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CORRELATION AND COHERENCE IN QUANTUM-DOT CELLULAR AUTOMATA

Abstract

by

Géza Tóth

In this thesis we investigate the role of correlation and coherence in two pos

realizations of Quantum-dot Cellular Automata (QCA): realizations as a semicondu

multi-quantum-dot structure and as a metal-island single electron tunneling circuit.

two are different from the point of view of the underlying physics. The metal isla

circuits are very strongly connected to the heat bath and they can be modeled

classically, using classical quantities such as charging energy and capacitance. To

the semiconductor realization, a quantum mechanical treatment is necessary. The qu

mechanical state of the cells evolves coherently, at least for time scales smaller tha

decoherence time. In the first part of the thesis the theory of metal island circuits is us

design a cell structure permitting adiabatic clocking. It is also used to analyze

conductance suppression of coupled double-dots and reproduce the correspo

experimental results from the theory by modeling coherent electron motion inside

QCA cell. In the second part the semiconductor QCA realization is studied. U

Hartree-Fock approximation the basic phenomena in the one dimensional QCA

(large and small amplitude polarization wave propagation and collision) is investiga
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The approach is also used to define Quantum Cellular Neural Networks. In the last p

the thesis intermediate approximations are constructed between the Hartree-Fock a

exact model. An alternative of the density matrix description, the coherence ve

formalism is reviewed and used to investigate possibility of quantum computing

QCA. Using the coherence vector formalism as a basis an approximation is presente

includes all two-point correlations while neglects the higher order correlations. Ano

approach is shown for improving the self-consistent Hartree-Fock model for a maj

gate by including correlation effects. The method fixes the qualitatively wrong res

obtained if the length of the input legs are very different.



.......v

..... vi

.. xiii

......1

......6
.....8
....13

.16

....17
...29
....32
.....35
....40
.....42
......44
....46
.....51
.....55

....58
....58
....61
.....64
..64
....67
....70
.....74
....76
....77
...79
.....82
...84
....85
...86
..88
.....88
TABLE OF CONTENTS

LIST OF TABLES .......................................................................................................

LIST OF FIGURES .....................................................................................................

ACKNOLEDGEMENTS ..............................................................................................

1. INTRODUCTION ....................................................................................................

2. REVIEW OF QUANTUM-DOT CELLULAR AUTOMATA (QCA) ...........................5
2.1. Semiconductor Quantum-dot Cellular Automata ......................................
2.2. Adiabatic switching with semiconductor QCA ..........................................
2.3. Metal-island QCA ......................................................................................

3. QUASI-CLASSICAL QCA DYNAMICS ...................................................................
3.1. Theory of metal-island circuits ..................................................................
3.2. Quasiadiabatic switching with metal-island QCA [9] ................................

3.2.1. The physical background of the operation ..................................
3.2.2. Operational modes .....................................................................
3.2.3. QCA shift register .......................................................................
3.2.4. Conclusions ................................................................................

3.3. Conductance suppression in coupled double-dots [45] ...........................
3.3.1. Experiment ..................................................................................
3.3.2. Results and discussion ...............................................................
3.3.3. Conclusions ................................................................................

4. QCA QUANTUM DYNAMICS USING THE STATE VECTOR DESCRIPTION ....56
4.1. The intercellular Hartree-Fock approximation ..........................................

4.1.1. The dynamics of a cell block ......................................................
4.1.2. Computing the stationary state of a cell block ............................

4.2. Linearization of the state equations ..........................................................
4.2.1. Linearization of the variables around the equilibrium point .........
4.2.2. Small amplitude wave propagation .............................................
4.2.3. Simulation results .......................................................................
4.2.4. Conclusions ................................................................................

4.3. Dynamics of a one-dimensional QCA array ..............................................
4.3.1. Propagation of a wave front ........................................................
4.3.2. Collision of two wave fronts ........................................................
4.3.3. Propagation of a wave ................................................................

4.4. Quantum Cellular Neural Networks (QCNNs) [52] ...................................
4.4.1. The CNN paradigm .....................................................................
4.4.2. Formulating quantum dynamics as CNN dynamics ....................
4.4.3. Generalization of Quantum Cellular Neural Networks ................
4.4.4. Conclusions ................................................................................
iii



....89
.....89
..94
101
...104
..109
..111

.112
114

.116

..117

..122

.125
...135
...137

38
..140

..144

.152

..154

...156

..156

...158
..163
..167
...168

0

.177

.....182
5. QCA QUANTUM DYNAMICS USING THE COHERENCE VECTOR
FORMALISM ...................................................................................................
5.1. The coherence vector formalism ...............................................................

5.1.1. Dynamical description of the state of two interacting QCA cells
5.1.2. Dynamical description of the state of a QCA cell line .................
5.1.3. The correlation tensor proper and the measures of correlation ..
5.1.4. The energy of a cell block ...........................................................
5.1.5. Stationary solution of the dynamical equations ..........................
5.1.6. The Hartree-Fock intercellular approximation applied for the

coherence vector formalism .......................................................
5.1.7. Modeling dissipation with the coherence vector formalism .........

5.2. An application of the coherence vector formalism: Quantum computing
with Quantum-dot Cellular Automata ...................................................
5.2.1. The C-QCA cell line as a quantum register ................................
5.2.2. Single qubit rotations ..................................................................
5.2.3. Multi-qubit operations .................................................................
5.2.4. Discussion ..................................................................................
5.2.5. Conclusions ................................................................................

6. APPROXIMATE QCA QUANTUM DYNAMICS ....................................................1
6.1. Model neglecting three-point and higher order correlations ......................

6.1.1. Comparison of the dynamics of the exact and approximate
methods .....................................................................................

6.1.2. The validity of the approximations ..............................................
6.1.3. Stationary solution of the dynamical equations ..........................
6.1.4. Conclusions ................................................................................

6.2. Modeling the majority gate with unequal input legs .................................
6.2.1. Posing the problem ....................................................................
6.2.2. Solution .......................................................................................
6.2.3. Delayed-gate approximation .......................................................
6.2.4. Conclusions ................................................................................

APPENDIX A: DYNAMICS OF THE CORRELATIONS FOR TWO QCA CELLS ...17

APPENDIX B: DYNAMICS OF THE CORRELATIONS FOR A CELL LINE ..........174

APPENDIX C: APPROXIMATE DYNAMICAL EQUATIONS FOR THE
TWO-POINT CORRELATIONS ..................................................................................

REFERENCES ..........................................................................................................
iv



v

 LIST OF TABLES

Table 6.1. Number of (real) state variables as the functions of the number of QCA cells for
the Hartree-Fock model, the nearest neighbor pair correlations only model (NNPC), the
pair correlations only model (NNPC), and the density matrix description. ....................151

Table 6.2. (a) The maxima of the largest elements of the three-point correlation tensor prop-
ers for the three-point correlations approximated by PC. (b) The same for NNPC. (c) The
maxima of the elements of the two-point correlation tensor proper for comparison.......153



ry of
e
elec-
olar-
site
ell

s,
nifi-

.....7

ying
two

he ar-
te.

e dur-
 as it
xcited
..........8

 struc-
he
 low
of the
10

ing.
xter-

d

def-
....

om
 for

 1/4
log-

.....12

led
s elec-
 LIST OF FIGURES

Figure 2.1 Schematic of the basic four-site semiconductor QCA cell. (a) The geomet
the cell. The tunneling energy between two sites (quantum dots) is determined by th
heights of the potential barrier between them. (b) Coulombic repulsion causes the two
trons to occupy antipodal sites within the cell. These two bistable states result in cell p
ization of P=+1 and P=-1. (c) Nonlinear cell-to-cell response function of the basic four-
cells. Cell 1 is a driver cell with fixed charge density. In equilibrium the polarization of c
2 is determined by the polarization of cell 1. The plot shows the polarization P2 induced in
cell 2 by the polarization of its neighbor, P1. The solid line corresponds to antiparallel spin
and the dotted line to parallel spins. The two are nearly degenerate especially for sig
cantly large values of P1. ................................................................................................

Figure 2.2 The steps of the quasi-adiabatic switching are the following: (1) before appl
the new input, the height of the interdot barriers are lowered thus the cell have no more
distinct polarization states, P=+1 and P=-1. (2) Then the new input can be given to t
ray. (3) While raising the barrier height, the QCA array will settle in its new ground sta
The adiabaticity of the switching means that the system is very close to its ground stat
ing the whole process. It does not get to an excited state after setting the new input,
happened in the case of non-adiabatic switching. Since the system does not get to an e
state from the ground state the dissipation decreases a lot. ......................................

Figure 2.3 QCA structure for the processing of data series. (a) The schematic of the
ture. (b) The clock signal given to the cells to control their interdot barrier height. (c) T
input and output data flow. The new input is given to the array when the barriers are
and the output is read out of the array when the barriers are high, and the polarization
cells is fixed. (H, M and L stand for ‘high’, ‘medium’ and ‘low’, respectively.) .............

Figure 2.4 The three operational modes of the QCA cell in the case of adiabatic switch
In the active mode, the cells have two distinct polarizations: P=+1 and P=-1, and the e
nal electrostatic field can switch cells from one polarization to the other. In the locke
mode, the interdot barriers are high therefore the polarization of the cell cannot be
switched, it is fixed. In the null mode, the barriers are low thus the cell does not have a
inite polarization. ..........................................................................................................11

Figure 2.5 Pipeline architecture with QCA arrays. (a) All of the arrays get the input fr
the left neighbor and give the output to the right neighbor. (b) The clock signals used
the control of the interdot barrier height. Each array gets the clock signal delayed by
period time relative to its left neighbor. Even more sophisticated structures containing
ical gates and flip-flops need no more than four different clock signals. ....................

Figure 2.6 Metal-island QCA cell. (a) The QCA cell consists of two capacitively coup
bistable elements. Such a bistable element consists of two metal islands. The exces
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urations. (b) Symbolic representation of the two possible polarizations of the QCA ce

Figure 3.1(a) The double-dot used in these section as an example. (b) Symbolic rep
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Figure 3.2 Transitions between the charge configuration of a double-dot. If the 01 an
charge configurations turn into each other directly then current does not occur, howe
current flows if these two states turn into each other through the intermediate 11 and
states. In these cases an electron leaves the system through the current meter conne
the bottom dot as depicted on (b) and (c). .................................................................

Figure 3.3 Metal island half-QCA structure permitting adiabatic switching. (a) The circ
consists of three metal islands connected to each other by tunnel junctions. Each islan
a capacitively coupled electrode. Applying the V differential input bias and the Vc con
voltage the occupancy of the dots can be determined. The middle island is grounded
der to provide an excess electron in the three island system that is necessary to real
[100]/[010]/[001] charge configurations. The two voltage sources are used to increas
potential of the top and bottom islands to make the switching more abrupt. (b) The sym
ic representation for the three island system. The occupancies corresponding to the
P=-1 polarizations and the null state (indefinite polarization) are shown. ..................

Figure 3.4 The three operational modes. (a) Active operational mode. The electron tu
from the top island to the bottom island through the middle island, if electrode voltag
change. First the pictorial representation of this process is shown. ‘+’, ‘-’ and ‘0’ refers
the sign of the electrode voltages. Then the energies of the [100], [010] and [001] ch
configurations can be seen during the switching. The dot refers to the charge configur
the system occupies. (b) Locked operational mode. The electron is locked in either th
or the bottom island, because the [010] configuration has much higher energy than th
ers. (c) Null operational mode. The electron is locked in the middle island, because 
[010] configuration has much lower energy then the other two. .................................

Figure 3.5 The six basic tunneling events that can happen in the three-island structu
shown in Fig. 3.3 ..........................................................................................................34

Figure 3.6 Transfer characteristics of the half cell structure given in Fig. 3.3 for activ
mode. It is piecewise linear, and the abrupt change in value and slope are due to tunn
events. In case of a metal island QCA the nonlinearity comes from the charge quantiza
Replacing the tunnel junctions with linear capacitors the circuit would also be linear.

Figure 3.7 Phase diagram of the half cell structure permitting adiabatic switching. The
imal energy configuration is shown as a function of the differential input bias V and t
control voltage Vc. The control voltage level of the locked operational mode is also show
...........................................................................................................................................37

Figure 3.8 State diagram of the half cell for switching. It shows the occupancies of the t
islands as the V differential input bias increased from -0.45 to +0.45mV for a Vc range of
-0.3 and 0.7mV. The voltage levels for the three operational modes are also shown.
charge configuration is also given for each region of the diagram. Note, that the [001]
the [100] phases seem to have a common border, but there is a very “thin line” of [010
[1,-1,1] phase between them. (The direct transition from [001] to [100] is not possible.)
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Figure 3.9 State diagram of the half cell for switching. The diagram shows the occupan
of the three islands as the V differential input bias decreased from +0.45 to -0.45mV
Vc range of -0.3 and 0.7mV. The voltage levels for the three operational modes are 
shown. The charge configuration is also given for each region of the diagram. Compa
with Fig. 3.8, the differences are due that V changes in the opposite direction. ........

Figure 3.10 Metal-dot QCA cell. (a) It consists of two half cells that get the same con
voltage. (b) The occupancies corresponding to the P=+1, P=-1 polarizations and the
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Figure 3.11 Simulation of a QCA line of four cells. The top plot shows the V differen
input bias of the first cell as the function of time, the other four graphs are the polarizat
of the cells. (“0” refers to the null state.) The polarization of a cell is valid if it is in the
locked operational mode. In this case the polarization is shown in the frame in the g
Each cell follow their left neighbor’s polarization with a delay. ...................................

Figure 3.12 (a) Two-DD system. The D1, D2, D3 and D4 denote the four metal islan
(dots). The VDleft /VDright voltage sources and the Ileft/Iright current meters are used 
double-dot conductance measurements. (b) The symbolic representation of the system
circles and the lines represent metal islands and tunnel junctions, respectively. ......

Figure 3.13 Micrograph of the device which consists of four metal islands (dots) den
by D1, D2, D3 and D4. ...............................................................................................

Figure 3.14 (a) The phase diagram of the two-DD system if there is no coupling (Cc
between the left and right DDs. The figure shows the [N1N2;N3N4] most probable cha
configuration as the function of the input voltages. (b) The phase diagram of the two
system when the left and right DDs are capacitively coupled. The framed part of the p
diagram is studied in this paper. At the phase borders one of the DDs (e.g., [01;10]/[01
or both of them (e.g., [01;10]/[10;01]) conduct. The arrow corresponds to QCA operat
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Figure 3.15 The phase borders where the (a) left and the (b) right DD conduct. The co
tances for the framed part are shown in Fig. 3.16 magnified. ....................................

Figure 3.16 Comparison of the (a-b) measured and the (c-d) calculated conductance c
of the left and right double-dots. The conductances are given as a function of Vleft and
Vright. In (d) the∆Vright voltage shift is the effect of the change of occupancy in the left D
The 10, 20, 30, 40 and 50 nS contours are shown. The conductance suppression is
visible in the center of the graphs. For (c) and (d) the insets show the three-dimensi
conductance plots. The curves corresponding to the three vertical lines in (b) are giv
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Figure 3.17 The measured (crosses and dots) and computed (solid line) conductance
as the function of Vright for three different Vleft voltages. The curves correspond to the thre
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Figure 3.18 The correlation between the top dots of the two DDs as a function of Vleft and
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Figure 4.1Nonlinear cell-to-cell response function. The steady-state polarization of a
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sinusoidal for (a) T=12, (b) T=12.5, and (c) T=13.5. Resonance occurs for (b), becaus
excitation frequency is in the allowed range. ..............................................................

Figure 4.5 Excitation of a cell line at the left edge with a square wave (period time=12
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Figure 4.8 Wave front propagation in a one-dimensional cell block. Note the disturba
added as a noise to the expected shape ....................................................................

Figure 4.9 Polarization and phase of the 15th cell in the one dimensional cell block of
4.8, as function of the time starting from t=500 time units. The period time of the small
plitude oscillation is about 12.5 time units. .................................................................

Figure 4.10 Array of 30 QCA cells with two driver cells at the right and the left edges
spectively. The polarization of the driver cells can be set externally. .........................

Figure 4.11 Propagation of a wave front from the left to the right. A snapshot with th
larization and the phase of the cells are shown. The arrows show the direction of the ch
for the polarization and the phase. The sign of the phase peak determines in which dire
the wave front propagates. .........................................................................................

Figure 4.12 Collision of the wave front and the fixed border. Three snapshots are sh
The direction of the propagation changes, as the phase peak changes sign. ...........
ix



 the
e di-

.......8

e
seen
........81

o
 the
ange.

ixed
.....83

he
banc-
or in-
ally
ccur

.......87

e state
..... 93

l oper-
ll op-

ctors,
........95

 the
. (a)
ling

e dy-
of the
.....100

wo
....118

al

...123
Figure 4.13 Two wave fronts propagating in the opposite directions. A snapshot with
polarization and the phase of the cells are shown. The black arrows are indicating th
rection of the change. .................................................................................................0

Figure 4.14 Collision of two wave fronts. Five snapshots with the polarization and th
phase of the cells are shown.After the collision both wave fronts turn back. This can be
on the change of the sign of the phase peak. .............................................................

Figure 4.15 Propagation of a wave from left to right. The wave is constructed from tw
wave fronts propagating in the same direction. A snapshot with the polarization and
phase of the cells are shown. The black arrows are indicating the direction of the ch
...........................................................................................................................................82

Figure 4.16 Reflection of a wave at the right edge. The wave fronts collide with the f
border and with each other. Eventually the whole wave will turn back. .....................

Figure 4.17 Circular and spiral waves in a two-dimensional array of QCA cells. (a) T
edges are periodically excited. Near the top left corner a fixed cell block causes distur
es in the wave propagation. A pixel of a snapshot corresponds to a QCA cell. The col
dicates a polarization between +1 (blue) and -1 (purple). (b) The edges are periodic
excited, with a certain delay with respect to each other. Due to this delay spiral waves o
instead of circular waves. (c) The last snapshot of (b) is redrawn as a 3D graph. .....

Figure 5.1The dynamics of the coherence vector. It precesses around . describes th
of the cell while  describes the influences of the environment. ...................................

Figure 5.2 The s=15 basis operators for a two-cell system. There are three single-cel
ators for the first cell, three single-cell operators for the second cell, and nine two-ce
erators. ...............................................................................................................................95

Figure 5.3 To describe the state of two interacting cells, beside the two coherence ve
the correlation tensor is also necessary. ....................................................................
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CHAPTER 1

 INTRODUCTION

The Quantum-dot Cellular Automata is a new transistorless compu

paradigm at the nanoscale. Its three fundamental realizations, the metal islan

semiconductor and the molecular implementations are different from the poin

view of coherence and correlation.Coherencemeans that the quantum mechanic

system evolves according to the Schrödinger wave equation.Decoherence, on the

contrary, denotes the case where the time evolution deviates from the

equation. Thecorrelation of A and B, in general, can be given as

, (1.1)

where denotes the expectation value.C is zero whenA and B are

uncorrelated.

In the classical case of a system which contains two subsystems, the corre

between two dynamical variables of each subsystem is simply a function of t

same two dynamical variables. If the time evolution of the subsystem dynam

variables are known then their correlation can be computed. In the quan

mechanical case, on the contrary, the correlation of two operators canno

expressed as a function of the subsystem dynamical variables. Thus when u

two systems into one, additional degrees of freedom are created by the correl

C AB〈 〉 A〈 〉 B〈 〉–=

…〈 〉
1
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If a QCA array is realized withmetal islands (dots) and tunnel junctions, it

is modeled as a classical capacitive system, with the additional property of inte

tunneling. Since the two extra electrons in a QCA cell interact as classical cha

it is not necessary to use a two electron wave function and the Schrödi

equation to describe this system.

In the case of thesemiconductorimplementation, the system must b

modelled by the Schrödinger equation. If the cells are isolated from

environment, then the system is fully coherent, and the dynamics of the cells

be modeled by the many-electron Schrödinger equation. Unfortunately, it is

computationally feasible to model more than a couple of cells this w

Approximating the cells as coupled two-state systems and modeling the Q

circuit with a Schrödinger equation and an Ising spin chain-like Hamiltonian ra

the size limit to 10-15 cells.

The method that really makes it possible to model large QCA circuits is

Hartree-Fock approximation. This approach models the intracellular dynami

quantum mechanically and the intercell Coulombic interactions classically. F

system ofN cells, it involvesN coupled Schrödinger equations. The number

state variables scales linearly with the system size, in contrast to modeling w

many-body Hamiltonian in which case it scales exponentially. The price of

simpler (smaller) model is less accuracy. A large portion of the error in

Hartree-Fock approximation is introduced by a failure to model the tim

dependent dynamics correctly because it does not consider theintercell

correlations.
2
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Our goal is to create an intermediate approximation between the Har

Fock approximation and the exact model. To do that, thecoherence vector

formalism seems to be ideal. In this approach, the dynamics of the cohere

vector of each cell (i.e., the “state” of the individual cells) and their interc

correlation matrices are given by differential equations. The differential equat

have a hierarchical system that can be truncated keeping correlation terms u

certain order. Truncating at the level of the two-point correlations leads to

Hartree-Fock approximation. Truncating at the level of the three-point correlat

leads to an intermediate approximation between the Hartree-Fock and the

method.

Other possible intermediate model could be a hybrid method betw

modeling by a many-body Hamiltonian and the Hartree-Fock intercellu

approximation. The regions where the correlations are important can be mod

by the Schrödinger equation with a many-body Hamiltonian while the rest ca

modeled by Hartree-Fock.

In the case of semiconductor realization, the system evolves accordin

the Schrödinger equation only in special circumstances. In general, there is a

some connection to the environment. While the Schrödinger equation fails

description of thedissipativecase is also possible with the coherence vec

formalism, by including further dissipative terms in the dynamical equations.

Chapter 2 reviews QCA briefly. In Chapter 3 the metal-island QC

implementation is discussed. It is explained how adiabatic switching can

realized with metal island cells. Concerning theconductance suppressionin
3
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couple double dots, a master equation approach is shown that can be us

modeling correlated electron motion in QCA cells in the finite temperature regi

In Chapter 4 the semiconductor realization is investigated. Beside the e

method using the many-body Hamiltonian, a model based on the Hartree-Foc

mean-field type) intercellular approximation is presented. It is used to st

fundamental phenomena in a one-dimensional array of QCA cells. It is also

to derive the differential equation of the Quantum Cellular Neural Netwo

(QCNN). The Hartree-Fock approximation neglects the intercellular correlatio

In Chapter 5 a model is presented (the coherence vector formalism) that expl

contains the so far neglected correlation terms. It is used to investigate

possibility of quantum computing with QCA. Chapter 6 is about the realization

an intermediate approximation between the Hartree-Fock and the exact m

Based on the coherence vector formalism, a model is introduced neglecting

and higher order correlations. By keeping the two-point correlations, its results

closer to the exact method than that of the Hartree-Fock model’s. In the se

subsection of Chapter 6 a particular example, the majority gate with unequal i

legs, is shown, where leaving out correlations leads to qualitatively wrong res

A method is shown how incorporate in the model the correlations which

important from the point of view of the dynamics.
4
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CHAPTER 2

 REVIEW OF QUANTUM-DOT CELLULAR AUTOMATA (QCA)

In recent years the development of integrated circuits has been essentially based on

down, that is, increasing the element density on the wafer. Scaling down of CM

circuits, however, has its limits. Above a certain element density various phys

phenomena, including quantum effects, conspire to make transistor operation diffic

not impossible. If a new technology is to be created for devices of nanometer scale

design principles are necessary. One promising approach is to move to a transisto

cellular architecture based on interacting quantum dots, Quantum-dot Cellular Auto

(QCA, [1-5]).

The QCA paradigm arose in the context of semiconductor quantum dots, us

formed by using metallic gates to further confine a two-dimensional electron gas

heterostructure. The quantum dots so formed exhibit quantum confinement effect

well separated single-particle eigenstates. The QCA cell consists of four (or five)

dots arranged in a square pattern. The semiconductor implementation has sign

advantages in that both the geometry of the dots and the barrier-heights between th

can be tuned by adjusting gate potentials. QCA switching involves electrons tunn

through interdot barriers to reconfigure charge in the cell. Information is encoded in

arrangement of charge within the cell.
5
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2.1 Semiconductor Quantum-dot Cellular Automata

The semiconductor Quantum-dot Cellular Automata(QCA[1-8]) cell consists

four quantum dots as shown in Fig. 2.1(a). Tunneling is possible between the neighb

dots as denoted by lines in the picture. Due to Coulombic repulsion the two elec

occupy antipodal sites as shown in Fig. 2.1(b). These two states correspond to polari

+1 and -1, respectively, with intermediate polarization interpolating between the two

In Fig. 2.1(c) a two cell arrangement is shown to illustrate the cell-to-c

interaction. Cell 1 is a driver cell whose polarization takes the range -1 to 1. It is

shown, how the polarization of cell 2 changes for different values of the driver

polarization. It can be seen, that even if the polarization of the driver cell 1 is chan

gradually from -1 to +1, the polarization of cell 2 changes abruptly from -1 to +1. T

nonlinearityis also present in digital circuits where it helps to correct deviations in sig

level: even if the input of a logical gate is slightly out of the range of valid “0” and “

voltage levels, the output will be correct. In the case of the QCA cells it causes that c

will be saturated (with polarization close to -1 or +1) even if cell 1 was far from saturat

A one-dimensional array of cells[3] can be used to transfer the polarization o

driver at one end of the cell line to the other end of the line. Thus the cell line plays

role of the wire in QCA circuits. Moreover, any logical gates (majority gate, AND, O

can also be implemented, and using these as basic building elements, any logical c

can be realized[4].
6
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FIGURE 2.1. Schematic of the basic four-site semiconductor QCA cell. (a) T
geometry of the cell. The tunneling energy between two sites (quantum dots
determined by the heights of the potential barrier between them. (b) Coulom
repulsion causes the two electrons to occupy antipodal sites within the cell. These
bistable states result in cell polarization of P=+1 and P=-1. (c) Nonlinear cell-to-c
response function of the basic four-site cells. Cell 1 is a driver cell with fixed char
density. In equilibrium the polarization of cell 2 is determined by the polarization
cell 1. The plot shows the polarization P2 induced in cell 2 by the polarization of its
neighbor, P1. The solid line corresponds to antiparallel spins, and the dotted line
parallel spins. The two are nearly degenerate especially for significantly large val
of P1.
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2.2 Adiabatic switching with semiconductor QCA

In this paradigm of ground state computing, the solution of the problem has b

mapped onto the ground state of the array. However, if the inputs are switchedabruptly, it

is not guaranteed that the QCA array really settles in the ground state, i.e., in the g

energy minimum state. It is also possible, that eventually it settles in ametastablestate

because the trajectory followed by the array during the resulting transient is not

controlled.

This problem can be solved by adiabatic switching [3] of the QCA array, as sh

schematically in Fig. 2.2. Adiabatic switching has the following steps: (1) before appl

the new input, the height of the interdot barriers is lowered thus the cells have no mor

distinct polarization states, P=+1 and P=-1. (2) Then the new input can be given t

Remove
old input

Applying
new input

Lower
barriers

Raise
barriers

FIGURE 2.2. The steps of the quasi-adiabatic switching are the following: (1)
before applying the new input, the height of the interdot barriers are lowered thus
the cell have no more two distinct polarization states, P=+1 and P=-1. (2) Then the
new input can be given to the array. (3) While raising the barrier height, the QCA
array will settle in its new ground state. The adiabaticity of the switching means
that the system is very close to its ground state during the whole process. It doe
not get to an excited state after setting the new input, as it happened in the case
non-adiabatic switching. Since the system does not get to an excited state from th
ground state the dissipation decreases a lot.
8
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array. (3) While raising the barrier height, the QCA array will settle in its new grou

state. The quasi-adiabaticity of the switching means that the system is very close

ground state during the whole switching process. It does not reach an excited state

setting the new input, as happens if the input is simply switched abruptly. Since the sy

does not get to an excited state from the ground state the dissipation to the environm

minimal. On the other hand, to maintain quasi-adiabaticity the time over which the ba

height is modulated must be long compared to the tunneling time through the ba

Typically a factor of 10 reduces the non-adiabatic dissipation to very small levels.

