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CORRELATION AND COHERENCE IN QUANTUM-DOT CELLULAR AUTOMATA

Abstract

by

Géza Toth

In this thesis we investigate the role of correlation and coherence in two possible
realizations of Quantum-dot Cellular Automata (QCA): realizations as a semiconductor
multi-quantum-dot structure and as a metal-island single electron tunneling circuit. The
two are different from the point of view of the underlying physics. The metal island
circuits are very strongly connected to the heat bath and they can be modeled semi-
classically, using classical quantities such as charging energy and capacitance. To model
the semiconductor realization, a quantum mechanical treatment is necessary. The quantum
mechanical state of the cells evolves coherently, at least for time scales smaller than the
decoherence time. In the first part of the thesis the theory of metal island circuits is used to
design a cell structure permitting adiabatic clocking. It is also used to analyze the
conductance suppression of coupled double-dots and reproduce the corresponding
experimental results from the theory by modeling coherent electron motion inside the
QCA cell. In the second part the semiconductor QCA realization is studied. Using
Hartree-Fock approximation the basic phenomena in the one dimensional QCA array

(large and small amplitude polarization wave propagation and collision) is investigated.



The approach is also used to define Quantum Cellular Neural Networks. In the last part of
the thesis intermediate approximations are constructed between the Hartree-Fock and the
exact model. An alternative of the density matrix description, the coherence vector
formalism is reviewed and used to investigate possibility of quantum computing with
QCA. Using the coherence vector formalism as a basis an approximation is presented that
includes all two-point correlations while neglects the higher order correlations. Another
approach is shown for improving the self-consistent Hartree-Fock model for a majority
gate by including correlation effects. The method fixes the qualitatively wrong results

obtained if the length of the input legs are very different.
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guess is used for iterations. (b) The polarization of the gate cell for the self-consistent mean
field using the two different initial guesses for iteration. (c) Energies of the majority gate
for the two cases. For t<60 the polarizations and the energies they are the same for both
(0= 1o PP 162..

Figure 6.12 Dynamics of the two-point correlations during the adiabatic switching of a 11-
cell majority gate (L=4). M,(1,2) (dashed), M(4,5) (solid) and M,(5,11) (solid) are
shown. The correlations are much larger in the cross region than away from it. ........... 164

Figure 6.13 Adiabatic switching of a 11-cell majority gate (L=4). (a) The cell polarizations

as the function of time. The cross region is modeled with a five-cell Hamiltonian while the
remaining cells are modeled with self-consistent mean-field. (b)The same for the self-con-
sistent mean-field method and (c) for the exact model. ...........cccccoriiiiiiiiiiiiiiiiiee, 165

Figure 6.14 Dynamics of the two-point correlations during the adiabatic switching of a 11-
cell majority gate (L=4) when the cross region is simulated with a many-cell Hamiltonian.
M,(4,5) and M /5,11) are shown using (a) a five-cell cross and (b) a seven-cell Hamilto-
nian for the cross. Compare with the solid lines of Fig. 6.12. ............ooviiiiiiiiiiiieeeeeen, 166

Figure 6.15 Adiabatic switching of a 11-cell majority gate (L=4) with four output cells. The
cell polarization as the function of time for the delayed gate mean-field approximation. ...

Figure A.1 Output of the MATLAB program computing the dynamics of the correlation
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Figure B.1 Output of the MATLAB program computing the dynamics of the correlation
tensor symbolically for cell #2 and #3 of a line of cells. ga2, ga3 stang’fandy3. xn, yn

and zn (n=1,2,..) are shorthand notationsdg(n) &,(n) @y(an) e —— 174
Figure B.2 Output of the MATLAB program computing the dynamics of the correlation
tensor symbolically for cell #2 and #4 of a line of cells. ga2, ga4 stang’fandy4. xn, yn

and zn (n=1,2,..) are shorthand notationsdg(n) &,(n) @y(an) e ee———— 175
Figure B.3 Output of the MATLAB program computing the dynamics of the correlation
tensor symbolically for cell #2 and #5 of a line of cells. ga2, ga5 stang?fandy5. xn, yn
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CHAPTER 1

INTRODUCTION

The Quantum-dot Cellular Automata is a new transistorless computing
paradigm at the nanoscale. Its three fundamental realizations, the metal island, the
semiconductor and the molecular implementations are different from the point of
view of coherence and correlaticBoherenceneans that the quantum mechanical
system evolves according to the Schrddinger wave equddecoherenceon the
contrary, denotes the case where the time evolution deviates from the wave
equation. Theorrelationof A and B, in general, can be given as

C = DAB+ [AOIBC (1.1)
where [..00 denotes the expectation valu@.is zero whenA and B are
uncorrelated
In the classical case of a system which contains two subsystems, the correlation
between two dynamical variables of each subsystem is simply a function of these
same two dynamical variables. If the time evolution of the subsystem dynamical
variables are known then their correlation can be computed. In the quantum
mechanical case, on the contrary, the correlation of two operators cannot be
expressed as a function of the subsystem dynamical variables. Thus when uniting

two systems into one, additional degrees of freedom are created by the correlation.



If a QCA array is realized witlnetal islands (dots) and tunnel junctigrits
is modeled as a classical capacitive system, with the additional property of interdot
tunneling. Since the two extra electrons in a QCA cell interact as classical charges,
it is not necessary to use a two electron wave function and the Schrdédinger
equation to describe this system.

In the case of thesemiconductorimplementation, the system must be
modelled by the Schrddinger equation. If the cells are isolated from the
environment, then the system is fully coherent, and the dynamics of the cells can
be modeled by the many-electron Schrédinger equation. Unfortunately, it is not
computationally feasible to model more than a couple of cells this way.
Approximating the cells as coupled two-state systems and modeling the QCA
circuit with a Schrodinger equation and an Ising spin chain-like Hamiltonian raises
the size limit to 10-15 cells.

The method that really makes it possible to model large QCA circuits is the
Hartree-Fock approximationThis approach models the intracellular dynamics
guantum mechanically and the intercell Coulombic interactions classically. For a
system ofN cells, it involvesN coupled Schrodinger equations. The number of
state variables scales linearly with the system size, in contrast to modeling with a
many-body Hamiltonian in which case it scales exponentially. The price of the
simpler (smaller) model is less accuracy. A large portion of the error in the
Hartree-Fock approximation is introduced by a failure to model the time-
dependent dynamics correctly because it does not considerintieecell

correlations



Our goal is to create an intermediate approximation between the Hartree-
Fock approximation and the exact model. To do that, toberence vector
formalismseems to be ideal. In this approach, the dynamics of the coherence
vector of each cell (i.e., the “state” of the individual cells) and their intercell
correlation matrices are given by differential equations. The differential equations
have a hierarchical system that can be truncated keeping correlation terms up to a
certain order. Truncating at the level of the two-point correlations leads to the
Hartree-Fock approximation. Truncating at the level of the three-point correlations
leads to an intermediate approximation between the Hartree-Fock and the exact
method.

Other possible intermediate model could be a hybrid method between
modeling by a many-body Hamiltonian and the Hartree-Fock intercellular
approximation. The regions where the correlations are important can be modeled
by the Schrodinger equation with a many-body Hamiltonian while the rest can be
modeled by Hartree-Fock.

In the case of semiconductor realization, the system evolves according to
the Schrodinger equation only in special circumstances. In general, there is always
some connection to the environment. While the Schrodinger equation fails, the
description of thedissipativecase is also possible with the coherence vector
formalism, by including further dissipative terms in the dynamical equations.

Chapter 2 reviews QCA briefly. In Chapter 3 the metal-island QCA
implementation is discussed. It is explained how adiabatic switching can be

realized with metal island cells. Concerning thenductance suppression



couple double dots, a master equation approach is shown that can be used for
modeling correlated electron motion in QCA cells in the finite temperature regime.
In Chapter 4 the semiconductor realization is investigated. Beside the exact
method using the many-body Hamiltonian, a model based on the Hartree-Fock (or
mean-field type) intercellular approximation is presented. It is used to study
fundamental phenomena in a one-dimensional array of QCA cells. It is also used
to derive the differential equation of the Quantum Cellular Neural Networks
(QCNN). The Hartree-Fock approximation neglects the intercellular correlations.
In Chapter 5 a model is presented (the coherence vector formalism) that explicitly
contains the so far neglected correlation terms. It is used to investigate the
possibility of quantum computing with QCA. Chapter 6 is about the realization of
an intermediate approximation between the Hartree-Fock and the exact model.
Based on the coherence vector formalism, a model is introduced neglecting third
and higher order correlations. By keeping the two-point correlations, its results are
closer to the exact method than that of the Hartree-Fock model’s. In the second
subsection of Chapter 6 a particular example, the majority gate with unequal input
legs, is shown, where leaving out correlations leads to qualitatively wrong results.
A method is shown how incorporate in the model the correlations which are

important from the point of view of the dynamics.



CHAPTER 2

REVIEW OF QUANTUM-DOT CELLULAR AUTOMATA (QCA)

In recent years the development of integrated circuits has been essentially based on scaling
down, that is, increasing the element density on the wafer. Scaling down of CMOS
circuits, however, has its limits. Above a certain element density various physical
phenomena, including quantum effects, conspire to make transistor operation difficult if
not impossible. If a new technology is to be created for devices of nanometer scale, new
design principles are necessary. One promising approach is to move to a transistor-less
cellular architecture based on interacting quantum dots, Quantum-dot Cellular Automata
(QCA, [1-5]).

The QCA paradigm arose in the context of semiconductor quantum dots, usually
formed by using metallic gates to further confine a two-dimensional electron gas in a
heterostructure. The quantum dots so formed exhibit quantum confinement effects and
well separated single-particle eigenstates. The QCA cell consists of four (or five) such
dots arranged in a square pattern. The semiconductor implementation has significant
advantages in that both the geometry of the dots and the barrier-heights between the dots
can be tuned by adjusting gate potentials. QCA switching involves electrons tunneling
through interdot barriers to reconfigure charge in the cell. Information is encoded in the

arrangement of charge within the cell.



2.1 Semiconductor Quantum-dot Cellular Automata

The semiconductor Quantum-dot Cellular Automata(QCA[1-8]) cell consists of
four quantum dots as shown in Fig. 2.1(a). Tunneling is possible between the neighboring
dots as denoted by lines in the picture. Due to Coulombic repulsion the two electrons
occupy antipodal sites as shown in Fig. 2.1(b). These two states correspond to polarization
+1 and -1, respectively, with intermediate polarization interpolating between the two.

In Fig. 2.1(c) a two cell arrangement is shown to illustrate the cell-to-cell
interaction. Cell 1 is a driver cell whose polarization takes the range -1 to 1. It is also
shown, how the polarization of cell 2 changes for different values of the driver cell
polarization. It can be seen, that even if the polarization of the driver cell 1 is changing
gradually from -1 to +1, the polarization of cell 2 changes abruptly from -1 to +1. This
nonlinearityis also present in digital circuits where it helps to correct deviations in signal
level: even if the input of a logical gate is slightly out of the range of valid “0” and “1”
voltage levels, the output will be correct. In the case of the QCA cells it causes that cell 2
will be saturated (with polarization close to -1 or +1) even if cell 1 was far from saturation.

A one-dimensional array of cells[3] can be used to transfer the polarization of the
driver at one end of the cell line to the other end of the line. Thus the cell line plays the
role of the wire in QCA circuits. Moreover, any logical gates (majority gate, AND, OR)
can also be implemented, and using these as basic building elements, any logical circuits

can be realized[4].
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FIGURE 2.1. Schematic of the basic four-site semiconductor QCA cell. (a) The
geometry of the cell. The tunneling energy between two sites (quantum dots) is
determined by the heights of the potential barrier between them. (b) Coulombic
repulsion causes the two electrons to occupy antipodal sites within the cell. These two
bistable states result in cell polarization of P=+1 and P=-1. (c) Nonlinear cell-to-cell
response function of the basic four-site cells. Cell 1 is a driver cell with fixed charge
density. In equilibrium the polarization of cell 2 is determined by the polarization of
cell 1. The plot shows the polarizatior; ixduced in cell 2 by the polarization of its
neighbor, R. The solid line corresponds to antiparallel spins, and the dotted line to
parallel spins. The two are nearly degenerate especially for significantly large values
of P;.



2.2 Adiabatic switching with semiconductor QCA

In this paradigm of ground state computing, the solution of the problem has been

mapped onto the ground state of the array. However, if the inputs are swabhegtly; it

is not guaranteed that the QCA array really settles in the ground state, i.e., in the global

energy minimum state. It is also possible, that eventually it settlesnetastablestate

because the trajectory followed by the array during the resulting transient is not well

controlled.

This problem can be solved by adiabatic switching [3] of the QCA array, as shown

schematically in Fig. 2.2. Adiabatic switching has the following steps: (1) before applying

the new input, the height of the interdot barriers is lowered thus the cells have no more two

distinct polarization states, P=+1 and P=-1. (2) Then the new input can be given to the
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FIGURE 2.2. The steps of the quasi-adiabatic switching are the following: (1)
before applying the new input, the height of the interdot barriers are lowered thus
the cell have no more two distinct polarization states, P=+1 and P=-1. (2) Then the
new input can be given to the array. (3) While raising the barrier height, the QCA
array will settle in its new ground state. The adiabaticity of the switching means
that the system is very close to its ground state during the whole process. It does
not get to an excited state after setting the new input, as it happened in the case of
non-adiabatic switching. Since the system does not get to an excited state from the

ground state the dissipation decreases a lot.



array. (3) While raising the barrier height, the QCA array will settle in its new ground
state. The quasi-adiabaticity of the switching means that the system is very close to its
ground state during the whole switching process. It does not reach an excited state after
setting the new input, as happens if the input is simply switched abruptly. Since the system
does not get to an excited state from the ground state the dissipation to the environment is
minimal. On the other hand, to maintain quasi-adiabaticity the time over which the barrier
height is modulated must be long compared to the tunneling time through the barrier.
Typically a factor of 10 reduces the non-adiabatic dissipation to very small levels.

The previous structure can be used for processing a series of data, as shown in
Fig.2.3. While changing the input, the barrier is low therefore the cells do not have a
definite polarization. Then the barrier height is increasing, until it reaches the value, where
the cell polarization is fixed. This means that the barriers are so high that the interdot
tunneling is not possible, the polarization of the cells keeps its value independent of the
effects of the external electrostatic fields. At that point the output can be read out. Then the
barriers are lowered again, and the next input can be given to the array. Fig. 2.3(c) shows

the input and output flow for this case.
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FIGURE 2.3. QCA structure for the processing of data series. (a) The schematic of the
structure. (b) The clock signal given to the cells to control their interdot barrier height.
(c) The input and output data flow. The new input is given to the array when the
barriers are low and the output is read out of the array when the barriers are high, and
the polarization of the cells is fixed. (H, M and L stand for ‘high’, ‘medium’ and ‘low’,
respectively.)
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The cells of such a QCA array have thigmerational modesf the barriers are low
then the cell does not have distinct polarization. This can be calleduth@perational
mode If the barriers are high then the polarization of the cells does not change. This can
be called thdocked operational modédn case of intermediate barrier heights, Hative
mode the cells have two distinct polarization states: P=+1 and P=-1, however, external
electrostatic field (due to the effects of the neighboring cells) can switch it from one
polarization to the other. The operational modes are summarized in Fig. 2.4. Thus the cells

periodically go through the nullactive- locked- active- null sequence.

Operational Barrier

mode height Cell polarization

Active Medium | Between +10 & and -1[2 g

Locked High +1 or -1

Null Low Indefinite

FIGURE 2.4. The three operational modes of the QCA cell in the case of adiabatic
switching. In the active mode, the cells have two distinct polarizations: P=+1 and
P=-1, and the external electrostatic field can switch cells from one polarization to
the other. In the locked mode, the interdot barriers are high therefore the
polarization of the cell cannot be switched, it is fixed. In the null mode, the barriers
are low thus the cell does not have a definite polarization.
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The arrangements shown in Fig. 2.3 can be expanded for more QCA sub-arrays

working in apipelinestructure as shown in Fig. 2.5. Now each sub-array reads the output
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FIGURE 2.5. Pipeline architecture with QCA arrays. (a) All of the arrays get the input
from the left neighbor and give the output to the right neighbor. (b) The clock signals
used for the control of the interdot barrier height. Each array gets the clock signal
delayed by 1/4 period time relative to its left neighbor. Even more sophisticated
structures containing logical gates and flip-flops need no more than four different
clock signals.
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of the left neighbor when the neighbor is in locked state and begins to write into their right
neighbor when it is in null state. The main advantage of the pipeline architecture is that the
computations with the new input start before the computations with the old input are
finished. Each unit gives its subresult to the following unit and then begins to process the
subresult of the previous unit. The barrier heights of the arrays are controlled by four
different clock signals. The clock signal given to an array is delayed by 1/4 period time
relative to the clock signal of its left neighbor. With only these four clock signals, even

more sophisticated pipeline structures containing logical gates and flip-flops can be

realized [8].

2.3 Metal-island QCA

QCA cells can be also built from metallic tunnel junctions and very small
capacitors[5]. There are two main differences between the semiconductor and the metal
dot QCA’s. (1) Capacitively coupled metal islands are used rather than Coulombically
coupled quantum-dots. Unlike the quantum dot, the metal island contains many
conduction band electrons. (2) A classical capacitive model can be applied instead of a
Schrédinger-equation model.

The only non-classical phenomenon is the tunneling of electrons between metal
islands through tunnel junctions. The metal islands have a special feature: they are
connected to the other islands through tunnel junctions. If these tunnel junctions were
replaced by capacitors the island charge would be zero; however, through the tunnel
junction an integer number of electrons can tunnel into or out of the island. Thus the

charge of an island is an integer multiple of the elementary charge.
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In the case of the metal island cell it is helpful to first consider a double-dot, two of
the islands as the basic building element rather than a four dot cell. The two metal islands
(“dots”) connected by a tunnel junction givebéstable circuit elemen{See Fig. 2.6(a),

framed double dot). Depending on the input voltages, the excess electron will show up

Two-island bistable element
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FIGURE 2.6. Metal-island QCA cell. (a) The QCA cell consists of two capacitively
coupled bistable elements. Such a bistable element consists of two metal islands. The
excess electron can be either in the top or in the bottom island, giving the two possible
charge configurations. (b) Symbolic representation of the two possible polarizations of
the QCA cell.
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either at the upper dot or at the lower dot. By setting the input voltages the occupancy of
these dots can be determined, that is, we can set the “polarization” of this bistable element.
(Let +1 and -1 denote the two possible polarizations.)

As shown in Fig. 2.6(a), &CA cellconsists of two of these bistable elements or
half cells It can have two polarizations: +1 if the two excess electrons are in the upper
right and lower left islands, -1 if they are in the other two islands (Fig. 2.6(b)). If several of
these cells are placed in a line and they are coupled capacitively then by switching the
input voltage of the first cell a polarization change will be transmitted along the cell line as
in the case of the semiconductor cell. Logical and computational structures which can be

implemented with the semiconductor QCA can also be realized with the metal island cells.

15



CHAPTER 3

QUASI-CLASSICAL QCA DYNAMICS

Quite early in the development of QCA ideas it was realized that the quantization
of energy levels in the dots, is not crucial to QCA operation. All that is really required is
(approximate) charge quantization on the dot, and quantum-mechanical tunneling to
enable switching. The robustness of the QCA scheme is due in large measure to the fact
that the information is contained in classical degrees of freedom, while quantum effects
simply provide the “grease” that enables switching to occur. It was shown theoretically
that in principle, metallic islands connected by capacitive tunnel junctions could also be
used to realize QCA cells [5].

