‘ .

precise occupancy of those modes. We cannot hope to solve

this problem in its entirety. a
What can be done is to describe two limits of the cou-

pling to the environment. One limit is when the elagisn- ‘

energeti¢ evolution of the system takes place on a time scale a)

much longer than the inelastic coupling to the environment.

If the coupling to the environment is very strong and effec-

tive at coupling the system to its ground state, then the sys-

tem dynamics can be described simply by the golden-rule
rate for scattering from its initial statgust after the inputs b)
are switchedl to its final ground state. The inelastic time
P=+1] P=-1

evolution can then be described by rate equations and the

switching times are simply related to these rates. Of course,

the rates themselves may be quite difficult to calculate.

Theseextrinsicswitching times, which depend critically on FIG. 1. Schematic of the basic four-sitg ceh) The g.eom'etry of_ the cell.

: . he tunneling energy between two neighboring sites is designated by
the nature of the coupling to the thermal environment, nee hile a is the near-neighbor distancéa) Coulombic repulsion causes the
to be determined experimentally for specific realizations ofelectrons to occupy antipodal sites within the cell. These two bistable states
QCA’s. result in cell polarizations oP=+1 andP=—1 [see Eq(2)].

The other limit, the one we focus on here, is when the
i_nel_astic coup!ing to the environment_ is slower than the eIasi'ng the intrinsic dynamics of the array, not the interaction
tic tlme_ evolut|on_ of the system. In th|s case we can s_tudy th?/vith a measurement scheme.
dyna.l.mllcs of the |sglated system which can be descrlbgd by a In Sec. Il we develop a dynamical description of an
Schradinger equation. The focus here is on how signalsypray \when intercellular correlation effects can be neglected.
propagate and devices switch when they moedissipating  Thjs s the simplest approach to the dynamics because the
energy to the environment. We refer to the switching t'mesdynamics of the array as a whole can then be partitioned
in this regime agntrinsic switching times because they result jeanly into the dynamics of each cell individually. In fact,
from intercellular dynamics only and not from the coupling correlation effects between cells may be important, so in the
to the environment. Though the problem we are addressing igext section(Sec. V) we develop a treatment of array dy-
now made simpler by assuming the system is isolated, anfamics which treats the entire array as a single quantum
therefore described by Scltiager dynamics, it is neverthe- system. This involves using the full direct product many-cell
less a many-particle system whose behavior is challenging tBasis set. This approach, while “exact” in the sense of solv-
capture. The main results of this article are the developmenhg the model we employ, is impractical for all but very
of successive levels of approximation to model the dynamigmall systems. We require some approximations. In Sec. V,
switching response of isolated QCA systems. the two-state approximation is introduced along with a tech-

Since the ground state behavior of QCA devices deternique for selecting a reduced basis set. The results of several
mines their geometry and the nature of their operation, it igwo-state calculations are shown in Sec. VI. The dynamics of
important to understand the time-independent nature of QCA semi-infinite wire and an energy-absorbing boundary con-
devices before progressing to a study of their dynamic bedition are explained in Sec. VII along with the applications
havior. For this reason, a review of the time-independentf those methods. The scaling of the dynamics with cell size
behavior of these devices is given in the next section to prois illustrated in Sec. VIII by considering the switching re-
vide background for the new material. sponse of a possible macromolecular QCA implementation.

We will not explicitly include the measurement appara-Conclusions and a discussion of the results follow in Sec. IX.
tus in our description of the dynamics. It has been shown
experimentally that the charge state of a dot can be probeldt CELL BASIS STATES AND STEADY-STATE
noninvasively in the classical ser@eBy this we mean that BEHAVIOR
one can construct a sensitive electrometer, using either a bal- A schematic diagram of a single QCA cell is shown in

listic constriction near pinchoff or a larger quantum dot, such|:ig_ 1(a). This figure shows that a cell consists of four quan-
that the charge in the electrometer has a vanishingly smajlim dots arranged in a square pattern. Elsewhere, we have
effect on the energy levels in the dot. Of course, if a meadiscussed QCA cells with a fifth dot at the center of the
surement is made it cannot be noninvasive in the quantunsquare. While such a fifth dot will slightly improve the be-
mechanical sense—a “wave function collapse” will occur. havior of the QCA cells, it greatly increases the numerical
Within the QCA paradigm, however, one only measures theomplexity of the cell model, particularly for calculating dy-
edge cells in the ground state. This would be done over aamic behavior. For this reason, we consider only the four-
long length of time compared to the time-scale of interdotsite cell in this paper. There are two electrons within the cell
guantum fluctuations. Thus, as usual, one measures an exnd tunnel barriers between adjacent sites. Tunneling out of
pectation value. In any case, our concern here is with explorthe cell is assumed to be completely suppressed.
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QCA cells can be scaled down to atomic dimensions. AsThe notation for these basis vectors indicates spin-up elec-
cell size is reduced, the energy splitting between stationargrons in the top row, spin-down electrons in the bottom row,
states increases and the temporal response becomeg#asterand columns are numbered in the same order as sites within
will be seen in Sec. VIL Simple scaling rules can be used to the cell as in Fig. @a). Using this notation, a basis vector
account for these results. To avoid obfuscating actual perfowith a spin-up electron on the first site and a spin-down
mance behind dimensionless parameters, we have chosenet@ctron on the third site would be represented by the basis
focus on a “standard cell” that exhibits robust behavior vector
while remaining within the reach of electron beam nano-

. . 1 0 0O
lithography. We will concentrate largely on such a standard |¢>=‘0 0 1 0>_ (4)

cell here. Undoubtedly, the first experiments will be on

larger cells, while final technological promise rests with These basis states, which are the eigenstates of the num-
smaller cells. ber operator on a particular site within the cell, will be re-

The near-neighbor distance between dots within a “stanferred to as theinderlying basis seWe calculate the Hamil-
dard cell” is 20 nm, while the cell centers will be separatedtonian matrix in this underlying basis set by numerically
by three times this distance. The tunneling energy betweeavaluating each matrix element:
dots is 0.3 meV, and the other physical constants of the

modeled system correspond to those of GaAs. We have else- Hij=(¢iH| ;) ®)
where examined the full parameter space of tunneling eneand finding the eigenvectors of the resulting<ti® matrix.
gies and interdot distancés. The ground state of the celk)), is represented in this

We use a simple Hamiltonian of the extended-Hubbardasis as:
type to describe this cell. Each quantum dot is considered
only as a site, internal degrees of freedom for the dot being |¢O>:z ¢?|¢j>_ (6)
thus ignored. The Hamiltonian employed is given by ]