The previous structure can be used for processing a series of data, as sho

Fig.2.3. While changing the input, the barrier is low therefore the cells do not ha

definite polarization. Then the barrier height is increasing, until it reaches the value, w

the cell polarization is fixed. This means that the barriers are so high that the int

tunneling is not possible, the polarization of the cells keeps its value independent o

effects of the external electrostatic fields. At that point the output can be read out. The

barriers are lowered again, and the next input can be given to the array. Fig. 2.3(c) s

the input and output flow for this case.
9
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FIGURE 2.3. QCA structure for the processing of data series. (a) The schematic of
structure. (b) The clock signal given to the cells to control their interdot barrier heig
(c) The input and output data flow. The new input is given to the array when t
barriers are low and the output is read out of the array when the barriers are high,
the polarization of the cells is fixed. (H, M and L stand for ‘high’, ‘medium’ and ‘low’,
respectively.)
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The cells of such a QCA array have threeoperational modes: if the barriers are low

then the cell does not have distinct polarization. This can be called thenull operational

mode. If the barriers are high then the polarization of the cells does not change. This

be called thelocked operational mode. In case of intermediate barrier heights, theactive

mode, the cells have two distinct polarization states: P=+1 and P=-1, however, ext

electrostatic field (due to the effects of the neighboring cells) can switch it from

polarization to the other. The operational modes are summarized in Fig. 2.4. Thus the

periodically go through the null→active→ locked→active→null sequence.

Operational Barrier
Cell polarization

Active

Null

Locked

Low

Medium

High

Between +1

Indefinite

mode height

and -1

 +1 or -1

FIGURE 2.4. The three operational modes of the QCA cell in the case of adiabatic
switching. In the active mode, the cells have two distinct polarizations: P=+1 and
P=-1, and the external electrostatic field can switch cells from one polarization to
the other. In the locked mode, the interdot barriers are high therefore the
polarization of the cell cannot be switched, it is fixed. In the null mode, the barriers
are low thus the cell does not have a definite polarization.
11
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The arrangements shown in Fig. 2.3 can be expanded for more QCA sub-a

working in apipelinestructure as shown in Fig. 2.5. Now each sub-array reads the ou
In

pu
t

O
ut

pu
t

Array
QCA

#1

Clock
signal

#1

Time

b)

a)

Period time

Clock
signal

#3

Clock
signal

#4

Clock
signal

#1

Clock
signal

#2

Array
QCA

#2
Array
QCA

#3
Array
QCA

#4
Array
QCA

#5
Array
QCA

#6

Clock
signal

#2

Clock signal #1

Clock signal #2

Clock signal #3

Clock signal #4

FIGURE 2.5. Pipeline architecture with QCA arrays. (a) All of the arrays get the inp
from the left neighbor and give the output to the right neighbor. (b) The clock signa
used for the control of the interdot barrier height. Each array gets the clock sign
delayed by 1/4 period time relative to its left neighbor. Even more sophisticate
structures containing logical gates and flip-flops need no more than four differe
clock signals.
12
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of the left neighbor when the neighbor is in locked state and begins to write into their

neighbor when it is in null state. The main advantage of the pipeline architecture is tha

computations with the new input start before the computations with the old input

finished. Each unit gives its subresult to the following unit and then begins to proces

subresult of the previous unit. The barrier heights of the arrays are controlled by

different clock signals. The clock signal given to an array is delayed by 1/4 period

relative to the clock signal of its left neighbor. With only these four clock signals, e

more sophisticated pipeline structures containing logical gates and flip-flops ca

realized [8].

2.3 Metal-island QCA

QCA cells can be also built from metallic tunnel junctions and very sm

capacitors[5]. There are two main differences between the semiconductor and the

dot QCA’s. (1) Capacitively coupled metal islands are used rather than Coulombi

coupled quantum-dots. Unlike the quantum dot, the metal island contains m

conduction band electrons. (2) A classical capacitive model can be applied instead

Schrödinger-equation model.

The only non-classical phenomenon is the tunneling of electrons between m

islands through tunnel junctions. The metal islands have a special feature: the

connected to the other islands through tunnel junctions. If these tunnel junctions

replaced by capacitors the island charge would be zero; however, through the t

junction an integer number of electrons can tunnel into or out of the island. Thus

charge of an island is an integer multiple of the elementary charge.
13
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In the case of the metal island cell it is helpful to first consider a double-dot, tw

the islands as the basic building element rather than a four dot cell. The two metal is

(“dots”) connected by a tunnel junction give abistable circuit element(See Fig. 2.6(a),

framed double dot). Depending on the input voltages, the excess electron will sho

P=+1 P=-1

a)

b)

Two-island bistable element

+ +

+ +

-

--

-

FIGURE 2.6. Metal-island QCA cell. (a) The QCA cell consists of two capacitivel
coupled bistable elements. Such a bistable element consists of two metal islands.
excess electron can be either in the top or in the bottom island, giving the two poss
charge configurations. (b) Symbolic representation of the two possible polarizations
the QCA cell.
14
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either at the upper dot or at the lower dot. By setting the input voltages the occupan

these dots can be determined, that is, we can set the “polarization” of this bistable ele

(Let +1 and -1 denote the two possible polarizations.)

As shown in Fig. 2.6(a), aQCA cellconsists of two of these bistable elements

half cells. It can have two polarizations: +1 if the two excess electrons are in the u

right and lower left islands, -1 if they are in the other two islands (Fig. 2.6(b)). If severa

these cells are placed in a line and they are coupled capacitively then by switchin

input voltage of the first cell a polarization change will be transmitted along the cell lin

in the case of the semiconductor cell. Logical and computational structures which c

implemented with the semiconductor QCA can also be realized with the metal island
15
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CHAPTER 3

 QUASI-CLASSICAL QCA DYNAMICS

Quite early in the development of QCA ideas it was realized that the quantization

of energy levels in the dots, is not crucial to QCA operation. All that is really required is

(approximate) charge quantization on the dot, and quantum-mechanical tunneling to

enable switching. The robustness of the QCA scheme is due in large measure to the fact

that the information is contained in classical degrees of freedom, while quantum effects

simply provide the “grease” that enables switching to occur. It was shown theoretically

that in principle, metallic islands connected by capacitive tunnel junctions could also be

used to realize QCA cells [5].

The first section of this chapter reviews the theory of metal-island circuits. In the

second section quasi-adiabatic switching is implemented with metal-island QCA. The

operation of the proposed three-island structure is explained in terms of phase diagrams.

The third section analysis the conductance lowering that occurs in the case of coupled

double-dots when both are conducting. The correlated electron transport is modelled with

master equations.

Unlike the semiconductor quantum-dot QCA, the metal island realization is

modelled quasi-classically. The circuits is described in terms of classical notions: charging

energy, capacitance, and occupancy. The only non-classical phenomenon is the interdot

tunneling. The dynamics are described by master equations instead of the Scrödinger

equation. Correlated electron motion takes place in the classical sense as the correlation of

dot occupancies.



upled

t as a

the

mic

the

s and

rge

static

ne by

ree

ing

tly an

land

e

3.1 Theory of metal-island circuits

A metal island system is composed of gate electrodes and metal islands, co

by tunnel junctions and capacitors. A tunnel junction can be described intuitively bes

“leaky” capacitor which lets electrons tunnel through. A metal island is connected to

environment through only tunnel junctions and capacitors (and not through oh

resistors) thus its charge is constrained to be (at T=0 K) an integral multiple of

fundamental charge.

The free energy of a configuration can be expressed in terms of the voltage

charges on gate electrodes and metal islands:

. (3.1)

Here C is the capacitance matrix that describes the structure of the circuit, thev vector

gives the voltage of the leads, andq andq’ are the island charge vector and the lead cha

vector, respectively. The first term of the energy expression describes the electro

energy stored in the capacitors and tunnel junctions. The second term is the work do

the sources transferring charge to the leads.

The equilibrium charge configuration for T=0 K temperature minimizes the f

energy. For T>0 K, higher energy configurations must also be included in comput

thermal expectation values. The measured island charge is then no longer stric

integer multiple of the elementary charge; it is rather the statistical average of the is

charge over accessible configurations.

In modeling tunneling events theorthodox theory[15-18] of single electron

tunneling was used, andco-tunneling[21-22,30-31] was neglected. The dynamics of th

F
1
2
--- q

q'

T

C
1– q

q'
v

T
q'– Eelectrostatic Wsources–= =
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system are governed by the following equation which gives the tunneling rate o

electron in a tunnel junction[20]:

, (3.2)

where∆Fij is the difference between the free energy of the initial and final states, andRT is

the tunneling resistance of the junction. In most cases the change in free energy equ

difference of the free energies of the initial and final charge configurations (∆Fij=Fi-Fj),

except for the transitions when the electron enters to or arrives from a voltage sour

these cases∆Fij=Fi-Fj±eVD, whereVD is the source voltage. The energyeVD is the work

done by the voltage source to raise the potential of an elementary charge from grou

VD.

If there are no voltage sources connecting through tunnel junction to the ci

(only grounding through tunnel junctions connects the circuit to the environment)

∆Fij=Fi-Fj for all the transitions and the tunneling rate depends only on the free en

difference of the initial and final configurations.

The tunneling rates will be used for amaster-equation[15-17,32] model. The

alternative approach would be the Monte Carlo method[41-42]. The master equ

method is preferable here since the system is near equilibrium so the number of

(charge configurations) required for modeling is not large. For the master equation m

the accessible charge configurations and the transition rates between them must be

The master equation has the form:

, (3.3)

Γij
1

e
2
RT

------------
∆Fij

1 e

∆Fij
kT

-----------–

–

-----------------------×=

dP
dt
------- ΓP=
18



onary

rcuit

rcuit

ies

the

te the

ster

ion
whereP is the vector containing the probabilities of occurrence of the states andΓ is a

matrix describing the state transitions. This equation can be easily solved for the stati

state.

If there are no voltage sources connecting through tunnel junctions to the ci

(for example,VD is such a voltage source in Fig. 3.1) then thePst,i stationary solutions are

given by the Boltzmann distribution:

, (3.4)

whereFi is the free energy of statei. In this case the current is of course zero.

If the voltages of the generators connecting through tunnel junctions to the ci

are small then thePst,i stationary solutions can be approximated with the probabilit

given by the Boltzmann distribution. The results are similar to those obtained from

master-equations. However, the Boltzmann distribution cannot be used to compu

current which is an inherently non-equilibrium phenomenon. Therefore the ma

equation approach is necessary for conductance computations.

Knowing the probability of occurrence for each state and the transit

probabilities, the current through a hypothetical current meter can be computed as

, (3.5)

Pst i,
e

Fi
kT
------–

e

Fk
kT
------–

k
∑
-------------------=

I e cij Pst i, Γi j→
i j,
∑=
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wheree is the elementary charge, is the transition rate from statei to statej, Pst,i is

the ith element of stationary solution of the (3.3) master equations. The coefficientcij is

zero if the transition from statei to statej does not involve current through the curren

meter, and it is +1 (-1) if during this transition an electron exits (enters) through

current meter.

The expectation value of a quantityA can be computed as

, (3.6)

whereAi is the value of the quantityA for the ith charge configuration. If there are n

voltage sources connecting through tunnel junctions to the circuit, then the Boltzm

distribution can be used for averaging:

. (3.7)

The master equation approach can also be used to compute the average tra

rate between two charge configurations, even if there is not a direct transition bet

them. For example the transition time from statei to statej (i<j) can be given in closed

form as

, (3.8)

where the matrix and the row vector are related toΓ. is obtained fromΓ omitting

its jth row and jth column. is obtained from thejth row of Γ, leaving out itsjth

element.

Γi j→

A〈 〉 Pst i, Ai
i

∑=

A〈 〉

e

Fi
kT
------–

Ai
i

∑

e

Fk
kT
------–

k
∑

-------------------------=

ti j→〈 〉 r '' j Γ̃
2–

0 … 0 1 0 … 0
T

=
i

Γ̃ r '' j Γ̃

r '' j
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In the last part of this section the formula for average transition time from statei to

statej (i<j ) will be deduced.The computations are based on the following model. Firs

the systems of the ensemble are in statei. Then the ensemble is allowed to evolv

according to the master equation describing its behavior. (Discussed later.) Eventua

the systems arrive at statej (Pj(∞)=1 ).The average transition time can be computed as

, (3.9)

where  gives the ratio of systems which reach statej during the∆t time interval.

When measuring transition time from statei to statej the systems already arrived

in statej should stay in statej and should not leave it. Thus theΓ’ coefficient matrix used

for average transition time computations is different from the originalΓ matrix of the

system. It can be obtained fromΓ by setting the elements of itsjth column to zero. (This

corresponds to the inhibition of all the transitions from statej.) The master equation with

the modifiedΓ’ coefficient matrix is:

. (3.10)

The P solution of this equation can be written in an exponential form. From this solu

the can be expressed and substituted into (3.9); however, the integration cann

done symbolically becauseΓ’ is not invertible. (To compute the integral given in (3.9) w

need the inverse ofΓ’.) Thus, before making the steps just mentioned, some additio

matrix manipulations are needed to makeΓ’ invertible.

ti j→〈 〉 t
td

dPj td

0

∞

∫=

td

dPj ∆× t

dP
dt
------- Γ'P=

td

dPj
21



he

The

are in

n:

it
One way to makeΓ’ invertible is to eliminate Pj from (3.10). Pj can be easily

eliminated because in thejth column of the coefficient matrix there are only zeros. T

elimination of Pj corresponds to changes in the coefficient matrix and the P vector.

new coefficient matrix, , is obtained fromΓ’ omitting its jth row andjth column. It can

be obtained fromΓ’ as well with the same transformation, becauseΓ’ and differ only in

the jth the column that was just omitted.  is formed by leaving out thejth element of P.

After the elimination of Pj the following master equation is obtained:

. (3.11)

The initial value of corresponds to the case when all the systems of the ensemble

statei:

. (3.12)

The time dependence of  can be given as the solution of the (3.11) master equatio

. (3.13)

For (3.9) we need the time derivative ofPj but (3.11) does not contain it because

was obtained after eliminatingPj. The time derivative ofPj can be found in (3.10). This

master equation represents a differential equation system. Thejth line of the equation

system that gives the required time derivative is:

, (3.14)

where is thejth row of Γ’. Knowing that thejth element of is zero (thejth column

of Γ’ is zero) this can be written with  as

Γ̃

Γ̃

P̃

dP̃
dt
------- Γ̃P̃=

P̃

P̃ 0( ) 0 … 0 1 0 … 0
T

=
i

P̃

P̃ t( ) e
Γ̃t

P̃ 0( ) e
Γ̃t

0 … 0 1 0 … 0
T

= =
i

td

dPj r ' jP=

r ' j r ' j

P̃

22
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, (3.15)

where is thejth row of Γ’ (and also ofΓ) omitting its jth element. Substituting first

(3.15) and then (3.13) into (3.9), the average transition time from statei to state j is:

. (3.16)

Using

, (3.17)

the transition time in a closed form is obtained as (3.8). The right hand side of (3.17

be computed because is invertible. The infinite integral can be evaluated because

only negative eigenvalues.

EXAMPLE 3.1

In this example the theory of modelling of the statics and dynamics

of metal island circuits will be explained using the example of a double-

dot. The circuit under study can be seen in Fig. 3.1. Electrons can tunnel

between the voltage source and the top island, between the top and the

bottom island, and between the bottom island and the current meter. Both

islands are capacitively coupled to external leads. Controlling theV1 and

td

dPj r '' j P̃=

r '' j

ti j→〈 〉 tr '' j P̃ td

0

∞

∫ r '' j tP̃ td

0

∞

∫ r '' j te
Γ̃t

t 0 … 0 1 0 … 0
T

d

0

∞

∫= = =

te
α– t

td

0

∞

∫ α 2–
=

Γ̃ Γ̃
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V2 lead voltages, the dot voltage and the occupancy of the dots can be

controlled. The more positive the dot voltage, there are more extra

electrons on the dot.

Our model involves all the 4 charge configurations having 0 or 1 dot

occupancies (00, 01, 10 and 11) and all the possible transitions connecting

them. These configurations and transitions are shown in Fig. 3.2. Notice

that there is no direct transition between state 3 and state 4. Current flow

through the double-dot if an electron exits to or enters from the

environment. Gray arrows are indicating the transitions where an electron

leaves from or enters to the bottom dot through the current meter.

(a) (b)

FIGURE 3.1. (a) The double-dot used in these section as an
example. (b) Symbolic representation of the double-dot.

V1 Vi1

VD

Vi2V2

I

~
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In modelling the circuit, the first step is to determine the free energy

of the four charge configurations. This can be done with (3.1) if we know

all the capacitances in the circuit. From the free energies of the charge

configurations theΓij tunneling rates from one configuration to the other

can be computed using (3.2).

The next step is to set up the (3.3) master equation. TheP

probability vector has four elements corresponding to the four

configurations:

E1 E2

E4

E3

c)b)

a)

FIGURE 3.2. Transitions between the charge configuration of a double-dot.
If the 01 and 10 charge configurations turn into each other directly then
current does not occur, however, current flows if these two states turn into
each other through the intermediate 11 and 00 states. In these cases an
electron leaves the system through the current meter connected to the
bottom dot as depicted on (b) and (c).
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. (3.18)

The coefficient matrix of the master equation can be obtained based on Fig.

3.2 is:

. (3.19)

Here theΓij  transitions rates were computed according to (3.2).

The Pi,st stationary probabilities can be obtained taking the time

derivatives to be zero in (3.3). The following system of four equations can

be obtained:

(3.20)

Notice that the four lines are not linearly independent since adding them

together one obtains zero. An additional constraint is needed:

. (3.21)

P P1 P2 P3 P4

T
=

Γ

Γ12 Γ13 Γ14+ +( )– Γ21 Γ31 Γ41

Γ12 Γ21 Γ23 Γ24+ +( )– Γ32 Γ42

Γ13 Γ23 Γ31 Γ32+( )– 0

Γ14 Γ24 0 Γ41 Γ42+( )–

=

.

Γ12 Γ13 Γ14+ +( )– Γ21 Γ31 Γ41

Γ12 Γ21 Γ23 Γ24+ +( )– Γ32 Γ42

Γ13 Γ23 Γ31 Γ32+( )– 0

Γ14 Γ24 0 Γ41 Γ42+( )–

P1

P2

P3

P4

0= .

P1 P2 P3 P4+ + + 1=
26



Replacing the last of the four lines of equation system (3.20) by (3.21) one

obtains:

(3.22)

This can be easily solved for the stationary probabilities since the

coefficient matrix is invertible.

After having the stationary probabilities of the four charge

configurations, the expression for current must be obtained. Current comes

from the transitions when an electron exits (enters) through the current

meter. These transitions are summarized in the following table:

cij is zero for all the other transitions. Substituting thecij values into (3.5)

one obtains the current

. (3.23)

The average transition time from state 1 to state 3 can be computed

according to (3.8):

Initial state
(i)

Final state
(j)

cij

3 2 +1

1 4 +1

2 3 -1

4 1 -1

Γ12 Γ13 Γ14+ +( )– Γ21 Γ31 Γ41

Γ12 Γ21 Γ23 Γ24+ +( )– Γ32 Γ42

Γ13 Γ23 Γ31 Γ32+( )– 0

1 1 1 1

P1

P2

P3

P4

0

0

0

1

=

.

I Γ32P3st Γ23P2st–( ) Γ14P1st Γ41P4st–( )+{ }e=
27



(3.24)

Next an example will be shown how to compute the expectation

value of a quantity. Let us definePDD polarization for the double dot as

, (3.25)

whereNtop andNbottomare the occupancies of the top and the bottom dots.

According to (3.6), the expectation value ofPDD can be computed

as

(3.26)

HerePDDi’s are the polarizations for the four charge configurations. (3.26)

leads to

. (3.27)

t1 2→
〈 〉

Γ12

Γ32

Γ42

T
Γ12 Γ13 Γ14+ +( )– Γ31 Γ41

Γ13 Γ31 Γ32+( )– 0

Γ14 0 Γ41 Γ42+( )–

2–

1

0

0

=

.

PDD Ntop Nbottom–=

PDD〈 〉 Pst i, PDDi
i

∑ Pst 1, 1–( ) Pst 2, 1( ) Pst 3, 0( ) Pst 4, 0( )+ + += = .

PDD〈 〉 Pst 2, Pst 1,–=
28
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[001]
3.2 Quasiadiabatic switching with metal-island QCA [9]

The semiconductor QCA implementation has remained the focus of develop

as the theory has been extended to large arrays of devices and computer archi

questions. A key advance was the realization that by periodically modulating the inte

barriers, clocked control of QCA circuitry could be accomplished. The modulation co

be done at a rate which is slow compared to inter-dot tunneling times, thereby keepin

switching cells very near the instantaneous ground state. This quasi-adiabatic swit

[8] paradigm has proven very fruitful. Quasi-adiabatic clocking permits both logic

addressable memory to be realized within the QCA framework. It allows a pipe-linin

computational operations.

Recently, the first experimental realization of a functioning QCA cell has b

reported. This was accomplished in the metal-dot system. The bistable behavior an

cell operation were confirmed. This experimental success raises the question as to w

the quasi-adiabatic switching can be implemented in the metal-dot system. The ba

between dots in this system are typically very thin slices of oxide. While there have

some promising experiments involving the modulation of such barriers[39], in genera

much harder to accomplish than in the semiconductor case. In this section we demon

a scheme for quasi-adiabatic switching of metallic QCA cells. The modulated barri

basically replaced by another dot, whose potential can be altered.

The circuit for the metallic half-cell is shown in Fig. 3.3(a). It contains thr

metallic islands. The occupancy of the three islands is represented by a triple of int

[n1 n2 n3]. During operation its occupancy can be [100], [010] or [001], as shown in

3.3(b). The [100] charge configuration corresponds to the polarization +1 case, the
29
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charge configuration corresponds to the polarization -1 case, while [010] represents

polarization.

The top and bottom islands are biased with respect to ground through (non-le

capacitors. The bias voltage raises the electrostatic potential of these islands (low

electron potential energy) so that an electron is attracted from ground into the three-i

chain. The top and bottom islands can be viewed as a double well system with the m

island acting as a controllable barrier.

Each of the three islands has a corresponding gate electrode. A differential in

applied to the gate electrodes for the top and the bottom islands. The half cell ca

switched from one polarization state to the other by this input voltage. The input ca

supplied externally or from another half-cell (as discussed in the next section).

voltage on the gate electrode for the middle island is used as a control. The

operational modes of the half cell (active, locked and null) can be selected by settin

voltage to one of three discrete levels corresponding to the three modes.

The three operational modes are shown schematically in Fig. 3.4(a-c).

switching in active mode is illustrated in Fig. 3.4(a). First the pictorial representatio

the process can be seen, then the energies of the [100], [010] and [001] configuratio

given during the switching. The differential input bias changes from positive to nega

Initially, the top electrode is at a positive potential while the bottom electrode is nega

resulting in the [100] configuration having the lowest energy. As V decreases, the en

of the [100] configuration increases and will be higher than that of the [010] configura

Thus the electron tunnels from the top island to the middle island, and the three-i

system is in the [010] configuration. Decreasing V further, the [001] will be the minim
30
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energy configuration, and therefore the electron tunnels to the bottom island. In Fig. 3

the locked operational mode is illustrated. The control electrode has a lower pote

(higher electron potential energy) than in active mode, so the electron cannot get

Vi1

Vi2

Vi3

Vc

-V

V

C

C

C2

C3

C2Input voltages

C1

C4

C4

U

U

Junction 1

Junction 3

Junction 2

+

-

+

-

FIGURE 3.3. Metal island half-QCA structure permitting adiabatic switching. (a)
The circuit consists of three metal islands connected to each other by tunn
junctions. Each island has a capacitively coupled electrode. Applying the V
differential input bias and the Vc control voltage the occupancy of the dots can b
determined. The middle island is grounded in order to provide an excess electron
the three island system that is necessary to realize the [100]/[010]/[001] charg
configurations. The two voltage sources are used to increase the potential of the t
and bottom islands to make the switching more abrupt. (b) The symbolic
representation for the three island system. The occupancies corresponding to
P=+1, P=-1 polarizations and the null state (indefinite polarization) are shown.

P=+1 P=-1 null state

a) b)
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middle island from the top one. In null mode the control electrode is at a higher pote

(lower electron potential energy) than in active mode thus the electron stays in the m

island regardless of the applied differential input bias as shown in Fig. 3.4(c). (

approach to quasi-adiabatic switching is similar to that reported in another context

[19].)

3.2.1  The physical background of the operation

We can model the quasi-static behavior of the circuits described by conside

only the energy of the various charge configurations of the system. We treat here on

zero temperature situation. The system is composed of gate electrodes and metal i

coupled by tunnel junctions and capacitors[15-18]. The gate electrode voltages are

by external sources, and the charge on each metal island is constrained to be an i

multiple of the fundamental charge. The electrostatic energy of a configuration ca

expressed in terms of the voltages and charges on gate electrodes and metal island

(3.28)

HereC is the capacitance matrix for the islands and electrodes,v is a column vector of

voltages on the gate electrodes,q andq’ are the column vectors of the island charges a

the lead charges, respectively. The first term of the energy expression describe

electrostatic energy stored in the capacitors and tunnel junctions. The second term

work done by the sources transferring charge to the leads. The equilibrium ch

configuration for T=0 K temperature minimizes this electrostatic energy.

For a QCA cell to be switched quasi-adiabatically, input and clock voltages

varied smoothly enough so that the cell is very close to its equilibrium ground s

E
1
2
--- q

q'

T

C
1– q

q'
v

T
q'–=
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-0

0

+
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-0

0

100 010 001

E E E

100 010 001 100 010 001

a)

b)

c)

100 010 001

E E E

100 010 001 100 010 001

FIGURE 3.4. The three operational modes. (a) Active operational mode. Th
electron tunnels from the top island to the bottom island through the middle island,
electrode voltages change. First the pictorial representation of this process is show
‘+’, ‘-’ and ‘0’ refers to the sign of the electrode voltages. Then the energies of the
[100], [010] and [001] charge configurations can be seen during the switching. Th
dot refers to the charge configuration the system occupies. (b) Locked operation
mode. The electron is locked in either the top or the bottom island, because the [01
configuration has much higher energy than the others. (c) Null operational mod
The electron is locked in the middle island, because the [010] configuration ha
much lower energy then the other two.
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configuration during the time it is switching. Thus during theactive mode of cell

operation, the cell should be in the configuration which minimizes the total electros

energy for the cell. The same is true for thenull mode.

The lockedmode, by contrast, is designed to provide a short-term memory,i.e., the

cell configuration is held to what it was in the immediate past so that the locked cell ca

used as a fixed input for another cell which is being switched. Thus it is by design

necessarily in the minimum energy configuration but may be in a metastable stat

model this requires knowing not just the minimum energy configuration, but also

allowed transitions between various configurations. For the QCA half-cell, the six b

allowed transitions are summarized in Fig. 3.5.

Notice that there is no transition directly from the top island to the bottom island. Th

important for the operation of the locked mode. Suppression of this transition is the re

that there is no direct tunneling path between either the top or bottom electrode

ground.

We can treat all these modes using a single modeling algorithm. As the input voltage

changed in small steps, at each step we examine whether an allowed transition

decrease the energy of the system. If so then the tunneling event takes

FIGURE 3.5. The six basic tunneling events that can happen in
the three-island structure shown in Fig. 3.3
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instantaneously and the dot occupancies change. This approach is only applicable

quasi-adiabatic situation we consider here. Refinements which would extend

calculations to high-frequencies would include specific tunneling rates in a Monte C

[41-42] or master-equation[15-17,32] approach and would include co-tunnelling

22,30-31] rates.