The first section of this chapter reviews the theory of metal-island circuits. In the
second section quasi-adiabatic switching is implemented with metal-island QCA. The
operation of the proposed three-island structure is explained in terms of phase diagrams.
The third section analysis the conductance lowering that occurs in the case of coupled
double-dots when both are conducting. The correlated electron transport is modelled with
master equations.

Unlike the semiconductor quantum-dot QCA, the metal island realization is
modelled quasi-classically. The circuits is described in terms of classical notions: charging
energy, capacitance, and occupancy. The only non-classical phenomenon is the interdot
tunneling. The dynamics are described by master equations instead of the Scrédinger
equation. Correlated electron motion takes place in the classical sense as the correlation of

dot occupancies.
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3.1 Theory of metal-island circuits

A metal island system is composed of gate electrodes and metal islands, coupled
by tunnel junctions and capacitors. A tunnel junction can be described intuitively best as a
“leaky” capacitor which lets electrons tunnel through. A metal island is connected to the
environment through only tunnel junctions and capacitors (and not through ohmic
resistors) thus its charge is constrained to be (at T=0 K) an integral multiple of the
fundamental charge.

The free energy of a configuration can be expressed in terms of the voltages and

charges on gate electrodes and metal islands:

T
1 -1 T,
F= §|:(ﬂ © |:3;| —vas EeleCtrostatic_Wsources (3.1)

Here C is the capacitance matrix that describes the structure of the circwit,veator

gives the voltage of the leads, agdndq’ are the island charge vector and the lead charge
vector, respectively. The first term of the energy expression describes the electrostatic
energy stored in the capacitors and tunnel junctions. The second term is the work done by
the sources transferring charge to the leads.

The equilibrium charge configuration for T=0 K temperature minimizes the free
energy For T>0 K, higher energy configurations must also be included in computing
thermal expectation values. The measured island charge is then no longer strictly an
integer multiple of the elementary charge; it is rather the statistical average of the island
charge over accessible configurations.

In modeling tunneling events therthodox theory[15-18] of single electron

tunneling was used, antb-tunneling?21-22,30-31] was neglected. The dynamics of the
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system are governed by the following equation which gives the tunneling rate of an

electron in a tunnel junction[20]:

r. = x I (3.2)

whereAF;; is the difference between the free energy of the initial and final state®gisd

the tunneling resistance of the junction. In most cases the change in free energy equals the
difference of the free energies of the initial and final charge configuratidigs=¢;-F;),

except for the transitions when the electron enters to or arrives from a voltage source. In
these caseAF;=F;-F;te\p, whereVy is the source voltage. The energ)p is the work

done by the voltage source to raise the potential of an elementary charge from ground to
Vp.

If there are no voltage sources connecting through tunnel junction to the circuit
(only grounding through tunnel junctions connects the circuit to the environment) then
AF;=F;-F; for all the transitions and the tunneling rate depends only on the free energy
difference of the initial and final configurations.

The tunneling rates will be used for master-equatiojl5-17,32] model. The
alternative approach would be the Monte Carlo method[41-42]. The master equation
method is preferable here since the system is near equilibrium so the number of states
(charge configurations) required for modeling is not large. For the master equation model,
the accessible charge configurations and the transition rates between them must be known.

The master equation has the form:

=P, (3.3)
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whereP is the vector containing the probabilities of occurrence of the state$ asc
matrix describing the state transitions. This equation can be easily solved for the stationary
state.

If there are no voltage sources connecting through tunnel junctions to the circuit
(for example Vp is such a voltage source in Fig. 3.1) then Byg; stationary solutions are

given by the Boltzmann distribution:

_ €
Pg i = (3.4)

whereF; is the free energy of staiteln this case the current is of course zero.

If the voltages of the generators connecting through tunnel junctions to the circuit
are small then thé, ; stationary solutions can be approximated with the probabilities
given by the Boltzmann distribution. The results are similar to those obtained from the
master-equations. However, the Boltzmann distribution cannot be used to compute the
current which is an inherently non-equilibrium phenomenon. Therefore the master
equation approach is necessary for conductance computations.

Knowing the probability of occurrence for each state and the transition

probabilities, the current through a hypothetical current meter can be computed as

| = ez GiPs T (3.5)
]
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wheree s the elementary charg€; is the transition rate from statestate), Pg; jis

j
theith element of stationary solution of the (3.3) master equations. The coeffigiest
zero if the transition from stateto statej does not involve current through the current
meter, and it is +1 (-1) if during this transition an electron exits (enters) through the

current meter.

The expectation value of a quantiycan be computed as

[AD = Z P A (3.6)
I
where A is the value of the quantiti for the ith charge configuration. If there are no
voltage sources connecting through tunnel junctions to the circuit, then the Boltzmann

distribution can be used for averaging:

A=z — . (3.7)

The master equation approach can also be used to compute the average transition
rate between two charge configurations, even if there is not a direct transition between
them. For example the transition time from state statej (i<j) can be given in closed

form as

o ;0= r"jF_ZI:O ..010..0 - (3.8)

where the matrix’”  and the rowvectb'l’j are relatefi 16 is obtained fronf™ omitting
its jth row andjth column. r"j is obtained from thgh row of I', leaving out itsjth

element.
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In the last part of this section the formula for average transition time fromisiate
statej (i<j) will be deduced.The computations are based on the following model. First all
the systems of the ensemble are in stat&@hen the ensemble is allowed to evolve
according to the master equation describing its behavior. (Discussed later.) Eventually all

the systems arrive at stgtgP;(«)=1).The average transition time can be computed as

" P
- J
Et_jD-J’ta dt, (3.9)
0

where%Pj x At gives the ratio of systems which reach stdiging theAt time interval.
When measuring transition time from stat® state] the systems already arrived
in statej should stay in statpand should not leave it. Thus tifie coefficient matrix used
for average transition time computations is different from the origihahatrix of the
system. It can be obtained fromby setting the elements of ijh column to zero. (This

corresponds to the inhibition of all the transitions from sfjgt&he master equation with

the modified™’ coefficient matrix is:

& - rp, (3.10)

The P solution of this equation can be written in an exponential form. From this solution
dP.

theaJ can be expressed and substituted into (3.9); however, the integration cannot be

done symbolically becaugé is not invertible. (To compute the integral given in (3.9) we

need the inverse df’.) Thus, before making the steps just mentioned, some additional

matrix manipulations are needed to mékevertible.
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One way to makd™ invertible is to eliminate Pfrom (3.10). P can be easily
eliminated because in thth column of the coefficient matrix there are only zeros. The
elimination of R corresponds to changes in the coefficient matrix and the P vector. The
new coefficient matrix|” , is obtained frof omitting its jth row andjth column. It can
be obtained fronf’ as well with the same transformation, becatisand I differ only in
thejth the column that was just omitte®.  is formed by leaving outhhelement of P.

After the elimination of Pthe following master equation is obtained:

3

dp
dt

The initial value ofP corresponds to the case when all the systems of the ensemble are in

= TP. (3.11)

statei:

i 0 T
PO)=1[0..010..0 - (3.12)
The time dependence &f can be given as the solution of the (3.11) master equation:

. . [
~ rte Mt ~ T
P(t) =e P(0)=e [0..010..0 - (3.13)
For (3.9) we need the time derivative Bfbut (3.11) does not contain it because it
was obtained after eliminating;. The time derivative of; can be found in (3.10). This

master equation represents a differential equation systemjtifHme of the equation

system that gives the required time derivative is:

P,
G =P (3.14)

Wherer'j is thgth row of I'". Knowing that thejith element ofr'j is zero (thgh column

of "' is zero) this can be written with  as
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P, -
7 =P (3.15)

wherer"; is thegth row of I’ (and also ofl") omitting itsjth element. Substituting first
(3.15) and then (3.13) into (3.9), the average transition time fromi stastatg is:

00 (o] (o]

~ ~ r T
0= J'tr"det = r"thPdt = r"thertdt[o ..010..0 - (3.16)
0 0 0

Using

[ee]

Ite‘“tdt = a”?, (3.17)
0

the transition time in a closed form is obtained as (3.8). The right hand side of (3.17) can
be computed because is invertible. The infinite integral can be evaluated bécause has

only negative eigenvalues.

EXAMPLE 3.1
In this example the theory of modelling of the statics and dynamics
of metal island circuits will be explained using the example of a double-
dot. The circuit under study can be seen in Fig. 3.1. Electrons can tunnel
between the voltage source and the top island, between the top and the
bottom island, and between the bottom island and the current meter. Both

islands are capacitively coupled to external leads. Controllingvihand
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FIGURE 3.1. (a) The double-dot used in these section as an
example. (b) Symbolic representation of the double-dot.

V, lead voltages, the dot voltage and the occupancy of the dots can be
controlled. The more positive the dot voltage, there are more extra
electrons on the dot.

Our model involves all the 4 charge configurations having 0 or 1 dot
occupancies (00, 01, 10 and 11) and all the possible transitions connecting
them. These configurations and transitions are shown in Fig. 3.2. Notice
that there is no direct transition between state 3 and state 4. Current flow
through the double-dot if an electron exits to or enters from the
environment. Gray arrows are indicating the transitions where an electron

leaves from or enters to the bottom dot through the current meter.
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FIGURE 3.2. Transitions between the charge configuration of a double-dot.

If the 01 and 10 charge configurations turn into each other directly then
current does not occur, however, current flows if these two states turn into
each other through the intermediate 11 and 00 states. In these cases an
electron leaves the system through the current meter connected to the
bottom dot as depicted on (b) and (c).

In modelling the circuit, the first step is to determine the free energy
of the four charge configurations. This can be done with (3.1) if we know
all the capacitances in the circuit. From the free energies of the charge
configurations théj; tunneling rates from one configuration to the other
can be computed using (3.2).

The next step is to set up the (3.3) master equation. FPhe
probability vector has four elements corresponding to the four

configurations:
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P=:[P1P2P3PJT. (3.18)

The coefficient matrix of the master equation can be obtained based on Fig.

3.21s:
—(Mp+ T3+ M1 M3 M4
r= M2 (M1 + T3+ o) M3 a2
M3 o3 —(M31+T3p) 0
i M4 [24 0 T4+ T2
(3.19)

Here the™; transitions rates were computed according to (3.2).
The P; i stationary probabilities can be obtained taking the time

derivatives to be zero in (3.3). The following system of four equations can

be obtained:

B UETEA ETRA V) o1 a1 a1 P
P RUPTRAIPYRA P M3 [ 42 P,
i3 a3 —(M31+T3) 0 P3

i M4 24 0 ~(M41% T 42)] | Py

(3.20)

Notice that the four lines are not linearly independent since adding them

together one obtains zero. An additional constraint is needed:

P,+P,+P,+P, = 1, (3.21)
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Replacing the last of the four lines of equation system (3.20) by (3.21) one

obtains:
B UETRA ETRA V) o1 a1 | |P2 0
P RUPTRAIPYRA P 3o Cag |P2| — |0
R [23 —(31+T3) 0]|P3 0
1 1 1 1jlp] |1
(3.22)

This can be easily solved for the stationary probabilities since the
coefficient matrix is invertible.

After having the stationary probabilities of the four charge
configurations, the expression for current must be obtained. Current comes
from the transitions when an electron exits (enters) through the current

meter. These transitions are summarized in the following table:

Initial state | Final state e
() 0] :
3 2 +1
1 4 +1
2 3 -1
4 1 -1

cjj is zero for all the other transitions. Substituting thevalues into (3.5)

one obtains the current
= {(M3oPast—T23Po ) + (M 14P1si—Ta1Pas} €. (3.23)
The average transition time from state 1 to state 3 can be computed

according to (3.8):
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-
Ciof [T+ T3+ Ty M3y 41 1

A, U= 13, 13 —(M31+T3)) 0 0
M4 Mg 0 —(M4y1+T40)| 0.
(3.24)

Next an example will be shown how to compute the expectation
value of a quantity. Let us defifRgyp polarization for the double dot as

Pop = N (3.25)

top I\Ibottom’

whereN,, andNpoomare the occupancies of the top and the bottom dots.
According to (3.6), the expectation value®$p can be computed

as

PppH= Z I:)st,iF)DDi = Pst. 1(_1) + PstZ(l) + Pst3(0) + I:)st,4(0) ’

(3.26)

HerePppj's are the polarizations for the four charge configurations. (3.26)

leads to

[(Pppll= Pgt2— Pgt1 - (3.27)
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3.2 Quasiadiabatic switching with metal-island QCA [9]

The semiconductor QCA implementation has remained the focus of development
as the theory has been extended to large arrays of devices and computer architecture
guestions. A key advance was the realization that by periodically modulating the inter-dot
barriers, clocked control of QCA circuitry could be accomplished. The modulation could
be done at a rate which is slow compared to inter-dot tunneling times, thereby keeping the
switching cells very near the instantaneous ground state. This quasi-adiabatic switching
[8] paradigm has proven very fruitful. Quasi-adiabatic clocking permits both logic and
addressable memory to be realized within the QCA framework. It allows a pipe-lining of
computational operations.

Recently, the first experimental realization of a functioning QCA cell has been
reported. This was accomplished in the metal-dot system. The bistable behavior and full
cell operation were confirmed. This experimental success raises the question as to whether
the quasi-adiabatic switching can be implemented in the metal-dot system. The barriers
between dots in this system are typically very thin slices of oxide. While there have been
some promising experiments involving the modulation of such barriers[39], in general it is
much harder to accomplish than in the semiconductor case. In this section we demonstrate
a scheme for quasi-adiabatic switching of metallic QCA cells. The modulated barrier is
basically replaced by another dot, whose potential can be altered.

The circuit for the metallic half-cell is shown in Fig. 3.3(a). It contains three
metallic islands. The occupancy of the three islands is represented by a triple of integers
[n1 n2 n3]. During operation its occupancy can be [100], [010] or [001], as shown in Fig.

3.3(b). The [100] charge configuration corresponds to the polarization +1 case, the [001]
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charge configuration corresponds to the polarization -1 case, while [010] represents a null
polarization.

The top and bottom islands are biased with respect to ground through (non-leaky)
capacitors. The bias voltage raises the electrostatic potential of these islands (lowering
electron potential energy) so that an electron is attracted from ground into the three-island
chain. The top and bottom islands can be viewed as a double well system with the middle
island acting as a controllable barrier.

Each of the three islands has a corresponding gate electrode. A differential input is
applied to the gate electrodes for the top and the bottom islands. The half cell can be
switched from one polarization state to the other by this input voltage. The input can be
supplied externally or from another half-cell (as discussed in the next section). The
voltage on the gate electrode for the middle island is used as a control. The three
operational modes of the half cell (active, locked and null) can be selected by setting this
voltage to one of three discrete levels corresponding to the three modes.

The three operational modes are shown schematically in Fig. 3.4(a-c). The
switching in active mode is illustrated in Fig. 3.4(a). First the pictorial representation of
the process can be seen, then the energies of the [100], [010] and [001] configurations are
given during the switching. The differential input bias changes from positive to negative.
Initially, the top electrode is at a positive potential while the bottom electrode is negative
resulting in the [100] configuration having the lowest energy. As V decreases, the energy
of the [100] configuration increases and will be higher than that of the [010] configuration.
Thus the electron tunnels from the top island to the middle island, and the three-island

system is in the [010] configuration. Decreasing V further, the [001] will be the minimal
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FIGURE 3.3. Metal island half-QCA structure permitting adiabatic switching. (a)
The circuit consists of three metal islands connected to each other by tunnel
junctions. Each island has a capacitively coupled electrode. Applying the V
differential input bias and the Vc control voltage the occupancy of the dots can be
determined. The middle island is grounded in order to provide an excess electron in
the three island system that is necessary to realize the [100]/[010]/[001] charge
configurations. The two voltage sources are used to increase the potential of the top
and bottom islands to make the switching more abrupt. (b) The symbolic
representation for the three island system. The occupancies corresponding to the
P=+1, P=-1 polarizations and the null state (indefinite polarization) are shown.

energy configuration, and therefore the electron tunnels to the bottom island. In Fig. 3.4(b)
the locked operational mode is illustrated. The control electrode has a lower potential

(higher electron potential energy) than in active mode, so the electron cannot get to the
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middle island from the top one. In null mode the control electrode is at a higher potential
(lower electron potential energy) than in active mode thus the electron stays in the middle
island regardless of the applied differential input bias as shown in Fig. 3.4(c). (The
approach to quasi-adiabatic switching is similar to that reported in another context by in

[19].)

3.2.1 The physical background of the operation

We can model the quasi-static behavior of the circuits described by considering
only the energy of the various charge configurations of the system. We treat here only the
zero temperature situation. The system is composed of gate electrodes and metal islands,
coupled by tunnel junctions and capacitors[15-18]. The gate electrode voltages are fixed
by external sources, and the charge on each metal island is constrained to be an integral
multiple of the fundamental charge. The electrostatic energy of a configuration can be

expressed in terms of the voltages and charges on gate electrodes and metal islands.

1 T
E = EH c‘lﬂ Vg (3.28)
q q

Here C is the capacitance matrix for the islands and electrodésa column vector of
voltages on the gate electrodgsandq’ are the column vectors of the island charges and
the lead charges, respectively. The first term of the energy expression describes the
electrostatic energy stored in the capacitors and tunnel junctions. The second term is the
work done by the sources transferring charge to the leads. The equilibrium charge
configuration for T=0 K temperature minimizes this electrostatic energy.

For a QCA cell to be switched quasi-adiabatically, input and clock voltages are

varied smoothly enough so that the cell is very close to its equilibrium ground state
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FIGURE 3.4. The three operational modes. (a) Active operational mode. The
electron tunnels from the top island to the bottom island through the middle island, if
electrode voltages change. First the pictorial representation of this process is shown.
‘+’, =" and ‘0’ refers to the sign of the electrode voltages. Then the energies of the
[100], [010] and [001] charge configurations can be seen during the switching. The
dot refers to the charge configuration the system occupies. (b) Locked operational
mode. The electron is locked in either the top or the bottom island, because the [010]
configuration has much higher energy than the others. (c) Null operational mode.
The electron is locked in the middle island, because the [010] configuration has
much lower energy then the other two.
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configuration during the time it is switching. Thus during thetive mode of cell
operation, the cell should be in the configuration which minimizes the total electrostatic
energy for the cell. The same is true for tiodl mode.

Thelockedmode, by contrast, is designed to provide a short-term memeryhe
cell configuration is held to what it was in the immediate past so that the locked cell can be
used as a fixed input for another cell which is being switched. Thus it is by design not
necessarily in the minimum energy configuration but may be in a metastable state. To
model this requires knowing not just the minimum energy configuration, but also the
allowed transitions between various configurations. For the QCA half-cell, the six basic

allowed transitionsare summarized in Fig. 3.5.

cE ¢E T

FIGURE 3.5. The six basic tunneling events that can happen in

the three-island structure shown in Fig. 3.3
Notice that there is no transition directly from the top island to the bottom island. This is
important for the operation of the locked mode. Suppression of this transition is the reason
that there is no direct tunneling path between either the top or bottom electrode and
ground.
We can treat all these modes using a single modeling algorithm. As the input voltages are
changed in small steps, at each step we examine whether an allowed transition could

decrease the energy of the system. If so then the tunneling event takes place
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instantaneously and the dot occupancies change. This approach is only applicable to the
guasi-adiabatic situation we consider here. Refinements which would extend these
calculations to high-frequencies would include specific tunneling rates in a Monte Carlo
[41-42] or master-equation[15-17,32] approach and would include co-tunnelling[21-

22,30-31] rates.