Here, |¢j> is the jth underlying basis vector angzi? is the

Hce”=2 (EO+Vi)ﬁi,U+_2 tiyj(éifgéjy(ﬁ é}igéi'g) coefficient of that basis vector, which is found by direct di-
b 1>l agonalization of the Hamiltonian.
o Ai o) o If the tunneling between cells is relatively small, the
+§i: Eohi N, + 2 Va m (1) electron number is approximately quantized on each of the
1>],0,0

sites?? Qualitatively, it is clear that the ground state of the

Here we use the usual second-quantized notation wher@€ll will correspond to the two electrons occupying antipodal
éi,a(éra) annihilates(createy an electron on site with spin sites resulting in a “polarized” cell as shown schematically
. Thé number Operator for e|ectrons Of spi-mn Sitei iS in F|g 1(b) If the tunneling energieS become Compal’ab|e to
A, = ai‘r & ». In Eq.(1), the first term represents the on-site the Coulomb energies in the problem, the two-electron wave
energy of each dot. The potential energy of an electron at dd¢nction becomes delocalized and the cell polarization
i due to charges outside the cell, including effects of charge¥anishes? As long as the tunneling matrix elements of the
in other cells, isV;. The second term accounts for electron Hamiltonian are small compared to the Coulombic terms, all

tunneling between sites, with ;=0.3 meV for neighboring cells in the array will be very close to one of these two
sites andt; ;=0 for antipodal sites. The third term is the polarized states. In order to make quantitative this notion of
on-site charging cost to put two electrons of opposite spin ogell polarization we define the cell polarization, which is a
the same dot! and the last term corresponds to the Coulom-Property of the ground state eigenfunctiaf), as follows:
gw(:xlarl]lteractlon between the electrons on different sites within o (p1+p3)— (pat pa) -
' : G . B +pot+pst '

For the steady-state problem this Hamiltonian is used in P1TP2T P3T Pa
the solution of the time-independent Sctimger equation,  Here, p; is the expectation value of the number operator on

~ el sitei for the ground state eigenfunction:

HE i) =Ei| ), 2

_ . - _ pi= (ol i o). ®
wherelys) is the.' eigenstate of the Ham_lltonlan, ik is As shown schematically in Fig.(li), this function yields
the corresponding eigenvalue. These eigenstates are fourlg,d: NI

. . . ) . +1 for one of the fully polarized states ait=—1 for
using the many-particle site-ket basis for four sites and th%he other. Cells in a combination of these two states will
electrons of opposite spins :

have an intermediate polarization betweefh and+1. Due

0 0 0 1 to the bistability of the cell response, it is possible to store a
|¢>1>:0 0 0 1>, single binary bit in the quantum state of each cell. We will
refer to a cell withP=+1 as being in the logical “1” state,
0 0 0 1 and a cell withP=—1 will be in the logical “0” state.
|¢2>:o 0 1 o>’ ' ©) It is illuminating to quantify the effect that the state of
one cell has on that of its neighbors. We consider two neigh-
|1 0 0 O boring cells separated by 60 nm and investigate how the
| b10)= 1 0 0 0O/ polarization of one of the cells affects the polarization of the
4724 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996 P. Douglas Tougaw and C. S. Lent
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FIG. 2. The cell-cell response. The polarization of cell 2 is fixed and its
Coulombic effect on the polarization of cell 1 is measured. The nonlinearity
and bistable saturation of this response serves the same role as gain in a Iﬂp“tQA 1 Device cell

conventional digital circuit. d A—
Input B B— M(A,B,C
S T A }M )

. o N Inputc/(|:| O\t t cell
other. In particular, the polarization of cell 2 is fixed at a T e
series of values ranging from1 to +1 and its Coulombic
effect on the po|arization of cell 1is Computed for each ofF!G. 3. Fundamental QCA devicg®) The binary wire allows transmission

these values. For each value of the cell 2, the driver cell, th8f information from one point to another within the arrdp) The inverter
Uses diagonal antivoting behavior to invert the sigf@l Fanout allows the

ground state of Ce”_ lis CompUte_d b_y direct diagonalizationesyit of a calculation to be propagated to two or more other points within
of Eg. (1), and the induced polarization calculated from thethe array.(d) The majority logic gate is the fundamental logical element of

ground state. The results are shown in Fig. 2, which we refe® QCA array.
to as a cell—cell response function. In this figure, the effect of
one cell on its neighbors is shown to be very nonlinear and
exhibits bistable saturation. Since a very slight polarization  Figure 3a) shows the result of such an ICHA calculation
of cell 2 induces a much larger polarization in cell 1, cell- performed on a linear array of QCA cells. The cell on the left
cell interaction provides the analogue to gain in a conven{with the darker borderis held at a polarization oP=+1,
tional digital circuit, restoring the signal levels at each stageand all the other cells in the array are free to react to this
The simulation of a device or array containing many polarization. As shown by this figure, the ground state of
cells requires an extension of the single-cell approach. Theuch a configuration has the polarization of the other cells
simplest of these extensions is the intercellular Hartree apaligned with the direction of the driver cell. Therefore, such
proximation(ICHA), which has been discussed at length ina “binary wire” can be used to propagate inputs and inter-
Ref. 7 and 8. A brief description of this technique will be mediate results within the array. As previously mentioned,
presented here, but a more thorough presentation can becal fluctuations in polarization due to fabrication irregulari-
found in those references. ties can be overcome by the bistable saturation of cell re-
In this approximation, exchange and correlation effectssponse.
are included exactly within each cell, but are neglected be- It is important to note that, unless stated otherwise, the
tween cells. Cells within the array interact with each other byfigures shown here are not schematic. Figure 3 shows the
affecting the on-site energy term of the Hamiltonian, chang-actual results of solutions of the ground state using the time-
ing V; in Eq. (1). The ground state of a particular cell in the independent Schdinger equation. Cells with darker borders
array (the “target” cell) is calculated under the influence of have fixed polarizations, while cells with lighter borders are
the polarizations of all other cells in the array which arefree to react to that polarization. The radius of the dot at each
momentarily fixed. In turn, each of the other cells is alsosite is proportional to the expectation value of the number
chosen as the target cell, so their polarizations change. Thigperator on that site.
procedure is carried out iteratively and the array relaxes until  Figure 3b) shows an inverter for a QCA signal. Such
no further change in any of the cells is observed. In this wayinversion is made possible because, while cells in a horizon-
the ground state polarization of every cell in the array can beal or vertical arrangement tend to align with each other, cells
calculated using only a local Hamiltonian for each cell. in a diagonal arrangement tend to anti-align. Thus, the in-
It is important to note that, although the intercellular coming signal is split into two parts using vertical align-
Hartree approximation can be used to accurately calculatments, then the two parts are rejoined diagonally. The split-
the ground state of an array of QCA cells, it is not capable oting ensures symmetry between inversioh @ 1 and
determining the dynamic behavior of the array. By its naturejnversion of a 0.
the ICHA is appropriate for ground state calculations, but  As shown in Fig. &), the splitting of a QCA binary
dynamic response requires the inclusion of many-cell excitegvire into two such wires maintains the same signal in each of
states, which are beyond the scope of the approximation. Fdhe two new wires. Such fanout behavior is important, since
this reason, it is necessary to develop other techniques tine result of one intermediate calculation may need to serve
model the time-dependent behavior of many-cell devices. as an input for two or more subsequent calculations.
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Figure 3d) presents the most fundamental of QCA logi- _
cal devices: the majority logic gate. Three inputs, here com- t=0ps E'BD\Z\DEHZ‘DD
ing from the top, left, and bottom, are positioned as neigh-