3.2.2  Operational modes

For simulations shown below parameters for capacitors and voltage sources were c

in the range of practically realizable values for metal islands fabricated with Do

shadow-evaporation techniques. They are also chosen in the design space to ful

requirement for a reasonable range for the input and control voltages. We have perfo

numerical simulations of the switching of a half-cell using the model described above

specific parameter values used were: C=420aF, C1=300aF, C2=25aF, C3=80aF, C4=200aF

and U=0.36mV. With this set of parameters the control voltages corresponding to loc

active and null operational modes are Vc = -0.18, 0.18 and 0.68mV, respectively. The inp

bias changes in the range of -0.3 and +0.3mV.

In Fig. 3.6 the transfer characteristics of this half cell can be seen in active m

that is, for Vc=0.18mV. It is piecewise linear, and the abrupt change in value and slop

due to tunneling events, thus the nonlinearity of the transfer characteristics comes fro

charge quantization on the metal island.

It is instructive to construct a diagram of the system state as a function of the i

voltage and Vc. Fig. 3.7 shows the equilibrium ground state “phase diagram” for

system as a function of these two voltages. For the null and active mode, this is suffi
35
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information to characterize the switching behavior. However for the locked mode

must assume a particular starting point. Fig. 3.8 shows this state diagram for the case

the input voltage is increasing from -0.45 mV to +0.45mV. For Vc chosen to keep the

system in the locked mode, this means that the system is initially in the [001] state a

kept there. The opposite situation is depicted in Fig. 3.9, where the system starts w

positive input voltage and is thus in the [100] case. The locked mode keeps it

because the [100]→ [001] transition is suppressed.

The three operational modes will be analyzed using the state diagram shown i

3.8. Taking Vc=0.18mV the circuit is in active operational mode. Following the arro

belonging to the 0.18mV level, the change of the charge configurations as V changes

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

V(mV)

V
i3

-V
i1

(m
V

)

-0.4             -0.2                0                 0.2               0.4

0.2

0.1

0

-0.1

-0.2

FIGURE 3.6. Transfer characteristics of the half cell structure given in Fig. 3.3 for
active mode. It is piecewise linear, and the abrupt change in value and slope are
due to tunneling events. In case of a metal island QCA the nonlinearity comes
from the charge quantization. Replacing the tunnel junctions with linear
capacitors the circuit would also be linear.
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+0.3 to -0.3mV can be read from the graph. The transition series belonging to this ca

[001]→[010]→[100]. The electron tunnels from the third island to the second island,

then moves further to the first island.

If V c is decreased to -0.18mV, the potential of the middle electrode also decreases a

electron from the islands on the sides can not get to the middle island. This is the lo

operational mode, the occupancy does not change even if the V bias voltage is chang

can be seen following the bottom arrow in Fig. 3.8.

V
c(

m
V

)

V(mV)

Point T

Locked operational mode, Vc=-0.18mV

-0.4     -0.3     -0.2    -0.1       0        0.1      0.2      0.3      0.4

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

FIGURE 3.7. Phase diagram of the half cell structure permitting adiabatic
switching. The minimal energy configuration is shown as a function of the
differential input bias V and the control voltage Vc. The control voltage level of the
locked operational mode is also shown.
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If V c is increased from the value it had in case of active mode to 0.68mV, then

electron will be drawn to the middle island. It will stay there independent of the in

voltages, as can be seen if one follows the top arrow in Fig. 3.8. This is the null operat

mode.

V(mV)

V
c(

m
V

)
Null operational mode, Vc=0.68mV

Locked operational mode, Vc=-0.18mV

Point T

Point M

-0.4     -0.3     -0.2    -0.1       0        0.1      0.2      0.3      0.4

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

Active operational mode, Vc=0.18mV

FIGURE 3.8. State diagram of the half cell for switching. It shows the occupancies
the three islands as the V differential input biasincreasedfrom -0.45 to +0.45mV for a
Vc range of -0.3 and 0.7mV. The voltage levels for the three operational modes
also shown. The charge configuration is also given for each region of the diagra
Note, that the [001] and the [100] phases seem to have a common border, but there
very “thin line” of [010] or [1,-1,1] phase between them. (The direct transition from
[001] to [100] is not possible.) The dots with a “+” sign refer to -1 electron on the do
that is an excess positive charge.
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The critical points on these state diagrams are labeled T and M. The values of V and Vc for

these points can be given analytically in terms of the circuit parameters. If we

 and , then

, (3.29)

, (3.30)

V(mV)

V
c(

m
V

)
Null operational mode, Vc=0.68mV

Locked operational mode, Vc=-0.18mV

-0.4     -0.3     -0.2    -0.1       0        0.1      0.2      0.3      0.4

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

Active operational mode, Vc=0.18mV

FIGURE 3.9. State diagram of the half cell for switching. The diagram shows th
occupancies of the three islands as the V differential input biasdecreasedfrom +0.45
to -0.45mV for a Vc range of -0.3 and 0.7mV. The voltage levels for the three
operational modes are also shown. The charge configuration is also given for e
region of the diagram. Comparing with Fig. 3.8, the differences are due that V chan
in the opposite direction.
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It is worthwhile to note that for higher Vc values similar graph to Fig. 3.8 could be draw

except for that the [100], [010] and [001] phases would be replaced by the [110], [

and [011] phases, respectively. If Vc is increased further, then the [120], [030], phas

[021] can be found in the diagram. Thus the only difference in the system behavio

higher (lower) Vc values is that the population of the middle island is increas

(decreased) by a constant. In this way it can be said that the system behavior is perio

Vc, and it is not more informative to draw a graph for a wider range of control voltag

The∆Vc periodicity of the phase diagram in the Vc direction is:

. (3.33)

3.2.3  QCA shift register

We construct a simulation of a cell line acting as a shift register, that is a 1D arra

capacitively coupled QCA cells. A QCA cell consists of two half cells as depicted in F

3.10(a). It can have three different occupancies: [001 100] for P=+1 polarization,

001] for P=-1 polarization and [010 010] for the null state as shown in Fig. 3.10(b).

adiabatic switching is realized with four different clock signals as it is shown in Fig. 3
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Due to these clock signals the operational mode of a half-cell in the line cha

periodically: active→locked→active→null.

The operation of a line of four cells can be seen in Fig. 3.11. Each line of the g

shows the polarization of a cell as a function of time. In the figure the parts are fra

where the cells are in locked operational mode. The state of the cell can be consi

valid only in this state, that is, it is supposed to be read externally only during this tim

The shift register is instructive because in principle each element could be rep

by a more complex computational unit. This is how more sophisticated processing c

be achieved in this paradigm. The designs of larger-scale functional units as review

Reference [3] can now just be taken over with this new cell design.

V V
-V -V

Vc
Vc

P=+1 P=-1 null state

a)

b)

FIGURE 3.10. Metal-dot QCA cell. (a) It consists of two half cells that
get the same control voltage. (b) The occupancies corresponding to the
P=+1, P=-1 polarizations and the null state.
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3.2.4  Conclusions

A structure was proposed to realize the adiabatic switching with metal-island QCA c

Adiabatic switching provides a solution for the crucial problem of ground st

computing, namely, that a larger system may settle in a metastable state instead

ground state. It also makes pipelining and constructing large, digital-like QCA circ

possible.
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FIGURE 3.11. Simulation of a QCA line of four cells. The top plot shows the V
differential input bias of the first cell as the function of time, the other four
graphs are the polarizations of the cells. (“0” refers to the null state.) The
polarization of a cell is valid if it is in the locked operational mode. In this case
the polarization is shown in the frame in the graph. Each cell follow their left
neighbor’s polarization with a delay.
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The core of the proposed QCA cell is a bistable element consisting of three m

islands, tunnels junctions, and capacitors. Its operation was presented in a simu

example, on the basis of phase diagrams. Beside an individual half cell the operatio

cell line was also shown.
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3.3 Conductance suppression in coupled double-dots [45]

The electrostatic interaction between two capacitively-coupled metal double-

is studied at low temperatures. Experiments show that when the Coulomb blocka

lifted by applying appropriate gate biases to both double-dots, the conductance th

each double-dot becomes significantly lower than when only one double-do

conducting. A master equation is derived for the system and the results obtained

well with the experimental data. The model suggests that the conductance loweri

each double-dot is caused by a single-electron tunneling in the other double-dot.

each double-dot responds to the instantaneous, rather than average, potentials on th

double-dot. This leads to correlated electron motion within the system, where the po

of a single electron in one double-dot controls the tunneling rate through the other do

dot (Correlated transport has also been discussed in the literature. Refs. 24, 27 a

analyze the transport of electron-hole pairs (excitons) through arrays of capaciti

coupled double-dots[49].)

The four metal (aluminum) dot system used in this experiment can be seen in

3.12(a). The voltage sources,VDleft andVDright, apply small biases, and currentsIleft and

Iright are measured. A symbolic representation of the four dots is shown in Fig. 3.1

The circles denote the dots, and the lines indicate the possibility of interdot tunneling

In measuring the conductance through one double-dot (DD) a significant (35-4

conductance lowering was observed if the other DD was also conducting. This wi

referred to asconductance suppressionin this paper. Our analysis reveals that the cause

the conductance suppression is correlated electron transport in the whole two-DD sy

that is, one DD responds to the instantaneous position of the electron in the other DD
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not to the average potential caused by the alternation of the charge configurations

other DD. In the latter case, the conductance lowering would not happen.

In the first subsection the experiments are explained in detail. In the se

subsection the experimental results and those obtained from the model are compare

Appendix gives some details about the computation of the current and the averageP=+1/

P=-1 transition time.

Vleft1

Vleft2

Vright1

Vright2

VDleft VDright

Right double-dot

1

2

3

4

a) b)

D1 D3

D2 D4

Cg1

Cg2

Cg3

Cg4

Cc2

Cc1

Ct

~ ~
J1

J2

J3

Left double-dot

Ileft Iright

Ct Ct

Ct

Ct Ct

FIGURE 3.12. (a) Two-DD system. The D1, D2, D3 and D4 denote the four metal
islands (dots). TheVDleft /VDright voltage sources and theIleft/Iright current meters are
used for double-dot conductance measurements. (b) The symbolic representatio
the system. The circles and the lines represent metal islands and tunnel junctio
respectively.
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3.3.1  Experiment

Fig. 3.13 is a micrograph of the four-dot structure. D1 and D2 are the left DD; D3

and D4 are the right DD. The Al/AlOx/Al tunnel junctions were fabricated on an oxidize

Si substrate using electron beam lithography and shadow evaporation[46]. The area

junctions was about 50x50 nm2. Measurements were performed in a dilution refrigera

with a base temperature of 10 mK. The electron temperature during the experimen

70 mK, according to independent temperature measurements[51]. The conductan

each DD was measured simultaneously using standard AC lock-in techniques withµV

excitation, and a magnetic field of 1 T applied to suppress the superconductivit

D1

D2

D3

D4

1.
4µ

m

FIGURE 3.13. Micrograph of the device which consists of four metal islands (do
denoted by D1, D2, D3 and D4.
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aluminum. Capacitances in the circuit (Ct≈1.44 e/mV,Cci≈0.9 e/mV,Cgi≈0.45 e/mV; See

Fig. 3.12.) were determined from periods of Coulomb blockade oscillations and

measurements[47]. To nullify the effect of parasitic cross-talk capacitances between

and nonadjacent gates, a charge cancellation technique, described elsewhere[48

used.

In the experiment we considered the behavior of a QCA cell, consisting of the

double-dots, to determine the best conditions for QCA operation. The signs of the

biases were chosen to allow movement of an electron within a double-dot while kee

the total number of electrons constant. We noticed that conductance decreased i

DDs whenever both were conducting.

To understand the experiment we need to examine the charging processes of

DD system. The behavior of one DD can be described by the so-calledhoneycomb[15-

17,33] graph. This is a phase diagram giving the minimum energy charge configura

as the function of the two electrode voltages. For the whole two-DD system, the elec

voltages of both DDs must also be included in the full description; however, this wo

mean that the ground state charge configuration must be given as a function of

parameters. In our experiment symmetric input voltages were applied for the DDs.

reduces the number of parameters to two and the occupancy can now be given

function ofVleft=Vleft1=-Vleft2andVright=Vright1=-Vright2.

Fig. 3.14(a) shows the phase diagram of the two-DD system if there is no coup

(Cci=0) between the left and right DD. The phases corresponding to different minim

energy charge configurations are separated by lines, similar to the usual honeycomb

However, a phase is now described by the occupancy of all four dots. (The ove
47
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denotes negative sign in the figure, e.g.,1=-1.) The left two numbers belong to the left DD

and the right two belong to the right DD. We denote the occupancy by [N1N2;N3N4] where

Ni is the occupancy of the dot Di. Note, that for the phase aroundVleft=Vright=0 we choose

the [01;01] occupancy of our reference instead of [00;00]. It corresponds to simply a

shift of the operating point. In Fig.4(a) the two DDs are independent of each other

increasing theVleft (Vright), only the occupancy of the left DD (right DD) changes. Th

occupancy of one dot of the DD increases by one, the other dot’s occupancy decrea

one.

Fig. 3.14(b) shows the phase diagram for non-zero coupling between the D

The points where four phase borders meet are now split into two triple points. The sq
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FIGURE 3.14. (a) The phase diagram of the two-DD system if there is no coupling
(Cci=0) between the left and right DDs. The figure shows the [N1N2;N3N4] most
probable charge configuration as the function of the input voltages. (b) The phas
diagram of the two-DD system when the left and right DDs are capacitively coupled.
The framed part of the phase diagram is studied in this paper. At the phase borde
one of the DDs (e.g., [01;10]/[01;01]) or both of them (e.g., [01;10]/[10;01])
conduct. The arrow corresponds to QCA operation.
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shaped phase regions turn into hexagons. In Fig. 4(b) the crucial region of the p

diagram, which we examine experimentally, is framed. There are four phases in

region: [01;01], [01;10], [10;01] and [10;10]. During QCA operation theVright voltage is

kept constant andVleft changes sign. The system moves on a horizontal line in the ph

diagram (shown by the arrow). By choosing an appropriateVright, this horizontal line will

cross the phase border between the [10;01] and [01;10] phases, corresponding

transition from one polarization state to the other.

Figs. 3.15(a) and (b) show the phase borders where the left DD and the right

respectively, conduct. The experimental results of the conductance measure

corresponding to the framed parts of Figs. 3.15(a) and (b) are shown in Figs. 3.16(a

(b). When only one DD conducts, the height of the conductance peak at the bord

almost independent of the applied input voltages. However, at the phase borders,

a) b)

FIGURE 3.15. The phase borders where the (a) left and the (b) right DD conducte
conductances for the framed part are shown in Fig. 3.16 magnified.
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both DD conduct, the conductance is significantly (up to 35-40%) decreased.

conductance lowering in the left and right DDs is clearly visible in the center of

corresponding conductance graphs of Figs. 3.16(a) and (b). The conductance loweri

FIGURE 3.16. Comparison of the (a-b) measured and the (c-d) calculated conduct
curves of the left and right double-dots. The conductances are given as a functio
Vleft andVright. In (d) the∆Vright voltage shift is the effect of the change of occupanc
in the left DD. The 10, 20, 30, 40 and 50 nS contours are shown. The conducta
suppression is clearly visible in the center of the graphs. For (c) and (d) the insets s
the three-dimensional conductance plots. The curves corresponding to the t
vertical lines in (b) are given in Fig. 3.17.
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be also seen in Fig. 3.17, where the conductance of the right DD is given as a functi

Vright for three differentVleft voltages. It is this lowering which the theoretical analysis

the next two sections will explain.

3.3.2  Results and discussion

Based on the numerical solution of the master equations, Figs. 3.16(c) an

show the calculated conductances of the left and right double-dots as the functions oVleft

FIGURE 3.17. The measured (crosses and dots) and computed (solid lin
conductance curves as the function ofVright for three differentVleft voltages. The
curves correspond to the three vertical lines in Fig. 3.16(b).
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andVright. (Compare with the experimental graphs shown in Figs. 3.16(a) and (b).) In

3.17 the computed conductance (solid line) and the measured conductance (cross

dots) curves are shown as the function ofVright for three differentVleft voltages. For the

temperature the measuredT=70 mK was taken[51]. Due to the unknown backgroun

charge, the conductance curve was allowed to shift rigidly in theVleft andVright plane for

fitting. The model uses the tunneling resistance as fitting parameter. The results o

calculations agree with the experiment upon takingRT=430 kΩ. (The measured room

temperature resistance of the tunnel junctions varied between 400 and 550 kΩ.) It can be

observed that the conductance is lower on the phase border where both DDs cond

the center of the graphs in Figs. 3.16(c) and (d)), which matches the experiments.

We have shown that the solution of the master-equations for the two-DD sys

quantitatively agrees with the measured data. The master-equation model describ

correlated electron transport through the two DDs. This statement can be support

computing the correlation between the charge polarization of the two DDs. The ch

polarization of a DD is defined with the occupancy of the top and bottom dots as

. (3.34)

It is +1 and -1 for the [10] and the [01] double-dot charge configurations, respectively

define the correlation function between the double-dots as:

, (3.35)

PDD Ntop Nbottom–=

Cpp PleftPright〈 〉 Pleft〈 〉 Pright〈 〉–=
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where denotes the thermal expectation value. This correlation function woul

zero if each DD only responded to the average charge on the other. In Fig. 3.1

dependence of the correlation function is shown on the input voltages.Cpp has a peak at

the origin, where the conductance lowering occurs. Further from the origin its valu

zero, indicating that there is no correlation between the double-dots there. The inset

the temperature dependence of the correlation peak. The correlation between the d

dots decreases with increasing temperature. At the experimental temperature, the he

the correlation peak is .

…〈 〉

FIGURE 3.18. The correlation between the top dots of the two DDs as a function ofVlef
andVright for T=70 mK. The correlation is maximum at the origin where the conductae
lowering occurs. The inset shows the temperature dependence of the correlation pt
decreases with increasing temperature.
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Correlated electron transport through the two DDs means that one DD respon

the instantaneous electron position in the other DD. It is instructive to examine w

would happen if one DD responded only to theaveragecharge density of the other DD

Fig. 3.19 shows the calculated conductance of the right DD in this case. (See Fig. 3.

for comparison.) The conductance of the right DD was computed placing static char

the left DD, corresponding to its time averaged charge density. The conductance low

cannot be seen, and this also implies that the electron transport through the two D

correlated.

FIGURE 3.19. The calculated conductance of the right DD for the case if the right D
responded to the average charges on the left DD. In the graph, the 10, 20, 30, 40
50 nS contours are shown. The conductance lowering is not seen in this fig
(Compare with Fig. 6(d).)
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In Fig. 3.16(d)∆Vright denotes the voltage shift in the conductance graph of

right DD due to the change of occupancy in the left DD. If the coupling capacitanc

higher between the two double-dots, this voltage shift and the conductance lowering

be larger[50]. However, if the two double-dots are coupled with smaller capacitan

∆Vright and the conductance lowering decreases. In the limit of uncoupled D

conductance lowering does not occur and∆Vright=0.

We can use this analysis to estimate theP=+1/P=-1 transition rate. The results o

the computations give 50MHz for this particular two-DD structure. During theP=+1/P=-1

transition the input voltage of the left DD is changed, while the input voltage of the r

DD is kept constant. The input voltage of the left DD is changed in such a way th

mimics the switching of an adjacent cell[44].Modifying the capacitances, especially

coupling between the two DDs, and decreasing the resistance of the tunnel junction

increase the transition frequency[50].

3.3.3  Conclusions

In this section electron transport through coupled double-dots has been ana

Experimentally, a suppression of conductance in one double-dot was observed wh

second double-dot was conducting. This is explained theoretically in terms of

correlation of electron motion in the system. A model has been developed which r

accurately reproduced the experimental data. The straightforward interpretation o

model is that the electron in one double-dot responds not just to the time ave

fluctuations of charge in the neighboring double-dot, but to the instantaneous ch

configuration. This leads to a non-vanishing correlation in the coupled electron motio
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CHAPTER 4

 QCA QUANTUM DYNAMICS USING THE STATE VECTOR DESCRIPTION

Unlike the metal-island implementation, that is strongly coupled to the heat b

the semiconductor realization of the QCA can be modelled as a coherent system

the Scrödinger equation can be used for its description. A QCA cell consists of

quantum dots and two electrons. Ignoring spin, a cell can be described by a 16 ele

state vector[8]. For the line ofN cells a16N elements state vector is required.

The large number of vector elements needed for state description mak

difficult to model QCA arrays. Fortunately, according to Ref. [8] its is possible

consider a QCA cell as a two state system. The Hamiltonian for a QCA line as a

state system is:

, (4.1)

whereEk is the kink energy (the energy of two cells being oppositely polarized) andγ is

the tunneling energy.γ is zero, if the interdot tunneling barriers in the cells are high a

the tunneling rate is very low (zero).γ is large, if the he interdot tunneling barriers in th

cells are low and the tunneling rate is high. The tunneling barriers of the cells

connected to electrodes and their heights is controlled externally by voltage source

Ĥ γ– σ̂x i( )
Ek

2
------– σ̂z i( )σ̂z i 1+( )

i 1=

N 1–

∑
i 1=

N

∑=
56



pin

the

the

ee-

ent

the

s the

size

rapid

and

uter

for
The Hamiltonian of a QCA cell line has the same form as that of an Ising s

chain in transverse magnetic field.Ek/2 andγ plays the role of theJ exchange energy and

the transverse magnetic field, respectively.

The polarization of thekth cell can be interpreted as the expectation value of

σzk Pauli spin matrix:

. (4.2)

With the negative sign we follow the convention of Ref. [57] choosing the sign of

Pauli spin matrices:

, , and . (4.3)

Considering the QCA cell line, as coupled two-level systems, for a line ofN cells

a 2N element state vector is needed. (This model will be referred to later asfull-

Hamiltonianmodel.) This number can be further reduced with the intercellular Hartr

Fock approximation.

The dynamics of a cell line can be obtained from solving the time-depend

Scrödinger equation numerically with the (4.1) Hamiltonian. The initial state of

simulation should be the ground state wave vector that can be obtained a

eigenvector of (4.1) with the minimal eigenvalue (energy). The Hamiltonian and the

of the state vector increases exponentially with the number of cells causing the

increase in memory and computational time with the increase of cell number

limiting the maximum length of a cell line that can be simulated on a personal comp

to about 10-15 cells. This limit can be improved by using sparse matrix routines

matrix algebra and eigenvalue computation.

Pk σ̂zk〈 〉–=

σ̂x
0 1

1 0
= σ̂y

0 i

i– 0
= σ̂z

1– 0

0 1
=
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4.1 The intercellular Hartree-Fock approximation

The Hartree-Fock intercellular approximation decouples the line ofN cells intoN

single-cell subsystems, which are coupled “classically” through expectation values

Hamiltonian for thejth cell is:

. (4.4)

(Compare with (4.1).) Introducing

. (4.5)

and using the matrix form of the Pauli spin operators, the 2x2 Hamiltonian matrix ca

obtained as:

. (4.6)

4.1.1  The dynamics of a cell block

The dynamics of the cell line is given by coupled single-cell time-dependent Scrödi

equations. The Scrödinger equation of thejth cell is:

, (4.7)

where the two element state vector can be given as:

. (4.8)

Ĥ j γ j σ̂x j( )–
Ek

2
------– σ̂z j( ) σ̂z j 1–( )〈 〉 σ̂z j 1+( )〈 〉+( )=

Pj σ̂z j 1–( ) σ̂z j 1+( )+( )– Pj 1– Pj 1++= =

Ĥ j

1
2
---PjEk– γ j–

γ j–
1
2
---PjEk

=

ih
t∂

∂ ψ j| 〉 Ĥ j ψ j| 〉=

ψ j| 〉 α j 1| 〉 β j 1–| 〉+
α j

β j

= =
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The QCA cell is modeled as a two-state level. Its state is given as the li

superposition of the polarization +1 and -1 states.

According to (4.8), a cell is described by two complex or, equivalently, four r

numbers. For a line ofN cell, 2N complex numbers are needed. However the degree

freedom is less than that because the elements of the state vectors must fulfi

constraint:

. (4.9)

Moreover, in each cell, due tophase arbitrariness, the state vector can be multiplied by

phase factor (with absolute value one) without changing the physics. Due to these tw

have, in fact, only two (real) degrees of freedom instead of four. Therefore it se

reasonable to eliminate the extra two variables from the (4.7) Scrödinger equation a

describe the QCA cell by two variables.

Let us choose the two variables to be theP polarization

, (4.10)
and theφ phase:

. (4.11)

With these the state vector can be written as

, (4.12)

ψ j| 〉

α j
2 β j

2
+ 1=

P α 2 β 2
–=

ϕ β
α
--- 

 arg=

ψ

1 P+
2

-------------e
iδ

1 P–
2

------------e
i ϕ δ+( )

=
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whereδ is the arbitrary phase. Substituting (4.12) into (4.7) and eliminatingδ, we get [52]:

(4.13)

and

. (4.14)

Notice thatP represents a classical degree of freedom — it is related to expectation v

of observables. By contrastφ is a fundamentally quantum variable, a quantum mechan

phase. BesideP and φ, κ and φ are another possible choice for state variables. Th

defining equations are

, (4.15)

and

. (4.16)

TheP polarization can be given withκ as

. (4.17)

After some algebra, the state equations with these two state variables are obtained:

, (4.18)

and

. (4.19)

Compare this result with the (4.13) and (4.14) state equations forP andφ.

h
td

d
Pj 2γ 1 Pj

2
– ϕ jsin–=

h
td

d ϕ j PjEk 2γ
Pj

1 Pj
2

–
--------------------- ϕ jcos+–=

κ
2
---cos α= κ

2
---sin β=

ϕ β
α
--- 

 arg=

P α 2 β 2
– κ

2
---cos 

  2 κ
2
---sin 

  2
– κcos= = =

h
dκ j

dt
-------- 2γ φ jsin=

h
dφ j

dt
-------- PjEk– 2+ γ κ j( ) φ jcoscot=
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4.1.2  Computing the stationary state of a cell block

Taking all the time derivatives to zero in (4.13) and (4.14), and assumingφj=0, the

steady state polarization of a cell can be computed as

. (4.20)

This formula can be used for iterative methods that find the stationary states of a

block. First a polarization value is assigned to all the cells. Then the ’s, the sum

the polarizations of the neighbors are computed. From the ’s the polarizations

be computed according to (4.20). The last two steps must be repeated until the polari

of the cells do not change any more.

If the cell has only one neighbor, a driver cell, then the well-knownnonlinear cell-

to-cell response function[8] is obtained from (4.20) as shown in Figure 4.1. Note th

mathematically (4.13) and (4.14) has another steady state solution, where both

derivatives are zero andφj=π, however, it can be proved that this is a non-stab

equilibrium.

If the driver polarization is near zero then the slope of the curve is

. (4.21)

The method can be extended for more complex structures, e. g., for the ma

gate shown in Figure 4.2.

Pj

Ek

2γ
------P

j

1
Ek

2γ
------P

j 
 

2
+

----------------------------------=

Pj Pj

Pj Pj

dP
dPd
---------

Ek

2γ
------≈
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FIGURE 4.1. Nonlinear cell-to-cell response function. The steady-state polarization
cell as a function of the polarization of the driver. According to (4.21) the slope of
curve at the origin is Ek/2γ=0.2 (See the slope of the dotted line).
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Three driver cells
FIGURE 4.2. Majority gate. If the interdot barriers are high (γ/Ek is small), then the
polarization of the output cell is the same as the majority of the driver ce
polarizations.
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. (4.22)

If the sum of the three driver polarizations is positive then the polarization of the cell

be also positive, and if the sum is negative then the driver polarization will be negativ

The steady state polarization of an infinite cell line can be obtained substitu

 into (4.20):

. (4.23)

Notice that the cell line has a steady state polarization only forEk>γ.