3.2.2 Operational modes
For simulations shown below parameters for capacitors and voltage sources were chosen
in the range of practically realizable values for metal islands fabricated with Dolan
shadow-evaporation techniques. They are also chosen in the design space to fulfill the
requirement for a reasonable range for the input and control voltages. We have performed
numerical simulations of the switching of a half-cell using the model described above. The
specific parameter values used were: C=4203&300aF, G=25aF, G=80aF, G=200aF
and U=0.36mV. With this set of parameters the control voltages corresponding to locked,
active and null operational modes arg#/-0.18, 0.18 and 0.68mV, respectively. The input
bias changes in the range of -0.3 and +0.3mV.

In Fig. 3.6 the transfer characteristics of this half cell can be seen in active mode,
that is, for \;=0.18mV. It is piecewise linear, and the abrupt change in value and slope is
due to tunneling events, thus the nonlinearity of the transfer characteristics comes from the
charge quantization on the metal island.

It is instructive to construct a diagram of the system state as a function of the input
voltage and Y. Fig. 3.7 shows the equilibrium ground state “phase diagram” for the

system as a function of these two voltages. For the null and active mode, this is sufficient
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FIGURE 3.6. Transfer characteristics of the half cell structure given in Fig. 3.3 for
active mode. It is piecewise linear, and the abrupt change in value and slope are
due to tunneling events. In case of a metal island QCA the nonlinearity comes
from the charge quantization. Replacing the tunnel junctions with linear
capacitors the circuit would also be linear.

information to characterize the switching behavior. However for the locked mode, we
must assume a particular starting point. Fig. 3.8 shows this state diagram for the case when
the input voltage is increasing from -0.45 mV to +0.45mV. Fqrdhiosen to keep the
system in the locked mode, this means that the system is initially in the [001] state and is
kept there. The opposite situation is depicted in Fig. 3.9, where the system starts with a
positive input voltage and is thus in the [100] case. The locked mode keeps it there
because the [100] [001] transition is suppressed.

The three operational modes will be analyzed using the state diagram shown in Fig
3.8. Taking \\=0.18mV the circuit is in active operational mode. Following the arrow

belonging to the 0.18mV level, the change of the charge configurations as V changes from
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FIGURE 3.7. Phase diagram of the half cell structure permitting adiabatic
switching. The minimal energy configuration is shown as a function of the
differential input bias V and the control voltage.M he control voltage level of the
locked operational mode is also shown.

+0.3 to -0.3mV can be read from the graph. The transition series belonging to this case is
[001] - [010]-[100]. The electron tunnels from the third island to the second island, and
then moves further to the first island.

If V. is decreased to -0.18mV, the potential of the middle electrode also decreases and the
electron from the islands on the sides can not get to the middle island. This is the locked
operational mode, the occupancy does not change even if the V bias voltage is changed, as

can be seen following the bottom arrow in Fig. 3.8.
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FIGURE 3.8. State diagram of the half cell for switching. It shows the occupancies of
the three islands as the V differential input bilasreasedrom -0.45 to +0.45mV for a

V. range of -0.3 and 0.7mV. The voltage levels for the three operational modes are
also shown. The charge configuration is also given for each region of the diagram.
Note, that the [001] and the [100] phases seem to have a common border, but there is a
very “thin line” of [010] or [1,-1,1] phase between them. (The direct transition from
[001] to [100] is not possible.) The dots with a “+” sign refer to -1 electron on the dot
that is an excess positive charge.

If V. is increased from the value it had in case of active mode to 0.68mV, then the
electron will be drawn to the middle island. It will stay there independent of the input
voltages, as can be seen if one follows the top arrow in Fig. 3.8. This is the null operational

mode.
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FIGURE 3.9. State diagram of the half cell for switching. The diagram shows the
occupancies of the three islands as the V differential input degseasedrom +0.45

to -0.45mV for a \, range of -0.3 and 0.7mV. The voltage levels for the three
operational modes are also shown. The charge configuration is also given for each
region of the diagram. Comparing with Fig. 3.8, the differences are due that V changes
in the opposite direction.

The critical points on these state diagrams are labeled T and M. The values of \{ ford V
these points can be given analytically in terms of the circuit parameters. If we let

X=C+GC+C,andY = 2C+C,+C5 , then

v’ =0, (3.29)
% —UC4—1E—4&+>_<+95
T_ e e e C X
Vc - ZCSE )_(_1 Ea (330)
O C O
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vM = & -0 (3.31)
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It is worthwhile to note that for higher Walues similar graph to Fig. 3.8 could be drawn,
except for that the [100], [010] and [001] phases would be replaced by the [110], [020]
and [011] phases, respectively. I1{.Vs increased further, then the [120], [030], phases
[021] can be found in the diagram. Thus the only difference in the system behavior for
higher (lower) \} values is that the population of the middle island is increased
(decreased) by a constant. In this way it can be said that the system behavior is periodic in
V., and it is not more informative to draw a graph for a wider range of control voltages.

TheAV .. periodicity of the phase diagram in thg direction is:

e
AV _ = —. 3.33
cT T (3.33)

3.2.3 QCA shift register

We construct a simulation of a cell line acting as a shift register, that is a 1D array of
capacitively coupled QCA cells. A QCA cell consists of two half cells as depicted in Fig.

3.10(a). It can have three different occupancies: [001 100] for P=+1 polarization, [100
001] for P=-1 polarization and [010 010] for the null state as shown in Fig. 3.10(b). The

adiabatic switching is realized with four different clock signals as it is shown in Fig. 3.11.
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Due to these clock signals the operational mode of a half-cell in the line changes

periodically: active- locked- active- null.

<+
o

» 58] 188] 88

P=+1 P=-1 null state

FIGURE 3.10. Metal-dot QCA cell. (a) It consists of two half cells that
get the same control voltage. (b) The occupancies corresponding to the
P=+1, P=-1 polarizations and the null state.

The operation of a line of four cells can be seen in Fig. 3.11. Each line of the graph
shows the polarization of a cell as a function of time. In the figure the parts are framed
where the cells are in locked operational mode. The state of the cell can be considered
valid only in this state, that is, it is supposed to be read externally only during this time.

The shift register is instructive because in principle each element could be replaced
by a more complex computational unit. This is how more sophisticated processing could
be achieved in this paradigm. The designs of larger-scale functional units as reviewed in

Reference [3] can now just be taken over with this new cell design.
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FIGURE 3.11. Simulation of a QCA line of four cells. The top plot shows the V

differential input bias of the first cell as the function of time, the other four

graphs are the polarizations of the cells. (*0” refers to the null state.) The
polarization of a cell is valid if it is in the locked operational mode. In this case
the polarization is shown in the frame in the graph. Each cell follow their left
neighbor’s polarization with a delay.

3.2.4 Conclusions

A structure was proposed to realize the adiabatic switching with metal-island QCA cells.

Adiabatic switching provides a solution for the crucial problem of ground state

computing, namely, that a larger system may settle in a metastable state instead of the

ground state. It also makes pipelining and constructing large, digital-like QCA circuits

possible.
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The core of the proposed QCA cell is a bistable element consisting of three metal
islands, tunnels junctions, and capacitors. Its operation was presented in a simulation
example, on the basis of phase diagrams. Beside an individual half cell the operation of a

cell line was also shown.
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3.3 Conductance suppression in coupled double-dots [45]

The electrostatic interaction between two capacitively-coupled metal double-dots
is studied at low temperatures. Experiments show that when the Coulomb blockade is
lifted by applying appropriate gate biases to both double-dots, the conductance through
each double-dot becomes significantly lower than when only one double-dot is
conducting. A master equation is derived for the system and the results obtained agree
well with the experimental data. The model suggests that the conductance lowering in
each double-dot is caused by a single-electron tunneling in the other double-dot. Here,
each double-dot responds to the instantaneous, rather than average, potentials on the other
double-dot. This leads to correlated electron motion within the system, where the position
of a single electron in one double-dot controls the tunneling rate through the other double-
dot (Correlated transport has also been discussed in the literature. Refs. 24, 27 and 36
analyze the transport of electron-hole pairs (excitons) through arrays of capacitively-
coupled double-dots[49].)

The four metal (aluminum) dot system used in this experiment can be seen in Fig.
3.12(a). The voltage sourcééper andVpyignt, apply small biases, and curretis; and
light are measured. A symbolic representation of the four dots is shown in Fig. 3.12(b).
The circles denote the dots, and the lines indicate the possibility of interdot tunneling.

In measuring the conductance through one double-dot (DD) a significant (35-40%)
conductance lowering was observed if the other DD was also conducting. This will be
referred to agonductance suppressiamthis paper. Our analysis reveals that the cause of
the conductance suppression is correlated electron transport in the whole two-DD system;

that is, one DD responds to the instantaneous position of the electron in the other DD, and
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FIGURE 3.12. (a) Two-DD system. The;PD,, D3 and D, denote the four metal
islands (dots). Th¥pef /Vprignt Voltage sources and thgg/lignt current meters are
used for double-dot conductance measurements. (b) The symbolic representation of
the system. The circles and the lines represent metal islands and tunnel junctions,

respectively.
not to the average potential caused by the alternation of the charge configurations in the
other DD. In the latter case, the conductance lowering would not happen.
In the first subsection the experiments are explained in detail. In the second
subsection the experimental results and those obtained from the model are compared. The
Appendix gives some details about the computation of the current and the alRerabe

P=-1 transition time.
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3.3.1 Experiment

Fig. 3.13 is a micrograph of the four-dot structure.@hd D, are the left DD; I3
and D, are the right DD. The AI/AIQ/AI tunnel junctions were fabricated on an oxidized
Si substrate using electron beam lithography and shadow evaporation[46]. The area of the

junctions was about 50x50 rfmMeasurements were performed in a dilution refrigerator

with a base temperature of 10 mK. The electron temperature during the experiment was

| et

FIGURE 3.13. Micrograph of the device which consists of four metal islands (dots)
denoted by B, D,, D3 and D).

70 mK, according to independent temperature measurements[51]. The conductance of
each DD was measured simultaneously using standard AC lock-in techniques pXth 5

excitation, and a magnetic field of 1 T applied to suppress the superconductivity of



aluminum. Capacitances in the circuliifl.44 e/mV,C.;=0.9 e/mV,Cy;=0.45 e/mV; See

Fig. 3.12.) were determined from periods of Coulomb blockade oscillations and I-V
measurements[47]. To nullify the effect of parasitic cross-talk capacitances between dots
and nonadjacent gates, a charge cancellation technique, described elsewhere[48], was
used.

In the experiment we considered the behavior of a QCA cell, consisting of the two
double-dots, to determine the best conditions for QCA operation. The signs of the gate
biases were chosen to allow movement of an electron within a double-dot while keeping
the total number of electrons constant. We noticed that conductance decreased in both
DDs whenever both were conducting.

To understand the experiment we need to examine the charging processes of a two-
DD system. The behavior of one DD can be described by the so-dadieeycomfd5-

17,33] graph. This is a phase diagram giving the minimum energy charge configurations
as the function of the two electrode voltages. For the whole two-DD system, the electrode
voltages of both DDs must also be included in the full description; however, this would
mean that the ground state charge configuration must be given as a function of four
parameters. In our experiment symmetric input voltages were applied for the DDs. This
reduces the number of parameters to two and the occupancy can now be given as a
function ofViet=V ieft1=-V left2 @NdVright=V righti=Vrright2-

Fig. 3.14(a) shows the phase diagram of the two-DD system if there is no coupling
(C;;=0) between the left and right DD. The phases corresponding to different minimum
energy charge configurations are separated by lines, similar to the usual honeycomb graph.

However, a phase is now described by the occupancy of all four dots. (The overline
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FIGURE 3.14. (a) The phase diagram of the two-DD system if there is no coupling
(C;;=0) between the left and right DDs. The figure shows tNgN,;N3N,] most
probable charge configuration as the function of the input voltages. (b) The phase
diagram of the two-DD system when the left and right DDs are capacitively coupled.
The framed part of the phase diagram is studied in this paper. At the phase borders
one of the DDs (e.g., [01;10]/[01;01]) or both of them (e.g., [01;10]/[10;01])
conduct. The arrow corresponds to QCA operation.

denotes negative sign in the figure, elg;1.) The left two numbers belong to the left DD,
and the right two belong to the right DD. We denote the occupanciNigyf,NsN4] where
N; is the occupancy of the dot;[Note, that for the phase aroulgs=V iyn=0 we choose
the [01;01] occupancy of our reference instead of [00;00]. It corresponds to simply a rigid
shift of the operating point. In Fig.4(a) the two DDs are independent of each other. By
increasing theVjes; (Viigny), only the occupancy of the left DD (right DD) changes. The
occupancy of one dot of the DD increases by one, the other dot’s occupancy decreases by
one.

Fig. 3.14(b) shows the phase diagram for non-zero coupling between the DD’s.

The points where four phase borders meet are now split into two triple points. The square-

48



shaped phase regions turn into hexagons. In Fig. 4(b) the crucial region of the phase
diagram, which we examine experimentally, is framed. There are four phases in this
region: [01;01], [01;10], [10;01] and [10;10]. During QCA operation Wg, voltage is
kept constant an¥ ¢, changes sign. The system moves on a horizontal line in the phase
diagram (shown by the arrow). By choosing an approphgigy, this horizontal line will
cross the phase border between the [10;01] and [01;10] phases, corresponding to a
transition from one polarization state to the other.

Figs. 3.15(a) and (b) show the phase borders where the left DD and the right DD,

respectively, conduct. The experimental results of the conductance measurement
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. | | |
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Vleft(mv) V|eﬁ(mV)
a) b)

FIGURE 3.15. The phase borders where the (a) left and the (b) right DD conduct. Th
conductances for the framed part are shown in Fig. 3.16 magnified.

corresponding to the framed parts of Figs. 3.15(a) and (b) are shown in Figs. 3.16(a) and

(b). When only one DD conducts, the height of the conductance peak at the border is

almost independent of the applied input voltages. However, at the phase borders, where
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both DD conduct, the conductance is significantly (up to 35-40%) decreased. The
conductance lowering in the left and right DDs is clearly visible in the center of the

corresponding conductance graphs of Figs. 3.16(a) and (b). The conductance lowering can

0.4f ' \’ ' '
0.2t 20 20
~ 40
e
£ o °
> 10 A0 (1o
_02 30
50 ?
~0.4t ( ab | . . .
-04 -0.2 0 0.2 0.4 . . . 0.4
Vier(MV)
a)

Viigh(mV)

IAVright

0.4

FIGURE 3.16. Comparison of the (a-b) measured and the (c-d) calculated conductance
curves of the left and right double-dots. The conductances are given as a function of
Vieft andVyignt- In (d) theAViig, voltage shift is the effect of the change of occupancy

in the left DD. The 10, 20, 30, 40 and 50 nS contours are shown. The conductance
suppression is clearly visible in the center of the graphs. For (c) and (d) the insets show
the three-dimensional conductance plots. The curves corresponding to the three
vertical lines in (b) are given in Fig. 3.17.
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be also seen in Fig. 3.17, where the conductance of the right DD is given as a function of
Viight for three differentvjef; voltages. It is this lowering which the theoretical analysis of

the next two sections will explain.

FIGURE 3.17. The measured (crosses and dots) and computed (solid line)
conductance curves as the function\gf, for three differentVigq voltages. The
curves correspond to the three vertical lines in Fig. 3.16(b).

3.3.2 Results and discussion

Based on the numerical solution of the master equations, Figs. 3.16(c) and (d)

show the calculated conductances of the left and right double-dots as the functiggg of
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andViignt. (Compare with the experimental graphs shown in Figs. 3.16(a) and (b).) In Fig.
3.17 the computed conductance (solid line) and the measured conductance (crosses and
dots) curves are shown as the functionVfy for three differentvier; voltages. For the
temperature the measurdé70 mK was taken[51]. Due to the unknown background
charge, the conductance curve was allowed to shift rigidly ingggandVj;g; plane for

fitting. The model uses the tunneling resistance as fitting parameter. The results of the
calculations agree with the experiment upon takitg430 K2. (The measured room
temperature resistance of the tunnel junctions varied between 400 an@®530 ¢an be
observed that the conductance is lower on the phase border where both DDs conduct (in
the center of the graphs in Figs. 3.16(c) and (d)), which matches the experiments.

We have shown that the solution of the master-equations for the two-DD system
guantitatively agrees with the measured data. The master-equation model describes the
correlated electron transport through the two DDs. This statement can be supported by
computing the correlation between the charge polarization of the two DDs. The charge

polarization of a DD is defined with the occupancy of the top and bottom dots as

I:)DD = |\Itop_Nbottom' (3.34)

Itis +1 and -1 for the [10] and the [01] double-dot charge configurations, respectively. We

define the correlation function between the double-dots as:

Cpp = EI:)IeftprightD_ |:PleftD:PrightEl (3.35)
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where [1..[ldenotes the thermal expectation value. This correlation function would be
zero if each DD only responded to the average charge on the other. In Fig. 3.18 the
dependence of the correlation function is shown on the input volt&ygdas a peak at

the origin, where the conductance lowering occurs. Further from the origin its value is

]
£ 1
— O_o_o.s
Q. 0.8: e, 06
O o
0.64~
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0.4~ o o1 0.2 03

| T(K)

04w : =
0.5 = == 0.5

0
Viigh(mV) Vierr(MV)

-0.5 -0.5

FIGURE 3.18. The correlation between the top dots of the two DDs as a functigyg; of
andVjign for T=70 mK. The correlation is maximum at the origin where the conduetanc
lowering occurs. The inset shows the temperature dependence of the correlation peak. |
decreases with increasing temperature.

zero, indicating that there is no correlation between the double-dots there. The inset shows
the temperature dependence of the correlation peak. The correlation between the double-
dots decreases with increasing temperature. At the experimental temperature, the height of

the correlation peak i|stp| 00.75
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Correlated electron transport through the two DDs means that one DD responds to
the instantaneous electron position in the other DD. It is instructive to examine what
would happen if one DD responded only to #neeragecharge density of the other DD.

Fig. 3.19 shows the calculated conductance of the right DD in this case. (See Fig. 3.16(d)

0.4F
S 1
= E—
—= o—= ]
< 50— |
> % 20—
_0.2:3/ ]
—1

—0.4'. . . . 1
-0.4 -0.2 0) 0.2 0.4

Vieit(MV)

FIGURE 3.19. The calculated conductance of the right DD for the case if the right DD
responded to the average charges on the left DD. In the graph, the 10, 20, 30, 40 and
50 nS contours are shown. The conductance lowering is not seen in this figure.
(Compare with Fig. 6(d).)
for comparison.) The conductance of the right DD was computed placing static charge in
the left DD, corresponding to its time averaged charge density. The conductance lowering

cannot be seen, and this also implies that the electron transport through the two DD is

correlated.
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In Fig. 3.16(d)AV/jgn; denotes the voltage shift in the conductance graph of the
right DD due to the change of occupancy in the left DD. If the coupling capacitance is
higher between the two double-dots, this voltage shift and the conductance lowering will
be larger[50]. However, if the two double-dots are coupled with smaller capacitances,
AVijgnt and the conductance lowering decreases. In the limit of uncoupled DDs,
conductance lowering does not occur aigjq,=0.

We can use this analysis to estimate Bwet1/P=-1 transition rate. The results of
the computations give 50MHz for this particular two-DD structure. DuringPthel/P=-1
transition the input voltage of the left DD is changed, while the input voltage of the right
DD is kept constant. The input voltage of the left DD is changed in such a way that it
mimics the switching of an adjacent cell[44].Modifying the capacitances, especially the
coupling between the two DDs, and decreasing the resistance of the tunnel junctions can

increase the transition frequency[50].