bors of a device cell. The output leaves the device througha t=10ps \ZHZ\EHZIDIZ‘EH:‘

binary wire connected to the fourth neighbor of the device -

cell. The state of the device cell and the output ¢siown t=20 ps EDBBE\:‘DD
here on the rightmatches that of a majority of the three

inputs. That a single QCA cell serves as a three input major-

ity gate illustrates the potential for revolutionary increases in ~ t=25ps D E’ El I:I E} B El m

functional density within the QCA paradigm. Notice, also,

that by fixing one of the three inputs, the majority gate can _ -
be “reduced” to a two-input AND or OR gate. When com- t=30ps DDD DEDDE
bined with the inverter, logical completeness is thereby as-

e R 8 8 8
IIl. INCOHERENT CELL-CELL DYNAMICS t=40 ps EEEEBDBB

The simplest approach to the time dependence of an ar-
ray of cells is to ignore correlations and coherence betweeh!G. 4. The time-dependent behavior of a QCA binary wire with no quan-
cells and solve separate Sédirmger equations for each cell. tu_m correlations betwee_n cells. The polarization I_(lnk_propagates doyvn the
. wire at a rate of approximately 5 ps per cell, which is slower than in the
In thls_ Hartree-type treatment, one treats ea(_:h_cell as r'fglly coherent system.
sponding to the charge on every other cell. Within the cell,
the time dependence is determined by the full two-body

Hamiltonian. For celk, we can write the Hamiltonian as quantum ensemble. Still, this approach could prove useful

for a quasistatic regime in which each cell responds to

Hﬁe”:% (|50+Vi)ni,rr+i;(r t (8] o8 o8] B ) changes in local potential which occur much more slowly
’ ' o than quantum fluctuatior(sunneling within the cells. As we
+2 EA Ao+ 2 v Ni oNj,or shall see in the follqwing section, t_he uncorrelated approach
~ —QULTHLL e QIR - Rl yields dynamics which are qualitatively correct but underes-
o timate the intrinsic switching speed of an array. The velocity
N 2 Vv Ni ¢Pj o (M) ) of the kink is increased by correlation effects between cells.
ij.o.o mEk R —Ry(m)[’

where each operator acts only on the electrons within the, COHERENT EULL-BASIS CELL DYNAMICS
cell. The electron density due to electrons of spim dot j

of cell m is given by the expectation of the number operator  To treat correlation effects between cells we must model
for that site: the entire cellular array as a single quantum system. Since
_ A there are many particles in the array, this approach has seri-

P1.o(M) = (Um( D[R} (M) 1hm(D)). (10 ous practical limitations. In this section we examine the ap-
For each cell we can then solve the time-dependent Schrproach that would be used if we were unconstrained by the

dinger equation limits of computational power and could solve the system
9 exactly. Key to the “correct” approach is using, as a basis
HE W (1)) =i " |W (1)), (11)  set, the states formed from direct products of individual cell

states.

The set of Schidinger equations given by EqL1) are
coupled only through the intercell potential terike last
term in Eq.(9)]. Results of a calculation based on E¢®— To construct the basis set for an array of cells, one must
(11) for the switching of an isolated line of cells are shown in take the direct product of all combinations of the single-cell
Fig. 4. The first cell is switching abruptly from a polarization basis vectors. In a single cell with four sites and two elec-
of —1 (logical 0 to a polarization of+1 (logical 1) and the ~ trons of opposite spin, there are a total of sixteen underlying
resulting “kink” propagates down the line switching subse- basis vectors. All possible direct product combinations of
quent cell€? If the line is finite, the kink will reflect at the —these sixteen vectors for two cells would yield @56 ba-
end of the line and bounce back and forth until inelasticSis vectors. In general, an array wit, number of cells and
processes which are not included in our treatment relax th&ly humber of basis vectors within each cell will have a total
system to its new switched ground state. number of direct-product basis vectors equal to

Limitations of this approach are clear. This treatment _ Ne
- - P Npasis= Ny~ 12
ignores correlations between electron states in different cells. v
Further, Eq.(10) uses an expectation value as an instanta- An enumeration of these direct product basis vectors for
neous charge, when it is in fact an average quantity over tha system with three cells and sixteen underlying vectors is

A. The direct-product basis
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| 1)=[$1(1) 2(2) $1(3)). o
|B2) =] b1(1) $1(2) $2(3)).

Drivercell -~

Polarization
=
o

|¢’17>:|¢1(1)¢2(2)¢1(3)>,

| P 4008 = P16(1) P16(2) P16(3))- (13 0 5 10 15 20 25
Ti
Here, the subscript number on each direct-product ele- ime (ps)

ment refers to the underlying basis ket index and the numbelg . . . .
. L IG. 5. The dynamic response of a three-cell line using the full direct-
in parentheses 'nd'(_:ates the cell _nu.mber. Because operatQf§qyct basis set. The dotted line represents the polarization of the driver
can now refer to different cells, it is necessary to add artell, and the other three cells in the line are indicated. The polarization
additional parameter to the creation and annihilation operaﬁﬂ(ink" reflectg off the end of the wire because energy dissipation is not
tors to specify which cell is being operated upon. The Hamil-"¢luded in this model.
tonian is also augmented to include intercellular Coulombic
interaction: oW
- A at A
H—,E Eohj (M) + E ti j(aj ,(M)aj ,(m) _ _
,o,m i>j,o.m in the many-cell direct product basid;).
Time marching is achieved by finding the projection of

+a] (m)a; ,(m))+ > Eof (m)fy; | (m) the current state on each of the eigenstates of the many-cell
Lm Hamiltonian. Each of these projections then propagates for-
A (M)A (M) ward in time according to the time-dependent Sdimger

+ RN L R .
> Q [Ri(m)—R;(m)] equation. Formally,

i>j,0,0",m
Ai (M)A 4 (K) Wi(t+At) = (| ¥(t+At))

+ > 0B T B L (14 _
o iem IR =Ry (K] =3 (@luge HES U D)W1),
When the full direct-product Hamiltonian matrix is cal- "
culated in this basis, it is possible to determine the eigen- (19

states of an entire array of cells including all exchange angyhere the luy) are the instantaneous eigenstates of the
correlation effects both within each cell and between cellsHamiltonian
The elements of the Hamiltonian have the form