P

Ek

2γ
------ Pdriver1 Pdriver2 Pdriver3+ +( )

1
Ek

2γ
------ Pdriver1 Pdriver2 Pdriver3+ +( ) 

 
2

+

------------------------------------------------------------------------------------------------------=

Pj 2P=

Psaturation 1
γ
Ek
------ 

  2
–±=
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4.2 Linearization of the state equations

In this section the QCA state equations will be linearized around the equilibr

polarization and phase of an infinite cell line. The linearized equations are valid for s

deviation in the polarization and phase from this equilibrium value. It will be shown

(sine) wave propagation through the cell line is possible only in a very narrow frequ

range. This will be demonstrated by simulation results. Moreover it will be shown tha

behavior of the additive noise or disturbance during a wave front propagating in the

array can be understood via the examination of these small amplitude waves

oscillations.

4.2.1  Linearization of the variables around the equilibrium point

Now let us consider a cell with its left and right neighbors in a cell line. Assu

that the phase and the polarization of the cell and the polarization of the left and the

neighbors in the one-dimensional cell line differ from their equilibrium values only a v

little:

(4.24)

(4.25)

, and (4.26)

. (4.27)

Using (4.23), the equilibrium values are:

 and (4.28)

P P0 ∆P+= ,

φ φ0 ∆φ+= ,

PLeft PLeft0 ∆PLeft+=

PRight PRight0 ∆PRight+=

P0 PLeft0 PRight0 1
γ
Ek
------ 

  2
–= = =
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. (4.29)

The linearizations of (4.13) and (4.14) around the equilibrium point are

(4.30)

(4.31)

,

where RHS1 and RHS2 are the right hand sides of the two state equations(4.13

(4.14):

(4.1)

(4.2)

.

The derivatives of (4.1) and (4.2) are obtained as

(4.1)

(4.2)

, (4.3)

(4.4)

(4.5)

(4.6)

φ0 0=

h
d∆P
dt

----------- ∂RHS1
∂∆P

------------------
equ

∆P× ∂RHS1
∂∆φ

------------------
equ

∆φ×+= , and

h
d∆φ
dt

---------- ∂RHS2
∂∆P

------------------
equ

∆P× ∂RHS2
∂∆φ

------------------
equ

∆φ×+ +=

∂RHS2
∂∆PLeft
-------------------

equ

∆PLeft× ∂RHS2
∂∆PRight
----------------------

equ

∆PRight×+

RHS1 2γ 1 P0 ∆P+( )2
– φ0 ∆φ+( )sin–= , and

RHS2 2γ
P0 ∆P+( )

1 P0 ∆P+( )2
–

-------------------------------------- φ0 ∆φ+( )–cos=

Ek PLeft0 ∆PLeft PRight0 ∆PRight+ + +( )

∂RHS1
∂∆P

------------------
equ

2γ–
P0

1 P0
2

–
---------------- φ0sin 0= = ,

∂RHS1
∂∆φ

------------------
equ

2γ– 1 P0
2

– 2γ γ
Ek
------×–== ,

∂RHS2
∂∆P

------------------
equ

2γ
P0

2

1 P0
2

–( )
3 2⁄------------------------- 1

1 P0
2

–
----------------+

 
 
 
 

φ0cos 2γ
Ek

γ
------ 

 
3

×= =

∂RHS2
∂∆φ

------------------
equ

2γ–
P0

1 P0
2

–
---------------- φ0sin 0= = ,

∂RHS2
∂∆PLeft
-------------------

equ

Ek–= , and

∂RHS1
∂∆PRight
----------------------

equ

Ek–= .
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Substituting (4.1-4.6) into (4.30) and (4.31), the linearized state equations

obtained as

 and (4.7)

. (4.8)

Equations (4.7) and (4.8) are two first order differential equations. They descr

cell by two state variables,∆P and∆φ. It is possible to eliminate one of the state variable

and get the cell state equation as a second order differential equation.

To do that, first∆φ must be expressed from the (4.7) linearized state equation:

, (4.9)

 and then be substituted into equation (4.8):

. (4.10)

Hence, the state equation as a second order differential equation is obtained as

. (4.11)

h
d∆P
dt

----------- 2γ2

Ek
--------– ∆φ×=

h
d∆φ
dt

----------
2Ek

3

γ2
--------- ∆P× Ek ∆PLeft ∆PRight+( )×–=

∆φ
hEk

2γ2
---------–

d∆P
dt

-----------×=

h
2
Ek

2γ2
-----------–

d
2∆P

dt
2

-------------×
2Ek

3

γ2
--------- ∆P× Ek ∆PLeft ∆PRight+( )×–=

h
2d

2∆P

dt
2

------------- 2Ek( )2 ∆P×– 2γ( )2
∆PLeft ∆PRight+( )

2
----------------------------------------------------×+=
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4.2.2  Small amplitude wave propagation

Equation (4.11) can be used to find the small amplitude polarization waves tha

able to propagate in the cell line. Assuming that the shape of the wave front doe

change during the propagation, for∆PLeft and∆PRight must stand:

 and (4.12)

, (4.13)

where∆tcell is the time that is necessary for the wave front to pass a cell. From (4.

(4.12) and (4.13) it follows that

. (4.14)

Without loss of generality, only the∆tcell>0 case will be considered.

Equation (4.14) is linear, that is, if∆P1(t) and ∆P2(t) are the solutions of the

equation then c1∆P1(t)+c2∆P2(t) is also a solution. The solution can be looked for as

sum of sinusoidal waves:

. (4.15)

For the sake of simplicity, let∆P have the form:

. (4.16)

After some elementary steps the allowed angular frequencies (ωk) will be obtained as a

function of∆tcell. In the following part we will neglect thek index. The second derivative

of (4.16) with respect to the time is:

∆P
Left t( ) ∆P t ∆– tcell( )=

∆PRight t( ) ∆P t ∆tcell+( )=

h
d

2∆P

dt
2

------------- t( ) 2Ek( )–
2 ∆P t( )× 2γ( )2 ∆P t ∆– tcell( ) ∆P t ∆tcell+( )+

2
------------------------------------------------------------------------×+=

∆P t( ) Ak ωkt φk+( )sin
k

∑=

∆P t( ) A ωt φ+( )sin=
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(4.17)

The terms containing time delay can be expressed as:

, (4.18)

and

. (4.19)

Hence

. (4.20)

From (4.16) and (4.20) one can get

. (4.21)

Substituting (4.16), (4.17) and (4.21) into equation (4.14) we got for∆P(t):

. (4.22)

After ∆P(t) is eliminated, the relationship betweenω and∆tcell is obtained as

. (4.23)

From this equation the range of the possible angular frequencies can be obta

(Remember that this is the angular frequency of the oscillation of a cells in the array

(4.24)

d
2∆P

dt
2

------------- t( ) Aω2
– ωt φ+( )sin ω2∆P t( )–= =

∆P t ∆tcell+( ) A ωt φ+( ) ω∆tcell( )cossin ωt φ+( ) ω ∆tcell( )sincos+( )=

∆P t ∆tcell–( ) A ωt φ+( ) ω∆tcell( )cossin ωt φ+( ) ω∆tcell( )sincos–( )=

∆P t ∆– tcell( ) ∆P t ∆tcell+( )+

2
------------------------------------------------------------------------ A ωt φ+( ) ∆tcell( )cossin=

∆P t ∆– tcell( ) ∆P t ∆tcell+( )+

2
------------------------------------------------------------------------ ω∆tcell( )∆P t( )cos=

ω2∆P t( )–
2Ek

h
--------- 

 –
2

∆P t( ) 2γ
h
------ 

  2
ω∆tcell( )∆P t( )cos+=

ω2 2Ek

h
--------- 

 
2 2γ

h
------ 

  2
– ω∆tcell( )cos=

2Ek

h
--------- 1

γ
Ek
------ 

  2
– ω<

2Ek

h
--------- 1

γ
Ek
------ 

  2
+<
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In many practical cases the interdot tunneling barriers are relatively high thusEk»γ,

so the angular frequency of the oscillation is restricted to a very narrow range.

If ∆tcell =0 then

. (4.25)

In this case the polarization of the whole cell block changes together. The frequen

this oscillation is:

. (4.26)

Let us consider a concrete example with the following cell parameters:

 and . (4.27)

The saturation polarization is

. (4.28)

∆PLeft t( ) ∆PRight t( ) ∆P t( )= =

ω
2Ek

h
--------- 1

γ
Ek
------ 

  2
–=

Ek

h
------ 0.25= γ

h
--- 0.05=

Psaturation 1
γ
Ek
------ 

  2
– 0.9798=±=
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According to (4.24) the range of possible angular frequencies . T

corresponding period time range is . Fig. 4.3(a) and (b) show

possible(ω,∆tcell) pairs.

4.2.3  Simulation results

The left edge of a cell block of sixty cells was excited with a sinusoidal signal w

small amplitude and different angular frequencies. In correspondence with the theor

results it was found that for the frequencies that were in the range given above

started to propagate form the excited edge. On the other edge it was reflected and sta

propagate backward. Thus a standing wave appeared as a superposition of the two

propagating into opposite directions.

0.4899 ω< 0.5099<

12.3223 T< 12.8255<
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FIGURE 4.3.∆tcell as a function of the angular frequency(ω) of the
oscillation of a cell. (b) Magnification of the framed (and relevant)
part of (a).
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Fig. 4.4 shows the polarization and phase curves after 2000 time units forT=12, 12.5 and

13.5, respectively. Resonance was experienced only in case ofT=12.5.

The cell block was tried also with non-sinusoidal excitation. The square wave

exciting the left driver cell is shown in Fig. 4.5(a). The polarization of the first cell can

seen in Fig. 4.5(b). In this system only a very narrow frequency range can propagate
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FIGURE 4.4. Polarization and phase of a cell block of sixty cells exciting the left ed
with a sinusoidal for (a)T=12, (b)T=12.5, and (c)T=13.5. Resonance occurs for (b)
because the excitation frequency is in the allowed range.
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even the polarization of the cell beside the driver cell is a sinusoidal function of time. (

higher frequency components of the square wave were “filtered” out.)

. Next, the driver cell was excited with the sum of two sine waves with period ti

T=12.4 and 12.7, respectively. Both period times are in the allowed range.

polarization and phase of a cell, as a function of time is shown. It is easy to recogniz

envelope of the shape in Fig. 4.6.

Fig. 4.7 shows the state of the system in case of sinusoidal excitation (T=12.5)

between 8000-8120 time units. (The sinusoidal excitation of the left edge started at

Now time is measured along the vertical axis, increasing from the top to the bottom.

propagation of the waves can be seen on the left hand side, while the checkerboa

pattern on the right hand side indicates standing waves. The standing waves are the

of the superposition of the waves propagating from the excited driver to the right an

reflected waves propagating to the left.
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4.2.4  Conclusions

In this section, the small amplitude polarization oscillation of the QCA on

dimensional cell array was examined linearizing the cell line around the equilibrium.

saw that wave propagation is possible only in a very narrow frequency range. This

amplitude oscillation can be experienced as “noise” or disturbance added to the exp
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FIGURE 4.7. Polarization of a cell block of sixty cells exciting the left edge with a
sinusoidal (T=12.5). This graph shows the state after 8000 time units. From the lef
edge the propagation of the wave can be seen.∆tcell is about 3.3 time units. At the
right edge standing waves appeared because the propagation has already reache
right edge and the wave is reflected. The superposition of the original and th
reflected wave gives a standing wave.
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wave fronts. Fig. 4.8. shows a snapshot of a propagating wave front. Fig. 4.9. show

time function of the polarization and the phase of the 15th cell in the former system from

t=500 time units to 550 time units. The small oscillation can be seen and the period tim

the oscillation is about 12.5 time units, as it was expected. Knowing the allowed frequ

range it is possible to avoid these disturbances in practical applications.

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ol

ar
iz

at
io

n

0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

FIGURE 4.8. Wave front propagation in a one-dimensional cell block. Note th
disturbances added as a noise to the expected shape

P
ha

se

Cell NumberCell Number

0 10 20 30 40 50 60
0.9775

0.978

0.9785

0.979

0.9795

0.98

0.9805

0.981

0.9815

P
ol

ar
iz

at
io

n

0 10 20 30 40 50 60
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

P
ha

se

Time
FIGURE 4.9. Polarization and phase of the 15th cell in the one dimensional cell
block of Fig. 4.8, as function of the time starting fromt=500 time units. The period
time of the small amplitude oscillation is about 12.5 time units.

Time
75



ted.

ased

right

eir

s in

e front

ction

nce of

t

4.3 Dynamics of a one-dimensional QCA array

In this section the behavior of a one-dimensional QCA array will be investiga

The propagation and collision of polarization wave fronts and waves will be analyzed b

on simulation results.

In Fig. 4.10 an array of 30 QCA cells can be seen. The cells at the left and

edges (that is, the 0th and the 31th cell) are called driver cells, as shown in Figure 4.10. Th

polarization can be set externally.

The initial polarization of the cell array was -1. Then by driving the left and the right cell

different ways, the behavior of the cell array was examined.

In subsection 1 the state equations are presented and the propagation of a wav

is demonstrated. In subsections 2 the collision of two wave fronts is analyzed. In subse

3 an example is shown how to decompose a more complex wave shape into a seque

the previous two phenomena.

0 1 2 3 4 313028 29

DRIVER CELL DRIVER CELL

LEFT RIGHT

ARRAY OF 30 QCA CELLS

FIGURE 4.10. Array of 30 QCA cells with two driver cells at the right and the lef
edges, respectively. The polarization of the driver cells can be set externally.
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4.3.1  Propagation of a wave front

Every cells in the QCA array is described by two state variables:P (polarization) andφ

(phase). The two state equations, rewriting (4.13) and (4.14), for thejth cell are given by:

, and (4.29)

, (4.30)

whereEk, γ and are constants andP is the sum of the polarizations of the neighborin

cells.

. (4.31)

From (4.29) it follows that the cell polarization does not change if and only ifsin φ=0.

(One might think thatPj=+1 would make the right hand side of (4.29) zero, howev

Pj=+1 is not allowed because it leads to infinity on the right hand side of (4.3

Consequently in equilibriumsinφ=0. The polarization decreases ifsinφ >0 and it increases

if sinφ<0. These basic considerations help us to understand the graphs in the follo

sections.

The simplest phenomenon in the cell array is a propagating wave front. First

driver cells have -1 polarization. Then the polarization of the left driver cell is rai

gradually from -1 to +1. Due to this, the polarization of the first cell changes from -1 to

then the same happens to the second, the third, etc. At the end the whole cell

changes its polarization from -1 to +1.

h
t∂

∂
Pj 2γ 1 Pj

2
– ϕ jsin–=

h
t∂

∂ ϕ j PjEk 2γ
Pj

1 Pj
2

–
--------------------- ϕ jcos+–=

h

Pj Pj 1– Pj 1++=
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A snapshot of the propagating wave front is shown in Fig. 4.11. Each ce

described by its polarization and phase. The little arrows show the direction of chan

the polarization and the phase, respectively. The phase of the cells are zero, except

cells at the edge of the wave front. Here a negative peak in the phase can be seen. T

of this peak determines the direction of propagation.

When the wave front reaches the right driver cell (that has -1 polarization)

reflected. That is, the wave front begins to propagate in the opposite direction. This c
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FIGURE 4.11. Propagation of a wave front from the left to the right. A
snapshot with the polarization and the phase of the cells are shown. The arrows
show the direction of the change for the polarization and the phase. The sign of
the phase peak determines in which direction the wave front propagates.
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seen in Fig. 4.9. As the direction of propagation changes, the negative peak beco

positive peak on the phase plot. The little arrows again show the direction of change

If a different slope is applied when rising the polarization of the left driver cell th

the speed and the shape of the propagating wave will be different. The smaller the

the smaller the phase peak and the smaller the propagation speed of the wave.

4.3.2  Collision of two wave fronts

Next the collision of two wave fronts will be discussed. Both the left and the ri

cells are driven with a -1 to +1 polarization transition. Due to this, a wave front starts f
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FIGURE 4.12. Collision of the wave front and the fixed border. Three snapshot
are shown. The direction of the propagation changes, as the phase peak chan
sign.
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the left driver cell and another starts from the right, as shown in Figure 4.13. Both w

fronts have a negative phase peak.

When the two fronts collide they are reflected. As the direction of th

propagation changes the sign of the phase peak also changes. This can be seen in

4.14. However, the mechanism of the change differs from the previous case. Accord

Figure 4.14(b) the two negative phase peaks fuse. In Figure 4.14(c) they become mo

more negative. After reaching -π, the phase will become positive as shown in Figu

4.14(d). (The phase is kept between -π and π.) At the end the one positive phase pea

divides into two peaks (Figure 4.14(e)).
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FIGURE 4.13. Two wave fronts propagating in the opposite directions. A
snapshot with the polarization and the phase of the cells are shown. The blac
arrows are indicating the direction of the change.
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4.3.3  Propagation of a wave

More complex structures can be made of wave fronts. The simplest example is awave. It

is constructed of two wave fronts as it can be seen in Figure 4.15. In this case the righ

was driven with a fixed -1 polarization, the left cell was driven with a -1 to +1 to

transition. This started a wave propagation from left to right.

Reaching the right edge the wave was reflected, however the mechanism o

reflection is more sophisticated than in the case of a reflection of a single wave front.

is summarized schematically in Figure 4.16. The reflection of the wave

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
ol

ar
iz

at
io

n
P

ha
se

Direction of propagation

Right wave front

Left wave front

FIGURE 4.15. Propagation of a wave from left to right. The wave is
constructed from two wave fronts propagating in the same direction.
A snapshot with the polarization and the phase of the cells are shown.
The black arrows are indicating the direction of the change.
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can be interpreted as a sum of the two basic phenomena described in Sec. 4.3.1 an

Sec. 4.3.1 describes the collision of a wave front and the fixed border, Sec. 4.3.2 ex

the collision of two wave fronts.

In Figure 4.16(a) both wave fronts of the wave propagates from left to right. W

the right front of the wave reaches the right driver cell, it is reflected and changes

direction of its propagation as shown in Figure 4.16(b). Then the two fronts collide

both change their direction of propagation as shown in Figure 4.16(c). Eventually the

front of the wave reflects when it reaches the right driver cell and it changes direction

wave begins to propagate from right to left as it can be seen in Figure 4.16(d).
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FIGURE 4.16. Reflection of a wave at the right edge. The wave fronts collide
with the fixed border and with each other. Eventually the whole wave will turn
back.
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4.4 Quantum Cellular Neural Networks (QCNNs) [52]

In this section a computing paradigm in which QCA cells composed of interac

quantum dots (QCA’s) are employed in a cellular neural network (CNN) architect

Communication between cells is only through the Coulomb interaction. The cells

their basic behavior are the same as we have previously discussed in the context

Quantum-dot Cellular Automata (QCA) architecture. The key differences here are th

the quantum CNN (Q-CNN) approach: (1) Each cell is used to encode a continuous r

than binary degree of freedom. (2) We focus on the time dependent problem instead

ground state. (3) The time-dependent Schrödinger equation can be transformed in

CNN state equations.

We have constructed a simple quantum model of a Q-CNN composed of quan

dot cells. Each cell contains one classical degree of freedom, the cell polarization, an

quantum degree of freedom, a quantum mechanical phase difference. Mapping on

CNN paradigm maintains phase information within the cell but no quantum coher

exists between cells. Thus though dynamics is accomplished through the quantum d

of freedom, information is only carried across the array in classical degrees of freed

Our hope is that by connecting the problem of coupled quantum cells to a ci

architecture developed for exploiting conventional analog integrated circuits, we mig

able to open up a new solution domain for interconnected quantum devices. Becaus

connectivity is natural in ultra-small quantum devices, CNN’s may prove a nat

extension to the QCA architecture and allow a move into non-digital domains.
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First we briefly review the CNN paradigm. In the next subsection the connec

between the quantum problem and the CNN approach will be demonstrated. At la

discuss the generalization of our simple model to a more general class of Q-CNN’s.

4.4.1  The CNN paradigm

The CNN, invented by L. O. Chua and L. Yang [53-54] and generalized in subseq

work [55-56], is a two or three dimensional, usually regular array of analogous cells. E

cell, indexed byκ, has dynamical state variables , external inputs , and inte

constant cell data . Each cell is influenced by its neighbors through a synaptic inp

which depends on the values of cell states and cell inputs within a sphere center

cell κ. A CNN synaptic law describes the effect of other cells on the synaptic input:

. (4.32)

The cell dynamics are determined by aCNN state equationgiving the rate of change of

state variables as thenonlinear function of the state of the cell itself, the synaptic inp

from neighboring cells, and the external inputs:

. (4.33)

If there no external inputs exist then the CNN is calledautonomous. The CNN is then

defined by (1) the synaptic law, (2) the state equation, (3) initial conditions, and

boundary conditions. Unlike neural networks in case of the CNN the cells are prim

locally interconnected, thus the practical realization is much easier, than in the case

fully interconnected neural network.

xκ uκ

zκ I κ
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I κ
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4.4.2  Formulating quantum dynamics as CNN dynamics

The (4.13) and (4.14) cell state equations deduced in Section 4.1 have the (

form of CNN equations:

, (4.34)

. (4.35)

The synaptic law is given by:

. (4.36)

The (4.13) and (4.14) equations are based on the Hartree-Fock interce

approximation.

This gives the exact dynamics if there are no quantum entanglements between

Allowing correlation effects that produced mixed intercellular states would m

connecting to a CNN description impossible because of the need for local cell

information. Moreover, in our simulations of dynamic switching of cellular arrays

found that including the correlations between cells did not alter the qualitative beha

(though it did increase the speed of the intercellular responses.)

Fig. 4.17 shows some simulation examples with two-dimensional arrays. In

4.17(a) the snapshots of circular wave propagation can be seen. The edges of a cel

were periodically excited. Near the top left corner a block of cells were kept fixed cau

a disturbance in the wave propagation. In Figs. 4.17(b) and (c) snapshots of spiral

propagation can be seen. For simulation examples with a one-dimensional array se

4.3.
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FIGURE 4.17. Circular and spiral waves in a two-dimensional array of QCA cells. (a
The edges are periodically excited. Near the top left corner a fixed cell block caus
disturbances in the wave propagation. A pixel of a snapshot corresponds to a Q
cell. The color indicates a polarization between +1 (blue) and -1 (purple). (b) Th
edges are periodically excited, with a certain delay with respect to each other. Due
this delay spiral waves occur instead of circular waves. (c) The last snapshot of (b)
redrawn as a 3D graph.
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(c)
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4.4.3  Generalization of Quantum Cellular Neural Networks

Although we have employed a fairly simple model for demonstrating Q-CNN behav

the general features of the paradigm are clear.

1. Each cell is a quantum system. The specification of the quantum system can

distinguishNc classical degrees of freedom andNq quantum degrees of freedom.

2. The interaction between cells, the synaptic input, depends only on the classic

grees of freedom. This corresponds to an intercellular Hartree-Fock approximat

The precise form of the synaptic law is determined by the physics of the interc

lar interaction.

3. The state equations are derived from the time-dependent Schrödinger equatio

One state equation exists for each classical and quantum degree of freedom.

4.4.4  Conclusions

We have defined the Q-CNN paradigm and examined it in the case of a simple two

model of the cell. The system is sufficiently rich to reproduce the wave propaga

behavior seen in a fuller quantum treatment as demonstrated in Sec. 4.3. The g

features of Q-CNN architecture have been outlined. Of particular interest is the distin

between information-bearing classical degrees of freedom and quantum degre

freedom which are necessary for proper temporal evolution.
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CHAPTER 5

 QCA QUANTUM DYNAMICS USING THE COHERENCE VECTOR FORMALISM

In this chapter an alternative of the state vector description, the coherence v

formalism [57] is presented. It is equivalent to the density matrix description thus it

model mixed states and decoherence. Its other advantage is that the state variables

divided into groups corresponding to the state of the individual cells, and to the two-p

three-point, etc. correlations. This is not possible with state vector or the density m

description.

In Sec. 5.1 the dynamical equations of the coherence vector for many-cell sys

are deduced. It is also shown how to interpret correlations in the framework of

formalism. In Sec.5.2 a particular application of the formalism, quantum computing

Quantum-dot Cellular Automata, is presented.

5.1 The coherence vector formalism

The state of a QCA cell, as a two-state system, can be given by a two-element

vector according to (4.8). Besides the state vector, a 2x2 element density matrix ca

be used for state description. Its main advantage is the possibility of describing m

states while the state vector description can be applied only for pure states. The dyn
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of the system can be given in terms of differential equations for the four complex elem

of the density matrix (Liouville equation).

The method can be improved if we eliminate the redundant part of the den

matrix. Although it has 4 complex (i.e., 8 real) elements, these elements are

independent from each other. The density matrix is Hermitian that means 4 constrai

the elements. Its trace is unity, that gives a further constraint. Thus the number of de

of freedom is only 8-4-1=3. It means that the state of the ensemble can be given by

numbers instead of the density matrix containing 4 complex numbers.

Our observation agrees with the theory[57] that says that the density matrix ca

constructed as the linear combination of the generators of theSU(2)group, namely the

,  and  Pauli spin matrices and the unit matrix

, (5.1)

where theλa coefficients are the three elements of the so-calledcoherence vector.They

can be obtained as the expectation values of the Pauli spin matrices:

a=x,y,z. (5.2)

The coherence vector will be used for state description instead of the state vector

density matrix in the next sections.

To get the time dependence of the coherence vector, first the time dependen

the Pauli spin operators must be acquired in the Heisenberg picture. Then the dyna

equations for the coherence vector elements can be obtained by taking the expe

values of both sides of the dynamical equations for the Pauli spin operators.

In the Heisenberg picture, the time dependence of an operator is:

σ̂x σ̂y σ̂z

ρ̂ 1
2
--- 1̂ λxσ̂x λyσ̂y λzσ̂z+ + +( )=

λa σ̂a〈 〉 ;=
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.17)

and
. (5.3)

The Hamiltonian for a single-cell interacting with a driver is:

. (5.4)

The time dependence of the  Pauli spin matrix can be obtained as

. (5.5)

(For the commutator relations of Pauli spin matrices see [57], (2.34) on p. 39 with (2

on p. 36.). Similar equations can be found for the time dependence of  and :

, and (5.6)

. (5.7)

Equations (5.5-5.7) can be written in matrix form as

. (5.8)

Taking the expectation value of both sides yields to:

. (5.9)

(5.9) can also be written in a very expressive form ([57], equations (3.57-58) on p. 194

(3.100-103) on p. 200) as

, (5.10)

where

ih
t∂

∂
Ô Ô Ĥ,[ ]=

Ĥ γ σ̂x–
Ek
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------Pdriverσ̂z+=

σ̂x

td

dσ̂x i
h
--- σ̂x Ĥ,[ ]– Ek–( )Pdriverσ̂y= =

σ̂y σ̂z

td

dσ̂y i
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--- σ̂y Ĥ,[ ]– EkPdriverσ̂x 2γ σ̂z+= =
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h
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and the cross denotes vector cross product. Here  fori=x,y,z.

(5.10) is the dynamical equation of the cell, equivalent to the Liouville equat

giving the time dependence of the single-cell density matrix. It describes the precess

the coherence vector around  as shown in Fig. 5.1.

If we were describing a spin-1/2 particle instead of a QCA cell then ,

and would correspond to the three coordinates of the spin. The dynamics of the

would be given similarly to (5.10), however, the role of would be played by the

magnetic field.

In case of a QCA cell the interpretation of and is more difficult. describ

the state of the cell while describes the influences of the environment. The two

influences from the environment are the polarization of the driver cell and the inte

barrier height controlled by external electrodes. The third element of is related to

polarization of the cell as

. (5.12)

Γ
2– γ
0

EkPdriver

=

Γi Tr σ̂i Ĥ( )=

Γ

σ̂x〈 〉 σ̂y〈 〉

σ̂z〈 〉

Γ B

Γ λ λ

Γ

λ

P σ̂z〈 〉– λz= =
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The states correspond to . The other two elements of does

have such expressive interpretation.

During the QCA cell-operation, if the barriers are high (γ=0) then points to the

+zor to the -zdirection. In this case, if the cell is fully polarized ( ) then

remains in this state since .When the barriers are extremely low ( ), po

to the -x direction.