3.3.3 Conclusions

In this section electron transport through coupled double-dots has been analyzed.
Experimentally, a suppression of conductance in one double-dot was observed when the
second double-dot was conducting. This is explained theoretically in terms of the
correlation of electron motion in the system. A model has been developed which rather
accurately reproduced the experimental data. The straightforward interpretation of this
model is that the electron in one double-dot responds not just to the time average
fluctuations of charge in the neighboring double-dot, but to the instantaneous charge

configuration. This leads to a non-vanishing correlation in the coupled electron motion.
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CHAPTER 4

QCA QUANTUM DYNAMICS USING THE STATE VECTOR DESCRIPTION

Unlike the metal-island implementation, that is strongly coupled to the heat bath,
the semiconductor realization of the QCA can be modelled as a coherent system; thus
the Scrodinger equation can be used for its description. A QCA cell consists of four
guantum dots and two electrons. Ignoring spin, a cell can be described by a 16 element
state vector[8]. For the line df cells al6Y elements state vector is required.

The large number of vector elements needed for state description makes it
difficult to model QCA arrays. Fortunately, according to Ref. [8] its is possible to
consider a QCA cell as a two state system. The Hamiltonian for a QCA line as a two-

state system is:

N g N-1
A=y 61— Y 6.5 +1) (4.1)
i=1 i=1
whereE, is the kink energy (the energy of two cells being oppositely polarizedyasd
the tunneling energy:. is zero, if the interdot tunneling barriers in the cells are high and
the tunneling rate is very low (zero)is large, if the he interdot tunneling barriers in the
cells are low and the tunneling rate is high. The tunneling barriers of the cells are

connected to electrodes and their heights is controlled externally by voltage sources.
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The Hamiltonian of a QCA cell line has the same form as that of an Ising spin
chain in transverse magnetic fiel/2 andy plays the role of thd exchange energy and
the transverse magnetic field, respectively.

The polarization of thé" cell can be interpreted as the expectation value of the
o, Pauli spin matrix:

P = ~B,0 (4.2)
With the negative sign we follow the convention of Ref. [57] choosing the sign of the

Pauli spin matrices:

6,=12Y,6,=1%1, ands, = |19 . (4.3)
10 i 0 01

Considering the QCA cell line, as coupled two-level systems, for a limeadwlls
a 2N element state vector is needed. (This model will be referred to latduls
Hamiltonianmodel.) This number can be further reduced with the intercellular Hartree-
Fock approximation.

The dynamics of a cell line can be obtained from solving the time-dependent
Scrodinger equation numerically with the (4.1) Hamiltonian. The initial state of the
simulation should be the ground state wave vector that can be obtained as the
eigenvector of (4.1) with the minimal eigenvalue (energy). The Hamiltonian and the size
of the state vector increases exponentially with the number of cells causing the rapid
increase in memory and computational time with the increase of cell number and
limiting the maximum length of a cell line that can be simulated on a personal computer
to about 10-15 cells. This limit can be improved by using sparse matrix routines for

matrix algebra and eigenvalue computation.
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4.1 The intercellular Hartree-Fock approximation

The Hartree-Fock intercellular approximation decouples the ling oélls intoN
single-cell subsystems, which are coupled “classically” through expectation values. The

Hamiltonian for thg™" cell is:
~ ~ . B . .
Hj = _yjo-x(J)_?O-z(J)([ﬁz(J —1)D+ |:‘B-z(J + 1)[:) : (4-4)

(Compare with (4.1).) Introducing

Pi = ~(6,(i-1)+6,(i+1) = P,_1+P,;. (45)

and using the matrix form of the Pauli spin operators, the 2x2 Hamiltonian matrix can be

obtained as:

H; = . (4.6)

4.1.1 The dynamics of a cell block

The dynamics of the cell line is given by coupled single-cell time-dependent Scrédinger

equations. The Scrodinger equation ofijeeII is:

ih%MJjD: Hilw,0 (4.7)

where the two element state vector can be given as:

;0= o [10+ B;|-10= m (4.8)

58



The QCA cell is modeled as a two-state level. llquD state is given as the linear
superposition of the polarization +1 and -1 states.

According to (4.8), a cell is described by two complex or, equivalently, four real
numbers. For a line ol cell, 2N complex numbers are needed. However the degrees of

freedom is less than that because the elements of the state vectors must fulfill the

constraint:
o>+ [y = 1. (4.9)

Moreover, in each cell, due fghase arbitrarinessthe state vector can be multiplied by a
phase factor (with absolute value one) without changing the physics. Due to these two we
have, in fact, only two (real) degrees of freedom instead of four. Therefore it seems
reasonable to eliminate the extra two variables from the (4.7) Scrédinger equation and to
describe the QCA cell by two variables.

Let us choose the two variables to beRh@olarization

P = lo)*-1B*, (4.10)
and thep phase:

¢ = argEgH - (4.11)

With these the state vector can be written as

1+P i3
5 e
gy = (4.12)

1-P i(¢+9)
/—2 e
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whered is the arbitrary phase. Substituting (4.12) into (4.7) and eliminaijwge get [52]:

d

P = =2y 1-P, sing, (4.13)

and
e = PE +2 . 4.14
aq)]__jk Y 2005¢j- (4.14)

Notice thatP represents a classical degree of freedom — it is related to expectation values
of observables. By contragtis a fundamentally quantum variable, a quantum mechanical
phase. Besid® and ¢, kK and ¢ are another possible choice for state variables. Their

defining equations are

K _ LK
cosé = |al, sm2 IB| (4.15)

and
¢ = arg%% (4.16)

TheP polarization can be given withas

P = ol 1B = Fposkf - inkT = cosc. (@.17)

After some algebra, the state equations with these two state variables are obtained:

— = 2ysing;, (4.18)

and

(4.19)

Compare this result with the (4.13) and (4.14) state equatioRsaliod.
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4.1.2 Computing the stationary state of a cell block

Taking all the time derivatives to zero in (4.13) and (4.14), and assugty the

steady state polarization of a cell can be computed as

E,
—*p

p= —2L . (4.20)
4 Fxs f

This formula can be used for iterative methods that find the stationary states of a cell
block. First a polarization valuB; is assigned to all the cells. TherPthe s, the sums of
the polarizations of the neighbors are computed. Fronﬁpe ’ﬂhe polarizations can
be computed according to (4.20). The last two steps must be repeated until the polarization
of the cells do not change any more.

If the cell has only one neighbor, a driver cell, then the well-knoeviiinear cell-
to-cell response functiofB] is obtained from (4.20) as shown in Figure 4.1. Note that
mathematically (4.13) and (4.14) has another steady state solution, where both time
derivatives are zero angy=1, however, it can be proved that this is a non-stable
equilibrium.

If the driver polarization is near zero then the slope of the curve is

dP _ Ey
P2y (4.21)

The method can be extended for more complex structures, e. g., for the majority

gate shown in Figure 4.2.
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Steady state cell polarization

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Polarization of the driver cell

FIGURE 4.1. Nonlinear cell-to-cell response function. The steady-state polarization of a
cell as a function of the polarization of the driver. According to (4.21) the slope of the
curve at the origin is |2y=0.2 (See the slope of the dotted line).

I:)driverS

%
O O (OJNO)
Pariver2 m o°0 Poutput

I:)driverl

Three driver cells

FIGURE 4.2. Majority gate. If the interdot barriers are higte( is small), then the
polarization of the output cell is the same as the majority of the driver cell
polarizations.
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Now

k
b E(Pdriverl + I:)driverz + I:)driver?,)

14 L f

U
[Qy(Pdriverl + I:)driverZ + I:)driver?,)D

(4.22)

If the sum of the three driver polarizations is positive then the polarization of the cell will
be also positive, and if the sum is negative then the driver polarization will be negative.

The steady state polarization of an infinite cell line can be obtained substituting

L Lo
Psaturation' * 1_EEkI] ' (4.23)

Notice that the cell line has a steady state polarization onbgfoy.

P; = 2P into (4.20):
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4.2 Linearization of the state equations

In this section the QCA state equations will be linearized around the equilibrium
polarization and phase of an infinite cell line. The linearized equations are valid for small
deviation in the polarization and phase from this equilibrium value. It will be shown that
(sine) wave propagation through the cell line is possible only in a very narrow frequency
range. This will be demonstrated by simulation results. Moreover it will be shown that the
behavior of the additive noise or disturbance during a wave front propagating in the QCA
array can be understood via the examination of these small amplitude waves and

oscillations.

4.2.1 Linearization of the variables around the equilibrium point

Now let us consider a cell with its left and right neighbors in a cell line. Assume
that the phase and the polarization of the cell and the polarization of the left and the right

neighbors in the one-dimensional cell line differ from their equilibrium values only a very

little:
P = Py+AP, (4.24)
® = @yt+A, (4.25)
Pleft = PLefio ¥ APpeft» @and (4.26)
Pright = Prighto + APRrignt- (4.27)

Using (4.23), the equilibrium values are:

_ _ — Y
Po = PLefto = Prigho = 1—%;%? and (4.28)
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@ =0 . (4.29)

The linearizations of (4.13) and (4.14) around the equilibrium point are

dAP _ ORHSL JRHSL

= + .
h Tt AP equ>< AP 980 equ>< Ag, and (4.30)
dA@ _ ORH2 ORHS
= + .
g SAD equ><AF>+ 550 equxAcp (4.31)
ORHS ORHS
AP XOP et 3ap—| X APrignt
Left equ Right equ

where RHS1 and RHS2 are the right hand sides of the two state equations(4.13) and

(4.14);

RHSL = —2y,/1-(P, + AP)’sin(@, + Ag) » and (4.1)

(Py+ AP)

RHS = 2y 2cos;((p0 +AQ)— (4.2)
|1-(Py + AP)
Ex(PLefio + AP et + Prighio + APrignt) -
The derivatives of (4.1) and (4.2) are obtained as
dRHSL Po ..
= =2y sing, = 0, (4.1)
0AP 2
equ 1-P,
ORHSL oy [1p2=oyx L 4.2)
Lo equ B
O 2 O 3
RHS| _ .. Po 1 _ oy x KO
0AP T g ZECOS% = yx Oy O (4.3)
equ H1-Py) /1—P0D
F)
6529 = =2y 0 sing, = 0 (4.4)
¢ equ 1—Pg
ORHZ| - g, and (4.5)
aAPLeft equ
ORHSL|  _ ¢ (4.6)
aAI:)Righ’[ equ
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Substituting (4.1-4.6) into (4.30) and (4.31), the linearized state equations are

obtained as
daP _ 2y
— T E, x A@ and 4.7)
dAo  2ES
anQ _ “ -k _
+ I y2 x AP Ekx(APLeft+ APRight)' (4.8)

Equations (4.7) and (4.8) are two first order differential equations. They describe a
cell by two state variable&\P andAg. It is possible to eliminate one of the state variables,
and get the cell state equation as a second order differential equation.

To do that, firshg must be expressed from the (4.7) linearized state equation:

hE
Ap = ——kx9AP (4.9)

22t

and then be substituted into equation (4.8):

2 3
hE, d° E
k d"AP _ kxAP—EKX(AP

2y2 e V2

Left+APRight)' (4.10)
Hence, the state equation as a second order differential equation is obtained as

+AP
2

(AP
28R (o8 )+ (297

dt®

Left

Righ? (4.11)
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4.2.2 Small amplitude wave propagation

Equation (4.11) can be used to find the small amplitude polarization waves that are
able to propagate in the cell line. Assuming that the shape of the wave front does not
change during the propagation, fifP| ¢y andAPRg;gne Must stand:

APLeft(t) = AP(t-At,,) and (4.12)
APRight(t) = AP(t+At,), (4.13)
whereAtg is the time that is necessary for the wave front to pass a cell. From (4.11),

(4.12) and (4.13) it follows that

d’AP AP(t-At

42 (t) = —(ZEK)ZXAP(t)+(2y)2x )+AP(t+Atce”).

2

cell

H

(4.14)

Without loss of generality, only th..>0 case will be considered.
Equation (4.14) is linear, that is, P,(t) and AP,(t) are the solutions of the
equation then c¢;AP(t)+c,AP,(1) is also a solution. The solution can be looked for as a

sum of sinusoidal waves:
AP(t) = Z ASin(wt + @) . (4.15)
For the sake of simplicity, |&P have the form:
AP(t) = Asin(wt + @). (4.16)

After some elementary steps the allowed angular frequenaigsi(ll be obtained as a
function of At In the following part we will neglect thk index. The second derivative

of (4.16) with respect to the time is:
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2
D22 (1) = —Awsin(wt + ¢) = —w?AP(Y) 4.17)
dt

The terms containing time delay can be expressed as:

AP(t+At..,) = A(sin(wt + @) cos(wAt. ) + cos(wt + @) sinw(At.,,)), (4.18)
and

AP(t—At,,) = A(sin(wt + @) cos(wAt, ;) — cos(wt + @) sin(wAt, ). (4.19)
Hence

AP(t=At o) + AP(t+ At,o)
2

= Asin(wt + @) cog(At, ) - (4.20)

From (4.16) and (4.20) one can get

AP(t=At o) + AP(t+ At gy)
2

= cos(wAt ,)AP(1). (4.21)

Substituting (4.16), (4.17) and (4.21) into equation (4.14) we g@H():

—W?AP(t) = 5?15 Jap(y + %Vgcoqutcel,)AP(t). (4.22)

After AP(t) is eliminated, the relationship betweemandAt.g is obtained as

w” E?E"D DZVE%COS(OOAtce”) (4.23)

From this equation the range of the possible angular frequencies can be obtained.

(Remember that this is the angular frequency of the oscillation of a cells in the array.)

ZE" 1- DlEF<m<'2 Oy cf (4.24)

LE D EED
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In many practical cases the interdot tunneling barriers are relatively higlieghwys
so the angular frequency of the oscillation is restricted to a very narrow range.

If Atce” =0 then

AP (1) = APRight(t) = AP(t). (4.25)

In this case the polarization of the whole cell block changes together. The frequency of

_ 2B _oyr?

Let us consider a concrete example with the following cell parameters:

this oscillation is:

Sk~ 925andY = 0.05. (4.27)
h h

The saturation polarization is

_ Oy [f -
Psaturation™ * 1_EEkD =0.9798 (4.28)
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According to (4.24) the range of possible angular frequen@ié899< w < 0.5099 . The
corresponding period time range12.3223< T <12.8255 . Fig. 4.3(a) and (b) show the
possible(w,At.g) pairs.

50 T T T T 7

401

301

201

AtceII

10-

~ o ‘ ‘ ‘ ‘
Hass 049 0495 05 0505 051 0.485 049 0495 05 0.505 051

Angular frequency Angular frequency

(@) (b)

FIGURE 4.3.At. as a function of the angular frequenay(of the
oscillation of a cell. (b) Magnification of the framed (and relevant)
part of (a).

4.2.3 Simulation results

The left edge of a cell block of sixty cells was excited with a sinusoidal signal with
small amplitude and different angular frequencies. In correspondence with the theoretical
results it was found that for the frequencies that were in the range given above wave
started to propagate form the excited edge. On the other edge it was reflected and started to
propagate backward. Thus a standing wave appeared as a superposition of the two waves

propagating into opposite directions.
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Fig. 4.4 shows the polarization and phase curves after 2000 time units1@; 12.5 and

13.5, respectively. Resonance was experienced only in casa25b.
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FIGURE 4.4. Polarization and phase of a cell block of sixty cells exciting the left edge

with a sinusoidal for (aJ=12, (b)T=12.5, and (c)lI=13.5. Resonance occurs for (b),
because the excitation frequency is in the allowed range.

The cell block was tried also with non-sinusoidal excitation. The square wave used
exciting the left driver cell is shown in Fig. 4.5(a). The polarization of the first cell can be

seen in Fig. 4.5(b). In this system only a very narrow frequency range can propagate thus
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even the polarization of the cell beside the driver cell is a sinusoidal function of time. (The
higher frequency components of the square wave were “filtered” out.)

Next, the driver cell was excited with the sum of two sine waves with period time
T=12.4 and 12.7, respectively. Both period times are in the allowed range. The
polarization and phase of a cell, as a function of time is shown. It is easy to recognize the
envelope of the shape in Fig. 4.6.

Fig. 4.7 shows the state of the system in case of sinusoidal excitatxi? ()
between 8000-8120 time units. (The sinusoidal excitation of the left edge started at t=0.)
Now time is measured along the vertical axis, increasing from the top to the bottom. The
propagation of the waves can be seen on the left hand side, while the checkerboard-like
pattern on the right hand side indicates standing waves. The standing waves are the result
of the superposition of the waves propagating from the excited driver to the right and the

reflected waves propagating to the left.
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FIGURE 4.5. Excitation of a cell line at the left edge with a square wave (period
time=12.5). (a) The polarization of the driver cell as the function of time is shown. (b)
The polarization of the cell beside the driver cell as the function of time is shown
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FIGURE 4.6. Excitation of a cell line at the left edge with the sum of two sine
waves with near frequencies. The polarization and the phase of a cell as the
function of time is shown.
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Cell Number

FIGURE 4.7. Polarization of a cell block of sixty cells exciting the left edge with a
sinusoidal T=12.5). This graph shows the state after 8000 time units. From the left
edge the propagation of the wave can be s@gn, is about 3.3 time units. At the

right edge standing waves appeared because the propagation has already reached the
right edge and the wave is reflected. The superposition of the original and the
reflected wave gives a standing wave.

4.2.4 Conclusions

In this section, the small amplitude polarization oscillation of the QCA one-
dimensional cell array was examined linearizing the cell line around the equilibrium. We
saw that wave propagation is possible only in a very narrow frequency range. This small

amplitude oscillation can be experienced as “noise” or disturbance added to the expected
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wave fronts. Fig. 4.8. shows a snapshot of a propagating wave front. Fig. 4.9. shows the

Polarization
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30 40 50 60 0 30 40 50 60

Cell Numbe Cell Number

FIGURE 4.8. Wave front propagation in a one-dimensional cell block. Note the
disturbances added as a noise to the expected shape
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FIGURE 4.9. Polarization and phase of thetlBell in the one dimensional cell
block of Fig. 4.8, as function of the time starting frarb00 time units. The period
time of the small amplitude oscillation is about 12.5 time units.

time function of the polarization and the phase of th& £Bll in the former system from
t=500 time units to 550 time units. The small oscillation can be seen and the period time of
the oscillation is about 12.5 time units, as it was expected. Knowing the allowed frequency

range it is possible to avoid these disturbances in practical applications.
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4.3 Dynamics of a one-dimensional QCA array

In this section the behavior of a one-dimensional QCA array will be investigated.

The propagation and collision of polarization wave fronts and waves will be analyzed based

on simulation results.

In Fig. 4.10 an array of 30 QCA cells can be seen. The cells at the left and right

edges (that is, theland the 3¢ cell) are called driver cells, as shown in Figure 4.10. Their

polarization can be set externally.

O OO O
o |o°
O O

0 1

N

LEFT

DRIVER CELL

ARRAY OF 30 QCA CELLS

O O] |0 O] |0 O]0_0O
O O O
O O] OO0 O
28 29 30 31
RIGHT
DRIVER CELL

FIGURE 4.10. Array of 30 QCA cells with two driver cells at the right and the left
edges, respectively. The polarization of the driver cells can be set externally.

The initial polarization of the cell array was -1. Then by driving the left and the right cells in

different ways, the behavior of the cell array was examined.

In subsection 1 the state equations are presented and the propagation of a wave front

is demonstrated. In subsections 2 the collision of two wave fronts is analyzed. In subsection

3 an example is shown how to decompose a more complex wave shape into a sequence of

the previous two phenomena.
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4.3.1 Propagation of a wave front

Every cells in the QCA array is described by two state varialie@@olarization) andp

(phase). The two state equations, rewriting (4.13) and (4.14), fﬁP ttedl are given by:

h%Pj = -2y 1—szsin¢j,and (4.29)
9 5 P
ﬁﬁq)j = —PE +2y cosp;, (4.30)

J1-P/

whereE,, yandti are constants aritlis the sum of the polarizations of the neighboring

cells.