- H(t)|u) =Elu). (20
Hij=(®i[H[®) 19 \when time marching is performed in this way, the wave
and the eigenstates of this many-cell Hamiltonian can bdunction remains strictly normalized.
found by solving the equation With the available computing power, we are able to
model a binary wire with three cells and a driver in this way.
Z Hijlli}(: Ek\lf!‘. (16) Figure 5 shows the result of such a simulation. The polariza-
i

tion of the driver cell(shown as a dotted lineswitches con-
When this matrix equation is solved, the many_Ce”tinuously from —1 to +1 over a period of 20 ps. As that

ground statéW,) can be written in the direct product basis SWitching occurs, the remaining cells in the line begin to
set react. The first cell is almost completely switched by the time

the polarization kink reaches the end of the short wire. When
this happens, the kink reflects because energy dissipation is
not included in this model. If it were possible to model a

. longer line in this way, one would see each cell in the line
This is the most fundamental and accurate model of the bes'witching to match the new state of the driver cell

havior of QCA devices, but Eq12) indicates that the size of
the_ basis set will rapidly increase to exceed available COMY, THE TWO-STATE APPROXIMATION
puting memory and speed.

|\1fo>=$ Wo|d)). 17

Although the full direct-product basis is the most com-
plete way of modeling QCA devices, it is only possible to

By using Eq.(14) to find the full many-cell Hamiltonian model small systems using this scheme. The combinatorial
in the direct-product basis set, we can model the dynamiexplosion due to Eq.12) severely limits the size of devices
response of a small array of cells without the need for furthethat can be modeled using the full direct-product basis set in
approximations. To this end, we solve the time-dependentis way. For this reason, it is necessary to make reductions
Schralinger equation, in the number of basis vectors used to model larger systems.

B. Full dynamic behavior of a short line
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neighbors target cell neighbors The eigenstates of this Hamiltonian are then calculated:

eReke(ie]lsle ke S e -

P.. P P.. P P P.._ P The polarization of the ground state of the target cell can
driver  Tdriver Tdrver Teell Tdriver Tdriver driver then be found, as in Eq$8) and(9), and the polarization of

the driver cells is set equal to that calculated for the target
FIG. 6. A schematic representation of the technique used to determine thgg||:
two self-consistent basis vectors. During each iteration, the polarization of
the neighbors is set to match that of the target cell. At convergence, the state Pgriver= Pecell - (24)
of the target cell is that of a cell in the center of a long line of identical cells.
The next iteration begins again at E§2). OnceP, stops

_ o changing, we have calculated the state vector of a saturated
The bistable nature of QCA cells suggests that it is posge|| in that polarization direction.

sible to model each cell Using Only two basis vectors. In this Since each cell can be in either of two po'arization di-

section, we present a technique for selecting two optimajections, we perform this iterative calculation for initial
basis vectors and using them to model larger QCA devicesstates of bottP=+1 andP=—1. The magnitude of the two
A. Selection of the two-state basis saturation polarizations will be the same, but their sign will
o ) be different. It is necessary to carry out the calculation twice
When the tme-mdepgndent behawo_r pf large QCA ar-since the two state vectors thus found will be eigenstates of
rays is modeled as described in Sec. II, it is found that eachjterent Hamiltonians. The polarization at convergence will

cell in a line of cells tends to polarize to a particular value Ofdepend on the initial value given to the polarization of the
P with a magnitude that may be slightly less than 1. Thistarget and driver cells:

“saturation polarization”,P,;, is determined by the size of

the cells and the tunneling barriers between dots within the  initial Pgive=1=Pgas X +) (25
cell. The line will polarize to a state with all cellexcept 5

near the endhaving polarizatiort+Pg, or —Pg, depending

on the sign of the driver polarization at the input. Since each  initial Pgriver=— 1= — Pgau | x - ). (26)

cell naturally tends to a state with these polarizations it is The result of this iterative process is the valuégf,and
natural to use them as a basis state for descrlblng_the_z syst_eme two vectorsy. ) and|x_), which we will use to form the

In order to determine the state vector of a cell exhibiting this,, o_dimensional basis for each cell. Each of these is ex-

saturation polarization, we model a cell in the middle of ayesseq as a superposition of the sixteen underlying basis
long line of similar cells of identical polarization using an vectors:

iterative technique. Since the cells in an array tend to exhibit
this polarization, we will use the state thus calculated as the
building block of our two-state basis.

Figure 6 shows a schematic of the system used to deter-
mine the saturation polarization state vectors in this way. pand
target cell is placed in the middle of a linear array of cells
with three neighbors on each side. Since the quadrupole in- |x-)=> x; ;). (28)
teraction of cells decays very rapidly with distance, cells J
more than three intercellular distances away will have very  Although the two converged states have the same polar-
little effect on each other. For this reason, it is not necessarization magnitudes and the same eigenenergy, the state vec-
to include more than three neighbors on each side of théors|y.) and|y_) are eigenvectors of different Hamiltonians
target cell. An iterative process is then carried out to deterand for this reason they are not orthogonal
mine the state of the cell in the middle of the wire. At each 0
step of the iterative process, the neighboring cells are held at  Heell Psadlx+)=E%[x+) (29)

a polarization equal to that of the target cell. The groundgng

state of the target cell is then calculated by solving the two-

electron Schidinger equation. The driver polarizations are  Heel( =~ Psad [ x-)=E° [x-). (30
updated to the match the new value of the target cell and the We must still explicitly orthogonalize them in order to

process 1 repegted until convergence 1S obtained. use them as a convenient basis set. It is also important to
'V"?fe explicitly, the system §tarts. with the target cell ,andmaintain symmetry between the two vectors in order to treat
t_he neighbors completely polarized in one of the two direc,qo o polarization states on the same footingxlf) and
tions: |x_) are the two vectors found by the iterative method de-
P ariver= Pcen= = 1. (21)  scribed above, symmetric orthogonalization requires that
AX;) and|x"), the corrected vectors, satisfy the following
conditions:

IX+>=§ Xi |45 27

The Hamiltonian of the target cell is then calculated as
function of the driver polarizations by adding the effect of

the six driver cells to the Hamiltonian of an isolated cell (X' x-)=0 (3D
HEN(P e = HE(0) + V( Peiver)- (22 and
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OClx )y =l lxs). (32 oo e

AR | SRR
These two criteria are satisfied by the following equations: 10
' = 16 twol? foc o2
Ix4)=Ix+)—aBlx-) (33 g
q a) 3
=]
an 2
IX2)=Ix-)—aB*x+), (34)
where
B={x-|x+) (35
and |<7C'+\|¢’1>\2*'|<7C'-|¢‘1>|2
1+(1—ﬂ2)1/2 10 ,,,,,,, * ....... I ....... ‘
o= —"_"535 . (36) 0.8
B g
. . 5 0.6f
Once these two symmetric orthogonal basis vectors have g
been determined for a single cell, we can use their direct- & 04
product combinations to model arrays with many cells. Since 0.2
there are only two basis vectors per cell in this new basis, the 0.0L< . . ‘
total number of basis cells is now 1005 %0 05 10
2
Npasis=2"". (37