As it was mentioned before, the density matrix description is able to handle m

states. Unlike in pure states, in mixed states the ensemble contains systems be

different quantum mechanical states. If we restrict our attention to pure states, then l

of the coherence vector remains unity[57]: .

P 1±= λ 0 0 1+−, ,[ ]T
= λ

Γ
λ

FIGURE 5.1. The dynamics of the coherence vector. It precesses around .
describes the state of the cell while  describes the influences of the environmen

λ Γ λ
Γ

Γ

λ 0 0 1±, ,[ ]T
=

Γ λ|| γ Ek» Γ

λ 1=
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5.1.1  Dynamical description of the state of two interacting QCA cells

The coherence vector formalism can also be used to describe multi-cell sys

The density matrix of a system ofN cells has 2Nx2N complex=2x22N real elements. 22N +1

constraints are coming from the requirements of Hermiticity and unit trace that le

s=22N-1 real degrees of freedom. Now density matrix can be given as the lin

combination of thes generating operators of the SU(2N) group:

(5.13)

For N=2 cells the basis operators are shown in Fig.5.2. There are three single

operators for the first cell, three single-cell operators for the second cell, and nine two

operators. Thes=15 element coherence vector of the whole system contains t

expectation values:

. (5.14)

Here and single-cell coherence vectorscontain the expectation values of th

single-cell operators. contains thetwo-point correlations, that is, the expectation

ρ̂ 1

2
N

------1̂
1

2
N

------ λi λ̂i

i 1=

s

∑+=

λ̂i

λ
λ 1( )

λ 2( )
K 1 2,( )

=

λ 1( ) λ 2( )

K 1 2,( )
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values of the two-cell operators. The two-point correlations are often placed instead

vector in a 3x3 matrix called thecorrelation tensor..

In summary, to describe the state of two QCA cells fully, besides the two 3 elem

coherence vectors, a 3x3 element correlation tensor is needed as shown in Fig. 5.

FIGURE 5.2. Thes=15 basis operators for a two-cell system. There are three single
cell operators for the first cell, three single-cell operators for the second cell, and ni
two-cell operators.

σ̂x 1( ) σ̂y 1( ) σ̂z 1( )

σ̂x 2( ) σ̂y 2( ) σ̂z 2( )

σ̂x 1( )σ̂x 2( ) σ̂x 1( )σ̂y 2( ) σ̂x 1( )σ̂z 2( )

σ̂y 1( )σ̂x 2( ) σ̂y 1( )σ̂y 2( ) σ̂y 1( )σ̂z 2( )

σ̂z 1( )σ̂x 2( ) σ̂z 1( )σ̂y 2( ) σ̂z 1( )σ̂z 2( )

Single-cell operators

Two-cell operators

FIGURE 5.3. To describe the state of two interacting cells, beside the two coheren
vectors, the correlation tensor is also necessary.

λ 1( ) λ 2( )

K̂ 1 2,( )
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degrees of freedom describing the correlation between the two cells are more the

degrees of freedom describing the cell states. This is even more so, if the number o

are increased.

Notice that when using the coherence vector formalism, the state variables c

divided into three groups. One group corresponds to the first cell, the second to the s

cell, and the third group of variables describe the correlation of the two cells. This ca

be done so explicitly when using the state vector or the density matrix description

these descriptions, when uniting two subsystems, the state variables describe the s

the whole quantum mechanical system.

To obtain information about the state of a subsystem further algebraic transformation

needed (e.g., reduced density matrices can be used to describe the state of a single

To get the dynamics of the coherence vector of the system, we need

Hamiltonian of two interacting cells:

. (5.15)

According to (5.3) the time dependence of the Pauli spin matrices for the first and

second cells can be obtained as,

, and (5.16)

(5.17)

Ĥ γ1σ̂x 1( )– γ2σ̂x 2( )–
Ek

2
------– σ̂z 1( )σ̂z 2( )=

h
td

d
σ̂x 1( )

σ̂y 1( )

σ̂z 1( )

0 0 0

0 0 2γ1

0 2– γ1 0

σ̂x 1( )

σ̂y 1( )

σ̂z 1( )

Ek

σ̂y 1( )σ̂z 2( )

σ̂x 1( )– σ̂z 2( )
0

+=

h
td

d
σ̂x 2( )

σ̂y 2( )

σ̂z 2( )

0 0 0

0 0 2γ2

0 2– γ2 0

σ̂x 2( )

σ̂y 2( )

σ̂z 2( )

Ek

σ̂y 2( )σ̂z 1( )

σ̂x 2( )– σ̂z 1( )
0

+=

.
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The dynamics of the coherence vectors can be obtained computing the expectation

of the right and left hand sides of (5.16) and (5.17):

, and (5.18)

(5.19)

where

. (5.20)

The and terms describe theintercell quantum

correlation. Since they appear on the right hand side of the differential equations for

single-cell coherence vectors, their dynamics must be also computed, if one wants to

the dynamics of the single-cell coherence vectors.

The general form of a quantum correlation term is

. (5.21)

The 3x3=9 quantum correlation terms can be placed in a matrix, called thecorrelation

tensor:

. (5.22)

The time dependence of the elements of the correlation tensor can be obtained fro

commutator relation of (5.3):

h
td

d λ 1( ) Ω̂1λ 1( ) Ek σ̂y 1( )σ̂z 2( )〈 〉 σ̂x 1( )σ̂z 2( )〈 〉– 0
T

+=

h
td

d λ 2( ) Ω̂2λ 2( ) Ek σ̂y 2( )σ̂z 1( )〈 〉 σ̂x 2( )σ̂z 1( )〈 〉– 0
T

+= .

Ω̂i

0 0 0

0 0 2γ i

0 2– γ i 0

=

σ̂y 1( )σ̂z 2( )〈 〉 σ̂x 1( )σ̂z 2( )〈 〉

Kab σ̂a 1( )σ̂b 2( )〈 〉 ;= a b, x y z, ,=

K̂

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

=
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where the vector containing the nine elements of the correlation tensor is

. (5.24)

(For further details see Appendix A.) It is possible to write (5.23) in a simpler form us

the so-called direct product:

. (5.25)

Up to now the correlation terms were placed in a nine element vector. Diffe

formalism can be obtained if they are placed in a 3x3 tensor according to (5.23). Wit

correlation tensor (5.23) can be rewritten as

. (5.26)

Rewriting (5.16) and (5.17) with the correlation tensor elements, the equations for the

cells’ coherence vectors are:

, (5.27)

and

h
td

d
K

0 0 0 0 0 0 0 0 0

0 0 2γ2 0 0 0 0 0 0

0 2γ2– 0 0 0 0 0 0 0

0 0 0 0 0 0 2γ1 0 0

0 0 0 0 0 2γ2 0 2γ1 0

0 0 0 0 2γ2– 0 0 0 2γ1

0 0 0 2γ– 1 0 0 0 0 0

0 0 0 0 2γ– 1 0 0 0 2γ2

0 0 0 0 0 2γ– 1 0 2γ2– 0

K Ek

0

0

λy 1( )

0

0

λ– x 1( )

λy 2( )

λ– x 2( )

0

+=

K Kxx Kxy Kxz Kyx Kyy Kyz Kzx Kzy Kzz

T
=

h
td

d
K 1 Ω̂2⊗ Ω̂1 1⊗+( )K Ek 0 0 λy 1( ) 0 0 λ– x 1( ) λy 2( ) λ– x 2( ) 0

T
+=

h
td

d
K̂ Ω̂2K̂ K̂Ω̂1– Ek

0 0 λy 1( )

0 0 λ– x 1( )

λy 2( ) λ– x 2( ) 0

+=

h
td

d λ 1( ) Ω̂1λ 1( ) Ek Kyz K– xz 0
T

+=
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. (5.28)

(5.26), (5.27) and (5.28) are the dynamical equations for two coupled QCA c

They can be found in [49] (Section 3.2.5.3, page 227) for a more general case, presen

terms of nested sums. We are following a slightly different path, using linear algebra

hopefully makes both the interpretation of these equations and their nume

applications easier.

Next a concrete simulation example is presented. The setup consists of two

cells where the first one is also coupled to a driver as shown in Fig, 5.4(a).

Hamiltonian is

. (5.29)

The dynamical equation for this case can be obtained from (5.26), (5.27) and (5.28)

the following substitution:

. (5.30)

Figs. 5.4(b-d) show the time evolution of the coherence vectors and the correlation t

elements obtained from the numerical simulation of these dynamical equations. ( aEk

is taken to be 1 for simplicity.) The driver cell has -1 polarization. The time dependenc

the interdot tunneling energy is shown in 5.4(b). As the barriers are gradually (qu

adiabatically) raised the two cells align with the driver cell. Fig. 5.4(c) shows the t

dependence of the three coordinates of the two coherence vectors.λzj’s change from 0 to 1

(remember thatP=-λz), while λxj’s change from 1 to 0.λyj’s remain close to zero.

h
td

d λ 2( ) Ω̂2λ 2( ) Ek Kzy K– zx 0
T

+=

Ĥ γ1σ̂x 1( )– γ2σ̂x 2( )–
Ek

2
------– σ̂z 1( )σ̂z 2( )

Ek

2
------Pdriverσ̂z 1( )+=

Ω̂1

0 0 0

0 0 2γ1

0 2– γ1 0

Ω'ˆ
1

0 E– kPdriver 0

EkPdriver 0 2γ1

0 2– γ1 0

=→=

h
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FIGURE 5.4. Adiabatic switching of two cells. The barriers are gradually lowered wh
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If the barriers were raised even more gradually then the peak ofλyj’s would be even

smaller. Fig. 5.4(d) and (e) show the time dependence of the nine element corre

tensor and correlation tensor proper, respectively. The elements of the latter one star

zero and return to almost zero. If the process were fully adiabatic and the barriers

raised to infinity, the correlation tensor proper would be zero at the end.

5.1.2  Dynamical description of the state of a QCA cell line

In the general case of a system ofN cells the  basis operators have the form o

. (5.31)

A basis operator can be constructed by choosing one operator from each column

example, possible basis operators are , and .) Th

are 4N ways to do that, however, choosing all ones is not counted. Thus the numb

basis operators is 4N-1=22N-1. That is in agreement with the number of freedom of t

density matrix that was obtained ass=22N-1 in Sec. 5.1.1.

The coherence vector now contains the single-cell coherence vectors, the

correlations and the higher order (three-point, four-point) correlation terms as well.

three-point correlations are the expectation values of the three-cell basis operators.

The dynamical equations for a cell inside a cell line are similar to (5.26-5.28)

now a cell has two neighbors. The equation for the dynamics of the coherence vecto

λ̂i

1̂

σ̂x 1( )

σ̂y 1( )

σ̂z 1( )
 
 
 
 
 
 
 
 
 

1̂

σ̂x 2( )

σ̂y 2( )

σ̂z 2( )
 
 
 
 
 
 
 
 
 

1̂

σ̂x 3( )

σ̂y 3( )

σ̂z 3( )
 
 
 
 
 
 
 
 
 

…

1̂

σ̂x N( )

σ̂y N( )

σ̂z N( )
 
 
 
 
 
 
 
 
 

××

σ̂x 1( )σ̂y 2( )σ̂x 3( ) σ̂y 1( )σ̂z 3( ) σ̂z 1( )
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. (5.32)

The dynamics of the pair correlation tensor is given as:

(5.33)

where is a matrix containing coherence vectors and third order correlations

the nearest neighbor case (j=i+1) it is

(5.34)

The following three point correlations can be found on the right hand side of (5.34):xyz,

xxz, yyz, yxz, zyz, zxz, zyx, zxx, zyy andzxy.

h
td

d λ i( ) Ωi
ˆ λ i( ) Ek

Kzy i 1– i,( ) Kyz i i 1+,( )+

K– zx i 1– i,( ) K–
xz

i i 1+,( )

0

+=

h
td

d
K̂ i j,( ) Ω̂ j K̂ i j,( ) K̂– i j,( )Ω̂i EkĈ i j,( ),+=

Ĉ i j,( )

Ĉ i i 1+,( )
0 0 λy i( )

0 0 λ– x i( )

λy i 1+( ) λ– x i 1+( ) 0

+=

σx i( )σy i 1+( ) σx i( )σx i 1+( )– 0

σy i( )σy i 1+( ) σy i( )σx i 1+( )– 0

σz i( )σy i 1+( ) σz i( )σx i 1+( )– 0

σz i 2+( )〈 〉 +

σy i( )σx i 1+( ) σ– x i( )σx i 1+( ) 0

σy i( )σy i 1+( ) σ– x i( )σy i 1+( ) 0

σy i( )σz i 1+( ) σ– x i( )σz i 1+( ) 0

T

σz i 1–( )〈 〉

˙̇

.
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For further than nearest neighbors it is

(5.35)

On the right hand side of (5.35) the following further four three point correlatio

terms show up:zzy, zzx, yzzandxzz. It is important to notice that of the 3x3x3=27 thre

point correlation terms only these 14 are explicitly in the dynamical equations of the

correlations. For example, thezzz three-point correlation is not among them.

It can be seen that substitutingj=i+1 into (5.34) and using the rules for th

multiplication of Pauli spin matrices, (5.35) can be obtained.

The equations for a cell at the edges of the line are slightly different, howe

giving them explicitly do not help our analysis. When these equations are used

numerical simulation, it is reasonable to generate the dynamical equations symbolica

a computer program able to handle Pauli spin matrices. (As an example, see Appen

for the results of a MATLAB program calculating (5.34) and (5.35) symbolically.) Fro

the symbolical form the actual numerical equations can be obtained substituting

numerical values forEk and γi into them. With our complicated equation systems t

manual computations could lead easily to errors, however, manual computations ca

be used to check the results of the program generating the equations symbolically.

Ĉ i j,( )
σx i( )σy j( ) σx i( )σx j( )– 0

σy i( )σy j( ) σy i( )σx j( )– 0

σz i( )σy j( ) σz i( )σx j( )– 0

σz j 1–( ) σz j 1+( )+( )〈 〉

σy i( )σx j( ) σ– x i( )σx j( ) 0

σy i( )σy j( ) σ– x i( )σy j( ) 0

σy i( )σz j( ) σ– x i( )σz j( ) 0

T

σz i 1–( ) σz i 1+( )+( )〈 〉

+=

.
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Notice also that further equations are necessary to describe the state of the ce

giving the dynamics of the third, fourth, etc. order correlation terms. These are not g

here, however, can be computed similarly as it was done for the dynamics of the two-

correlations.

5.1.3  The correlation tensor proper and the measures of correlation

Besides the correlation tensor there are other quantities characterizing the int

correlation. Thecorrelation tensor proper for two cells is defined as

. (5.36)
With coherence vector elements (5.36) can be rewritten as

. (5.37)

The elements of the correlation tensor proper are all zero if there is no correlation bet

the cells or they areuncorrelated.

EXAMPLE 5.1

Let us consider two fully polarized QCA cells described by the two-state

wave function . The coherence vector and correlation tensor

elements can be computed according to (5.2) and (5.21):

Mab 1 2,( ) σ̂a 1( ) σ̂b 1( )〈 〉– σ̂b 2( ) σ̂b 2( )〈 〉–〈 〉 ;=

a b, x y z, ,=

Mab 1 2,( ) K
ab

1 2,( ) λa 1( )λb 2( );–= a b, x y z, ,=

Ψ 1 1,| 〉=
104



, , . (5.38)

The correlation tensor proper can be obtained using (5.36):

. (5.39)

Rather counter intuitively there is no correlation between the two aligned

cells.

The same is true for .

EXAMPLE 5.2

Let us consider the superposition of the two states mentioned in Example

5.1: . The coherence vector and correlation tensor

elements are

, , (5.40)

The correlation tensor proper now have non-zero elements.

. (5.41)

If the polarization of first cell is measured, the +1 and -1 results are equally

probable. The same is true for the second cell. However, if both are

λ 1( )
0

0

1–

= λ 2( )
0

0

1–

= K̂ 1 2,( )
0 0 0

0 0 0

0 0 1

=

M̂ 1 2,( )
0 0 0

0 0 0

0 0 0

=

Ψ 1– 1–,| 〉=

Ψ 1 1,| 〉 1– 1–,| 〉+=

λ 1( )
0

0

0

= λ 2( )
0

0

0

= K̂ 1 2,( )
1 0 0

0 1– 0

0 0 1

=

M̂ 1 2,( )
1 0 0

0 1– 0

0 0 1

=
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measured simultaneously then either both will have +1 or both will have -1

polarization.

It is instructive to examine the complementary example with

for which . If the cell polarizations are

measured simultaneously, they will be opposite. indicated in the

previous case that the two cells “tended to align”, now indicates

that they tend to anti-align.

EXAMPLE 5.3

Our last example is the superposition of the two state vectors

mentioned in Example 5.2: . The

coherence vector and correlation tensor elements are

, , . (5.42)

The correlation tensor proper now has only zero elements. It

describes an uncorrelated two-cell state. Note that

can be written as a product of two

single-cell states: . If this can be done for a

two-cell state, then the two cells are uncorrelated.

Ψ 1 1–,| 〉 1– 1,| 〉+= Mzz 1–=

Mzz 1=

Mzz 1–=

Ψ 1 1–,| 〉 1 1–,| 〉 1 1,| 〉 1– 1–,| 〉+ + +=

λ 1( )
0

0

0

= λ 2( )
0

0

0

= K̂ 1 2,( )
1 0 0

0 0 0

0 0 0

=

M̂ 1 2,( )

Ψ 1 1–,| 〉 1 1–,| 〉 1 1,| 〉 1– 1–,| 〉+ + +=

Ψ 1| 〉 1–| 〉+( ) 1| 〉 1–| 〉+( )=
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It is also useful to have a simple scalar measure instead of a matrix to charac

intercell correlation (See [57], equation (2.683) in on page 145). This can be some no

, preferably

. (5.43)

If one of the two cells is fully polarized ( =(0,0,+1) or (0,0,-1)) then the

correlation tensor proper is zero. In this case the two cells are uncorrelated.

The higher order correlation tensors proper are defined similarly to (5.36).

example, the three-point correlation proper (see [57], equations (2.810-811), page

can be given as

. (5.44)
After some algebraic transformations one gets

(5.45)
There are 3x3x3=27 elements of a three-point correlation tensor and tensor proper.

EXAMPLE 5.4

The three-cell state is known as

Greenberger-Horne-Zeilinger(GHZ; see [57] Section 2.5.3.5, page 175)

state. In this example the coherence vector elements and the correlations

M̂

β Tr M̂M̂
H

( ) Mab
2

a b,
∑= =

λ M̂

Mabc 1 2 3, ,( ) σ̂a 1( ) σ̂a 1( )〈 〉– σ̂b 2( ) σ̂b 2( )〈 〉– σ̂c 3( ) σ̂c 3( )〈 〉–〈 〉 ;=

a b c, , x y z, ,=

Mabc 1 2 3, ,( ) Kabc 1 2 3, ,( ) K
ab

1 2,( )λc 3( ) Kac– 1 3,( )λb 2( )– –=

Kbc 2 3,( )λa 1( ) 2λa 1( )λb 2( )λc 3( );+

a b c, , x y z, ,= .

Ψ 1 1 1, ,| 〉 1 1–,– 1–,| 〉–=
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will be computed for the GHZ state. The coherence vectors and the two-

point correlation tensors and tensor propers are:

, (5.46)

. (5.47)

The non-zero elements of the three-point correlation tensor are

,

. (5.48)
The three-point correlation proper has the same non-zero

elements.

EXAMPLE 5.5

After examining the GHZ state in the previous example, it is

instructive to make the same computations for the

three-cell state. The coherence vectors and the

two-point correlation tensors and tensor propers are:

, , (5.49)

, (5.50)

λ 1( ) λ 2( ) λ 3( )
0

0

0

= = =

K̂ 1 2,( ) K̂ 2 3,( ) K̂ 1 3,( ) M̂ 1 2,( ) M̂ 2 3,( ) M̂ 1 3,( )
0 0 0

0 0 0

0 0 1

= = = = = =

K̂ xxx 1 2 3, ,( ) 1–=

K̂ yyx 1 2 3, ,( ) K̂ yxy 1 2 3, ,( ) K̂ xyy 1 2 3, ,( ) 1= = =
M̂ 1 2 3, ,( )

Ψ 1 1 1, ,| 〉 1 1–,– 1,| 〉–=

λ 1( ) λ 2( )
0

0

0

= = λ 3( )
0

0

1

=

K̂ 1 3,( ) M̂ 1 3,( ) K̂ 2 3,( ) M̂ 2 3,( )
0 0 0

0 0 0

0 0 0

= = = =
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. (5.51)

Not surprisingly, the third cell is not correlated with the other two.

The non-zero elements of the three-point correlation tensor are

, , . (5.52)

The  three-point correlation tensor proper contains only zeros.

5.1.4  The energy of a cell block

The average energy will be computed as the expectation value of the Hamilto

operator: The expression obtained for the energy contains only two-point, and not h

order correlation terms. The energy expression will be interpreted through examples

The Hamiltonian of a cell line ofN cells, having a driver connected to the first ce

is

. (5.53)

The expectation value of (5.53) is:

. (5.54)

It can be expressed with the coherence vector and correlation tensor components a

. (5.55)

K̂ 1 2,( ) M̂ 1 2,( )
1– 0 0

0 1 0

0 0 1

= =

K̂ xxz 1 2 3, ,( ) 1–= K̂ yyz 1 2 3, ,( ) 1= K̂zzz 1 2 3, ,( ) 1=

M̂ 1 2 3, ,( )

Ĥ γ– σ̂x i( )
Ek

2
------– σ̂z i( )σ̂z i 1+( )

Ek

2
------Pdriverσ̂z 1( )+

i 1=

N 1–

∑
i 1=

N

∑=

E Ĥ〈 〉 γ– σ̂x i( )〈 〉
Ek

2
------– σ̂z i( )σ̂z i 1+( )〈 〉

Ek

2
------Pdriver σ̂z 1( )〈 〉+

i 1=

N 1–

∑
i 1=

N

∑= =

E Ĥ〈 〉 γ– λx i( )
Ek

2
------– Kzz i i 1+,( )

Ek

2
------Pdriverλz 1( )+

i 1=

N 1–

∑
i 1=

N

∑= =
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Due to the structure of the Hamiltonian, the average energy depends only on the cohe

vector elements and on the two-pointzz correlations, and not on higher order correlation

According to (5.37)Kzz(i,i+ 1) can be expressed withMzz(i,i+ 1), Pi andPi+1:

. (5.56)

Substituting this into (5.55) one obtains:

. (5.57)

The (5.57) form of the energy expression is very instructive. The first term describe

energy coming from the non-zero tunneling energy. The second term in the right hand

of (5.57) describes the intercell coupling energy. The third term describes the effect o

driver cell on the first cell. If the first is aligned with the driver (λz(1)=-Pdriver) then this

energy term is negative. If they are anti-aligned then this term is positive.

EXAMPLE 5.6

Consider two interacting QCA cells. Let us suppose that the

barriers are infinite high (γ=0) and the driver polarization is zero for

simplicity. The energy of the two cells in this case is:

. (5.58)

In the uncorrelated caseMzz(1,2)=0. If the two fully polarized cells

have the same polarization (Pi=Pi+ 1=+ 1), then the energy of these two

cells will be . If they have opposite polarization (Pi=-Pi+ 1=+ 1), the

Kzz i i 1+,( ) λz i( )λz i 1+( ) Mzz i i 1+,( )+ PiPi 1+ Mzz i i 1+,( )+= =

E γ– λx i( )
Ek

2
------– PiPi 1+ Mzz i i 1+,( )+( )

Ek

2
------Pdriverλz 1( )+

i 1=

N 1–

∑
i 1=

N

∑=

E
Ek

2
------P1P2–

Ek

2
------Mzz 1 2,( )–=

Ek

2
------–
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corresponding energy will be + . Thus if the cells are aligned with each

other it decreases their energy.

However, it is also possible that the two cells have energy even

if their polarizations are zero. An example for that is the

two-cell state for whichP1=P2=0 andMzz(1,2)=+1.

The classical analogy of this state is two cells which are alternating their

polarization between +1 and -1 in such a way that one has always the same

polarization as the other. It is not difficult to see that energetically this is the

same case as they both had constant +1 or -1 polarization.

5.1.5  Stationary solution of the dynamical equations

The (two-point, three-point, etc.) coherence vectors and correlation tensors describin

stationary states can be obtained by solving the dynamical equations taking the

derivatives zero. (The dynamical equations for the coherence vectors and the two

correlations are (5.32-5.35). The equations for higher order correlations are not

here.) This way a system of algebraic equation is obtained. If the system is in pure

further constraints are:

; n=(1,2, ... ,n). (5.59)

Without these additional constrains, the stationary equations obtained from the dyna

ones cannot be solved, since the equations are not independent.

Ek

2
------

Ek

2
------–

Ψ 1 1,| 〉 1– 1–,| 〉+=

Tr ρ̂n( ) 1=
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In mixed state, if additional damping terms are inserted in the dynam

equations, the stationary solution can be obtained without further constrains sinc

equations are now independent. From the point of view of the numerical computation

case is much better, since it is not necessary to compute the density matrix of the

system, as it were needed in a pure state.Thus it is reasonable to add even small da

terms to the undamped equations in order to be able to determine the steady state

(For these damping terms see 5.1.7.)

5.1.6  The Hartree-Fock intercellular approximation applied for the coherence
vector formalism

It is possible to apply both the coherence vector formalism and the Hartree-

intercellular approximation (see Sec. 4.1) to describe the state dynamics of a mult

structure. The Hartree-Fock model ignores all the correlations thus the number of

variables is radically decreased.

Using Hartree-Fock intercellular approximation, the dynamics of the multi c

system is given in terms of coupled single cell Scrödinger equations (Sec. 4.1).

differential equation of thejth cell is

, (5.60)

where Hamiltonian matrix is

. (5.61)

ih
t∂

∂ ψ j| 〉 Ĥ j ψ j| 〉=

Ĥ j

1
2
---PjEk– γ j–

γ j–
1
2
---PjEk

γ j σ̂x j( )–
EkPj

2
------------σ̂z j( )+= =
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is the sum of the polarizations of the neighbors. Notice that the Hamiltonian is the

of 2x2 and the state vector has two elements.

Similarly to the deduction (5.3-5.10) one can get single cell dynamical equati

based on the Hartree-Fock approximation, for the single cell coherence vectors:

, (5.62)

where

. (5.63)

(5.62) and (5.63) describe the state dynamics of the cell equivalently to the single

Scrödinger equation. In stationary states the right hand side of (5.62) must be zero. T

the case if . Notice that single cell coherence vectors are not couple

two-point correlations as in (5.32).

It is possible to obtain (5.62) and (5.63) from the (5.32) exact dynamical equa

for the coherence vector assuming that there are no intercell correlations. In this cas

. (5.64)

Hence . Similar equations stand forKyz, Kzx and Kxz.

Substituting these into (5.32) one obtains:

. (5.65)

It can be rewritten as

P

h
td

d λ j( ) Γ j( ) λ j( )×=

Γ j( )
2γ j–

0

EkPj

=

Γ j( ) λ j( )|| λ j( )

Mzy i 1 i,–( ) Kzy i 1 i,–( ) λz i 1–( )λy i( )– 0= =

Kzy i 1 i,–( ) λz i 1–( )λy i( )=

h
td

d λ i( )
0 0 0

0 0 2γ i

0 2– γ i 0

λ i( ) Ek

λz i 1–( ) λz i 1+( )+( )λy i( )

λz i 1–( ) λz i 1+( )+( )– λz i( )

0

+=
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, (5.66)

with

. (5.67)

(5.62) and (5.63) can be obtained transforming the matrix product into a vector prod
The energy of thejth cell is the expectation value of the Hamiltonian of the cell:

. (5.68)

It can be expressed in an instructive form with  and :

. (5.69)

From (5.69) it follows that the energy for a given is minimal if and the

are opposite in direction:

. (5.70)

Notice that since  and  are parallel, this is astationary state.