Pj=P,_ +P (4.31)

j+1-

From (4.29) it follows that the cell polarization does not change if and ongnifp=0.
(One might think that?;=+1 would make the right hand side of (4.29) zero, however,
Pj=+1 is not allowed because it leads to infinity on the right hand side of (4.30).)

Consequently in equilibriureing=0. The polarization decreasesifp >0 and it increases

if sing<0. These basic considerations help us to understand the graphs in the following

sections.
The simplest phenomenon in the cell array is a propagating wave front. First both
driver cells have -1 polarization. Then the polarization of the left driver cell is raised

gradually from -1 to +1. Due to this, the polarization of the first cell changes from -1 to +1,

then the same happens to the second, the third, etc. At the end the whole cell block

changes its polarization from -1 to +1.
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A snapshot of the propagating wave front is shown in Fig. 4.11. Each cell is
described by its polarization and phase. The little arrows show the direction of change of

the polarization and the phase, respectively. The phase of the cells are zero, except for the
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FIGURE 4.11. Propagation of a wave front from the left to the right. A
snapshot with the polarization and the phase of the cells are shown. The arrows
show the direction of the change for the polarization and the phase. The sign of
the phase peak determines in which direction the wave front propagates.

cells at the edge of the wave front. Here a negative peak in the phase can be seen. The sign
of this peak determines the direction of propagation.
When the wave front reaches the right driver cell (that has -1 polarization) it is

reflected. That is, the wave front begins to propagate in the opposite direction. This can be
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seen in Fig. 4.9. As the direction of propagation changes, the negative peak becomes a
positive peak on the phase plot. The little arrows again show the direction of change.

If a different slope is applied when rising the polarization of the left driver cell then
the speed and the shape of the propagating wave will be different. The smaller the slope

the smaller the phase peak and the smaller the propagation speed of the wave.

08 08 08
C 0.6] 0.6] 06
-g 04 04 04
ﬁ 0.2] 0.2] 02 *
.% 0 * 0 0
= 2 Di ti f 02 . . 02 . .
8 Irection o Direction of Direction of
~0.4] ~0.4] M -04 .
propagation propagation propagation
-0.6] -0.6 0.6
0.8] -0.8 0.8
1U 5 10 15 20 25 30 710 5 10 15 Z‘U 25 30 1U 5 10 15 20 25 30
0.6] 06| 0.6]
m 0.4] 04 04
) o 0 02)
©
£ n p
~02) 2 -02
o4 0 -04)
08 o8 08
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 2‘0 2% 30
time:tl t|me:t2>t1 t|me:t3>t2

FIGURE 4.12. Collision of the wave front and the fixed border. Three snapshots
are shown. The direction of the propagation changes, as the phase peak changes
sign.

4.3.2 Collision of two wave fronts

Next the collision of two wave fronts will be discussed. Both the left and the right

cells are driven with a -1 to +1 polarization transition. Due to this, a wave front starts from
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the left driver cell and another starts from the right, as shown in Figure 4.13. Both wave

fronts have a negative phase peak.
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FIGURE 4.13. Two wave fronts propagating in the opposite directions. A

snapshot with the polarization and the phase of the cells are shown. The black
arrows are indicating the direction of the change.

When the two fronts collide they are reflected. As the direction of their
propagation changes the sign of the phase peak also changes. This can be seen in Figure
4.14. However, the mechanism of the change differs from the previous case. According to
Figure 4.14(b) the two negative phase peaks fuse. In Figure 4.14(c) they become more and
more negative. After reachingt-the phase will become positive as shown in Figure
4.14(d). (The phase is kept betweanand1t) At the end the one positive phase peak

divides into two peaks (Figure 4.14(e)).
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FIGURE 4.14. Collision of two wave fronts. Five snapshots with the polarization and the phase of the cells are
shown.After the collision both wave fronts turn back. This can be seen on the change of the sign of the phase
peak.
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4.3.3 Propagation of a wave

More complex structures can be made of wave fronts. The simplest exampleaigedt
is constructed of two wave fronts as it can be seen in Figure 4.15. In this case the right cell
was driven with a fixed -1 polarization, the left cell was driven with a -1 to +1 to -1

transition. This started a wave propagation from left to right.

0sl Left wave front
Right wave front

Direction of propagation

Polarization

Phase

0 5 10 15 20 25 30

FIGURE 4.15. Propagation of a wave from left to right. The wave is
constructed from two wave fronts propagating in the same direction.
A snapshot with the polarization and the phase of the cells are shown.
The black arrows are indicating the direction of the change.

Reaching the right edge the wave was reflected, however the mechanism of the
reflection is more sophisticated than in the case of a reflection of a single wave front. This

is summarized schematically in Figure 4.16. The reflection of the wave
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can be interpreted as a sum of the two basic phenomena described in Sec. 4.3.1 and 4.3.2.
Sec. 4.3.1 describes the collision of a wave front and the fixed border, Sec. 4.3.2 explains
the collision of two wave fronts.

In Figure 4.16(a) both wave fronts of the wave propagates from left to right. When
the right front of the wave reaches the right driver cell, it is reflected and changes the
direction of its propagation as shown in Figure 4.16(b). Then the two fronts collide and
both change their direction of propagation as shown in Figure 4.16(c). Eventually the right
front of the wave reflects when it reaches the right driver cell and it changes direction. The

wave begins to propagate from right to left as it can be seen in Figure 4.16(d).
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FIGURE 4.16. Reflection of a wave at the right edge. The wave fronts collide
with the fixed border and with each other. Eventually the whole wave will turn
back.
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4.4 Quantum Cellular Neural Networks (QCNNSs) [52]

In this section a computing paradigm in which QCA cells composed of interacting
guantum dots (QCASs) are employed in a cellular neural network (CNN) architecture.
Communication between cells is only through the Coulomb interaction. The cells and
their basic behavior are the same as we have previously discussed in the context of the
Quantum-dot Cellular Automata (QCA) architecture. The key differences here are that in
the quantum CNN (Q-CNN) approach: (1) Each cell is used to encode a continuous rather
than binary degree of freedom. (2) We focus on the time dependent problem instead of the
ground state. (3) The time-dependent Schroédinger equation can be transformed into the
CNN state equations.

We have constructed a simple quantum model of a Q-CNN composed of quantum-
dot cells. Each cell contains one classical degree of freedom, the cell polarization, and one
guantum degree of freedom, a quantum mechanical phase difference. Mapping onto the
CNN paradigm maintains phase information within the cell but no quantum coherence
exists between cells. Thus though dynamics is accomplished through the quantum degrees
of freedom, information is only carried across the array in classical degrees of freedom.

Our hope is that by connecting the problem of coupled quantum cells to a circuit
architecture developed for exploiting conventional analog integrated circuits, we might be
able to open up a new solution domain for interconnected quantum devices. Because local
connectivity is natural in ultra-small quantum devices, CNN’s may prove a natural

extension to the QCA architecture and allow a move into non-digital domains.
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First we briefly review the CNN paradigm. In the next subsection the connection
between the quantum problem and the CNN approach will be demonstrated. At last we

discuss the generalization of our simple model to a more general class of Q-CNN'’s.

4.4.1 The CNN paradigm

The CNN, invented by L. O. Chua and L. Yang [53-54] and generalized in subsequent
work [55-56], is a two or three dimensional, usually regular array of analogous cells. Each
cell, indexed byk, has dynamical state variabl&s , external inpts , and internal
constant cell data, . Each cell is influenced by its neighbors through a synaptid gnput
which depends on the values of cell states and cell inputs within a s@here  centered on

cellk. A CNN synaptic lawdescribes the effect of other cells on the synaptic input:

IS = ZAQXK+A+ZBN(XK,XKH\)+ZC&‘GK+A . (4.32)
The cell dynamics are determined byYCAIN state equatiogiving the rate of change of

state variables as theonlinearfunction of the state of the cell itself, the synaptic input

from neighboring cells, and the external inputs:

2 R = 00X 20 B 17). 4.33)

If there no external inputs exist then the CNN is calledonomousThe CNN is then

defined by (1) the synaptic law, (2) the state equation, (3) initial conditions, and (4)
boundary conditions. Unlike neural networks in case of the CNN the cells are primarily
locally interconnectegdthus the practical realization is much easier, than in the case of a

fully interconnected neural network.
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4.4.2 Formulating quantum dynamics as CNN dynamics

The (4.13) and (4.14) cell state equations deduced in Section 4.1 have the (4.33)

form of CNN equations:

ﬁ%P = —2yJ/1-P*sing (4.34)
794 = e+ 2y—P— cosp. (4.35)
dt 1_p?
The synaptic law is given by:
P=EP =Y WR,-RyP,. (4.36)

ADS
The (4.13) and (4.14) equations are based on the Hartree-Fock intercellular

approximation.

This gives the exact dynamics if there are no quantum entanglements between cells.
Allowing correlation effects that produced mixed intercellular states would make
connecting to a CNN description impossible because of the need for local cell state
information. Moreover, in our simulations of dynamic switching of cellular arrays we
found that including the correlations between cells did not alter the qualitative behavior
(though it did increase the speed of the intercellular responses.)

Fig. 4.17 shows some simulation examples with two-dimensional arrays. In Fig.
4.17(a) the snapshots of circular wave propagation can be seen. The edges of a cell block
were periodically excited. Near the top left corner a block of cells were kept fixed causing
a disturbance in the wave propagation. In Figs. 4.17(b) and (c) snapshots of spiral wave
propagation can be seen. For simulation examples with a one-dimensional array see Sec.

4.3.
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FIGURE 4.17. Circular and spiral waves in a two-dimensional array of QCA cells. (a)
The edges are periodically excited. Near the top left corner a fixed cell block causes
disturbances in the wave propagation. A pixel of a snapshot corresponds to a QCA
cell. The color indicates a polarization between +1 (blue) and -1 (purple). (b) The
edges are periodically excited, with a certain delay with respect to each other. Due to
this delay spiral waves occur instead of circular waves. (c) The last snapshot of (b) is
redrawn as a 3D graph.
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4.4.3 Generalization of Quantum Cellular Neural Networks

Although we have employed a fairly simple model for demonstrating Q-CNN behavior,

the general features of the paradigm are clear.

1. Each cell is a quantum system. The specification of the quantum system can

distinguishN,; classical degrees of freedom alquantum degrees of freedom.

2. The interaction between cells, the synaptic input, depends only on the classical de-
grees of freedom. This corresponds to an intercellular Hartree-Fock approximation.
The precise form of the synaptic law is determined by the physics of the intercellu-

lar interaction.

3. The state equations are derived from the time-dependent Schrodinger equation.

One state equation exists for each classical and quantum degree of freedom.

4.4.4 Conclusions

We have defined the Q-CNN paradigm and examined it in the case of a simple two-state
model of the cell. The system is sufficiently rich to reproduce the wave propagation
behavior seen in a fuller quantum treatment as demonstrated in Sec. 4.3. The general
features of Q-CNN architecture have been outlined. Of particular interest is the distinction
between information-bearing classical degrees of freedom and quantum degrees of

freedom which are necessary for proper temporal evolution.
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CHAPTER 5

QCA QUANTUM DYNAMICS USING THE COHERENCE VECTOR FORMALISM

In this chapter an alternative of the state vector description, the coherence vector
formalism [57] is presented. It is equivalent to the density matrix description thus it can
model mixed states and decoherence. Its other advantage is that the state variables can be
divided into groups corresponding to the state of the individual cells, and to the two-point,
three-point, etc. correlations. This is not possible with state vector or the density matrix
description.

In Sec. 5.1 the dynamical equations of the coherence vector for many-cell systems
are deduced. It is also shown how to interpret correlations in the framework of this
formalism. In Sec.5.2 a particular application of the formalism, quantum computing with

Quantum-dot Cellular Automata, is presented.

5.1 The coherence vector formalism

The state of a QCA cell, as a two-state system, can be given by a two-element state
vector according to (4.8). Besides the state vector, a 2x2 element density matrix can also
be used for state description. Its main advantage is the possibility of describing mixed

states while the state vector description can be applied only for pure states. The dynamics
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of the system can be given in terms of differential equations for the four complex elements
of the density matrix (Liouville equation).

The method can be improved if we eliminate the redundant part of the density
matrix. Although it has 4 complex (i.e., 8 real) elements, these elements are not
independent from each other. The density matrix is Hermitian that means 4 constrains on
the elements. Its trace is unity, that gives a further constraint. Thus the number of degrees
of freedom is only 8-4-1=3. It means that the state of the ensemble can be given by 3 real
numbers instead of the density matrix containing 4 complex numbers.

Our observation agrees with the theory[57] that says that the density matrix can be
constructed as the linear combination of the generators oSW@) group, namely the
0,,0

y andg, Pauli spin matrices and the unit matrix

p = %(1+AX6X+)\y6y+)\262), (5.1)
where theA, coefficients are the three elements of the so-catiglierence vectoilhey
can be obtained as the expectation values of the Pauli spin matrices:
A, = 6,0 a=x,y,Z. (5.2)
The coherence vector will be used for state description instead of the state vector or the
density matrix in the next sections.

To get the time dependence of the coherence vector, first the time dependence of
the Pauli spin operators must be acquired in the Heisenberg picture. Then the dynamical
eqguations for the coherence vector elements can be obtained by taking the expectation
values of both sides of the dynamical equations for the Pauli spin operators.

In the Heisenberg picture, the time dependence of an operator is:
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L0 A A e
5.0 = [0, A].

(5.3)
The Hamiltonian for a single-cell interacting with a driver is:
R =
H = -yo,+ ?PdriverGZ' (5.4)

The time dependence of tilg ~ Pauli spin matrix can be obtained as

dé i o~ A
a X = —ﬁ[O'X, H] = (_Ek) Pdriveroy B (55)
(For the commutator relations of Pauli spin matrices see [57], (2.34) on p. 39 with (2.17)

on p. 36.). Similar equations can be found for the time dependeﬁge of 6Zand

do, _ i, o o
i = —5[oy, H] = E,.Pg4ive0x T 2Y5, , and (5.6)
do i o~ A
az = _,F][Oz’ H] = -2y6,. (5.7)
Equations (5.5-5.7) can be written in matrix form as
q 6X 0 _Ederiver 0 6X
ﬁa y = |ExPyriver 0 2y Oyl (5:8)
0, 0 -2y 0|6,
Taking the expectation value of both sides yields to:
d 0 _Ederiver 0 R
ha)\ = |ExPdriver 0 2y A (5.9)
0 -2y 0

(5.9) can also be written in a very expressive form ([57], equations (3.57-58) on p. 194 and
(3.100-103) on p. 200) as

=
>
I
-
X
>y

(5.10)
where
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r= 0 : (5.11)
Ederiver
and the cross denotes vector cross product. HereTr(0; H) =Xz

(5.10) is the dynamical equation of the cell, equivalent to the Liouville equation
giving the time dependence of the single-cell density matrix. It describes the precession of
the coherence vector arouiid ~ as shown in Fig. 5.1.

If we were describing a spin-1/2 particle instead of a QCA cell tEéQD (6,
and DBZD would correspond to the three coordinates of the spin. The dynamics of the spin
would be given similarly to (5.10), however, the role of  would be played byﬁhe
magnetic field.

In case of a QCA cell the interpretation bf ahd is more diffichlt.  describes
the state of the cell whil€  describes the influences of the environment. The two main
influences from the environment are the polarization of the driver cell and the interdot
barrier height controlled by external electrodes. The third element of s related to the

polarization of the cell as

P=-06,0=)\,. (5.12)
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TheP = *1 states correspond Moo= [0,0,F 1]T . The other two elemenks of  does not

have such expressive interpretation.

FIGURE 5.1. The dynamics of thge coherence vector. It precesses afouRd
describes the state of the cell wHile  describes the influences of the environment.

During the QCA cell-operation, if the barriers are highQ) thenl points to the
+z or to the zdirection. In this case, if the cell is fully polarizeﬂ =1[0,0 % 1]T ) then it
remains in this state sind%IIX .When the barriers are extremelyyonE{ r ), points
to the -x direction.

As it was mentioned before, the density matrix description is able to handle mixed
states. Unlike in pure states, in mixed states the ensemble contains systems being in
different guantum mechanical states. If we restrict our attention to pure states, then length

of the coherence vector remains unity[dﬂ: =1
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5.1.1 Dynamical description of the state of two interacting QCA cells

The coherence vector formalism can also be used to describe multi-cell systems.
The density matrix of a system dfcells has dx2N complex=2x2ZNreal elements. 2 +1
constraints are coming from the requirements of Hermiticity and unit trace that leaves
s=2°N.1 real degrees of freedom. Now density matrix can be given as the linear

combination of thes generating operators of the SH{2jroup:

S
5o li, 1
= —N " z (5.13)

For N=2 cells theA; basis operators are shown in Fig.5.2. There are three single-cell
operators for the first cell, three single-cell operators for the second cell, and nine two-cell
operators. Thes=15 element coherence vector of the whole system contains their
expectation values:

R

A=1Re |- (5.14)

R(1, 2)

Here A (1) andX(Z) single-cell coherence vectoc®ntain the expectation values of the

single-cell operatorsK (1, 2) contains theo-point correlationsthat is, the expectation
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values of the two-cell operators. The two-point correlations are often placed instead of a

vector in a 3x3 matrix called tlomrrelation tensaor

G, (1)  6,(1)  G,(1)

. R . Single-cell operators
6(2)  8,(2) 6,2

6,(1)6,(2)  0x(1)6y(2)  64(1)0,(2)
6,(1)6,(2) 6,(1)6,(2) 6,(1)6,(2) Two-cell operators
5,(1)5,(2) 6,18,(2) G,(1)5,(2)

FIGURE 5.2. Thes=15 basis operators for a two-cell system. There are three single-
cell operators for the first cell, three single-cell operators for the second cell, and nine

two-cell operators.

In summary, to describe the state of two QCA cells fully, besides the two 3 element

coherence vectors, a 3x3 element correlation tensor is needed as shown in Fig. 5.3. The

A1) = A2) R

K(1, 2)

FIGURE 5.3. To describe the state of two interacting cells, beside the two coherence
vectors, the correlation tensor is also necessary.
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degrees of freedom describing the correlation between the two cells are more then the
degrees of freedom describing the cell states. This is even more so, if the number of cells
are increased.

Notice that when using the coherence vector formalism, the state variables can be
divided into three groups. One group corresponds to the first cell, the second to the second
cell, and the third group of variables describe the correlation of the two cells. This cannot
be done so explicitly when using the state vector or the density matrix description. For
these descriptions, when uniting two subsystems, the state variables describe the state of
the whole quantum mechanical system.

To obtain information about the state of a subsystem further algebraic transformations are
needed (e.g., reduced density matrices can be used to describe the state of a single cell.)

To get the dynamics of the coherence vector of the system, we need the

Hamiltonian of two interacting cells:

N . R Ey. N
A = -ylox(1)-yzox(2)—7'<oz(1)oz(2). (5.15)
According to (5.3) the time dependence of the Pauli spin matrices for the first and the

second cells can be obtained as,

L[8 Jo 0 o 5,0 [6,1)5,2)

Ngl6,(D] = [0 0 24/16,(1)] * B|-6,(1)6,(2)| - and (5.16)
6,(1) 0-2y; 0]6,1) i 0

. 6,2 [0 0 o0 6x(2)_ _6),(2)62(1)

t516,2)] =10 0 2,/(6,(2)| +Ex|-6,(2)8,(1) (5.17)
6,(2) 02y, 0]|5,2)] I 0
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The dynamics of the coherence vectors can be obtained computing the expectation values

of the right and left hand sides of (5.16) and (5.17):

h%X(l) = fhi(l)+Ek[[ay(l)az(z)m—[ﬁx(l)az(zmO}T, and  (5.18)

h%X(Z) = QZX(Z)+Ek[Eﬁy(Z)Gz(l)D—[ﬁx(Z)ﬁz(l)DOT. (5.19)
where
00 0
Q=10 0 2. (5.20)
0-2y, 0

The [6,(1)6,(2)0and6,(1)6,(2)0 terms describe thentercell quantum
correlation Since they appear on the right hand side of the differential equations for the
single-cell coherence vectors, their dynamics must be also computed, if one wants to know
the dynamics of the single-cell coherence vectors.