An enumeration of this basis set for a system of thred!G. 7. Projections of the ground state and first excited state onto the chosen
cells is two-state basis vectors for varying degrees of cell polarizat@nProjec-

tion of the ground state on each of the two basis vectors and total projection
! ' ' on the two-dimensional spacé) A similar calculation for the first excited
|®1> |X+(1)X+(2)X+(3)>' state. The dotted line is plotted at projectioh

102) =[x (L)X (2)x"(3)),

193y =|x4(Lx_(2)x,(3)), dimensional ground state of the cell is calculated. The pro-
jection of this ground state onto each of the two basis vectors
calculated above is then determined

1@g)=Ix_(1)x_(2)x_(3)). (38) N =1(x | o)l (39)

This direct product of the self-consistent symmetric or-gnd
thogonal basis vectors will simply be referred to as the two-

- _ ! 2
state basis set. It is a direct product of two basis vectors per No =[xl vo)|”. (40
cell, each of which is a superposition of the sixteen underly-A similar calculation of the projection is performed for the
ing basis vectors. first excited state of the cell for each value of the driver

With this smaller required basis set, it is now possible topolarization:
perform simulations on arrays with eight to ten cells, which PR )
is sufficient to model significant dynamic behavior of N =) (4D
QCA's. and

Ny =[x )% (42

The results of these calculation are shown in Fig. 7. Fig-
The state vector of a single cell exists in a sixteen-ure 7a) shows the projection of the ground state onto each of
dimensional Hilbert space spanned by the underlying basithe two basis vectors and the total projection into the two-
set[Eqg. (3)], but we have now selected a two-dimensionaldimensional subspace spanned| ¥ ) and|x’). The mini-
basis set within that space to which the state vector should bmum value of the total projection into the two-dimensional
largely confined. If the approximation were exact, the statespace is 0.993, which implies that the a typical cell remains
vector would be completely confined to the two-dimensionalalmost completely contained within the two-dimensional
plane thus defined, so a measurement of that confinemestbspace of the new basis vectors.
will provide an indication of the accuracy of our approxima- Figure 1b) shows the projection of the first excited state
tion. onto each of the basis vectors and the two-dimensional sub-
In order to determine the confinement of the state vectospace. While the excited states are not important for the
of a cell to the two-dimensional space we have defined, wéime-independent results shown in Sec. I, they are relevant
consider a test case consisting of a single cell with a drivefor time-dependent behavior. It is therefore desirable that the
on each side. The polarization of the two drivers is equalfirst excited state remains mostly in the two-dimensional
and the value of this polarization is varied betweeh and  subspace we have defined, and the minimum projection of
+1. For each value of the driver polarization, the sixteen-0.947 shows that it does so.

B. Validity of reduced basis

J. Appl. Phys., Vol. 80, No. 8, 15 October 1996 P. Douglas Tougaw and C. S. Lent 4729

Downloaded-28-Mar-2007-t0-129.74.250.197.-Redistribution—subject-to-AlP-license-or-copyright,~see-http://jap.aip.org/jap/copyright.jsp



Lo Exine={(L(DT(2)T(3)-+-T(N=1)T(N)
X|H[L(D)1(2)1(3)--- T(N=1)T(N))
~(HDT@)1(3) - T(N=1)T(N)
X|H[T(DT(21(3)--- T(N=DT(N)).  (46)

Drivercell .-~

Polarization
=3
=

Cell #3

[1.0E , , . , The parameter is the off-diagonal Hamiltonian element
0 5 10 15 20 25 connecting a state with no kinks to a state with a single kink
Time (ps)
t=(L(1)T(2)7(3)...TIN=1)T(N)
FIG. 8. Dynamic response of a three-cell line using the two-state approxi- X“:'H(J-)T(Z)T(?’) L T(N— 1)T(N)> (47)

mation. The conditions of this simulation are identical to those of Fig. 5, and

give very similar results. This agreement highlights the validity of the two- [We use the symbdi here because, as we will see in Sec

state approximation. . . ’ . )
VII, this number can be viewed as the hopping energy of a
kink—it is distinct from the site hopping energy of EdS)

r (14).] The spin-flip operatorg,(i), causes theé" pseudo-
A perhaps more direct measurement of the accuracy ngi(n t())]ﬂip P P op ox(0) P

the two-state approximation in reproducing time-dependent An examination of Eq(45) will show that this Hamil-

regultsthls {:)erfo;nledbby_ repeta'Ell_Eg the (l:talcfulatlin OIwFlg.t 5tonian is isomorphic to that of the Ising model in a transverse
using the two-state basis set. 1he result of such a two-stajg, yhetic field. it is important to point out that this identifi-

calculation is shown in Fig. 8. All cell parameters and drlvergltion is a result of simply calculating the matrix elements of

;:rcl)nd|t|c_)tni_are gjer?tlc_al to t??ﬁe ?f Fig. 5,tso acomparison of, microscopic Hamiltonian in the two-state basis; it is not
€ switching behaviors of the two Systems gives a goog, 5 priori assumption. The parameters which enter the Ising

measure of the accuracy of our approximation. amiltonian,E,; (frequently denoted in the Ising model

One can see that the dynamic response of the three—ceé dt (which plays the role of the applied transverse mag-

wire using thg two-state bas!s IS very S|m|lar' to.the SaM&etic field strength are calculated directly from the micro-
calculation using the full basis set. The polarization of the

. . . . scopic Hamiltonian for the multicell problem by finding vari-
first cell seems to rise slightly more slowly in the two-state

LT . ’ . ous matrix elements in the two-state basis. Indeed, the
approximation, and the details of the kink reflection are

fahtly diff ¢ but th ¢ betw the tw | importance of this identification for us is simply in reducing
slightly ditrerent, but the agreement between the two calcUy, o computational task of computing the Hamiltonian matrix
lations is very good. This result, combined with that of Fig.

7 ai f fid . ing the t elements. Once this identification is made, one need only
» JIVES US some measure of confidence in using the Woéompute a few elements directly to deduce the value of all
state approximation. other elements in the matrix.