5.1.7  Modeling dissipation with the coherence vector formalism

The model presented in the previous subsections, describes the unitary

evolution of the cell line. Inserting damping terms in the differential equations for

coherence vector and correlation tensor elements, dissipation can also be included

dynamics. (See Section 3.3.7.3. in [57]). The (5.32) differential equation for the coher

vector changes in the following way:

h
td

d λ i( )
0 EkP 0

EkP– 0 2γ i

0 2– γ i 0

λ i( )=

P λz i 1–( ) λz i 1+( )+( )–=

Ej Ĥ j〈 〉 γ j σ̂x j( )〈 〉–
EkPj

2
------------ σ̂z j( )〈 〉+ γ jλx j( )–

EkPj

2
------------λz j( )+= = =

Γ j( ) λ j( )

Ej Ĥ j〈 〉 1
2
---Γ j( )λ j( )= =

Γ j( ) Γ j( ) λ j( )||

λ j( ) Γ j( )

Γ j( )
--------------–=

Γ j( ) λ j( )
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wheredissandnd stand for dissipative and non-dissipative. The three element vecto

describes the dissipation rate for the three coordinates of the coherence vector.

usually negative elements.diag( ) denotes a matrix with the elements of in it

diagonal. Vector accounts for the fact that the dissipation drives the coherence v

elements to non-zero values.

The (5.33) differential equation for the correlation tensor change in the follow

way:

(5.72)

There are several possibilities to choose the and vectors depending on

kind of model of dissipation is used. One possibility [92] is the following. Let be

vector of three negative numbers describing the damping rate. The instantaneous g

state with no dissipation according to the mean field type model (using Hartree-

approximation) described in [92] is

, (5.73)

where

. (5.74)

 the sum of the polarizations of the cell’s neighbors.  can be chosen as

. (5.75)

td
d λ i( )

diss td
d λ i( )

nd
– diag ξi( )λ i( ) ηi+=

ξi

ξi ξi

ηi

td
d

K̂ i j,( )
diss td

d
K̂ i j,( )

nd
– diag ξ j( )K̂ i j,( ) K̂ i j,( )diag ξi( ) ηiλ

T
j( ) λ i( )η j

T+ + +=

ξi ηi

ξi

λss i( )
Γi

Γi

--------–=

Γi

2– γ
0

EkPi

=

Pi ηi

ηi ξ– jλss i( ) ξ j
Γi

Γi

--------= =
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Modeling the dissipation this way, describes the relaxation of the coherence v

towards .

5.2 An application of the coherence vector formalism: Quantum computing w
Quantum-dot Cellular Automata

Quantum computing [58-90] has attracted attention in the last two decades be

it was found that computers exploiting quantum mechanics are able to outper

classical digital computers in certain areas (factoring integers [83], searching [64,

Beside designing and analyzing new quantum computing algorithms, significant effor

been taken to find a suitable realization for a quantum computer. With the applicatio

nuclear magnetic resonance (NMR) several groups have created quantum com

[67,68,69,75,76] up to the size of 5 qubits. Other implementations employ ion traps

cavity QED [85], Josephson junctions [87-90] and semiconductor quantum-dots [70

82].

We propose a multi quantum-dot structure, Quantum-dot Cellular Autom

(QCA) [1-8] and investigate the basic quantum gates suitable for this implementa

Information is encoded in the position of the electrons inside the QCA cell. The b

single- and multi-qubit operations can be realized by lowering and raising the inte

tunneling barriers. Several other realizations have been proposed using semicon

quantum dots. The information can be encoded in the electron spin [78,82], in the po

of the electron in the double-dot [77,81], or the ground state and excited state o

electron can be used for logical “0” and “1” [79,80]. The quantum computing algorith

are performed by manipulating the interdot coupling with magnetic field [78], optically

λss
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laser pulses [77,78,80] or by using external electrodes to raise and lower the int

barriers [78,81,82].

QCA [1-8] was originally proposed as a transistorless alternative for digital cir

technology at nanoscale. The cells of digital QCA are mostly fully polarized during

operation. Dissipation plays a positive role helping the system to stay near the gr

state.

The aim of our paper is to explore the possibilities of using semiconductor Q

for quantum computing. In the case of quantum computing, the cells are not

polarized: they can be in a superposition of the P=+1 and P=-1 basis states. Simila

cell line can be in a superposition of the multi-qubit product states. Unlike dig

applications, quantum computing ideally needs coherence for correct operation. (In

systems decoherence is always present thus its effects must be circumvented by

correction.) In order to distinguish QCA applied for quantum computing from dig

QCA, the notion of coherent QCA (C-QCA) will be used.

In Sec. II the C-QCA cell line is used as a quantum register. In Sec. III and Sec

the single- and multi-qubit operations are presented. In Sec V. the decoherence and

issues pertaining to the physical realization are discussed.

5.2.1  The C-QCA cell line as a quantum register

An N qubit register can be realized with a line ofN C-QCA cells as shown in Fig.

5.5. Theγj interdot tunneling energy is set by external electrodes that lower or raise

interdot barriers of thejth cell. A cell can be turned off by lowering the barriers. (When

cell’s barriers are extremely low, it does not have a definite polarization and it does
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affect its neighbors.) Each cell is Coulombically coupled to its left and right neighbors

to the bias electrodes. ThePbias,j biases are set externally, thus these and theγj‘s are the

inputs of the quantum register.

There are three main steps when executing a program on the quantum reg

writing in the initial state, running the algorithm and reading out the final state. The in

state can be loaded into the register by setting the biases to and waiting

time sufficient to settle in the ground state. If ( ) then the cell

forced to the P=+1 (P=-1) state. The execution of the algorithm is realized with a seri

pulses applied to the electrodes of the cell. The final state can be read out by electrom

that are sensitive enough to detect the presence or the absence of an electron (e.g.

electron transistor [15-17]).

The C-QCA cell can be reasonably approximated as a two-state system [7]

Hamiltonian for a line ofN C-QCA cells is

. (5.76)

γ1 γ2 γ3 γN-1 γN

Pbias,1 Pbias,2 Pbias,3 Pbias,N-1 Pbias,N

...

FIGURE 5.5. TheN qubit register realized with a line ofN C-QCA cells. Each cell has
two inputs: theγj interdot tunneling energy and thePbias,j bias polarization.

Pbias j, 1»

Pbias j, 1» Pbias j, 1–«

Ĥ γ j σ̂x j( ) Ej σ̂z j( )σ̂z j 1+( ) E0P
bias j, σ̂

z
j( )

j 1=

N

∑+

j 1=

N 1–

∑–

j 1=

N

∑–=
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Here Ej is the strength of Coulombic coupling between thejth and the(j+1)st cell. For

reasons explained later, its is alternating betweenE0 and 2E0:

(5.77)

Hamiltonian (5.76) is isomorphic to that of an Ising spin chain in a transverse mag

field. The Ej and γj terms play the role of the interaction energy and the transve

magnetic field strength, respectively. Only nearest neighbor coupling is consid

because for coupled electric quadrupoles the strength of the Coulombic interacti

inversely proportional to the fifth power of the distance. Theγj and Pbias,j are setable,

however, theEj intercell coupling is constant. Thus during a one-, two- or three-qu

operation, the intercell coupling cannot be turned off in the rest of the cell line.

The polarization of thejth cell can be obtained as the expectation value of the

operator:

. (5.78)

With the minus sign we follow the convention of Ref. 57 in defining the Pauli s

matrices:

, , and . (5.79)

It is possible to give an effective Schrödinger equation for a single cell using

mean-field approximation (See Ref. 52; these equations can be obtained from the Ha

Fock approximation applied to the C-QCA line as a many electron system):

, (5.80)

where

Ej
E0 if j is odd,

2E0 if j is even.,



=

σ̂z

Pj σ̂z j( )〈 〉–=

σ̂x
0 1

1 0
= σ̂y

0 i

i– 0
= σ̂z

1– 0

0 1
=

Ĥ γ– σ̂x EΣσ̂z–=
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The cell is coupled to its left and right neighbors throughEleftPleft andErightPright. (One of

Eleft andEright is E0, the other is 2E0.) The edge cells does not have left or right neighbo

thus for them the corresponding polarizations are taken to be zero.

The state vector of a cell can be given as the linear combination of the f

polarizedP=+1 andP=-1 basis states:

. (5.82)

Thus the state of a cell is described by two complex numbers,α andβ.

The density matrix can also be used to describe the state of a single cell. The

advantage of the density matrix is that it can be used to describe energy dissip

although such dissipation will not be considered now. The dynamics of the density m

are given by the Liouville equation:

. (5.83)

The density matrix can be expressed as the linear combination of theSU(2)

generators, which are the Pauli spin matrices and the unit matrix:

, (5.84)

where fora=x, y, z. It can be seen from (5.84) that the three real valu

contain the same information about the quantum mechanical state as the 2x2 d

matrix does. In other words, although the density matrix has four complex (=eight

elements, it has only three (real) degrees of freedom, due to the constraints of Herm

and unit trace. The vector constructed from the threeλa values is called thecoherence

vector (or the Bloch vector). The fully polarizedP=+1 state corresponds to =[0,0,-1]T

EΣ EleftPleft ErightPright E0Pbias+ +=

Ψ| 〉 α 1| 〉 β 1–| 〉+ α
β

= =

ih
t∂

∂ ρ̂ Ĥ ρ̂,[ ]=

ρ̂ 1
2
--- 1̂ λxσ̂x λyσ̂y λzσ̂z+ + +( )=

λa σ̂a〈 〉= λa

λ

λ
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and theP=-1 state corresponds to =[0,0,+1]T. In general, the third coordinate of

equals -P.

The dynamical equation of the coherence vector is given as [57]:

, (5.85)

where the cross denotes a vector product and fori=x,y,z. ( is given in

(5.80).) For the C-QCA cell  is:

. (5.86)

Equation (5.85) describes the precession of the coherence vector around . If there

dissipation, the length of the coherence vectors remains unity. In the case of dissip

further terms are added to the right hand side of (5.85). The coherence vector describ

state of the cell, while represents the influence of the environment. depends o

barrier height.  represents the coupling to the bias cell and to the neighbors.

If there is no entanglement during the operation (the register remains in a qua

mechanical product state) then the mean-field description gives the same dynamics

coherence vector as the full Hamiltonian model does.

Besides the coherence vector description, the quantum gates presented he

also be given by the unitary time evolution matrices computed from the many

Hamiltonian of the gates. They fully describe the functionality of the gate while

coherence vector description is used for making the design of quantum gates cleare

λ λ

dλ
dt
------ Γ λ×=

Γi Tr σ̂i Ĥ( )= Ĥ

Γ

hΓ
2γ–

0

2EΣ

=

Γ

Γ Γx

Γz
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5.2.2  Single qubit rotations

We consider the elementary single qubit rotations inλ-space. Ifγ»Ek (the barriers

are low) andPbias=0 then ≅[-2γ,0,0]T which causes to precess around the -x axis as

shown in Fig. 5.6. (It is assumed thatγ=0 for all the other cells.) The duration of the

precession corresponding to a rotation by an angleϕ is

. (5.87)

The unitary time evolution operator for this single qubit rotation is

. (5.88)

hΓ λ

Γ

(a)

x

y

z

λ
t

t

γ

Pbias

(b)

FIGURE 5.6. Rotation around the -x axis. (a) The
rotation in theλ-space.γ»Ek (the barriers are low) and
Pbias=0 thus =[-2γ,0,0]T. (b) The pulses applied to
theγ and thePbias cell inputs.

hΓ

∆t
ϕ
Γ
------

h
2γ
------ϕ= =

U x ϕ,– e
i σ̂x

ϕ
2
---

ϕ
2
---cos i

ϕ
2
---sin

i
ϕ
2
---sin ϕ

2
---cos

= =
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If ϕ=π then the polarization of the cell is inverted, that is, the cell goes from

=[0,0,+1]T state to the [0,0,-1]T state and vice versa, realizing theNOT operation,as

shown in Fig. 5.7.

Another type of single qubit rotation can be realized ifγ=0 (the barriers are high)

andPbias»1. In this case ≅[0,0,2E0Pbias]
T which causes to precess around thez axis

as shown in Fig. 5.8. The duration of precession corresponding to a rotation by an anϕ

is

. (5.89)

The unitary time evolution operator for rotations around thez axis is

λ

FIGURE 5.7. NOT operation. (a) The initial state is
=[0,0,+1]T, that is,P=-1. (b) The final state obtained

after 180° rotation around thex axis in the negative
direction is =[0,0,-1]T, that is,P=+1.

λ

λ

x

y

z

Γ

(a)
(b)

λ
x

y

z

λ

hΓ λ

∆t
ϕ
Γ
------

h
2E0Pbias

----------------------ϕ= =
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The (5.76) Hamiltonian does not contain , however, the rotation around ty

axis can still be realized by a series of rotations around thez andx axes:

. (5.91)

The gates presented above were operating on a single qubit. It is reasona

require that the state of the other qubits in the register do not change. This requireme

be fulfilled in the case of two-state systems by turning off theEj intercell coupling for the

Uz ϕ, e
i– σ̂z

ϕ
2
---

e
i
ϕ
2
---

0

0 e
i–
ϕ
2
---

= =

σ̂y

Uy ϕ, U
z

π
2
---,
U x– ϕ, U

z
3π
2

------,

ϕ
2
---cos ϕ

2
---sin–

ϕ
2
---sin ϕ

2
---cos

– e
i σ̂y

ϕ
2
---

–= = =

FIGURE 5.8. Rotation around thez axis. (a) The
rotation in theλ-space.Pbias»1 andγ=0 (the barriers are
high) thus =[0,0,2E0Pbias]

T. (b) The pulses applied
to theγ and thePbias cell inputs.

hΓ

x

y

z

(a)

λ

Γ t

t

γ

Pbias

(b)
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rest of the cell line, however, for the QCA register the coupling is constant. The un

part of the register will undergo time evolution thus the effect of this time evolution m

be examined. The time that would be necessary for the intercell coupling to affec

dynamics considerably is . In the case of single qubit rotations,

duration of the operation is much shorter than that (compareTcoupling to (5.87) with the

conditionγ»E0, and to (5.89) with the conditionPbias»1) thus the change of the state in th

rest of the line is negligible for single qubit operations.

5.2.3  Multi-qubit operations

The scheme for three-qubit operations presented here can be seen in Fig. 5.

middle cell (cell #2) is thecontrolledcell, its two neighbors (cell #1 and cell #3) are th

left and rightcontrol cells. The polarizations of the control cells determine what happ

Tcoupling h E0⁄=

FIGURE 5.9. Schematic of the arrangement for three-
qubit operations. The polarizations of the control cells
determine what happens to the controlled cell during the
operation.

γ1=0 γ2

Pbias,1=0 Pbias,2

right control
cell cell

γ3=0

Pbias,3=0

controlled
cell

left control
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to the controlled cell during the operation. In regard to the multi-qubit operations, , γ,

PbiasandEΣ without indices refer to the controlled cell. The bias of both control cells

zero and their barriers are high.

For the three-qubit operations . Depending onEΣ there are two

possibilities for the time evolution of the controlled cell:

● If  then =[-2γ,0,0]T which causes  to precess around the -x axis.

● If  then ≅[0,0,2E0Pbias]
T which causes  to precess around thez axis.

For simplicity suppose thatEleft=E0 and Eright=2E0. Substituting that into (5.81) one

obtains

. (5.92)

Let us examine the behavior of the controlled cell for the four possible cases when it

neighbors are fully polarized.EΣ can be zero only for one of the four possibl

combinations ofPleft andPright. For example, choosingPbias=-3, it is zero only if bothPleft

andPright are +1. (The other three possibilities can be selected byPbias=-1, 1 and 3. Notice

that if theEj coupling would not alternate according to (5.77) then thePleft=+1/Pright=-1

case could not be distinguished from Pleft=-1/Pright=+1 since

 would be the same for both.)

Table I showsEΣ and for the four possible states of the neighbors assum

Pbias=-3. If bothPleft andPright are +1 then coherence vector of the cell is rotated arou

the -x axis, otherwise it is rotated around the -z axis. This will be calledconditional

rotation in the followings.

λ Γ

0 γ E0«<

EΣ 0= hΓ λ

EΣ 0≠ hΓ λ

EΣ E0 Pleft 2Pright Pbias+ +( )=

EΣ E0 Pleft Pright Pbias+ +( )=

hΓ
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5.86)
TABLE I. The values of for the four possible binary states of the left
and right neighbors ifPbias=-3. If bothPleft andPright are +1 then points
in the -x direction. If either of them is -1 then  points in the -z direction.

If the left or right neighbors are not fully polarized then the time evolution of t

three cells lead to entanglement and the mean-field type description of (5.85) and (

can no longer be used. In this general case, the 3-qubit gate corresponding toPbias=-3 can

be characterized by a unitary time evolution operator:

Pleft Pright EΣ/Ε0

-1 -1 -6 [-2γ,0,-12E0]
T≈[0,0,-12E0]

T

-1 +1 -2 [-2γ,0,-4E0]
T≈[0,0,-4E0]

T

+1 -1 -4 [-2γ,0,-8E0]
T≈[0,0,-8E0]

T

+1 +1 0 [-2γ,0,0]T

hΓ

hΓ
Γ

Γ
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In (5.93) and are the angles of rotation around the -x andzaxes, respectively. They

both depend on thet duration of the operation:

, (5.94)

and

. (5.95)

The labels are showing the three-qubit states (the product basis vectors) correspond

the rows and columns of the matrix. “1” and “0” refer to the and states. The th

digits correspond to the polarization of the left, the middle and the right cells, respecti

Blank off-diagonal blocks refer to blocks of zeros omitted here for easier understand

Û

e
i
3ϕz

2
--------

0 0 0

0 e
i–
ϕz

2
-----

0 0

0 0 e
i–
3ϕz

2
--------

0

0 0 0 e
i
ϕz

2
-----

e
i
ϕz

2
-----

0 0 0

0
ϕ x–

2
--------cos 0 i

ϕ x–

2
--------sin

0 0 e
i–
ϕz

2
-----

0

0 i
ϕ x–

2
--------sin 0

ϕ x–

2
--------cos

=

000 001 010 011 100 101 110 111

010

011

100

101

110

111

001

000

ϕ x– ϕz

ϕ x t,– Γ t
2γ
h
------t= =

ϕz t, Γ t
2E0

h
---------t= =

1| 〉 1–| 〉
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It is often advantageous to eliminate the rotation around thez axis for multi-qubit

operations. The rotation aroundz does not change the state of the controlled cell if

an integer multiple of 4π. The corresponding constraint for the duration of the operation

; m=0, 1, 2, ... (5.96)

With the choice of (5.96) fort, rotation occurs around thex axis whenPleft=Pright,

however, the state of the cells do not change, ifPleft≠Pright. In multi-qubit gates later it will

always be supposed thatt is chosen so that rotation around thez axis does not take place

In this way can be ignored and will be replaced with . Sincet is constant,

must be set by controllingγ. Combining (5.94) and (5.96) gives:

. (5.97)

Applying condition (5.96) to (5.93) the following gate is obtained:

. (5.98)

ϕz

t
2πh
E0

----------m=

ϕz ϕ x– ϕ ϕ

γ h
2t
-----ϕ

E0

4πm
------------ϕ= =

Û x ϕ 3–;,–

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 ϕ
2
---cos 0 i

ϕ
2
---sin

0 0 1 0

0 i
ϕ
2
---sin 0 ϕ

2
---cos

=
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The “-3” refers to a rotation aroundx with the condition given byPbias=-3. A variation of

this quantum gate can be found in the literature [62,65] asUλ or the Deutsch gate [73,74]

The only difference between (5.98) and the Deutsch gate is that cell #2 and cell #

exchanged. Ifϕ=π then the controlled cell is inverted if both control cells hav

polarization +1.

A two-qubit gate can be realized as a series of two three-qubit gates:

. (5.99)

This gate rotates aroundx if Pright =+1 while the polarization of the left neighbor does n

matter. Takingϕ=π, (5.98) can be used to implement thecontrolled NOT operation:

. (5.100)

The controlled cell is inverted if the right control cell has polarization +1. That is almo

controlled NOT, but there is an additionalπ/2 phase shift if inversion happens. With th

additional application of

(5.101)

for one can get rid of this additional phase shift and realize the controlled N

operation. is the time evolution operator corresponding to the rotation of the t

qubit around thez axis. Its matrix form can be obtained from (5.90) by extending t

operator from one qubit to three qubits. (The operator does not affect the other two qu

Û x ϕ 3– 1–,( );,– Û x ϕ 3–;,– Û x ϕ 1–;,–=

Û x π 3 1–,–( );,–

1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

=

Ûz ϕ,
3( )

diag e
i
ϕ
2
---

e
i–
ϕ
2
---

e
i
ϕ
2
---

e
i–
ϕ
2
---

e
i
ϕ
2
---

e
i–
ϕ
2
---

e
i
ϕ
2
---

e
i–
ϕ
2
---

, , , , , , ,
 
 
 

=

ϕ π 2⁄=

Ûz ϕ,
3( )
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According to Refs. 71-73 the set of operations presented above makes

quantum computer universal, thus it is able to perform any unitary operation.

The “doing nothing” problem

It follows from (5.94) that the execution time of a multi qubit gate is

. (5.102)

Since , the (5.102) execution time is much longer than and t

the intercell coupling will affect the dynamics of the rest of the line. The duration of

operation must be chosen in such a way that the state of the rest of the line doe

change.

Suppose that the three-qubit gate described by (5.93) is operating on the first

cells of the line while there is no operation taking place on the rest of the cells. (For t

cellsPbias,j=0 andγj=0.) The unitary operation for the whole line is:

, (5.103)

Here

, (5.104)

, and (5.105)

. (5.106)

The unitary evolution of the whole line can be split into three terms according to (5.1

since the (5.104-5.106) Hamiltonians commute with each other. To avoid the change

t
h
2γ
------∼

γ E0« Tcoupling h E0⁄=

Ûwhole e

i
h
---Ĥwholet–

e

i
h
---Ĥgatet–

 
 
 

e

i
h
---Ĥrestt–

 
 
 

e

i
h
---Ĥinteractiont–

 
 
 

= =

Ĥgate γ2σ̂x 2( ) E0 σ̂z 1( )σ̂z 2( ) 2σ̂z 2( )σ̂z 3( )+( )– 3– E0σ̂z 2( )–=

Ĥrest E j σ̂z j( )σ̂z j 1+( )
j 4=

N 1–

∑–=

Ĥ interaction E0σ̂z 3( )σ̂z 4( )–=
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rest of the cell line, the second and third term on the right hand side of (5.103) mu

equal to an identity matrix (or an additional overall phase factor is also allowed).

The second term is a diagonal matrix. Itskth diagonal element is

, (5.107)

where refers to the polarization of thejth cell of thekth product basis vector.

(For example, forN=5 qubits the 32 product basis vectors are 00000, 00001, 000

...,11111 andk is in the range of 1 to 32.) Notice that is an integer multip

of E0. With the choice of

; m=1, 2, 3, ... (5.108)

the phases of the elements given by (5.107) are the integer multiples of 2π. Thus

and the state of the other cells of the line does not change. It ca

seen that (5.96) and (5.108) are the same. The condition le

to (5.108) as well.

Issues about necessary accuracy of control parameters

Up to now the control parameters were assumed to be ideal. Now it will

investigated how much deviation of the control parameters can be tolerated. Especia

accuracy requirements on the bias, on the coupling and on the timing of the operation

be examined qualitatively.

In the case of the multi-qubit gates described in the beginning of Sec. IV, d

not have az component if the polarizations of the two neighbors are such that

dk e

it
h
--- EjPj

k( )
Pj 1+

k( )

j 4=

N 1–

∑
 
 
 
 

=

Pj
k( )

1±=

EjPjPj 1+∑

t
2πh
E0

----------m=

i
h
---Ĥrestt– 

 exp 1̂=

i
h
---Ĥ interactiont– 

 exp 1̂=

Γ

EΣ 0=
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this case the terms in (5.92) cancel each other. (The corresponding notion is the “res

pulse” for nuclear spin quantum computing [91]. The pulse has an effect only i

frequency equals the resonance frequency.) In practice, the third coordinate of

zero, but it must be much smaller than the first: . F

a multi-qubit operationγ«E0. Combining the two inequalities and dividing byE0 leads to

. Thus for the error of the bias

(5.109)

is required. Up to now theEj intercell couplings were supposed to be exactlyE0 or 2E0,

however, in reality they will be slightly different. From a similar deduction it follows th

to fulfill the Ej intercell couplings must satisfy similar requirements toPbias. A

possible solution in order to nullify the effects of the variance of intercell couplings i

fine tune the fourPbiasvalues necessary to select one of the four possible combination

Pleft andPright after the fabrication of the circuit.

The first step to get the constrains for the accuracy for the timing is to com

(5.102) and (5.108) with the requirementγ«E0. One obtains . The error in

the rotation around axisz must fulfill . Combining this with (5.95) imposes on

the error of timing . Dividing both sides by (5.96) leads to . Hence

. (5.110)

That is, the duration of the pulse must be very well controlled in order to cancel the e

of the rotation aroundz for multi-qubit gates.

Γ

EΣ E0 Pleft 2Pright Pbias+ +( ) γ«=

Pleft 2Pright Pbias+ + γ
E0
------ 1« «

∆Pbias
γ

E0
------ 1« «

EΣ γ«

4πm
E0

γ
------ 1»∼

∆ϕz t, 2π«

∆t
πh
E0
------« ∆t

t
----- 1

2m
-------«

∆t
t

----- γ
E0
----- 1« «
133



ike”

they

o

hree-
Alternative multi-qubit gates

Conditional gates can be implemented without exploiting the “resonance-l

effect that was applied in the previous multi-qubit gates [92]. Their advantage is that

do not need as exact control ofPbias,j’s andEj’s. (From now, suppose that allEj=E0.) For

example, for three isolated cells a three-qubit gate can be obtained as

, (5.111)

where

. (5.112)

This modified version of controlled controlled NOT inverts the middle cell if its tw

neighbors have the same polarization. describes the time evolution of the t

cell system ifPbias,j=0 andγj=0 for j=1,2,3. for (5.112), wheret is the duration

of the time evolution.

A modified version of controlled NOT [92] for two isolated cell is:

, (5.113)

where

Û Û
x–

3π
2

------,

2( )
Û

idle
π
2
---,

1 2 3, ,( )
Û

x–
π
2
---,

2( )

0 0 1 0

0 1– 0 0

1– 0 0 0

0 0 0 1–

1– 0 0 0

0 0 0 1–

0 0 1– 0

0 1 0 0

= =

Û idle ϕ,
1 2 3, ,( )

diag e
iϕ

1 e, i– ϕ
1 1 e

i– ϕ
1 e

iϕ, , , , , ,( )=

Û idle ϕ,
1 2 3, ,( )

ϕ
2E0

h
---------t=

ÛCNOT' Û
x–

3π
2

------,

1( )
Û

idle
π
2
---,

1 2,( )
Û

z
3π
2

------,

1( )
Û

x–
π
2
---,

1( )
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1– 0

= =
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. (5.114)

It is possible to realize controlled NOT with the correct phases with a longer sequen

gates [88], however, (5.113) seems to be the simplest two-qubit gate suitable for th

experimental realizations and not exploiting the “resonance-like” phenomenon.

Notice that in (5.113) all the operations except for are single qu

transformations. is the operation through which the control cell can affect

controlled cell while in the case of gates (5.93), (5.98) and (5.100) it was realized b

“resonance-like” behavior.