The general form of a quantum correlation term is

Ko = [6,(1)6,(2)0 ab=xyz. (5.21)
The 3x3=9 quantum correlation terms can be placed in a matrix, calledotihelation

tensor

(5.22)

The time dependence of the elements of the correlation tensor can be obtained from the

commutator relation of (5.3):
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(0 0 0|0 0 © | [0 ]
0 0 2,/ 0 0 0 0
0 -2, 0/l 0 0 0|0 0 O Ay(1)
o o o/0 O O|% 0 O 0
—h%l? =0 0 0] 0 0 |0 2, 0|KR+E )\0(1) ,(5.23)
O 0 0| 0-% 0[]0 0 %, X
O 0 O0|-% 0 0|0 0 O Ay(2)
O 0 0| 0-% 0|0 0 2, A (2)
0O 0 0|0 0 -%|0 -2y, 0 o0

where the vector containing the nine elements of the correlation tensor is

R = T
- |:Kxx ny sz ny Kyy Kyz sz sz Kz; ) (5.24)
(For further details see Appendix A.) It is possible to write (5.23) in a simpler form using

the so-called direct product:

)n%R = (10 Qp+ Q1 0K +E [0 0A(1) 0 0-A (1) A,(2) -A,(2) o}T. (5.25)

Up to now the correlation terms were placed in a nine element vector. Different
formalism can be obtained if they are placed in a 3x3 tensor according to (5.23). With the
correlation tensor (5.23) can be rewritten as

0 0 A1)
1R = QK-KQ1+E, | 0 0 -A(1)]- (5.26)

dt
A(2) A(2) 0
Rewriting (5.16) and (5.17) with the correlation tensor elements, the equations for the two

cells’ coherence vectors are:

dA ~ AN T
A (D) = Ql)\(1)+Ek[Kyz —szcﬂ , (5.27)

and
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ds,mv _ A o T
Tgh(2) = Qah(2) + Ek[sz —szo] . (5.28)

(5.26), (5.27) and (5.28) are the dynamical equations for two coupled QCA cells.
They can be found in [49] (Section 3.2.5.3, page 227) for a more general case, presented in
terms of nested sums. We are following a slightly different path, using linear algebra that
hopefully makes both the interpretation of these equations and their numerical
applications easier.

Next a concrete simulation example is presented. The setup consists of two QCA
cells where the first one is also coupled to a driver as shown in Fig, 5.4(a). The

Hamiltonian is

. . . E,. . E, .
A = ~16,(1)-Y,0,(2)—501)5,(2) + 5 Pyrive0(1). (5.29)
The dynamical equation for this case can be obtained from (5.26), (5.27) and (5.28) with

the following substitution:

0 O 0 0 _Ederiver 0
Q=10 0 2y - Q1= EPriver 0 2y,| - (5.30)

Figs. 5.4(b-d) show the time evolution of the coherence vectors and the correlation tensor
elements obtained from the numerical simulation of these dynamical equations. €, and

is taken to be 1 for simplicity.) The driver cell has -1 polarization. The time dependence of
the interdot tunneling energy is shown in 5.4(b). As the barriers are gradually (quasi-
adiabatically) raised the two cells align with the driver cell. Fig. 5.4(c) shows the time
dependence of the three coordinates of the two coherence vegiisrshange from 0 to 1

(remember tha®=-A,), while A,j's change from 1 to O\;'s remain close to zero.
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FIGURE 5.4. Adiabatic switching of two cells. The barriers are gradually lowered while
the driver has constant -1 polarization. The two cells follow the polarization of the
driver. (a) The arrangement of the two cells and a driver, (b) the dynamics of the interdot
tunneling energy, (c) the elements of the two coherence vectors as the function of time,
(d) the dynamics of the elements of the correlation tensor and (d) the dynamics of the
elements of the correlation tensor proper.
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If the barriers were raised even more gradually then the peaksfwould be even

smaller. Fig. 5.4(d) and (e) show the time dependence of the nine element correlation
tensor and correlation tensor proper, respectively. The elements of the latter one start from
zero and return to almost zero. If the process were fully adiabatic and the barriers were

raised to infinity, the correlation tensor proper would be zero at the end.

5.1.2 Dynamical description of the state of a QCA cell line

In the general case of a systenNatells the)A\i basis operators have the form of

0o . m . m . O o . O
sl mtmtag g.to
06,(1) M6,2) Mo 0, 06N D 5.3
06,(1) M6,2) M6, 0 08,(N) O
06,(1) M6,2) M6,3) 0 06,(N) O
U L[] L[] U U U

A basis operator can be constructed by choosing one operator from each column. (For
example, possible basis operators é;él)éy(Z)éx(B) G,(1)35,(3) and) .) There
are 4 ways to do that, however, choosing all ones is not counted. Thus the number of
basis operators isN41=22N-1. That is in agreement with the number of freedom of the
density matrix that was obtaineds2?N-1 in Sec. 5.1.1.

The coherence vector now contains the single-cell coherence vectors, the pair-
correlations and the higher order (three-point, four-point) correlation terms as well. The
three-point correlations are the expectation values of the three-cell basis operators.

The dynamical equations for a cell inside a cell line are similar to (5.26-5.28) but

now a cell has two neighbors. The equation for the dynamics of the coherence vector is:
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(5.32)

The dynamics of the pair correlation tensor is given as:

(5.33)

whereC(i, j) is a matrix containing coherence vectors and third order correlations. For

the nearest neighbor cageifl) it is

(5.34)

The following three point correlations can be found on the right hand side of (53&):

XXZ YYZ YXZ ZY7 ZXZ ZyX ZXX% zyyandzxy
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For further than nearest neighbors it is

o,(i)ay(j) —o,(i)oy(j) O
C(i.}) = Ooy(i)oy(i) o ()o,()) 0 |(OLi-1)+0,(j+1))H (535

0,(1)oy(j) —0,(i)oy(j) O

.
0,(i)0x(j) —0,(i)ox(j) O
0,(1)oy(j) —0,(i)oy(j) 0] (0,(i=1)+0,(i+1))0,
0y(1)0,(j) —0,(i)o(]) O

On the right hand side of (5.35) the following further four three point correlations
terms show upzzy zzx yzzandxzz It is important to notice that of the 3x3x3=27 three
point correlation terms only these 14 are explicitly in the dynamical equations of the pair
correlations. For example, tlaezthree-point correlation is not among them.

It can be seen that substitutingi+1 into (5.34) and using the rules for the
multiplication of Pauli spin matrices, (5.35) can be obtained.

The equations for a cell at the edges of the line are slightly different, however,
giving them explicitly do not help our analysis. When these equations are used for
numerical simulation, it is reasonable to generate the dynamical equations symbolically by
a computer program able to handle Pauli spin matrices. (As an example, see Appendix B
for the results of a MATLAB program calculating (5.34) and (5.35) symbolically.) From
the symbolical form the actual numerical equations can be obtained substituting the
numerical values foE, andy; into them. With our complicated equation systems the
manual computations could lead easily to errors, however, manual computations can sill

be used to check the results of the program generating the equations symbolically.
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Notice also that further equations are necessary to describe the state of the cell line
giving the dynamics of the third, fourth, etc. order correlation terms. These are not given
here, however, can be computed similarly as it was done for the dynamics of the two-point

correlations.

5.1.3 The correlation tensor proper and the measures of correlation

Besides the correlation tensor there are other quantities characterizing the intercell

correlation. Thecorrelation tensor propefor two cells is defined as

Map(12) = LG,(1) - [6,(1)0 | 6,(2) - [6,()00

ab=xYyz (5.36)
With coherence vector elements (5.36) can be rewritten as

M,,(1,2) = Kab(l, 2)-A,(DAL(2); ab=xyz (5.37)
The elements of the correlation tensor proper are all zero if there is no correlation between

the cells or they arencorrelated

EXAMPLE 5.1

Let us consider two fully polarized QCA cells described by the two-state
wave function W = |1, 1J . The coherence vector and correlation tensor

elements can be computed according to (5.2) and (5.21):
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A =0/, AX2=|o|. R®L2=|pog.- (538

The correlation tensor proper can be obtained using (5.36):

00
M(1,2) = |p0d- (5.39)

00
Rather counter intuitively there is no correlation between the two aligned
cells.

The same is true fa¥ = |-1,-100 .

EXAMPLE 5.2
Let us consider the superposition of the two states mentioned in Example
5.1: W = |1, 1Ik |-1, —10. The coherence vector and correlation tensor

elements are

0 0 ) 10
A(L) = |o| A2) =0, K(E2=l0-10 (5.40)
0 0 00

The correlation tensor proper now have non-zero elements.

i 10
M(1,2) = |0-10- (5.41)

00
If the polarization of first cell is measured, the +1 and -1 results are equally

probable. The same is true for the second cell. However, if both are
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measured simultaneously then either both will have +1 or both will have -1
polarization.

It is instructive to examine the complementary example with
W = |1, -1k |1, 10for which M, = —1. If the cell polarizations are
measured simultaneously, they will be opposhk,, = 1 indicated in the
previous case that the two cells “tended to align”, ndy, = -1 indicates

that they tend to anti-align.

EXAMPLE 5.3
Our last example is the superposition of the two state vectors
mentioned in Example 5.2 = |1, -1(K |1, -1[# |1, 1K+ -1, -100 . The

coherence vector and correlation tensor elements are

10
K(1L,2) =000 - (5.42)

00

AM1) = AN2) =

o O O
o O O

The M(1, 2) correlation tensor proper now has only zero elements. It
describes an uncorrelated two-cell state. Note that
W = |1, -1+ |1, —1[H |1, 1[# |-1, —10can be written as a product of two
single-cell statesV = (|1} [-10(J1CH 10 . If this can be done for a

two-cell state, then the two cells are uncorrelated.
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It is also useful to have a simple scalar measure instead of a matrix to characterize
intercell correlation (See [57], equation (2.683) in on page 145). This can be some norm of

M, preferably

B =Tr(Mm") = Z|Mab|2. (5.43)
a
If one of the two cells is fully polarizedX =(0,0,+1) or (0,0,-1)) then thie
correlation tensor proper is zero. In this case the two cells are uncorrelated.
The higher order correlation tensors proper are defined similarly to (5.36). For
example, the three-point correlation proper (see [57], equations (2.810-811), page 168)

can be given as

M1 2 3) = [{63(1) . [Ba(l)% {Gb(Z) - Eﬁb(Z)% {60(3) - Eﬁc(?:)%m

abc=xyz

. (5.44)
After some algebraic transformations one gets
Mape(L 2 3 = Kapd(1, 2 3) =K_ (1, 2)A(3)—K (L, 3N,(2) —
Kpe(2, 3)A,(1) + 2N, (1)A,(2)A(3);
abc=xYyz (5.45)

There are 3x3x3=27 elements of a three-point correlation tensor and tensor proper.

EXAMPLE 5.4
The W = |1, 1, I'+}-1,-1,-100 three-cell state is known as
Greenberger-Horne-Zeilinger(GHZ; see [57] Section 2.5.3.5, page 175)

state. In this example the coherence vector elements and the correlations
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will be computed for the GHZ state. The coherence vectors and the two-

point correlation tensors and tensor propers are:

A1) = A(2) = A(3) = 8 , (5.46)
0
) ) ) ) ) ) 00
K(1,2) = K(2,3) = K(L,3) = M(1,2) = M(2,3) =M(L3) = (g0
001
(5.47)

The non-zero elements of the three-point correlation tensor are

Rxxx(]-a 2,3 = -1,

Kyyx(1, 2, 3) = Kyxy(L, 2 3 = Kyyy(1,2 3) = 1. (5.48)
The M(1, 2, 3) three-point correlation proper has the same non-zero
elements.
EXAMPLE 5.5

After examining the GHZ state in the previous example, it is
instructive to make the same computations for the
W = |1, 1, 13+|-1, -1, 10three-cell state. The coherence vectors and the

two-point correlation tensors and tensor propers are:

. . o . 0
A1) = A(2) = |0, A(3) = |0 (5.49)
0 1
00
K(1,3) = M(1,3) = K(2,3) =M(23) =000, (5.50)
00
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10
K(L,2) =M(1L2 =|010- (5.51)

00
Not surprisingly, the third cell is not correlated with the other two.

The non-zero elements of the three-point correlation tensor are

Kaxd1 2,3 = -1, KyyA1,2 3) = 1,K,41,2 3 = 1. (5.52)

The M(1, 2, 3) three-point correlation tensor proper contains only zeros.

5.1.4 The energy of a cell block

The average energy will be computed as the expectation value of the Hamiltonian
operator: The expression obtained for the energy contains only two-point, and not higher
order correlation terms. The energy expression will be interpreted through examples.

The Hamiltonian of a cell line dN cells, having a driver connected to the first cell

is
N e N—-1 e
- . .. Eg e K .
H = —yz ox(l)—E Z G,(i)G,(i + 1) + ?Pdriveloz(l) . (5.53)
i=1 i=1

The expectation value of (5.53) is:

N N-1
. By A Ey
E = HO= —yz 6,5~ z [6,()6,(i + 1)+ 7F>driveruﬁz(1)u (5.54)
i=1 i=1
It can be expressed with the coherence vector and correlation tensor components as

N N-1
. . Ey » E,
E = HO= —yz A= z Ko +1) + 5Py AL). (5.55)
i=1 i=1
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Due to the structure of the Hamiltonian, the average energy depends only on the coherence
vector elements and on the two-paatorrelations, and not on higher order correlations.
According to (5.37K,{i,i+ 1) can be expressed wikh, (i,i+ 1), P; andP;, 1:
K, fi,i+1) = A(DA(i+1)+ M (i,i+1) = PP, +M_[i,i+1). (5.56)

Substituting this into (5.55) one obtains:

N N-1
. E . E
= —Y_;Ax(l)—{_zl(Pi Prost My fi,i + 1))+ FPyed(D).  (B57)

The (5.57) form of the energy expression is very instructive. The first term describes the
energy coming from the non-zero tunneling energy. The second term in the right hand side
of (5.57) describes the intercell coupling energy. The third term describes the effect of the
driver cell on the first cell. If the first is aligned with the drivév{1)=-P giver) then this

energy term is negative. If they are anti-aligned then this term is positive.

EXAMPLE 5.6
Consider two interacting QCA cells. Let us suppose that the
barriers are infinite highyEQ) and the driver polarization is zero for

simplicity. The energy of the two cells in this case is:

Ek Ek
E = —5 PP M,{1,2). (5.58)

In the uncorrelated cadé,(1,2)=0. If the two fully polarized cells
have the same polarizatio®;€P;, 1=+ 1), then the energy of these two

E
cells will be _7k . If they have opposite polarizatioR;£-P;, ;=+ 1), the
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corresponding energy will be-E+2i< . Thus if the cells are aligned with each
other it decreases their energy.

However, it is also possible that the two cells hawEgn< energy even
if their polarizations are zero. An example for that is the
W = |1, 1Tk |1, —10two-cell state for whiclP;=P,=0 andM,41,2)=+1.
The classical analogy of this state is two cells which are alternating their
polarization between +1 and -1 in such a way that one has always the same
polarization as the other. It is not difficult to see that energetically this is the

same case as they both had constant +1 or -1 polarization.

5.1.5 Stationary solution of the dynamical equations

The (two-point, three-point, etc.) coherence vectors and correlation tensors describing the
stationary states can be obtained by solving the dynamical equations taking the time
derivatives zero. (The dynamical equations for the coherence vectors and the two-point
correlations are (5.32-5.35). The equations for higher order correlations are not given
here.) This way a system of algebraic equation is obtained. If the system is in pure state,

further constraints are:

Tr(p") = 1;n=(1,2, ... ). (5.59)

Without these additional constrains, the stationary equations obtained from the dynamical

ones cannot be solved, since the equations are not independent.
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In mixed state, if additional damping terms are inserted in the dynamical
equations, the stationary solution can be obtained without further constrains since the
eqguations are now independent. From the point of view of the numerical computations this
case is much better, since it is not necessary to compute the density matrix of the whole
system, as it were needed in a pure state.Thus it is reasonable to add even small damping
terms to the undamped equations in order to be able to determine the steady state easily.

(For these damping terms see 5.1.7.)

5.1.6 The Hartree-Fock intercellular approximation applied for the coherence
vector formalism

It is possible to apply both the coherence vector formalism and the Hartree-Fock
intercellular approximation (see Sec. 4.1) to describe the state dynamics of a multi-cell
structure. The Hartree-Fock model ignores all the correlations thus the number of state
variables is radically decreased.

Using Hartree-Fock intercellular approximation, the dynamics of the multi cell
system is given in terms of coupled single cell Scrodinger equations (Sec. 4.1). The

differential equation of thg" cell is

.0 ~
ihclw; 0= Hjly;0 (5.60)
where Hamiltonian matrix is
1_ H —
N i _ ~ L BPL
Hj = = —V;0x(i) + == 6,(1). (5.61)
Vi 5PiE«
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P is the sum of the polarizations of the neighbors. Notice that the Hamiltonian is the size
of 2x2 and the state vector has two elements.
Similarly to the deduction (5.3-5.10) one can get single cell dynamical equations,

based on the Hartree-Fock approximation, for the single cell coherence vectors:

Ao, v 2,0,
A () = T() *Ad), (5.62)

where
rag)=1 o |- (5.63)

(5.62) and (5.63) describe the state dynamics of the cell equivalently to the single cell
Scrodinger equation. In stationary states the right hand side of (5.62) must be zero. This is
the case if(j) I X(j) . Notice thai(j) single cell coherence vectors are not coupled to
two-point correlations as in (5.32).

Itis possible to obtain (5.62) and (5.63) from the (5.32) exact dynamical equation
for the coherence vector assuming that there are no intercell correlations. In this case

Moy(i—1,0) = Kyi—1,1) =A(i—DA(i) = 0. (5.64)

zy(i
Hence K, (i—1,i) = A(i—1)A (i) . Similar equations stand fé&, K, and Ky,

Substituting these into (5.32) one obtains:

g 0 0 O (A =1) + (i + 1)A (i)
AGAW) =100 27 AG) + B —(A (i — 1) + A (i + 1)A )] - (5.65)
0-2y; O 0

It can be rewritten as
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0 EP O

) = |-5p 0 2/ R0). (5.66)
0 -2y, 0
with
P = —(A\(i—1)+A(i+1)). (5.67)

(5.62) and (5.63) can be obtained transforming the matrix product into a vector product.
The energy of thg’éh cell is the expectation value of the Hamiltonian of the cell:

A i Ekisj : . Eklsj .
Ej = Hj0= -y 6,(NF == 6,(N0= v\ + —==A(0) . (5.68)

It can be expressed in an instructive form vﬁm') 50;’1)

~

E, = CAj0= 3T (DAG). (5.69)

From (5.69) it follows that the energy for a givé?r(j) is minimaﬁ(j) I X(j) and they

are opposite in direction:

iz

) (5.70)
(i)

Notice that sincf(j) anﬁ(j) are parallel, this &agtionary state

AGj) = -

5.1.7 Modeling dissipation with the coherence vector formalism

The model presented in the previous subsections, describes the unitary time
evolution of the cell line. Inserting damping terms in the differential equations for the
coherence vector and correlation tensor elements, dissipation can also be included in the
dynamics. (See Section 3.3.7.3. in [57]). The (5.32) differential equation for the coherence

vector changes in the following way:
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ds . ds,. P S
P Dlgss—giA Dy = diag@)R(i) +1;. (5.71)
wheredissandnd stand for dissipative and non-dissipative. The three element véptor

describes the dissipation rate for the three coordinates of the coherence vector. It has
usually negative elementsliag(fi) denotes a matrix with the elements 5f in its
diagonal. Vectomj; accounts for the fact that the dissipation drives the coherence vector
elements to non-zero values.