C. Mapping to the Ising model

Since only two basis vectors are being used to represeM::')SFSOAX?JE_I'_AI‘g:\ICS USING THE TWO-STATE
the state of each cell in an array, it is natural, and in factA

useful, to consider the relationship of this problem to the  Now that we have calculated the two-state basis vectors

Ising spin problem. We begin by rewriting the two-state 5354 demonstrated the accuracy of the two-state approxima-

many-cell basis vectors as tion, we can use them to model QCA devices. We consider
|@j>: 155,55 - S\, (43) first the behavior of a wire consisting of eight cells and ex-

) i amine the current densities involved in cell switching. We

where the pseudo-spi=+1 or —1 (] or |) depending on i then turn our attention to the switching behavior of the

! o . .y
the presence of. or x_ in the corresponding position of qqt important QCA logic element, the majority logic gate.
the original two-state basis vector. One can then evaluate the

elements of the Hamiltonian matrix using this new notationA. The eight-cell line
Hij=<i||:||®j> (44) We consider a line of eight “standard” cells with a

~ o driver on the left end of the line. Figure 9 shows the calcu-
whereH is the full many-cell Hamiltonian of Eq14). When  |ated cell polarizations at various times. Here, the kink re-

this Hamiltonian matrix is calculated, one finds that it is of flection, which made it difficult to see the switching behavior

the form: in the shorter line of Figs. 4 and 7, occurs at a much latter
~  Eunk A time. For this reason, it is possible to see cells in the line
H=— ( N—2 SSi1|+2 tay(i), (45 consecutively switch to match the new direction of the driver

I I

cell. For our standard cell, this switching takes approxi-
whereE,;,, andt are evaluated numerically using the micro- mately 2 ps per cellthis time will decrease for smaller

scopic Hamiltonian, Eqg(14). The kink energyE,;., is the  cells). The ballistic nature of kink propagation is clear in the
difference between the energy expectation value of a basfgure. Also, a comparison with Fig. 4 shows that the switch-
state with a single kink and that of one with no kinks: ing time is nearly 2.5 times as fast as when intercellular
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1.0 t=0 . . ° . o -|l|e B . .
0 5 L - ps * [ ] L] L ) - L] L L] L L ]
o .
g
= e . . . . . .
E 0.0 t_sps . t_:—l . . . . . . .
5
_05 - _ . [ . 3 [ 3 .
t_lops I—:—l * L] L L 4 L L] *
1 ) o : : : . .
0 5 10 15 20 25 30 35 t=15ps | °||T7;||" ® * * b o *
Time (ps) US| o[ o . . o o
_ [} . e . . . . .
FIG. 9. The dynamic response of a line of eight cells using the two-state t=20ps . {T_I ?:1 " . . . . R
approximation. The driver cell changes direction over a period of 20 ps, and
the other cells in the line change direction to match it. The polarization kink r i . aicEicmElo .
travels down the wire at a rate of approximately 2 ps per cell. t=25ps . . . - E_:_I !:I Al el e .

t=30ps [, *|\, |l Ol L S

correlations are neglected. From the relative abruptness of
the kink front it is clear that correlations over near neighbors _ _ '
and perhaps next-near neighbors play a role here. FIG. 10. Calculated particle current. The diameter of each dot is propor-

h . f the kink d h . . . tional to the charge on the site. Arrows indicate the direction and magnitude
The motion of the kink down the wire raises an Inte'reSt'of the particle current density. Ahead of the kido the righy, current

ing question regarding directionality of its motion. Once thedensity acts to depolarize the cells. Behind the kittk the lefy, current
kink is several cells away from the driver, how does itdensity acts to repolarize the cells. This asymmetry in the nature of the

“know” to continue in the same direction? Using the current density explains why polarization kinks propagate ballistically down
. . ) the wire in the desired direction.
pseudo-spin language of the last section we can ask the ques-

tion this way: If at a particular time the line is in state

), is the successor st yor|] H? ) ) .
MTI—LL answer to this quezj%#TiTsT that| tl\yTsystem is nofells on the leading edge of the kink. On the left side of the
described by one of these simple states, but is in a linedfink (“behind” the kink), the current density is flowing
combination of states. We have seen that kink motion idrom lower charge density to higher charge density. This acts
unidirectional even when we neglect correlations betweef0 "epolarize the cells on the trailing edge of the kink. Thus,
cells and consider each cell to be described by its own staff'® kink has a directionality built into it—a head and a tail.
vector. Thus, for simplicity, consider, within that approxima- 1€ kink does not get lost. In the absence of dissipation, kink
tion, the state vector of the cell at the edge of the kink. It jsmotion proceeds ballistically indefinitely. The presence of
not simply |x’.) or |x") (pseudo-spin up or downlt is a dissipation relaxes the kink, and the whole line, to the new
linear combination of these; |x’,) + C,lx’ ). The complex ~9round state.
ratio of these coefficients determines whether the state is “up
switching to down” or “down switching to up.” This, in o
turn, determines the direction of kink motion. The ratio of B- The majority gate

coefficients must be determined solving the dynamic The majority logic gate is the fundamental QCA logic
problem any simple appeal to a static model will prove in- device. Therefore, it is important to verify that a majority
adequate. logic gate exhibits the correct time-dependent behavior. Fig-

The nature of this directionality can be illuminated fur- yre 11 shows the result of such a time-dependent simulation
ther by considering the particle current density. It is possiblesf a majority logic gate with short wires supplying the inputs
to calculate the expectation value of the current density beand outputs to the device cell. We begin with the system in
tween any two sites within the array. For a given many-celkhe ground state. At=0, two of the three inputs to the de-
wave function, this is done by calculating the expectationyjce (the ones on top and bottonare in the logical zero

value of the current density operator state, while the input from the left is in the one state. The
R 1 device cell and the binary wire connected to the output cell
j(ry= m{é*(r)Vé(r)—[Vé*(r)]é(r)}. (48 are in the same direction as a majority of the three inputs.

Fromt=0 ps tot=20 ps, the direction of the bottom

Figure 10 shows a plot of the results of such a curreninput is continuously switched frol@=—1 to P=+1. This
density calculation for the simulation of Fig. 9. The size of continuous switching occurs between the first two pictures of
the dots at each site represent the expectation value of theg. 11. The switching of the bottom driver causes the polar-
charge density on that site, while the length and direction ofzation of the binary wire connected to that input to change,
the arrow between two dots represents the expectation valyest as we saw in the results of Fig. 9. By the titne20 ps,
of the current density between those two dots. the device cell has begun to switch, indicating that the cal-

Here, we see that on the right side of the kitleshead”  culation by the majority logic cell is taking place at that time.
of the kink, the current density is flowing from higher By t=30 ps, the polarization kink has left the device cell and
charge densities to lower ones. This acts to depolarize this traveling down the binary wire connected to the output.
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Input If we begin with the pseudo-spin interpretation of the
|:| 0 E;\ 0 two-state many-cell basis presented in E), it is possible
Inpu to enumerate those basis vectors with no more than one kink.