5.2.4  Discussion

It is instructive to compare the C-QCA quantum computer to the nuclear s

quantum computers [67,68,69,75,76]. The role of the nuclear spin is now played b

coherence vector. The spin of the nucleus is manipulated by a strong constant ma

field and a weaker alternating one while the C-QCA uses external electrodes to contr

interdot tunneling barriers. In the case of a spin quantum computer there is a spin

coupling while the C-QCA cells are coupled Coulombically. The classical analogy of

spin-1/2 system is a magnetic dipole. The classical analogy of a C-QCA cell is an ele

quadrupole. In nuclear or electron spin quantum computing manipulating indivi

qubits is rather difficult. The NMR devices are running an ensemble of parallel quan

computers. A related approach [78,82] uses the electron spin in a quantum dot for a

but the hardware for writing data in and reading data out has not been developed ye

technology for writing into and reading out of the individually accessible C-QCA cell

Û idle ϕ,
1 2,( )

diag e
i
ϕ
2
---

e
i–
ϕ
2
---

e
i–
ϕ
2
---

e
i
ϕ
2
---

, , ,
 
 
 

=

Û idle ϕ,

Û idle ϕ,
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already available. The limiting factor in the C-QCA approach is the shorter decoher

time which restricts the number of quantum operations.

In regards to physical realizibility, the ratio of the execution time of a quant

operation and the decoherence time is very important. A conservative estimate fo

decoherence time in the semiconductor quantum dots can be a couple ofps. This is used in

Ref. 12 for the modeling of a digital QCA where coherence is not required. For quan

computing applications further efforts must be made to increase decoherence time [7

general, it is not at all clear, what are the limits from this point of view.

The time that is necessary for the intercell coupling to affect the dynam

considerably is . AssumingE0=1meV, .

According to (5.87), the duration for the NOT operations is . It is smaller

several orders of magnitude thanTcoupling, becauseγ»E0. The same is true for the rotation

around the-x axis. The duration of a controlled NOT is also , but . Thu

the time to execute a controlled NOT is longer by several orders of magnitude

Tcoupling. The gates described by (5.111) and (5.113) have an execution time

Tcoupling.

Two crucial questions concerning the feasibility of C-QCA quantum comput

remain to be addressed. The first is whether a large quantum register can be realize

C-QCA in the future. The second is whether a system with a few qubits can be rea

with the present or near future technology. Even if large scale implementation proves

difficult, C-QCA technology can still be used as a tool to test the concepts of quan

computing in solid state devices.

Tcoupling h E0⁄= Tcoupling
h
E0
------ 1ps≈=

T
hπ
2γ
------=

T
hπ
2γ
------= γ E0«
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An alternative to the four-dot cell with two extra electrons is a two-dot cell w

one extra electron.E0 in a double-dot cell can be much smaller than the energy differe

between the ground state and the excited state of the electron in the quantum dot th

excitation of parasitic energy levels (“leakage”) can be suppressed, unlike in the ca

proposals where the information is stored in the ground state and the excited state

electron in the quantum-dot [71]. A drawback of the double-dot cell is that the streng

the intercell-coupling does not decrease with distance as fast as in the case of fo

cells thus next to nearest neighbors must be also included in the model of a cell line

the first realization of a multi-qubit gate, the controlled NOT described by (5.113) se

to be most reasonable with two two-dot C-QCA cells.

5.2.5  Conclusions

In this paper a multi quantum-dot structure, the Quantum Cellular Autom

(QCA) was proposed to realize quantum computing. The basic operations were perfo

with a line of QCA cells, so QCA is viable option for constructing a universal quant

computer. The QCA may offer an example of integrable quantum computer

electrostatic data read in/write out. The main drawback of our implementation is

relatively short decoherence time comparing to the implementations using nucle

electron spins.
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CHAPTER 6

 APPROXIMATE QCA QUANTUM DYNAMICS

In a classical multi-particle system the number of degrees of freedom necessa

the state description increases linearly with the number of particles. A point-like par

can be described by its position and velocity. ForN particles,N positions andN velocities

are required which givesN times more degrees of freedom than for a single particle.

In a quantum mechanical system ofN QCA cells, the number of degrees o

freedom are much larger thanN times the degrees of freedom of a single cell. The ex

degrees of freedom come from the intercellcorrelations.The information necessary for a

total description increases exponentially with the number of cells and makes it difficu

simulate even a modest size block of QCA cells. To describeN coupled cells exactly, 22N-

1 variables are necessary for the coherence vector description.

With the state vector description it is possible to use the Hartree-F

approximation and divide the multi-cell system into single cell quantum mechan

subsystems coupled classically to each other. This simplification does not consider

cell correlations at all thus the results obtained from this method differ greatly from th

the exact model, especially when describing the dynamical behavior.

The coherence vector description makes it possible to divide the state vari

into groups. One group corresponds to the state of the cells, another group correspo

the two-point, three-point, etc. correlations. A correlation term can be nearest neig
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next-to-nearest neighbor, etc. This feature of the coherence vector description helps

determine which correlation terms are important from the point of view of the dynam

and which can be neglected. Usually it is reasonable to assume that the further than n

neighbor and higher order correlations play a less important role, thus they ca

approximated by lower order correlations. Depending on which correlation terms are

and which are neglected, models with different levels of approximations can

constructed which are intermediate between the Hartree-Fock and the exact method

6.1 presents a model keeping the two-point correlations and neglecting higher order

(The section is based on the theory of the coherence vector description presented

5.1. For definitions of notions such as three-point correlation tensor and correlation t

proper consult this section.)

In Sec. 6.2 an example, the so-called majority logic gate with unequal input leg

shown for which the self-consistent mean-field (Hartree-Fock) method gives qualitat

wrong results. An improved version of the self-consistent mean-field approximatio

presented which by including correlation effects determines the ground state correc

Modeling a line of QCA cells as two-state systems leads to the same Hamilto

as modeling an Ising spin chain with nearest neighbor ferromagnetic couplin

transverse magnetic field. The statistical behavior of the Ising chain in thermal equilib

has been thoroughly investigated in the literature, however, up to now not much atte

was paid to the quantum dynamics of a finite system making our approach useful

from the point of view of the theory of coupled two-state systems.
139



d by

lation

w up

than

third

seems

exact

the

oint

lation

nts:

e-

g the

oper

ill be

also

rder
6.1 Model neglecting three-point and higher order correlations

When modeling two coupled cells, the state of the two-cell system is describe

the two single-cell coherence vectors and the (two-point nearest neighbor) corre

tensor. If there are more than two cells, third order (three-point) correlation terms sho

in the dynamic equation of the two-point correlations. If the number of cells is greater

three, then fourth order correlation terms will appear in the dynamic equations of the

order terms. Thus a hierarchy of equations is obtained. The hierarchy of equations

to be ideal to construct intermediate models between the Hartree-Fock and the

method, by truncating the equation system at a reasonable point.

According to Sec.5.1.6, the Hartree-Fock approximation can be obtained from

exact equations for the coherence vectors assuming that the two-p

correlation tensor proper elements are zero and the elements of the two-point corre

tensors can be approximated with coherence vector eleme

. The first approximation, that is better than the Hartre

Fock, could be obtained by keeping the second order correlations and approximatin

third order correlations. It will be assumed that three-point correlation tensor pr

elements are zero and the elements of the three-point correlation tensors w

approximated with lower order correlations and coherence vector elements

The three-point correlation proper of A, B, and C can be given (see (5.45); see

[57], equation (2.811) on page 168) with the three-point correlation and the lower o

correlations as

.(6.1)

Mab i i 1+,( )

Kab i i 1+,( ) λa i( )λb i 1+( )=

M A B C, ,( ) ABC〈 〉 AB〈 〉– C〈 〉 BC〈 〉– A〈 〉 AC〈 〉– B〈 〉 2 A〈 〉 B〈 〉 C〈 〉+=
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Assuming that it is zero gives an approximation for the three-point correlations:

(6.2)

For example, if ,  and , one obtains

(6.3)

(6.3) can be written down with correlation tensor and coherence vector elements as

(6.4)
The general formula for approximating any three-point correlations is

(6.5)

Using this approximation, the three-point correlations can be eliminated from

dynamical equations (5.32-5.35). The model using this approximation will be called “

referring to that it keeps only the pair correlations. It describes the state of the cell arr

the coherence vectors of the cells and all the two-point correlations. (For det

deduction see Appendix C.)

Notice that not all the possible 3x3x3=27 three-point correlations must

approximated by lower order ones, only those which can be found in the (5.32-5

dynamical equations of the two-point correlations. As it was mentioned in Sec. 5.1.2,

are 14 of them:xyz, xxz, yyz, yxz, zyz, zxz, zyx, zxx, zyy, zxy, zzy, zzx, yzz andxzz.

The system of equations can be reduced further by approximating the ne

nearest neighbor two-point correlations by the multiplication of corresponding

coherence vector elements based on the assumption that the next to nearest ne

K A B C, ,( ) ABC〈 〉 AB〈 〉 C〈 〉 BC〈 〉 A〈 〉 AC〈 〉 B〈 〉 2 A〈 〉 B〈 〉 C〈 〉–+ +≈= .

A σ̂x 1( )= B σ̂z 3( )= C σ̂y 6( )=

Kxzy 1 3 6, ,( ) σ̂x 1( )σ̂z 3( )〈 〉 σ̂y 6( )〈 〉 σ̂z 3( )σ̂y 6( )〈 〉 σ̂x 1( )〈 〉+ +≈

σ̂x 1( )σ̂y 6( )〈 〉 σ̂z 3( )〈 〉 2– σ̂x 1( )〈 〉 σ̂z 3( )〈 〉 σ̂y 6( )〈 〉. .

Kxzy 1 3 6, ,( ) Kxz 1 3,( )λy 6( ) Kxy 1 6,( )λz 3( ) Kzy 3 6,( )λx 1( ) 2λx 1( )λz 3( )λy 6( )–+ +≈ .

Kabc i j k, ,( ) σ̂a i( )σ̂b j( )σ̂c k( )〈 〉 Kab i j,( )λc k( ) Kbc j k,( )λa i( )+ +≈=

Kac i k,( )λb j( ) 2λa i( )λb j( )λc k( )– ,

a b c, , x y z, ,= .
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correlations are less important than the nearest neighbor correlations:

. The general formula for approximating any nearest neigh

three-point correlation this way is

(6.6)

Using this approximation, the three-point correlations and the further than ne

neighbor correlations can be eliminated from the (5.32-5.34) dynamical equations o

coherence vectors and the nearest neighbor correlations. The method based o

approximation will be called “NNPC” referring to that it includes only the neare

neighbor pair correlations in the state description of the cell array. (See Fig. 6.1 fo

interpretation of pair correlations and three-point correlations. See Appendix C for a

detailed explanation of the deduction and for summary of the equations.)

Since we do not need the dynamical equations for the non-nearest neig

correlations, only the three-point correlation terms which can be found in the (5.32-5

dynamical equation of the nearest neighbor pair correlations must be approximated.

are 10 of them:xyz, xxz, yyz, yxz, zyz, zxz, zyx, zxx, zyy andzxy.

Kxy 1 3,( ) λx 1( )λy 3( )≈

Kabc i i 1+ i 2+, ,( ) σ̂a i( )σ̂b i 1+( )σ̂c i 2+( )〈 〉 ≈=

λa i( )λb i 1+( )λc i 2+( ),–

,
a b c, , x y z, ,=

Kab i i 1+,( )λc i 2+( ) Kbc i i 2+,( )λa i 1+( )+

.
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K̂ 1 2,( ) K̂ 2 3,( ) K̂ 3 4,( ) K̂ 4 5,( ) K̂ 5 6,( )

K̂ 1 3,( ) K̂ 2 4,( ) K̂ 3 5,( ) K̂ 4 6,( )

K̂ 1 2 3, ,( ) K̂ 2 3 4, ,( ) K̂ 3 4 5, ,( ) K̂ 4 5 6, ,( )
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FIGURE 6.1. Scematic for (a) the nearest neighbor pair correlations, (b) the next t
nearest neighbor pair correlations and (c) the nearest neighbor three-poin
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6.1.1  Comparison of the dynamics of the exact and approximate methods

Computer simulations were made to compare PC and NNPC with the Har

Fock approximation and the exact model with the many-body Hamiltonian.

comparison was done for the case of adiabatic switching of a QCA cell line.

The PC and NNPC describes the system of two cells exactly, thus the smalles

array for which the behavior of these approximations is worth to study has three cell

describe the state fully, beside the two point correlation tensors , a

three-point correlation tensor is necessary as shown in Fig. 6.2. PC approximate

elements of this tensor with lower order correlations and keeps all the

correlation tensors: ,  and . NNPC approximates even

The first simulation example is the adiabatic switching of a line of three cells

shown Fig. 6.3(a). The first cell is coupled to a driver cell. The tunneling coefficien

gradually lowered (the barriers are raised) as shown in Fig. 6.3(b). Fig. 6.3(c) show

dynamics of the coherence vector coordinates for the three cells coming from PC. A

end all the three cells align with the driver, that is, at the end . Figs. 6.3(c)

(d) show a comparison of the curves corresponding to the Hartree-Fock approxim

the NNPC, the PC and the exact model. It is clearly visible that NNPC gives a better m

with the exact model than the Hartree-Fock approximation does and PC gives a

match than NNPC.

K̂ 1 2 3, ,( ) 3 3 3××

3 3×

K̂ 1 2,( ) K̂ 1 3,( ) K̂ 2 3,( ) K̂ 1 3,( )

λz i( ) 1–≈
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FIGURE 6.2. Modeling three coupled cells. The state of th
system is fully described by the three coherence vector

the three pair correlation tensors and the three-point correlati
tensor. PC neglects the three-point correlation tensor keeping 36 variab
of the 63. NNPC ignores even the next nearest neighbor correlation, and ke
27 variables.

SU 2( ) SU 2( ) SU 2( )⊗⊗
3 3× 3 3 3××

K̂ 1 2 3, ,( )
K̂ 1 3,( )
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Figs. 6.4(a-d) show the pair correlation tensor proper elements for PC and

exact model. PC is a qualitative improvement comparing to the Hartree-F

approximation since the Hartree-Fock approximation does not model intercell correla

at all.

The second simulation example is the adiabatic switching of a line of five c

Fig. 6.5 shows the structure, the time dependence of the tunneling energy an

dynamics of the coherence vector elements. In Fig. 6.6 the dynamics of the ne

neighbor two-point correlations are presented computed with NNPC and the exact m

PC does not seem to have an obvious superiority over NNPC in spite of the la

quantum degrees of freedom that are kept. (It is also much harder to handle nume

because of the complicated nonlinear couplings between the state variables ma

integration of the differential equation very sensitive to noise.) An intermediate m

between PC and NNPC can be constructed keeping the next-to-nearest nei

correlations and approximating the further-than-next-to-nearest neighbor correl

terms. Further improvement on NNPC could be made by including three-point correl

terms.

Table 6.1 shows the number of real variables used for state description fo

different methods. With the Hartree-Fock method, describing each cell by a three ele

coherence vector, the number of variables scales linearly with the number of cells.

the density matrix description the quantum state is described by a 2Nx2N matrix, thus the

number of variables scales exponentially with the number of cells. For NNPC, how

the number of variables scales linearly with the number of cells, and for PC the numb

variable scale with the square of the number of cells
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FIGURE 6.4. Adiabatic switching of three cells. The barriers are gradually rais
while the driver has constant -1 polarization. The nearest neighbor correlation ten
proper elements for the (a) exact model and (b) PC. The next to nearest neigh
correlation tensor proper elements for the (c) exact model and (d) PC. Notice that
peak of the absolute value of the nearest neighbor pair correlations are usually bi
than that of the next to nearest neighbor pair correlations.
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lowered while the driver has constant -1 polarization. The five cells follow th
polarization of the driver. (a) The arrangement of the five cells and a driver, (b)
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FIGURE 6.6. Adiabatic switching of five cells. The barriers are gradually
raised while the driver has constant -1 polarization. The nearest neighbor
correlation tensor proper elements for the (a) the exact model, and for (b)
NNPC.
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The simulations were done by solving the (5.32-5.35) differential equati

numerically. Stiff ODE solvers must have been used. The best choice seemed to b

ode15ssolver of MATLAB, restricting the maximum order of the method to 1 an

restricting the maximum time step to 0.2. The initial state was generated from

stationary state coming from the exact model with the many body Hamiltonian. It ha

be refined to make all the time derivatives of PC/NNPC zero. In other words,

stationary states from the exact model and for the PC/NNPC are numerically slig

different. Starting the simulation from the stationary state of the exact model can c

# of cells
Hartree-Fock
approximation

NN pair
correlations

only
approximation

Pair
correlations

only
approximation

Exact model
(twice the # of

elements in
the density

matrix)

1 3 3 3 8

2 6 15 15 32

3 9 27 36 128

5 15 51 105 2048

10 30 111 435 2097152

15 45 172 990 2.147x109

... ... ... ... ...

N 3N

3N+

9(N-1)=

12N-9

3N+

9N(N-1)/2=
4.5N2-1.5N

22N+1

Table 6.1. Number of (real) state variables as the functions of the number of
QCA cells for the Hartree-Fock model, the nearest neighbor pair correlations
only model (NNPC), the pair correlations only model (NNPC), and the density
matrix description.
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e

oscillations. For the refinement a minimization algorithm was used trying to make

derivatives zero.

6.1.2  The validity of the approximations

It is important to check whether the assumptions used for the approximation

PC and NNPC are valid. PC approximates the three-point correlations supposing th

elements of the three-point correlation tensors proper are zero. NNPC approximate

the next-to-nearest neighbor two-point correlations based on the assumption th

elements of the next-to-nearest neighbor two-point correlation tensors proper are ze

this subsection it will be examined through a concrete simulation example whether

assumptions are fulfilled or no.

The simulation example for which the validity of the approximations will b

checked is the adiabatic switching of a line of five cells. The simulation results h

already been presented in Fig. 6.5 and Fig 6.6. First it will be checked whethe

elements of the three-point correlation tensors proper are sufficiently small. Not a

them must be checked since not all of the correlations were approximated by PC, on

14 of the possible 3x3x3=27 three-point correlations. The absolute maxima of thes

summarized in Table 6.2(a). (E.g.,zzxrefers to the maximum of

during the whole time evolution.) Table 6.2(b) shows the maxima of the 10 correla

tensor proper elements which are assumed to be zero by NNPC. For compariso

absolute maxima of the two-point correlation tensor proper elements are shown in

6.2.(c). (E.g.,zz refers to the maximum of during the whole tim

evolution.)

abs Mzzx i i 1 i 2+,+,( )( )

abs Mzz i i 1+,( )( )
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Next it will be checked whether the elements of the further-than-nearest neig

pair correlation tensors proper are small. Fig. 6.7 shows the absolute maxima o

elements of the two-point correlation tensors proper as the function of

dist intercell distance.dist=1 and dist=2 correspond to nearest neighbor and next-

nearest neighbor correlations, respectively. According to the figure, the pair correla

decrease rapidly with the distance.

In summary, in the simulation example presented above, the assumptions on w

the approximation were based, seem to be valid.

Table 6.2. (a) The maxima of the largest elements of the three-point correlation te
propers for the three-point correlations approximated by PC. (b) The same for NN
(c) The maxima of the elements of the two-point correlation tensor proper
comparison.

Abs.
Max.

zzx 0.081

zyy 0.071

zxz 0.068

zxx 0.034

yyz 0.026

Abs.
Max.

zyy 0.071

zxz 0.068

zxx 0.034

yyz 0.026

xxz 0.020

Abs.
Max.

zz 0.342

yy 0.317

xx 0.167

xz 0.132

zx 0.061

(a) (b) (c)

M̂ i i dist+,( )
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6.1.3  Stationary solution of the dynamical equations

The stationary states of PC/NNPC can be obtained taking all the time deriva

zero in the dynamical equations and solving for the coherence vector and corre

tensor elements. The dynamics of the system can be written in the general form:

. (6.7)

Here is a column vector containing coherence vector and correlation tensor elem

and is a vector-valued function of the vector variable .The stationary solution

be obtained from

. (6.8)

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance between cells

Max. of pair corr as the function of cell distance

FIGURE 6.7. Absolute maximum of the elements of theM(i,i+dist) pair
correlation tensor proper as the function of intercellular distance.

distance
between cells

td
d Λ F Λ( )=

Λ

F Λ( ) Λ

0 F Λstat( )=
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Several numerical techniques can be used to find . It can be found thro

the minimization of . Other possibility is the generalized Newton-Raphs

method. It converges very fast since contains mostly linear terms, except fo

terms approximating the three-point correlations.

The generalized Newton-Raphson method is based on the linearization of

around an initial guess, . The next guess, , will be the vector that makes

linearized function zero. The linearization of  is

. (6.9)

Here is the Jacobian of at . Since we are looking for the zero of

the following equation must be solved for :

. (6.10)
The solution is

. (6.11)
This gives the next guess from the previous guess. Notice that the Jacobian mu

invertible since (6.11) explicitly contains its inverse. The Jacobian is singular if there i

dissipation, thus adding (even very small) decoherence terms to the equations (See S

5.1.7.) is necessary to find the stationary states. It is reasonable to determine the Ja

analytically instead of using numerical differentiation in order to increase the computa

speed and the accuracy as well.

Λstat

F Λ( )

F Λ( )

F Λ( )

Λini Λnext

F Λ( )

F Λ( ) F Λini( )– J Λini( ) Λ Λini–( )≈

J Λini( ) F Λ( ) Λini F Λ( )

Λnext

F Λini( )– J Λini( ) Λnext Λini–( )=

Λnext Λini J
1– Λini( )F Λini( )–=
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6.1.4  Conclusions

A method was shown how to truncate the system of dynamical equations obta

from the coherence vector formalism. The Pair Correlation (“PC”) model kept all the t

point correlations while approximation the three-point correlations. The Nearest Neig

Pair Correlation (“NNPC”) model approximated even the non-nearest neighbor

correlations. The usefulness of these models can be summarized as follows. (1)

quantitativelyimprove the dynamics of the coherence vectors comparing to the mean-

(Hartree-Fock) model. (2) They represent also aqualitative improvement since they give

the (approximate) dynamics of the correlation while mean-field models do not

information on correlation. (3) These approximate models help understating w

quantum degrees of freedom are important from the point of view of the dynamics.

6.2 Modeling the majority gate with unequal input legs

Self-consistent mean-field type (self-consistent Hartree-Fock) methods us

give even quantitatively good results in determining the instantaneous ground sta

adiabatically switched QCA circuits. In this section a counter example, the so-ca

majority logic gate with unequal input legs is presented. For this gate the results o

mean-field type approximation are qualitatively wrong. An improved version of the s

consistent mean-field approximation is presented which by including correlation ef

determines the ground state correctly.

The basis of the self-consistent mean-field method is the self-consistent iterati

the single-cell time-independent Scrödinger equations:
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. (6.12)

TheΨi cell state can be expressed as the linear combination of the polarization +1 a

states:

. (6.13)

The Hamiltonian is

. (6.14)

Here γ is the interdot tunneling energy. The single cell Hamiltonian is coupled to

neighboring cells through  which is the weighted sum:

. (6.15)

TheEij electrostatic intercell coupling isE0 for horizontal and vertical nearest neighbors

0.18E0 for diagonal neighbors and zero for others. (The minus sign is used for consist

reasons.)

It is convenient to define a new quantity, the charge polarization of a cell, as

. (6.16)

Equivalently, it can be written as well as the expectation value of the Pauli

matrix:

. (6.17)

With the polarizations of the neighbors (6.15) can be rewritten as

. (6.18)

It can be proved[52] that to compute the polarization corresponding to the low

energy eigenstate of the single-cell Hamiltonian is equivalent to

Ĥ iΨi EiΨi=

Ψi αi 1| 〉 βi 1–| 〉+
αi

βi

= =

Ĥ i γ σ̂xi–
1
2
---σ̂ziEΣi+=

EΣi

EΣi Eij σ̂zi〈 〉
j

∑–=

Pi αi
2 βi

2
–=

σ̂zi

Pi σ̂zi〈 〉–=

EΣi Eij Pj
j

∑=
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, (6.19)

which gives the steady-state polarization of a cell as the function of the polarizations

neighbors. (See Sec. 4.1.2) Thus this formula will be iterated instead of the single

time-independent Scrödinger equation. In this section a concrete example wi

considered for which the self-consistent mean field method gives qualitatively w

results.

6.2.1  Posing the problem

The circuit under consideration can be seen in Fig. 6.8. It is a majority gate

unequal input legs. One of the input legs is only one cell long and coupled to a drive

(Pdriver3) with polarization -1. The other two input legs are longer (their length will

denoted byL) and they are coupled to drivers (Pdriver1,Pdriver2) with polarization +1.

When the gate is adiabatically switched, starting out from ground state,

interdot barriers are raised gradually. Due to the adiabatic theorem the system

constantly in its ground state.When the barriers are high (the tunneling energy is low

ground polarization of the output of the majority gate is the majority of the polarizati

of the input drivers. The results of the self-consistent method for a seven-cell majority

(L=2) can be seen in Fig. 6.9. The interdot tunneling barriers are gradually raised

gamma tunneling energy is gradually decreased) as shown in Fig. 6.9(a). At the en

output cell has +1 polarization as can be seen from the dynamics of the cell polariza

shown in Fig. 6.9(b). For comparison, the cell polarizations of the exact instantaneou

Pi

EΣi

2γ
--------

1
EΣi

2γ
-------- 

 
2

+

------------------------------=
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ground state are also shown in Fig 6.9(c). It can be seen in Fig 6.9(b-c), that at the e

the cells have +1 polarization except for the bottom neighbor of the gate cell which se

in the polarization -1 state.

Pdriver1=+1

Pdriver2=+1

Pdriver3=-1

Poutput=-1

gate cell

FIGURE 6.8. 11-cell majority gate with unequal input legs. At the end of the adiaba
switching process, when the barriers are high, the output polarization of the majo
gate should be the majority polarization of the inputs. The self-consistent mean-fi
calculation gives a qualitatively wrong answer predicting -1 for the output polarizati

output cell

(wrong)
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5

6
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If a cell is added to the long input legs (L=3) then the self-consistent method give

qualitatively wrong answer since at the end of the adiabatic switching process the o

polarization is -1. Fig. 6.10(a) and (b) show the instantaneous ground state

polarizations computed with the self-consistent method and obtained from the

solution of the time-independent Scrödinger equation of the whole system, respect

As it can be seen in Fig. 6.10(a), three of the nine cells settle in the -1 polarization s

(These are the gate cell, the bottom neighbor of the gate cell, and the output cell.)

FIGURE 6.9. Adiabatic switching of a 7-cell majority gate (L=2). (a) The time
dependence of the tunneling energy. The barriers are gradually raised. (b) The
cell polarizations as the function of time for the self-consistent mean field
method and (c) for the exact model.
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Up to now it was not explained exactly how the starting guess of the self-consis

solution is obtained. At a time instantt+∆t, the polarizations computed for timet are used

as initial guess. It seems to be reasonable to check whether there is another stationa

of the self-consistent algorithm with lower energy, using another initial guess at each

instant. The results are shown in Fig 6.11(a) usingPi=+1 as initial guess. The polarization

of the output cell is nowP=+1, as it is expected in case of correct operation.

FIGURE 6.10. Adiabatic switching of a 9-cell majority gate (L=3). (a) The cell
polarizations as the function of time for the self-consistent mean field method
and (b) for the exact model.
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In order to determine which of the two methods give the ground state, i

necessary to compute their energies. The energy is computed as

, where (6.20)

in ground state

, , and . (6.21)

In (6.20) the driver cells are also included in the second sum although they

unnumbered in Fig. 6.8. The drivers are not included in the first sum since their ba

are high.CD denotes the set of drivers.

The dynamics of the gate cell polarization and the energies of the instantan

ground state is shown for the two methods in Fig 6.11(b) and (c). Fort<60 they give the

same results. Att=60 there is an abrupt jump in the ground state given by the met
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FIGURE 6.11. Adiabatic switching of a 9-cell majority gate (L=3). (a) The cell
polarizations as the function of time for the self-consistent mean field method whe
thePi=+1 initial guess is used for iterations. (b) The polarization of the gate cell fo
the self-consistent mean field using the two different initial guesses for iteration. (c
Energies of the majority gate for the two cases. For t<60 the polarizations and th
energies they are the same for both cases.
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usingPi=+1 as initial guess. Fort>60 it gives a qualitatively correct ground state unlike th

case when the previous cell polarizations were used as initial guess. (Notice, that e

for one all the cells have +1 polarization in Fig 6.11(a), as it is expected for the true gr

state.). Thus the self-consistent method has a stationary state which could

qualitatively correct ground state, however, it cannot find it if the cell polarization in

previous time instant is used as the starting point of the iteration. At about t=80

stationary becomes the ground state and the “old” ground state becomes an excited s

can be seen in Fig. 6.11(c).