The (5.33) differential equation for the correlation tensor change in the following
way:
SR 1) s kR (1 )] = diag(@)R i 1) + R (i, )diag(E) + AR () +A()n]

(5.72)

There are several possibilities to choose Ehe gnd  vectors depending on what
kind of model of dissipation is used. One possibility [92] is the following. Eet be a
vector of three negative numbers describing the damping rate. The instantaneous ground

state with no dissipation according to the mean field type model (using Hartree-Fock

approximation) described in [92] is

i

Ass(i) = T (5.73)
|
where
_2y
rio=| 0| (5.74)
E P;

I5i the sum of the polarizations of the cell’s neighbgrs.  can be chosen as

B = —EjAsdi) = SJ-H. (5.75)
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Modeling the dissipation this way, describes the relaxation of the coherence vector

towardsXSS :

5.2 An application of the coherence vector formalism: Quantum computing with
Quantum-dot Cellular Automata

Quantum computing [58-90] has attracted attention in the last two decades because
it was found that computers exploiting quantum mechanics are able to outperform
classical digital computers in certain areas (factoring integers [83], searching [64,86]).
Beside designing and analyzing new quantum computing algorithms, significant effort has
been taken to find a suitable realization for a quantum computer. With the application of
nuclear magnetic resonance (NMR) several groups have created quantum computers
[67,68,69,75,76] up to the size of 5 qubits. Other implementations employ ion traps [84],
cavity QED [85], Josephson junctions [87-90] and semiconductor quantum-dots [70,77-
82].

We propose a multi quantum-dot structure, Quantum-dot Cellular Automata
(QCA) [1-8] and investigate the basic quantum gates suitable for this implementation.
Information is encoded in the position of the electrons inside the QCA cell. The basic
single- and multi-qubit operations can be realized by lowering and raising the interdot
tunneling barriers. Several other realizations have been proposed using semiconductor
guantum dots. The information can be encoded in the electron spin [78,82], in the position
of the electron in the double-dot [77,81], or the ground state and excited state of the
electron can be used for logical “0” and “1” [79,80]. The quantum computing algorithms

are performed by manipulating the interdot coupling with magnetic field [78], optically by
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laser pulses [77,78,80] or by using external electrodes to raise and lower the interdot
barriers [78,81,82].

QCA [1-8] was originally proposed as a transistorless alternative for digital circuit
technology at nanoscale. The cells of digital QCA are mostly fully polarized during the
operation. Dissipation plays a positive role helping the system to stay near the ground
state.

The aim of our paper is to explore the possibilities of using semiconductor QCA
for quantum computing. In the case of quantum computing, the cells are not fully
polarized: they can be in a superposition of the P=+1 and P=-1 basis states. Similarly, a
cell line can be in a superposition of the multi-qubit product states. Unlike digital
applications, quantum computing ideally needs coherence for correct operation. (In real
systems decoherence is always present thus its effects must be circumvented by error
correction.) In order to distinguish QCA applied for quantum computing from digital
QCA, the notion of coherent QCA (C-QCA) will be used.

In Sec. Il the C-QCA cell line is used as a quantum register. In Sec. Ill and Sec. IV
the single- and multi-qubit operations are presented. In Sec V. the decoherence and other

issues pertaining to the physical realization are discussed.

5.2.1 The C-QCA cell line as a quantum register

An N qubit register can be realized with a linefC-QCA cells as shown in Fig.
5.5. They; interdot tunneling energy is set by external electrodes that lower or raise the
interdot barriers of thg’a‘h cell. A cell can be turned off by lowering the barriers. (When a

cell's barriers are extremely low, it does not have a definite polarization and it does not
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affect its neighbors.) Each cell is Coulombically coupled to its left and right neighbors and
to the bias electrodes. Thgy,s ; biases are set externally, thus these andyfseare the

inputs of the quantum register.

I:)bias,l Pbias,z Pbias,3 Pbias,N-l Pbias;,N

rov oy 'y

Y1 Y2 Y3 YN-1 YN

FIGURE 5.5. TheN qubit register realized with a line &f C-QCA cells. Each cell has
two inputs: they; interdot tunneling energy and tRg;,s ; bias polarization.

There are three main steps when executing a program on the quantum register:
writing in the initial state, running the algorithm and reading out the final state. The initial

state can be loaded into the register by setting the bias{ébbir% »1 and waiting for a

j
time sufficient to settle in the ground state.Rf;,; ;»1 Pf,q j«—1 ) then the cell is
forced to the P=+1 (P=-1) state. The execution of the algorithm is realized with a series of
pulses applied to the electrodes of the cell. The final state can be read out by electrometers
that are sensitive enough to detect the presence or the absence of an electron (e.g., single
electron transistor [15-17]).

The C-QCA cell can be reasonably approximated as a two-state system [7]. The

Hamiltonian for a line oN C-QCA cells is

N N-1 N
== Vo =Y BB Do+ 1)+ Y EPyag 6,0 (5.76)
j=1 j=1 j=1
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HereE; is the strength of Coulombic coupling between tﬂband the(j+1)St cell. For

reasons explained later, its is alternating betviggmd E:

B B E, if j is odd
[ 2E,, if ] is even.

E; (5.77)
Hamiltonian (5.76) is isomorphic to that of an Ising spin chain in a transverse magnetic
field. The E; andy, terms play the role of the interaction energy and the transverse
magnetic field strength, respectively. Only nearest neighbor coupling is considered
because for coupled electric quadrupoles the strength of the Coulombic interaction is
inversely proportional to the fifth power of the distance. Fhand Py, ; are setable,
however, thek; intercell coupling is constant. Thus during a one-, two- or three-qubit
operation, the intercell coupling cannot be turned off in the rest of the cell line.

The polarization of th(iath cell can be obtained as the expectation value ofdhe

operator:

P; = —[6,(j)0 (5.78)

With the minus sign we follow the convention of Ref. 57 in defining the Pauli spin

matrices:

6,=9Y,6,=1{%1, andg, = |19 . (5.79)
10 0 01

It is possible to give an effective Schrodinger equation for a single cell using the
mean-field approximation (See Ref. 52; these equations can be obtained from the Hartree-

Fock approximation applied to the C-QCA line as a many electron system):

A

H = —y&x - Eza-z, (580)
where
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Es = EenP E,ohiP +EyP

right” right (5.81)

left + bias”

The cell is coupled to its left and right neighbors throdghyP|eq andE;igniPrignt- (One of
Ejert andEyignt is Eo, the other is &j.) The edge cells does not have left or right neighbors
thus for them the corresponding polarizations are taken to be zero.

The state vector of a cell can be given as the linear combination of the fully

polarizedP=+1 andP=-1 basis states:

|WO= a|10+ Bl-10= m . (5.82)
Thus the state of a cell is described by two complex numibensdf3.
The density matrix can also be used to describe the state of a single cell. The main
advantage of the density matrix is that it can be used to describe energy dissipation
although such dissipation will not be considered now. The dynamics of the density matrix

are given by the Liouville equation:
Y PR
ih—p = [H, p]. (5.83)
ot
The density matrix can be expressed as the linear combination oSt{®)
generators, which are the Pauli spin matrices and the unit matrix:
5= S(A+A.5, +A.5,+).5) (5.84)
p= 2 XX yvy z-z)» :
whereA, = [6,0 fora=x, y, z It can be seen from (5.84) that the three rkal values
contain the same information about the quantum mechanical state as the 2x2 density
matrix does. In other words, although the density matrix has four complex (=eight real)
elements, it has only three (real) degrees of freedom, due to the constraints of Hermiticity

and unit trace. Th&  vector constructed from the tikgealues is called theoherence

vector (or the Bloch vector). The fully polarizedB=+1 state corresponds % :[O,O,Tl]
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and theP=-1 state corresponds ) =[0,0,¥1)n general, the third coordinate of
equalsP.

The dynamical equation of the coherence vector is given as [57]:

dh _ = s
rri M xA, ) ) (5.85)
where the cross denotes a vector product Bpg=Tr(g;H) i)y, z (H is given in
(5.80).) For the C-QCA cell  is:
_2y
hr =1 0 |. (5.86)
2Es

Equation (5.85) describes the precession of the coherence vector dround . If there is no
dissipation, the length of the coherence vectors remains unity. In the case of dissipation
further terms are added to the right hand side of (5.85). The coherence vector describes the
state of the cell, whild" represents the influence of the environngnt. depends on the
barrier heighfZ represents the coupling to the bias cell and to the neighbors.

If there is no entanglement during the operation (the register remains in a quantum
mechanical product state) then the mean-field description gives the same dynamics for the
coherence vector as the full Hamiltonian model does.

Besides the coherence vector description, the quantum gates presented here will
also be given by the unitary time evolution matrices computed from the many-cell
Hamiltonian of the gates. They fully describe the functionality of the gate while the

coherence vector description is used for making the design of quantum gates clearer.
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5.2.2 Single qubit rotations

We consider the elementary single qubit rotationa4space. Ify»E (the barriers
are low) andPy,~0 thenhl [-2y,0,0]" which caused to precess around thexis as

shown in Fig. 5.6. (It is assumed thgtO for all the other cells.) The duration of the

@ " t

FIGURE 5.6. Rotation around thex -axis. (a) The
rotation in the)\ -space y»E, (the barriers are low) and
PLi=0 thushl =[-%,0,0]". (b) The pulses applied to
they and thePy5 cell inputs.

precession corresponding to a rotation by an ahge

an=2 -1 (5.87)
7] 2V
The unitary time evolution operator for this single qubit rotation is

U,o=€ = = . (5.88)
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If ¢=mt then the polarization of the cell is inverted, that is, the cell goes from the
A=[0,0,+1] state to the [0,0,-T]state and vice versa, realizing tNOT operation,as

shown in Fig. 5.7.

> N

(b)

(@)

FIGURE 5.7. NOT operation. (a) The initial state is

)\=[O,O,+1]T, that is,P=-1. (b) The final state obtained

after 180 rotation around thex axis in the negative

direction ish =[0,0,-1}, that is,P=+1.

Another type of single qubit rotation can be realizegH0 (the barriers are high)

andPypi 1. In this casehl []0,0,2EPyid " Which caused to precess around 2faxis
as shown in Fig. 5.8. The duration of precession corresponding to a rotation by apangle
is

_¢ __ N
At = L = d. (5.89)
|r| 2EOPbias

The unitary time evolution operator for rotations aroundzthes is
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U, =e =18 0] (5.90)

The (5.76) Hamiltonian does not contaﬁg, , however, the rotation aroung the

axis can still be realized by a series of rotations arounddhdx axes:

cosq—z) —sinq—z) |6y4—2’
Uy’¢ = UZ T_-[LJ_qu)U §1_T = — ¢ ¢ = —e . (591)
"2 275 sint cos,

~Y

(@) (b)

FIGURE 5.8. Rotation around the axis. (a) The
rotation in thek-spacePyjpe»1 andy=0 (the barriers are
high) thushrl :D,O,ZEOPbiagT. (b) The pulses applied
to they and thePy; 4 cell inputs.
The gates presented above were operating on a single qubit. It is reasonable to

require that the state of the other qubits in the register do not change. This requirement can

be fulfilled in the case of two-state systems by turning offhentercell coupling for the
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rest of the cell line, however, for the QCA register the coupling is constant. The unused
part of the register will undergo time evolution thus the effect of this time evolution must
be examined. The time that would be necessary for the intercell coupling to affect the
dynamics considerably i8 ,,5ing = T/ Ey . In the case of single qubit rotations, the
duration of the operation is much shorter than that (compgggpingto (5.87) with the
conditiony»Eg, and to (5.89) with the conditioR,;;>1) thus the change of the state in the

rest of the line is negligible for single qubit operations.

5.2.3 Multi-qubit operations

The scheme for three-qubit operations presented here can be seen in Fig. 5.9. The

Ppias, =0 Phias,2 Ppias, 30

vty

y1=0 Y2 y3=0
left control controlled right control
cell cell cell

FIGURE 5.9. Schematic of the arrangement for three-
gubit operations. The polarizations of the control cells
determine what happens to the controlled cell during the
operation.

middle cell (cell #2) is theontrolledcell, its two neighbors (cell #1 and cell #3) are the

left and rightcontrol cells. The polarizations of the control cells determine what happens

125



to the controlled cell during the operation. In regard to the multi-qubit operaﬁorfs, 2
PpiasandEs without indices refer to the controlled cell. The bias of both control cells are
zero and their barriers are high.

For the three-qubit operation§<y«E, . Depending Bg there are two

possibilities for the time evolution of the controlled cell:

° If Es = Othen nr =[-2y,0,0]" which caused to precess around thaxis.

° If Es# 0 then hr [10,0,2EPpiad | which caused to precess aroundzbgis.

For simplicity suppose thae=Ey and Eyjgn=2Eq. Substituting that into (5.81) one
obtains
Es = Eo(Piest + 2Pright * Ppiag) - (5.92)

Let us examine the behavior of the controlled cell for the four possible cases when its two
neighbors are fully polarizedEs can be zero only for one of the four possible
combinations oPef; andPyignt. FOr example, choosingy,ias=-3, it is zero only if bothPef
andPyign are +1. (The other three possibilities can be selectef,py=-1, 1 and 3. Notice
that if the Ej coupling would not alternate according to (5.77) thenRpg=+1/Pgp=-1
case could not be distinguished from Pieg=-1/Prign=+1 since
Es = Eo(Piest + Pright * Ppiag) Would be the same for both.)

Table | showsEs and nT for the four possible states of the neighbors assuming
Ppias=-3. If both Piefy andPyig; are +1 then coherence vector of the cell is rotated around

the x axis, otherwise it is rotated around the axis. This will be calledconditional

rotation in the followings.
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Peft | Pright | Es/Eo ul
-1 -1 -6 [-2,0,-12E] =[0,0,-1E] "
-1 +1 -2 [-2/,0,-4E¢] '=[0,0,-4E¢] "
#1 | 1 | -4 | 408008
+1 +1 0 [-2,0,0]"

TABLE I. The values ofh" for the four possible binary states of the left
and right neighbors iPy;o=-3. If both Py andPig are +1 ther™  points
in the x direction. If either of them is -1 thdh  points in taelirection.

If the left or right neighbors are not fully polarized then the time evolution of the
three cells lead to entanglement and the mean-field type description of (5.85) and (5.86)
can no longer be used. In this general case, the 3-qubit gate corresponBjge3 can

be characterized by a unitary time evolution operator:
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~ 000 001 010 011 100 101 110 111

30,
e 2 0 0 0 000
0,
0 e 0 0 001
39,
0 0 e 0 010
0,
2
) 0 0 0 e 011
U =
0,
"2
e 0 0 0 |100
d_y 0,
I=X1101
0 0057 0 isin >
0,
0 0 e 0 110
0 isin—= 0 cosqb( 111
2 2

_ (5.93)
In (5.93)¢_, andd, are the angles of rotation around #@ndz axes, respectively. They

both depend on theduration of the operation:

0o = ITlt = fn—yt, (5.94)
and
. 2,
0, = [Flt = ==t (5.95)

The labels are showing the three-qubit states (the product basis vectors) corresponding to
the rows and columns of the matrix. “1” and “0” refer to ti&] gnAtl1  states. The three
digits correspond to the polarization of the left, the middle and the right cells, respectively.

Blank off-diagonal blocks refer to blocks of zeros omitted here for easier understanding.
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It is often advantageous to eliminate the rotation around #eds for multi-qubit
operations. The rotation arouzdioes not change the state of the controlled cefl.if is

an integer multiple of #. The corresponding constraint for the duration of the operation is

t = @
Eo
With the choice of (5.96) fott, rotation occurs around the axis whenPes=Piignt,

m; m=0, 1, 2, ... (5.96)

however, the state of the cells do not chang®df#Prignt. In multi-qubit gates later it will
always be supposed thiais chosen so that rotation around thaxis does not take place.
In this way ¢, can be ignored anfl,  will be replaced wigth . Siheeconstant,¢

must be set by controlling Combining (5.94) and (5.96) gives:

_h, Eo
y_2t¢

= . .97
4mim (5.97)

Applying condition (5.96) to (5.93) the following gate is obtained:

U_X’ $;-3 — . (598)

o
o,
>
I
o
O
o
fo-

129



The “-3" refers to a rotation aroundwith the condition given byPy;,=-3. A variation of

this quantum gate can be found in the literature [62,63)aer the Deutsch gate [73,74].

The only difference between (5.98) and the Deutsch gate is that cell #2 and cell #3 are
exchanged. If¢=mt then the controlled cell is inverted if both control cells have
polarization +1.

A two-qubit gate can be realized as a series of two three-qubit gates:

A

Uy ¢y-8-1) = Uy 930 g1 (5.99)

This gate rotates aroundf Pyigne =+1 while the polarization of the left neighbor does not

matter. Takingp=rt, (5.98) can be used to implement twatrolled NOToperation:

1000
000i
0010

" 0i0O0

Uxm(-3-1 = (5.100)

1000
000i
0010
i 0i 00
The controlled cell is inverted if the right control cell has polarization +1. That is almost a

controlled NOT, but there is an additional2 phase shift if inversion happens. With the

additional application of

~(3) nig -3 % 45 8 2 3 -l
Uzyq,:diag%e,e ,e,e “,e",e “,e",e E (5.101)

for ¢ = 1/2 one can get rid of this additional phase shift and realize the controlled NOT
operationUg, is the time evolution operator corresponding to the rotation of the third
qubit around thez axis. Its matrix form can be obtained from (5.90) by extending the

operator from one qubit to three qubits. (The operator does not affect the other two qubits.)

130



According to Refs. 71-73 the set of operations presented above makes our

guantum computer universal, thus it is able to perform any unitary operation.

The “doing nothing” problem

It follows from (5.94) that the execution time of a multi qubit gate is

h
t DE (5.102)

Sincey « Eq , the (5.102) execution time is much longer thag, ,inq = 1/ E and thus
the intercell coupling will affect the dynamics of the rest of the line. The duration of the
operation must be chosen in such a way that the state of the rest of the line does not
change.

Suppose that the three-qubit gate described by (5.93) is operating on the first three
cells of the line while there is no operation taking place on the rest of the cells. (For these

cells Pyias, 70 andy;=0.) The unitary operation for the whole line is:

- _;,I',':'wholet U _J;‘]':'gatetm jlﬁ':'restt[l] _ﬁﬂinteractioﬁﬂ
Uwhole = € =[e Te Te 0, (5.103)
0 (1] (1] [
Here
F'gate = —Y,0,(2)-Ep(6,(1)5,(2) + 26,(2)5,(3))—3E;0,(2), (5.104)
N-1
Hiest = — z Ejﬁz(j)ﬁz(j +1),and (5.105)
j=4
|:linteraction = _E062(3)6z(4)- (5.106)

The unitary evolution of the whole line can be split into three terms according to (5.103)

since the (5.104-5.106) Hamiltonians commute with each other. To avoid the change in the
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rest of the cell line, the second and third term on the right hand side of (5.103) must be
equal to an identity matrix (or an additional overall phase factor is also allowed).