BD%DEE‘D ED%EDED If the drivgr cell on the left of the wire hqs a polarization of
[ ° L °

+1, the single basis state with no kinks is:

E}o - L e 120)=1T(1)T(2)1(3)...1(N=2)T(N=1)T(N)) (49
E 0 Do and there are a number of single-kink basis states equal to

the number of cells in the line

R 1 O @E%@EB ED =L@ LN=2) [(N=DL(N)),
%1 Ol o ED=I1DL@LE) LIN=2) [(N=-D)L(N)),

IE5)=1T(1)1(2)1(3)--- [(N=2) [(N=1) [ (N)),

B=1 B,C)=
M AT E4D=11D1@)13) T(N=2)LIN=-D (),
[ ] IZ50=11(D)1(2)1(3)---T(N=2)T(N=1) L(N)).

FIG. 11. The switching of a majority gate using the two-state approxima- Notice that thG single-kink basis vector contains a kink to

tion. The bottom input is switched from 0 to 1, and the device cell andthe left of thei™" nondriver cell.

output cells change accordingly. The switching occurs without reflection or If the po|ar|zat|on of the driver cell is-1, the kink-free
delay.(b) A schematic diagram of a majority-logic gate showing the changebas's vector is
in the input and the corresponding change in the output.

[E0)=[LD L) L(3)-- LIN=2) [(N=1)[(N)) (5D)

and the single-kink basis vectors are

[ED=[TDT2)1(3)--T(N=2)T(N=1)T(N)),

VIl. DYNAMICS OF THE SEMI-INFINITE WIRE

Although the two-state approximation dramatically re-
duces the size of the basis set required to model a QCA [E2)=[L(1)T(2)T(3)---T(N=2)T(N=1)T(N)),
device, it is possible to reduce the basis set even furtherifwe
exclude those basis vectors with many kinks in the system. |23)=|L(1)1(2)T(3)---T(N=2)T(N=1)T(N)),
For a small but interesting class of problems, like those of
kink propagation, we introduce only a single kink into the
system by switching the input. It is then unlikely that the ==\ _ B _
system will ever enter the part of the Hilbert space spanned En-0 =HWLLE) LIN=2TIN=DT(N)),
py those ba§|s vectolrs with many klnks.. In addltlorj to reduc— IZ00=11(D)1(2)1(3)+ LIN=2) [ (N=1)T(N)).
ing the required basis set, this single-kink approximation al- (52)
lows us to introduce a kink-absorbing boundary condition at
the end of a wire which can be used both to simulate thé'hus, we can see that the basis set to be used in the single-
behavior of a semi-infinite wire and to crudely introduce kink approximation depends on the state of the driver cell
energy dissipation into our model. Such a wire will not ex-associated with the system. There are a total Nf 2asis
hibit any of the kink reflections present in the nondissipativevectors associated with both driver polarizations, since the
calculations presented above. We will also use this approxikink-free basis state is also a member of the single-kink basis
mation to examine the dynamic response of a binary wirdor the opposite polarization.
with a spacing error. Now we will write the Hamiltonian, Eq(14), in the
single-kink basis with a driver of positive polarization,
{|Z;)}. In this reduced basis, the Hamiltonian has tridiagonal

The two-state approximation eliminates all of the unnecform and is isomorphic to the Hamiltonian of a particle mov-
essary basis states within an individual cell, but there are stilihg in the tight-binding model. For this reason, it is now
many unused basis vectors in the many-cell direct-produdbelpful to view the polarization kink as a pseudo-particle and
space of these two states. Those many-cell basis vectors caio- simulate the motion of that pseudo-particle in a way dic-
taining several kinks are unnecessary when modeling a sysated by the tight-binding model and the Hamiltonian ele-
tem that contains a single kink, so the next logical reductiorments E,;, and t, as defined in Eqs(46) and (47). The
of the basis set is to eliminate those direct-product vectorglamiltonian for a polarization kink as a pseudo-particle in
with more than one kink. the tight-binding model is

A. The single-kink Hamiltonian
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N N—1 Kink absorber

I:ikink:izzl ﬁkink(i)Ekinkthz,l (A1) Ay +1) t=0ps DEDEEEEE‘E@]
+ a1+ 1) B ) R e o ] |

wherea/ (k) anda,(k) are the creation and annihilation

operators for a kink pseudo-particle to the left of ifesite: t=dps DE m E EHZHZ’ E E E I
Al 1T (D T(2)1(3) - T(k=1)1(K) T (k+1)--- (N

TN-DTN) ol P O |
=[1(DT1(2)1(3)T(k=1) LK) | (k+ 1)+ | (N o TR R ] |
v B 0
Bk (K T (1) T(2)1(3)++ T (K=1) L(K) | (k+ 1)+ (N e PO | R P R O Y R |
~2)T(N=DT(N) =D () 1(3)-- T (K T R 0 O

—DTRT(k+1)---T(N=2)T(N=1)T(N)). (55

In Eq. (53), Nnk(i) is the number operator for a kink on the t=16pS|:|E E \Z] DDE EE B I

i site. When this Hamiltonian is written in the single-kink

basis set, the di | el tsh I dth - .

oz—sclisiasgi)nal eelé?r?é):tz goenr;l]:cr:]tisng ar:/:i;h\t/)zr{lfz]msﬁgs haeve a t ISPSE”Z] ED IZHZIE E] E I
vaue ot =20, L L LI

B. Kink absorbing boundary condition: The semi-
infinite wire FIG. 12. Dynamic response of a single-kink wire with a kink absorber at the
end. The kink propagates at a rate of 2 ps per cell and has completely left the
While the single-kink approximation reduces the re-system byt=20 ps.

quired size of the basis set and therefore allows the modeling

of larger devices, no additional information would be gained

by applying that technique to simply model a longer wire. It L OYs +
is useful, however, in allowing the implementation of i W_HS'ﬂS(t)jLHiR
method of dissipating energy from the system at the end of

the wire. Recent work of Hellums and Frensley, based in part

on the quantum transmitting boundary method of Lent and

Kirkner, has made it possible to include particle-absorbin
boundary conditions at the ends of a wieWe use this ) . . !
boundary condition to absorb the pseudo-particle represen‘yncuon oflthe coupling b.e tweﬁ n cellls N ;he re:ervowr.]

ing the polarization kink and refer the reader to Ref. 25 for 3 We solve Eq.(57) using the values foH, from the

complete description of the method. Such kink absorption'ght'b'm.jlng model for pqlarlzatlon kinks. When  this
will lower the energy of the system and have the effect Ofmethod is used to model a line of QCA cells, the results are

simulating energy dissipation in the calculations. those shown in Fig. 12. The driver cell is changed from a

The particle-absorbing boundary condition is non-Polarization of —1 to a polarization oft1, and all of the
Markovian since it includes a convolution integral over theOther cells in the line react to this change. The kink propa-

past history of the system. The system of interest is coupleaﬁéef’]:?g;; é?—ixvércecatrsa;ta:ﬁeog25%%??2’ f_r?g’ I?ﬁrkcr;:ls
to a semi-infinite kink reservoir, which is capable of absorb- : u wire. !

ing kinks present at the interface between the system and theessennally left the wire by=20 ps, allowing it to dissipate

reservoir. The time-dependent Sctiimger equation for the energy and settle into the new switched ground state.
combination of these two systems is

N
if % z/f :s :::'R zZS . (56) Landauer has objected that an error in the intercellular
R IR TIRILYR spacing within a QCA wire would result in wire failuté.
Here, ¥, is the state of the modeled systei, is the  His argument is that if a larger-than-standard gap were to
state of the kink reservoil is the Hamiltonian of the sys- occur between cellk—| andk, the effect of celk+1 on cell
tem, H, is the Hamiltonian of the reservoir, atlg is the  k would be greater than that of ceatl—1. The result, he
interaction Hamiltonian coupling the two systems. After us-suggests, is that the line could not be switched to a new state
ing Laplace transforms to eliminat, z , the time-dependent because the old state, represented by kell, would keep
Schralinger equation becomes cell k in from switching.