Intuitively, the reason for the failure of the self-consistent method in modeling

majority gate with unequal input legs can be understood as follows. The effect of the d

of the short leg reaches the gate cell before the effect of the drivers of the long legs.

the polarization of the gate cell and the output cell to -1. Later when the effect of the o

two drivers reaches the gate cell, they will be not able to flip it into +1 polarization. No

that at this moment two of the neighbors of the gate cell has +1 polarization, the othe

has -1.

6.2.2  Solution

Our goal is to construct an intermediate model between the self-consistent m

field method and the exact model solving the time independent Scrödinger equation

whole system. (Modeling the whole gate with one many-body Hamiltonian would req

so many state variables that above 10-15 cells it is not feasible.) In order to do that it

be examined which cell of the majority gate could still be modeled with the mean-fi

approach and which should be modeled by a better method. The mean-field m
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assumes that the system is in a product state and the cells are uncorrelated. Thus it

to be reasonable to check how large the two-point, three-point, etc. correlations a

different part of a, let say, 11-cell (L=3) majority gate.

The two-point correlation of cellsi and j can be characterized by the two-poin

correlation tensor with elements:

. (6.22)

All the nine elements of this tensor are zero if the two cells are uncorrelated.

Our examinations show that the correlations are large in the “cross” region aro

the gate cell. Fig. 6.12 shows the time dependence ofMzz(1,2),Mzz(4,5) andMzz(5,11). It

can be seen that the latter two (corresponding to correlation in the cross region) are

larger. Thus it seems to be reasonable to model the five cells of the cross with a fiv

Hamiltonian. The genuflection with the lowest energy would give the five cell gro

state. The remaining cells can be modeled by self consistent mean-field. The two re

are connected also in a self-consistent manner.

Mab 1 2,( ) σ̂a 1( ) σ̂b 1( )〈 〉– σ̂b 2( ) σ̂b 2( )〈 〉–〈 〉 ;= a b, x y z, ,=

FIGURE 6.12. Dynamics of the two-point correlations during the adiabatic switchin
of a 11-cell majority gate (L=4).Mzz(1,2) (dashed),Mzz(4,5) (solid) andMzz(5,11)
(solid) are shown. The correlations are much larger in the cross region than away fr
it.
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Simulation show that this approximation give the correct output for L<40. (Not

the large improvement comparing to the self-consistent mean-field method that wo

correctly for L<2.) Fig. 6.13 shows the results for the 11-cell gate (L=4) comparing it to

that of the exact model and of the self-consistent mean field.

It is also interesting to see how much the correlations are restored in the c

region by our approximation. Fig. 6.14(a) shows some of the two-point correlations in

cross region. (Compare with the solid curves of Fig. 6.12.) For example, if the seven

cross (obtained by attaching one cell from the top and one cell from the left to the five

cross) is modeled with a many-cell Hamiltonian then the level of restoration is even b

as can be seen in Fig. 6.14(b).

FIGURE 6.13. Adiabatic switching of a 11-cell majority gate (L=4). (a) The c
polarizations as the function of time. The cross region is modeled with a five-
Hamiltonian while the remaining cells are modeled with self-consistent mean-fi
(b)The same for the self-consistent mean-field method and (c) for the exact model.
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The number of output cells can be increased adding new cells to the cross

modeling these cells together with the cross with one many-cell Hamiltonian. One m

try to attach output cells modeled with self-consistent mean-field, however, more than

or three additional cells cause the method to fail to give the right output. Another solu

could be to attach a line of output cell to the cross which are modeled by a separate

cell Hamiltonian as shown. The advantage of using two separate many-cell Hamilto

instead of one is the large decrease in the number of state variables. For example, a

cross with two extra output cells is modeled with a many-cell Hamiltonian, an

additional output cells are attached to it modeled by a separate many-cell Hamilto

then the method gives the correct output for L<36.

Originally it was thought that the self-consistent mean-field approach fails for

majority gate since, because of the inequality of the input legs, the effect of one o

drivers reaches the gate cell before the other two. The findings of this section suppo

FIGURE 6.14. Dynamics of the two-point correlations during the adiabati
switching of a 11-cell majority gate (L=4) when the cross region is simulate
with a many-cell Hamiltonian.Mzz(4,5) andMzz(5,11) are shown using (a) a five-
cell cross and (b) a seven-cell Hamiltonian for the cross. Compare with the so
lines of Fig. 6.12.
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idea that what caused the self-consistent mean-field approach to fail was its inabil

modeling the correlations in the cross region. The different length of the input legs is

the main reason for the failure, since even with the new method they are modeled by

consistent mean-field. In summary, the competing inputs lead to failure of finding

ground state only because of neglecting quantum correlation in the cross regions.

consequence, long-range quantum correlations and entanglement, at least in the (p

relatively long) input legs, are not necessary for the correct operation of the majority g

Originally it was thought that the self-consistent mean-field approach fails for

majority gate since, because of the inequality of the input legs, the effect of one o

drivers reaches the gate cell before the other two. The findings of this section suppo

idea that what caused the self-consistent mean-field approach to fail was its inabil

modeling the correlations in the cross region. The different length of the input legs is

the main reason for the failure, since even with the new method they are modeled by

consistent mean-field. In summary, the competing inputs lead to failure of finding

ground state only because of neglecting quantum correlation in the cross regions.

consequence, long-range quantum correlations and entanglement, at least in the (p

relatively long) input legs, are not necessary for the correct operation of the majority g

6.2.3  Delayed-gate approximation

When simulating the behavior of an adiabatically switched QCA circuit, it may

cumbersome to divide the cells into groups in order to provide that the simulations

the correct result. A very simplead hocmethod will be proposed which, by applying it to
167
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the self-consistent mean-field approach, leading to the qualitatively correct modelin

the majority gate.

As it was seen, it can lead to wrong results for the self-consistent mean-

method, if the effect of one input reaches the gate cell much earlier than the others

problem of the competing inputs can be solved if the polarization of the gate cell is fi

to zero until at least three of its four neighbors has a sufficiently large (e. g., |Pi|>0.35)

polarization. Thus the driver with the shortest input leg cannot flip the gate cell and

output cell just because it is closer. Fig. 6.15 shows the results of an 11-cell gateL=4)

with four extra output cells.

6.2.4  Conclusions

A method was presented for modeling the majority gate of Quantum-dot Cell

Automata cells with unequal input legs. The self-consistent mean-field t

approximation fails to determine the ground state correctly when the gate is adiabat

FIGURE 6.15. Adiabatic switching of a 11-cell majority gate (L=4) with four
output cells. The cell polarization as the function of time for the delayed gate
mean-field approximation.
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switched. It was found that if the five-cell cross region of the majority gate is mode

with a many-body Hamiltonian while all the other cells are still modeled by the mean-fi

method, the ground state of the system is determined qualitatively correctly up to a

large difference in the length of the input legs. After the theoretical analysis, anad-hoc

method, the delayed-gate approximation was proposed to provide the qualitatively c

ground state not only for a majority gate, but even for more complicated QCA circuit
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APPENDIX A

 DYNAMICS OF THE CORRELATIONS FOR TWO QCA CELLS

The correlation of two QCA cells is described by the 9 element correlation tensor w

has the elements of the form:

. (A.1)

In order to get the dynamics of the ’s, first the dynamics of the dynamics of

terms must be computed then the expectation values will give the dyna

for the elements of the correlation tensor. The computations will be given in full detai

one element of the correlation tensor ( ), while for the other elements only the

result is presented.

The dynamics of the terms can be obtained from the equation giv

the time dependence of an operator in the Heisenberg picture:

, (A.2)

where Hamiltonian for the two-cell system is:

. (A.3)

To get the time dependence of , the time dependence of must be obta

with (A.2):

. (A.4)

Kij σ̂i 1( )σ̂ j 2( )〈 〉 ;= i j, x y z, ,=

Kij

σ̂i 1( )σ̂ j 2( )

Kyz

σ̂i 1( )σ̂ j 2( )

ih
t∂

∂
Ô Ô Ĥ,[ ]=

Ĥ γ1σ̂x 1( )– γ2σ̂x 2( )–
Ek

2
------σ̂z 1( )σ̂z 2( )+=

Kyz σ̂y 1( )σ̂z 2( )

td
d σ̂y 1( )σ̂z 2( )( ) i

h
--- γ1σ̂x 1( )– γ2σ̂x 2( )–

Ek

2
------σ̂z 1( )σ̂z 2( )– σ̂y 1( )σ̂z 2( ),=
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The commutator relations for the relevant terms are:

(A.5)

(A.6)

(A.7)

After substituting (A.5-A.7) into (A.4), the following equation is obtained:

. (A.8)

Taking the expectation values one gets:

. (A.9)

Substituting the coherence vector and correlation tensor elements in the pla

expectation values the dynamics of  is given as:

. (A.10)

For the other eight elements the computations are very similar. The time dependen

the nine elements of the correlation tensor can be given as:

γ1σ̂x 1( )– σ̂y 1( )σ̂z 2( ),[ ] γ– 1 σ̂x 1( ) σ̂y 1( ),[ ]σ̂z 2( )
γ– 1 2i σ̂z 1( )( )σ̂z 2( ) 2iγ1σ̂z 1( )σ̂z 2( ),–

= =

=

γ2σ̂x 2( )– σ̂y 1( )σ̂z 2( ),[ ] γ– 2σ̂y 1( ) σ̂x 2( ) σ̂z 2( ),[ ]
γ– 2σ̂y 1( ) 2– i σ̂y 2( )( ) 2iγ2σ̂y 1( )σ̂y 2( ),

= =
=

Ek
2

------σ̂z 1( )σ̂z 2( )– σ̂y 1( )σ̂z 2( ),
Ek

2
------– σ̂z 1( ) σ̂y 1( ),[ ] σ̂z 2( )( )2

Ek

2
------– 2– i σ̂x 1( )( ) iEkσ̂x 1( )

= =

= .

h
td

d σ̂y 1( )σ̂z 2( )( ) 2γ1σ̂z 1( )σ̂z 2( ) 2γ2σ̂y 1( )σ̂y 2( )– Ekσ̂x 1( )–=

h
td

d σ̂y 1( )σ̂z 2( )〈 〉 2γ1 σ̂z 1( )σ̂z 2( )〈 〉 2γ2 σ̂y 1( )σ̂y 2( )〈 〉– Ek σ̂x 1( )〈 〉–=

Kyz

h
td

dKyz 2γ1Kzz 2γ2Kyy– Ekλx 1( )–=
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(A.11)

To check the manual symbolical computations, an object oriented program was writt

MATLAB handling Pauli spin matrices symbolically. Its output is given in Fig. A.1.

h
td

d

Kxx

Kxy

Kxz

Kyx

Kyy

Kyz

Kzx

Kzy

Kzz

0 0 0 0 0 0 0 0 0

0 0 2γ2 0 0 0 0 0 0

0 2γ2– 0 0 0 0 0 0 0

0 0 0 0 0 0 2γ1 0 0

0 0 0 0 0 2γ2 0 2γ1 0

0 0 0 0 2γ– 2 0 0 0 2γ1

0 0 0 2γ– 1 0 0 0 0 0

0 0 0 0 2γ– 1 0 0 0 2γ– 2

0 0 0 0 0 2γ– 1 0 2γ– 2 0

Kxx

Kxy

Kxz

Kyx

Kyy

Kyz

Kzx

Kzy

Kzz

Ek

0

0

λy 1( )
0

0

λx 1( )–

λy 2( )

λx 2( )–
0

+=
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>> CorrDynTwoCells
**********************************************************
Dynamical equation for the correlation tensor of two cells
   computed from the two-cell Hamiltonian symbolically
**********************************************************

   The form of the equation is:

       dKvector
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
           dt

   where

CoeffMatrix =

[    0,    0,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,  ga2,    0,    0,    0,    0,    0,    0]
[    0, -ga2,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,    0,    0,    0,    0,  ga1,    0,    0]
[    0,    0,    0,    0,    0,  ga2,    0,  ga1,    0]
[    0,    0,    0,    0, -ga2,    0,    0,    0,  ga1]
[    0,    0,    0, -ga1,    0,    0,    0,    0,    0]
[    0,    0,    0,    0, -ga1,    0,    0,    0,  ga2]
[    0,    0,    0,    0,    0, -ga1,    0, -ga2,    0]

   and

RemVector =

    ’0’
    ’0’
    ’y1’
    ’0’
    ’0’
    ’(-1)*x1’
    ’y2’
    ’(-1)*x2’
    ’0’

Here the correlation is described by Kvector that
is a 9 element column vector:
                                         T
Kvector=[<x1x2> <x1y2> <x1z2> ... <z1z2>]

>>

FIGURE A.1.Output of the MATLAB program computing the dynamics of the correlat
tensor symbolically for two coupled cells.ga1, ga2 stand forγ1 and γ2. xn, yn and zn
(n=1,2) are shorthand notations for ,  and .σ̂x n( ) σ̂y n( ) σ̂z n( )
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APPENDIX B: DYNAMICS OF THE CORRELATIONS FOR A CELL LINE

>> CorrDyn
**********************************************************
Dynamical equation for the correlation tensor of cells#2/3
   computed from the four-cell Hamiltonian symbolically
**********************************************************

   The form of the equation is:

       dKvector23
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
           dt

   where

CoeffMatrix =

[    0,    0,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,  ga3,    0,    0,    0,    0,    0,    0]
[    0, -ga3,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,    0,    0,    0,    0,  ga2,    0,    0]
[    0,    0,    0,    0,    0,  ga3,    0,  ga2,    0]
[    0,    0,    0,    0, -ga3,    0,    0,    0,  ga2]
[    0,    0,    0, -ga2,    0,    0,    0,    0,    0]
[    0,    0,    0,    0, -ga2,    0,    0,    0,  ga3]
[    0,    0,    0,    0,    0, -ga2,    0, -ga3,    0]

   and

RemVector =

    ’z1*y2*x3+x2*y3*z4’
    ’z1*y2*y3+(-1)*x2*x3*z4’
    ’z1*y2*z3+y2’
    ’(-1)*z1*x2*x3+y2*y3*z4’
    ’(-1)*z1*x2*y3+(-1)*y2*x3*z4’
    ’(-1)*z1*x2*z3+(-1)*x2’
    ’y3+z2*y3*z4’
    ’(-1)*x3+(-1)*z2*x3*z4’
    ’0’

Here the correlation is described by Kvector23 that
is a 9 element column vector:
                                           T
Kvector23=[<x2x3> <x2y3> <x2z3> ... <z2z3>]

FIGURE B.1. Output of the MATLAB program computing the dynamics of th
correlation tensor symbolically for cell #2 and #3 of a line of cells.ga2, ga3stand forγ2
andγ3. xn, yn andzn(n=1,2,..) are shorthand notations for ,  and .σ̂x n( ) σ̂y n( ) σ̂z n( )
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>> CorrDyn2
**********************************************************
Dynamical equation for the correlation tensor of cells#2/4
   computed from the five-cell Hamiltonian symbolically
**********************************************************

   The form of the equation is:

       dKvector24
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
           dt

   where

CoeffMatrix =

[    0,    0,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,  ga4,    0,    0,    0,    0,    0,    0]
[    0, -ga4,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,    0,    0,    0,    0,  ga2,    0,    0]
[    0,    0,    0,    0,    0,  ga4,    0,  ga2,    0]
[    0,    0,    0,    0, -ga4,    0,    0,    0,  ga2]
[    0,    0,    0, -ga2,    0,    0,    0,    0,    0]
[    0,    0,    0,    0, -ga2,    0,    0,    0,  ga4]
[    0,    0,    0,    0,    0, -ga2,    0, -ga4,    0]

   and

RemVector =

    ’z1*y2*x4+y2*z3*x4+x2*z3*y4+x2*y4*z5’
    ’z1*y2*y4+y2*z3*y4+(-1)*x2*z3*x4+(-1)*x2*x4*z5’
    ’z1*y2*z4+y2*z3*z4’
    ’(-1)*z1*x2*x4+(-1)*x2*z3*x4+y2*z3*y4+y2*y4*z5’
    ’(-1)*z1*x2*y4+(-1)*x2*z3*y4+(-1)*y2*z3*x4+(-1)*y2*x4*z5’
    ’(-1)*z1*x2*z4+(-1)*x2*z3*z4’
    ’z2*z3*y4+z2*y4*z5’
    ’(-1)*z2*z3*x4+(-1)*z2*x4*z5’
    ’0’

Here the correlation is described by Kvector24 that
is a 9 element column vector:
                                           T
Kvector24=[<x2x4> <x2y4> <x2z4> ... <z2z4>]

FIGURE B.2. Output of the MATLAB program computing the dynamics of th
correlation tensor symbolically for cell #2 and #4 of a line of cells.ga2, ga4stand forγ2
andγ4. xn, yn andzn(n=1,2,..) are shorthand notations for ,  and .σ̂x n( ) σ̂y n( ) σ̂z n( )
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>> CorrDyn3
**********************************************************
Dynamical equation for the correlation tensor of cells#2/5
   computed from the six-cell Hamiltonian symbolically
**********************************************************

   The form of the equation is:

       dKvector25
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
           dt

   where

CoeffMatrix =

[    0,    0,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,  ga5,    0,    0,    0,    0,    0,    0]
[    0, -ga5,    0,    0,    0,    0,    0,    0,    0]
[    0,    0,    0,    0,    0,    0,  ga2,    0,    0]
[    0,    0,    0,    0,    0,  ga5,    0,  ga2,    0]
[    0,    0,    0,    0, -ga5,    0,    0,    0,  ga2]
[    0,    0,    0, -ga2,    0,    0,    0,    0,    0]
[    0,    0,    0,    0, -ga2,    0,    0,    0,  ga5]
[    0,    0,    0,    0,    0, -ga2,    0, -ga5,    0]

   and

RemVector =

    ’z1*y2*x5+y2*z3*x5+x2*z4*y5+x2*y5*z6’
    ’z1*y2*y5+y2*z3*y5+(-1)*x2*z4*x5+(-1)*x2*x5*z6’
    ’z1*y2*z5+y2*z3*z5’
    ’(-1)*z1*x2*x5+(-1)*x2*z3*x5+y2*z4*y5+y2*y5*z6’
    ’(-1)*z1*x2*y5+(-1)*x2*z3*y5+(-1)*y2*z4*x5+(-1)*y2*x5*z6’
    ’(-1)*z1*x2*z5+(-1)*x2*z3*z5’
    ’z2*z4*y5+z2*y5*z6’
    ’(-1)*z2*z4*x5+(-1)*z2*x5*z6’
    ’0’

Here the correlation is described by Kvector25 that
is a 9 element column vector:
                                           T
Kvector25=[<x2x5> <x2y5> <x2z5> ... <z2z5>]

FIGURE B.3. Output of the MATLAB program computing the dynamics of th
correlation tensor symbolically for cell #2 and #5 of a line of cells.ga2, ga5stand forγ2
andγ5. xn, yn andzn(n=1,2,..) are shorthand notations for ,  and .σ̂x n( ) σ̂y n( ) σ̂z n( )
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APPENDIX C

 APPROXIMATE DYNAMICAL EQUATIONS FOR THE TWO-POINT
CORRELATIONS

In Sec. 6.1 it was shown how to eliminate the three-point correlations from

equations of the two point correlations assuming that the three-point correlation pro

are zero. In this Appendix the approximate dynamical equations for the two-p

correlations for a cell inside a cell line are given explicitly.

The exact equations of the two-point correlations (rewriting (5.33-5.35))are

, (C.1)

where for nearest neighbors (j=i+1)

(C.2)

and for further than nearest neighbors

h
td

d
K̂ i j,( ) Ω̂ j K̂ i j,( ) K̂– i j,( )Ω̂i EkĈ i j,( )+=

Ĉ i i 1+,( )
0 0 λy i( )

0 0 λ– x i( )

λy i 1+( ) λ– x i 1+( ) 0

+=

σx i( )σy i 1+( ) σx i( )σx i 1+( )– 0

σy i( )σy i 1+( ) σy i( )σx i 1+( )– 0

σz i( )σy i 1+( ) σz i( )σx i 1+( )– 0

σz i 2+( )〈 〉 +

σy i( )σx i 1+( ) σ– x i( )σx i 1+( ) 0

σy i( )σy i 1+( ) σ– x i( )σy i 1+( ) 0

σy i( )σz i 1+( ) σ– x i( )σz i 1+( ) 0

T

σz i 1–( )〈 〉,

˙̇

,
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(C.3)

Let us consider the dynamics of a single nearest neighbor correlation te

element:

(C.4)

This equation can be obtained from (C.1) and (C.2), considering thexx element of the

correlation tensor. Notice that on the right hand side of (C.4)

and are three-point correlations.

The approximate dynamical equation for the two-point correlation can be obta

using

(C.5)

for the three-point correlations. Substituting (C.5) into (C.4) one obtains:

(C.6)

Notice that now on the right hand side there are only two-point correlations (e

) and coherence vector elements (e. g., ), but there are no th

point correlations.

Ĉ i j,( )
σx i( )σy j( ) σx i( )σx j( )– 0

σy i( )σy j( ) σy i( )σx j( )– 0

σz i( )σy j( ) σz i( )σx j( )– 0

σz j 1–( ) σz j 1+( )+( )〈 〉

σy i( )σx j( ) σ– x i( )σx j( ) 0

σy i( )σy j( ) σ– x i( )σy j( ) 0

σy i( )σz j( ) σ– x i( )σz j( ) 0

T

σz i 1–( ) σz i 1+( )+( )〈 〉

+=

.

h
td

d Kxx i i 1+,( ) Ek σx i( )σy i 1+( )σz i 2+( )〈 〉 Ek σy i( )σx i 1+( )σz i 1–( )〈 〉+= .

K̂

σx i( )σy i 1+( )σz i 2+( )〈 〉

σy i( )σx i 1+( )σz i 1–( )〈 〉

ABC〈 〉 AB〈 〉 C〈 〉 BC〈 〉 A〈 〉 AC〈 〉 B〈 〉 2 A〈 〉 B〈 〉 C〈 〉–+ +≈

h
td

d
Kxx i i 1+,( ) Ek Kxy i i 1+,( )λz i 2+( ) Kyz i 1+ i 2+,( )λx i( )+ +{ }=

Kyx i i 1+,( )λz i 1–( ) Kxz i 1+ i 1–,( )λy i( )+ +

Kyz i i 1–,( )λx i 1+( ) 2λy i( )λx i 1+( )λz i 1–( )–{ }˙

Kxz i i 2+,( )λy i 1+( ) 2λx i( )λy i 1+( )λz i 2+( ) +–

.

Kxy i i 1+,( ) λz i 2+( )
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PC”
Similar transformations can be made with all the dynamical equations for the two-p

correlations, eliminating the three-point correlations from the equations. The m

obtained this way considers only the two-point correlations and neglects higher o

correlations. (It was called “PC” referring to pair correlation.)

Further simplification can be done by approximating the next-to-nearest neig

correlations by the multiplication of two coherence vector elements, e

. Changing (C.6) according to this results in

(C.7)

Notice that the and next to nearest neighbor correlatio

which could be found in (C.6) are not in (C.7). In a similar fashion the further than nea

neighbor correlation terms can be eliminated from the dynamical equation of the ne

neighbor correlations. The model obtained this way considers only the nearest nei

two-point correlations and neglects higher order correlations. (It was called “NN

referring to nearest neighbor pair correlation.)

Kxz i i 2+,( ) λx i( )λz i 2+( )=

h
td

d
Kxx i i 1+,( ) Ek Kxy i i 1+,( )λz i 2+( ) Kyz i 1+ i 2+,( )λx i( )+ +{ }=

Kyx i i 1+,( )λz i 1–( ) Kyz i i 1–,( )λx i 1+( )+ +

λy i( )λx i 1+( )λz i 1–( )–{ }

λx i( )λy i 1+( )λz i 2+( ) +–

.

Kxz i i 2+,( ) Kxz i 1+ i 1–,( )
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At the end of this appendix we summarize the dynamical equations used to m

an inner cell of a line with the “NNPC” approximation:

, (C.8)

, (C.9)

(C.10)

using the following approximation for the three-point correlations:

(C.11)

h
td

d λ i( ) Ωi
ˆ λ i( ) Ek

Kzy i 1– i,( ) Kyz i i 1+,( )+

K– zx i 1– i,( ) K–
xz

i i 1+,( )

0

+=

h
td

d
K̂ i i 1+,( ) Ω̂i 1+ K̂ i i 1+,( ) K̂– i i 1+,( )Ω̂i EkĈ i i 1+,( )+=

Ĉ i i 1+,( )
0 0 λy i( )

0 0 λ– x i( )

λy i 1+( ) λ– x i 1+( ) 0

+=

σx i( )σy i 1+( ) σx i( )σx i 1+( )– 0

σy i( )σy i 1+( ) σy i( )σx i 1+( )– 0

σz i( )σy i 1+( ) σz i( )σx i 1+( )– 0

σz i 2+( )〈 〉 +

σy i( )σx i 1+( ) σ– x i( )σx i 1+( ) 0

σy i( )σy i 1+( ) σ– x i( )σy i 1+( ) 0

σy i( )σz i 1+( ) σ– x i( )σz i 1+( ) 0

T

σz i 1–( )〈 〉

˙̇

,

Kabc i i 1+ i 2+, ,( ) σ̂a i( )σ̂b i 1+( )σ̂c i 2+( )〈 〉 Kab i i 1+,( )λc i 2+( ) +≈=

λa i( )λb i 1+( )λc i 2+( ),

,a b c, , x y z, ,= .

Kbc i i 2+,( )λa i 1+( ) –
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The “PC” equations can be summarized as

, (C.12)

, (C.13)

where for nearest neighbors (j=i+1)

(C.14)

and for further than nearest neighbors (j>i+1)

(C.15)

The following approximation for the three-point correlations is used:

(C.16)

h
td

d λ i( ) Ωi
ˆ λ i( ) Ek

Kzy i 1– i,( ) Kyz i i 1+,( )+

K– zx i 1– i,( ) K–
xz

i i 1+,( )

0

+=

h
td

d
K̂ i j,( ) Ω̂ j K̂ i j,( ) K̂– i j,( )Ω̂i EkĈ i j,( )+=

Ĉ i i 1+,( )
0 0 λy i( )

0 0 λ– x i( )

λy i 1+( ) λ– x i 1+( ) 0

+=

σx i( )σy i 1+( ) σx i( )σx i 1+( )– 0

σy i( )σy i 1+( ) σy i( )σx i 1+( )– 0

σz i( )σy i 1+( ) σz i( )σx i 1+( )– 0

σz i 2+( )〈 〉 +

σy i( )σx i 1+( ) σ– x i( )σx i 1+( ) 0

σy i( )σy i 1+( ) σ– x i( )σy i 1+( ) 0

σy i( )σz i 1+( ) σ– x i( )σz i 1+( ) 0

T

σz i 1–( )〈 〉

˙̇

,

Ĉ i j,( )
σx i( )σy j( ) σx i( )σx j( )– 0

σy i( )σy j( ) σy i( )σx j( )– 0

σz i( )σy j( ) σz i( )σx j( )– 0

σz j 1–( ) σz j 1+( )+( )〈 〉

σy i( )σx j( ) σ– x i( )σx j( ) 0

σy i( )σy j( ) σ– x i( )σy j( ) 0

σy i( )σz j( ) σ– x i( )σz j( ) 0

T

σz i 1–( ) σz i 1+( )+( )〈 〉

+=

.

Kabc i j k, ,( ) σ̂a i( )σ̂b j( )σ̂c k( )〈 〉 Kab i j,( )λc k( ) Kbc i k,( )λa j( )+ +≈=

Kac i k,( )λb j( ) 2λa i( )λb j( )λc k( )– ,

a b c, , x y z, ,= .
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