[ eatt-mimu(rr0r

+TihGr(t) ¢rr(0) |, (57)

QNhereGR(t) is the propagator for the reservoir, which is a

C. Spacing error
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FIG. 14. Dynamic response of an eight-cell macromolecular wire using the

t=30ps ‘:I\Zl \Z’ \Z’ El El EI El \ZI \Z\ l two-state ?Eproxfimetltion% Tg})k propg}ga’[ion requ(ijrest 20 fsl,l, which is an im-
provement Dy a ractor o over the semiconauctor cells.
e=sops [, ) LR TR
The only relevant issue beyond that is the issue of
t=50ps \:l D E E B E El E E E I metastability—will the system succeed in reaching the

ground state in a reasonable time? The spacing error problem

t=70ps DEHZ‘ EEEDDBEI is important not from the point of view of unidirectionality,

but from the point of view of metastability. Landauer is cor-
t=100ps rect in that a spacing error could, in principle, be a source of
DD@_,.DDD;QD BEI a metastable hangup. The question becomes a quantitative
3.6a 3a one—is the kinetic barrier between the state just after the
input is switched and the desired ground statge enough
FIG. 13. Dynamic response of a single-kink wire with a spacing error and &0 keep the system from reaching its ground state, leaving it
kink absorber at the end. The spacing error causes a delay, but the wire st ,ck in a metastable excited state? Such a quantitative ques-
operates correctly. tion can only be answered by a quantitative calculation such
as this one. In this case the answer is that even a fairly large

We have performed a time-dependent solution of such £P&cing error does not cause a problewh course, a bi-
system using the single-kink approximation and found thaf@'Tely large spacing error wouldThere are certain in-
the line indeed switches. The result of this calculation isSt&nces, such as fanout, to which Landauer also correctly
shown in Fig. 13, in which a wire with a 20% spacing error points, for which metastabllllty could be a mugh more serious
(a rather larger error than one would likely expeattween problem. We addresg th.at issue elsewhere in the context of
two of the cells near the middle of the wire is being studied 9radual adiabatic switchirfg.

According to the objection the polarization, kink should stop

whep it reaches the gap, since the (;eII on the_ other side of tr’\(;m_ MACROMOLECULAR CELLS

gap is more strongly influenced by its nonswitched neighbor.

While the spacing error causes some patrtial reflections of the As stated above, the speed of QCA devices improves as
kink, with a resulting delay in the time it takes to switch the the size decreases. At the present time, the long-term goal of
entire wire, the wire does switch to match the driver cell. Asuch shrinking is a macromolecular implementation, in
spacing error acts as a small barrier for kink propagationwhich the QCA cells are formed by self-assembling
What the calculation illustrates is that even a very large spaanolecules’ It is expected that such cells will be at least ten
ing error acts as a relatively small barrier which does notimes smaller than the “standard” semiconductor cells, will
keep the system from switching. have a dielectric constant of 1, and electrons in those cells

The spacing error problem is a specific case of Landauwill have the effective mass of free electrons. We investigate
er's more general objection that QCA systems suffer from ahe dynamic behavior of these cells to estimate the amount of
lack of unidirectionality because inside the array cells withimprovement that can be expected by their use.

“old” information have as much weight as cells with The two-state calculations of Fig. 9 were repeated using
“new” information. The calculations shown here illustrate the parameters described above for macromolecular cells.
that the ballistic nature of kink motion, even in the absenceThe results of this calculation are shown in Fig. 14, and
of dissipation, are sufficient in many systems to provide thedlemonstrate that the use of macromolecular cells improves
unidirectionality desired. More fundamentally we believethe switching speed of a cell by a factor of 100 over that of
this argument is invalid because the new information prethe “standard” cell. Instead of 2 ps per cell, these devices
sented at the inputs causes the ground state of the systemrow switch at 20 fs per cell.

change. ltis this effect, rather than the details of the temporal Repeating the single-kink calculations of Fig. 12 for
evolution, that are the heart of the matter. Unidirectionality ismacromolecular cells yields the result shown in Fig. 15. This
effected because of the breaking of the symmetry betweecalculation also results in an improvement of the switching
input and output—inputs are held fixed and outputs are notspeed by a factor of 100 over that of a “standard” cell.

00}

Polarization

-0.5}
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or absence of a single electron at the ouf8dt,and main-
Kink absorber taining a uniform cell occupancy throughout the arfay

t=0fs |:| E’ E E El m E E’ \Z’ ﬁl have already been addressed.

_ While this paper has concgntrated on swtihing thg _de—

oo (YT e oo g e ol of e e ce e

ewaos [CY LTI S e contmement of the lectrons on each se il be

wors [V Giver coll can then be swiched. and the barirs reised
again. The array will then “recrystallize” in its new ground

t=80fs |:| IZI D E E E| E] D D BI state without any excess “kink energy” ever being intro-

duced to the system. If the switching is done slowly enough,

t=100fsl:|\2| \Zl \Z’ \Zl D E E’ \Z’ E I the adiabatic theorem guarantees that the system can be

mgiqtained at all times in' ?ts instantaneous grounq staFe,
2ol LTI g it be discussed more thoroughy slsewrére.
estaons], [, 7L 0 L L TN
t=160fs|:| E E E ‘Zl \Zl \ZI \Zl El E I We gratefully acknowledge stimulating conversations
_ ith members of the Notre Dame Nanoelectronic Group, es-
t_180fs|::| E \ZI E E E D E E E I \pl)vécially Wolfgang Porod. We also thank Profe_l,sor TlrJ10mas

Kaplan of Michigan State University for his help in identi-

t=200f5|:| E D E D \Z‘ D E E E I fying the connection to the Ising model in a transverse field.
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FIG. 15. Kink propagation in a macromolecular wire using the single-kink terial is based in part upon work supported under a Center
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kink propagates across one cell in approximately 20 fs and leaves the system
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