The second term is a diagonal matrix.kffbdiagonal element is

o

d\j_
itg (K) 5 (K)
th Eij Pii1
Dj=4
e

d, = (5.107)

where Pﬁk) = =1 refers to the polarization of thf@ cell of thekt product basis vector.
(For example, forN=5 qubits the 32 product basis vectors are 00000, 00001, 00010,
...,11111 andkis in the range of 1 to 32.) Notice th§ EijPj +1 Isaninteger multiply

of Ey. With the choice of

t=—m;m=1,23, .. (5.108)
the phases of the elements given by (5.107) are the integer multiplest of Hus
expg—%ﬂresttg = 1 and the state of the other cells of the line does not change. It can be

seen that (5.96) and (5.108) are the same. é’*}%—#ﬂimerac“ont% =1 condition leads

to (5.108) as well.
Issues about necessary accuracy of control parameters

Up to now the control parameters were assumed to be ideal. Now it will be
investigated how much deviation of the control parameters can be tolerated. Especially the
accuracy requirements on the bias, on the coupling and on the timing of the operations will
be examined qualitatively.

In the case of the multi-qubit gates described in the beginning of Set. IV, does

not have @& component if the polarizations of the two neighbors are suchEhat 0 .In
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this case the terms in (5.92) cancel each other. (The corresponding notion is the “resonant
pulse” for nuclear spin quantum computing [91]. The pulse has an effect only if its
frequency equals the resonance frequency.) In practice, the third coordingte of  is not
zero, but it must be much smaller than the filsf: = Eq(Pef + 2Pjgp; + Ppiag) «Y - FOr

a multi-qubit operatiory«Ey. Combining the two inequalities and dividing By leads to

Pieti ¥ 2Pright * Phias € El «1. Thus for the error of the bias
0

right
APy« Elo «1 (5.109)

is required. Up to now thg; intercell couplings were supposed to be exa&yor 2E,,
however, in reality they will be slightly different. From a similar deduction it follows that
to fulfill Es «y the E; intercell couplings must satisfy similar requirementsPig,s A
possible solution in order to nullify the effects of the variance of intercell couplings is to
fine tune the fouPy;,5values necessary to select one of the four possible combinations of
Plert andPyigne after the fabrication of the circuit.

The first step to get the constrains for the accuracy for the timing is to combine
(5.102) and (5.108) with the requiremertE,. One obtainsdtim D%) »1 . The errorin
the rotation around axsmust fulfill A, ,« 2. Combining this with (5.95) imposes on

the error of timingAt « TE—[—h . Dividing both sides by (5.96) IeadsAEEm 2—er . Hence
0

Aty
T « E:) «]l. (5.110)

That is, the duration of the pulse must be very well controlled in order to cancel the effect

of the rotation aroundfor multi-qubit gates.
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Alternative multi-qubit gates

Conditional gates can be implemented without exploiting the “resonance-like”
effect that was applied in the previous multi-qubit gates [92]. Their advantage is that they
do not need as exact control B, js andEj's. (From now, suppose that &|=E,.) For

example, for three isolated cells a three-qubit gate can be obtained as

0010
0-10 0
1000
0 =090 270" =02 001 , (5.111)
> &5 X3 -10 0 O
000-1
00-10
I 010 0
where
T ¢’ = diag(d®, 1,67%, 1, 1,67, 1,69). (5.112)

This modified version of controlled controlled NOT inverts the middle cell if its two

(1,23

. a2 . . .
neighbors have the same polarizatiaf,, ) describes the time evolution of the three-

2E
cell system ifPp;5s 70 andy;=0 forj=1,2,3.¢ = T"t for (5.112), whereis the duration
of the time evolution.

A modified version of controlled NOT [92] for two isolated cell is:

10/0
- A LD A D)
Oenor = 0/ an0, 2 UZ3T[U o 01040, (5.113)
x5 5 x5 |00|0
00/-10

where
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~(12) i Hg Hg i
Uidle, ¢ = dlag%e e ,e e E (5.114)

It is possible to realize controlled NOT with the correct phases with a longer sequence of
gates [88], however, (5.113) seems to be the simplest two-qubit gate suitable for the first
experimental realizations and not exploiting the “resonance-like” phenomenon.

Notice that in (5.113) all the operations except faqdle,q) are single qubit
transformations.Uidle,q) is the operation through which the control cell can affect the
controlled cell while in the case of gates (5.93), (5.98) and (5.100) it was realized by the

“resonance-like” behavior.

5.2.4 Discussion

It is instructive to compare the C-QCA quantum computer to the nuclear spin
guantum computers [67,68,69,75,76]. The role of the nuclear spin is now played by the
coherence vector. The spin of the nucleus is manipulated by a strong constant magnetic
field and a weaker alternating one while the C-QCA uses external electrodes to control the
interdot tunneling barriers. In the case of a spin quantum computer there is a spin-spin
coupling while the C-QCA cells are coupled Coulombically. The classical analogy of the
spin-1/2 system is a magnetic dipole. The classical analogy of a C-QCA cell is an electric
qguadrupole. In nuclear or electron spin quantum computing manipulating individual
qubits is rather difficult. The NMR devices are running an ensemble of parallel quantum
computers. A related approach [78,82] uses the electron spin in a quantum dot for a qubit,
but the hardware for writing data in and reading data out has not been developed yet. The

technology for writing into and reading out of the individually accessible C-QCA cells is
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already available. The limiting factor in the C-QCA approach is the shorter decoherence
time which restricts the number of quantum operations.

In regards to physical realizibility, the ratio of the execution time of a quantum
operation and the decoherence time is very important. A conservative estimate for the
decoherence time in the semiconductor quantum dots can be a copgld bfs is used in
Ref. 12 for the modeling of a digital QCA where coherence is not required. For quantum
computing applications further efforts must be made to increase decoherence time [71]. In
general, it is not at all clear, what are the limits from this point of view.

The time that is necessary for the intercell coupling to affect the dynamics

considerably is Tooynjing = /' Ey . AssumingEg=1meV T g njing = g— = 1ps.

0
According to (5.87), the duration for the NOT operationsTiszfg—c . It is smaller by
several orders of magnitude th@igypiing becausg»Eq. The same is true for the rotations

around thex axis. The duration of a controlled NOT is alo = 2—7\; , Uk Ey . Thus

the time to execute a controlled NOT is longer by several orders of magnitude than
Teoupling The gates described by (5.111) and (5.113) have an execution time near
Tcoupling
Two crucial questions concerning the feasibility of C-QCA quantum computing

remain to be addressed. The first is whether a large quantum register can be realized with
C-QCA in the future. The second is whether a system with a few qubits can be realized
with the present or near future technology. Even if large scale implementation proves to be
difficult, C-QCA technology can still be used as a tool to test the concepts of quantum

computing in solid state devices.
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An alternative to the four-dot cell with two extra electrons is a two-dot cell with
one extra electrorkg in a double-dot cell can be much smaller than the energy difference
between the ground state and the excited state of the electron in the quantum dot thus the
excitation of parasitic energy levels (“leakage”) can be suppressed, unlike in the case of
proposals where the information is stored in the ground state and the excited state of the
electron in the quantum-dot [71]. A drawback of the double-dot cell is that the strength of
the intercell-coupling does not decrease with distance as fast as in the case of four-dot
cells thus next to nearest neighbors must be also included in the model of a cell line. For
the first realization of a multi-qubit gate, the controlled NOT described by (5.113) seems

to be most reasonable with two two-dot C-QCA cells.

5.2.5 Conclusions

In this paper a multi quantum-dot structure, the Quantum Cellular Automata
(QCA) was proposed to realize quantum computing. The basic operations were performed
with a line of QCA cells, so QCA is viable option for constructing a universal quantum
computer. The QCA may offer an example of integrable quantum computer with
electrostatic data read in/write out. The main drawback of our implementation is the
relatively short decoherence time comparing to the implementations using nuclear or

electron spins.
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CHAPTER 6

APPROXIMATE QCA QUANTUM DYNAMICS

In a classical multi-particle system the number of degrees of freedom necessary for
the state description increases linearly with the number of particles. A point-like particle
can be described by its position and velocity. Rgparticles,N positions andN velocities
are required which givds times more degrees of freedom than for a single particle.

In a quantum mechanical system Nf QCA cells, the number of degrees of
freedom are much larger thathtimes the degrees of freedom of a single cell. The extra
degrees of freedom come from the interaatrelationsThe information necessary for a
total description increases exponentially with the number of cells and makes it difficult to
simulate even a modest size block of QCA cells. To desdibeupled cells exactly,?'-

1 variables are necessary for the coherence vector description.

With the state vector description it is possible to use the Hartree-Fock
approximation and divide the multi-cell system into single cell quantum mechanical
subsystems coupled classically to each other. This simplification does not consider inter-
cell correlations at all thus the results obtained from this method differ greatly from that of
the exact model, especially when describing the dynamical behavior.

The coherence vector description makes it possible to divide the state variables
into groups. One group corresponds to the state of the cells, another group corresponds to

the two-point, three-point, etc. correlations. A correlation term can be nearest neighbor,
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next-to-nearest neighbor, etc. This feature of the coherence vector description helps us to
determine which correlation terms are important from the point of view of the dynamics
and which can be neglected. Usually it is reasonable to assume that the further than nearest
neighbor and higher order correlations play a less important role, thus they can be
approximated by lower order correlations. Depending on which correlation terms are kept
and which are neglected, models with different levels of approximations can be
constructed which are intermediate between the Hartree-Fock and the exact method. Sec.
6.1 presents a model keeping the two-point correlations and neglecting higher order ones.
(The section is based on the theory of the coherence vector description presented in Sec.
5.1. For definitions of notions such as three-point correlation tensor and correlation tensor
proper consult this section.)

In Sec. 6.2 an example, the so-called majority logic gate with unequal input legs, is
shown for which the self-consistent mean-field (Hartree-Fock) method gives qualitatively
wrong results. An improved version of the self-consistent mean-field approximation is
presented which by including correlation effects determines the ground state correctly.

Modeling a line of QCA cells as two-state systems leads to the same Hamiltonian
as modeling an Ising spin chain with nearest neighbor ferromagnetic coupling in
transverse magnetic field. The statistical behavior of the Ising chain in thermal equilibrium
has been thoroughly investigated in the literature, however, up to now not much attention
was paid to the quantum dynamics of a finite system making our approach useful even

from the point of view of the theory of coupled two-state systems.
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6.1 Model neglecting three-point and higher order correlations

When modeling two coupled cells, the state of the two-cell system is described by
the two single-cell coherence vectors and the (two-point nearest neighbor) correlation
tensor. If there are more than two cells, third order (three-point) correlation terms show up
in the dynamic equation of the two-point correlations. If the number of cells is greater than
three, then fourth order correlation terms will appear in the dynamic equations of the third
order terms. Thus a hierarchy of equations is obtained. The hierarchy of equations seems
to be ideal to construct intermediate models between the Hartree-Fock and the exact
method, by truncating the equation system at a reasonable point.

According to Sec.5.1.6, the Hartree-Fock approximation can be obtained from the
exact equations for the coherence vectors assuming thatMbg(i,i + 1) two-point
correlation tensor proper elements are zero and the elements of the two-point correlation
tensors can be approximated with coherence vector elements:

Kap(l1+1) = A (I)A,(i +1). The first approximation, that is better than the Hartree-
Fock, could be obtained by keeping the second order correlations and approximating the
third order correlations. It will be assumed that three-point correlation tensor proper
elements are zero and the elements of the three-point correlation tensors will be
approximated with lower order correlations and coherence vector elements

The three-point correlation proper of A, B, and C can be given (see (5.45); see also
[57], equation (2.811) on page 168) with the three-point correlation and the lower order

correlations as

M(A, B, C) = CABCH+TABITE-BCITAG-ACIBI+ 2 ATBIITO(6.1)
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Assuming that it is zero gives an approximation for the three-point correlations:

K(A B, C) = CABCO= DABIICO+ (BCIAD+ ACIBO-2[AIBIICL (6.2)

For example, ifA = 6,(1) B = 6,(3) an€ = G6,(6) , one obtains

Koy L 3. 6) = [8,(1)5,(3)[18,(6) I+ [5,(3)8,(6)[LH,(1)H (6.3)
[6,(1)6,(6)[165,(3)3-2[5,(1)[16,(3)L6,(6)0

(6.3) can be written down with correlation tensor and coherence vector elements as well:

Kyay(L 3, 6) = K, (1, 3)A,(6) + K, (L, B)AL(3) + K,y (3, B)A(1) —2A, (A (3)A(6).

(6.4)
The general formula for approximating any three-point correlations is

Kabelis 1:K) = DB(1)8u(1)8e(k)T= Koy, DAc(K) + Kpe(J, K)AG(D) + (65)

Kaclis KA (1) = 2N, (D) Ap(1A(K)

abc=xyz
Using this approximation, the three-point correlations can be eliminated from the

dynamical equations (5.32-5.35). The model using this approximation will be called “PC”
referring to that it keeps only the pair correlations. It describes the state of the cell array by
the coherence vectors of the cells and all the two-point correlations. (For detailed
deduction see Appendix C.)

Notice that not all the possible 3x3x3=27 three-point correlations must be
approximated by lower order ones, only those which can be found in the (5.32-5.35)
dynamical equations of the two-point correlations. As it was mentioned in Sec. 5.1.2, there
are 14 of themxyz XXz Yyz YXz zyz zXz zyX zZXX ZYyY zZXY, 2zyzzx yzzandxzz.

The system of equations can be reduced further by approximating the next to
nearest neighbor two-point correlations by the multiplication of corresponding two

coherence vector elements based on the assumption that the next to nearest neighbor
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correlations are less important than the nearest neighbor correlations: e.g.,
ny(l, 3) =)\X(1))\y(3). The general formula for approximating any nearest neighbor

three-point correlation this way is

Kapo(ini +1,i+2) = ,(i)6,(i + 1)6.(i + 2)0=

Kap(is i+ DA +2) + Ky (i, 1+ 2)A (1 + 1) A (DA (1 +DA(i +2), (6.6)
abc=xyz

Using this approximation, the three-point correlations and the further than nearest
neighbor correlations can be eliminated from the (5.32-5.34) dynamical equations of the
coherence vectors and the nearest neighbor correlations. The method based on this
approximation will be called “NNPC” referring to that it includes only the nearest
neighbor pair correlations in the state description of the cell array. (See Fig. 6.1 for the
interpretation of pair correlations and three-point correlations. See Appendix C for a more
detailed explanation of the deduction and for summary of the equations.)

Since we do not need the dynamical equations for the non-nearest neighbor
correlations, only the three-point correlation terms which can be found in the (5.32-5.34)
dynamical equation of the nearest neighbor pair correlations must be approximated. There

are 10 of themxyz XXz yyz yXz zyz zxz zyx zxx zyyandzxy.
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FIGURE 6.1. Scematic for (a) the nearest neighbor pair correlations, (b) the next to
nearest neighbor pair correlations and (c) the nearest neighbor three-point
correlations.
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6.1.1 Comparison of the dynamics of the exact and approximate methods

Computer simulations were made to compare PC and NNPC with the Hartree-
Fock approximation and the exact model with the many-body Hamiltonian. The
comparison was done for the case of adiabatic switching of a QCA cell line.

The PC and NNPC describes the system of two cells exactly, thus the smallest cell
array for which the behavior of these approximations is worth to study has three cells. To
describe the state fully, beside the two point correlation tenkgfs 2, 3) 3x8x 3
three-point correlation tensor is necessary as shown in Fig. 6.2. PC approximates the
elements of this tensor with lower order correlations and keeps all3tRe8 pair
correlation tensorK (1, 2) K(1,3) arki(2,3) .NNPC approximates é{eh 3)

The first simulation example is the adiabatic switching of a line of three cells as
shown Fig. 6.3(a). The first cell is coupled to a driver cell. The tunneling coefficient is
gradually lowered (the barriers are raised) as shown in Fig. 6.3(b). Fig. 6.3(c) shows the
dynamics of the coherence vector coordinates for the three cells coming from PC. At the
end all the three cells align with the driver, that is, at the ehgi) = -1 . Figs. 6.3(c) and
(d) show a comparison of the curves corresponding to the Hartree-Fock approximation,
the NNPC, the PC and the exact model. It is clearly visible that NNPC gives a better match
with the exact model than the Hartree-Fock approximation does and PC gives a better

match than NNPC.

144



A1) A2) A(3)

K(1, 2 K (2, 3)

K(1, 3)

P4
P4

K(1, 2 3) T

l/} .

FIGURE 6.2. Modeling three coupled cells. The state of the
SU(2) O SU(2) O SU(2) system is fully described by the three coherence vectors,
the three3x 3 pair correlation tensors and tAe 3x 3 three-point correlation
tensor. PC neglects th&(1, 2, 3)  three-point correlation tensor keeping 36 variables
of the 63. NNPC ignores even ti&(1, 3)  next nearest neighbor correlation, and keeps
27 variables.
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FIGURE 6.3. Adiabatic switching of three cells. The barriers are gradually Iowered

while the driver has constant -1 polarization. The three cells follow the polarization of
the driver. (a) The arrangement of the three cells and a driver, (b) the dynamics of the
interdot tunneling energy, (c) the elements of the three coherence vectors as the
function of time for the PC, (d)\((2) as the function of time for the Hartree-Fock
approximation (dotted), NNPC (solid), PC (solid) and the exact model (solid), (e)
A,(2) as the function of time for the Hartree-Fock approximation (dotted), NNPC
(solid), PC (solid) and the exact model solid).
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Figs. 6.4(a-d) show the pair correlation tensor proper elements for PC and the
exact model. PC is a qualitative improvement comparing to the Hartree-Fock
approximation since the Hartree-Fock approximation does not model intercell correlations
at all.

The second simulation example is the adiabatic switching of a line of five cells.
Fig. 6.5 shows the structure, the time dependence of the tunneling energy and the
dynamics of the coherence vector elements. In Fig. 6.6 the dynamics of the nearest
neighbor two-point correlations are presented computed with NNPC and the exact model.

PC does not seem to have an obvious superiority over NNPC in spite of the larger
guantum degrees of freedom that are kept. (It is also much harder to handle numerically
because of the complicated nonlinear couplings between the state variables make the
integration of the differential equation very sensitive to noise.) An intermediate model
between PC and NNPC can be constructed keeping the next-to-nearest neighbor
correlations and approximating the further-than-next-to-nearest neighbor correlation
terms. Further improvement on NNPC could be made by including three-point correlation
terms.

Table 6.1 shows the number of real variables used for state description for the
different methods. With the Hartree-Fock method, describing each cell by a three element
coherence vector, the number of variables scales linearly with the number of cells. With
the density matrix description the quantum state is described B‘»(Z{\'Znatrix, thus the
number of variables scales exponentially with the number of cells. For NNPC, however,
the number of variables scales linearly with the number of cells, and for PC the number of

variable scale with the square of the number of cells
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FIGURE 6.4. Adiabatic switching of three cells. The barriers are gradually raised
while the driver has constant -1 polarization. The nearest neighbor correlation tensor
proper elements for the (a) exact model and (b) PC. The next to nearest neighbor
correlation tensor proper elements for the (c) exact model and (d) PC. Notice that the
peak of the absolute value of the nearest neighbor pair correlations are usually bigger
than that of the next to nearest neighbor pair correlations.
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FIGURE 6.5. Adiabatic switching of a line of five cells. The barriers are gradually
lowered while the driver has constant -1 polarization. The five cells follow the
polarization of the driver. (a) The arrangement of the five cells and a driver, (b) the
dynamics of the interdot tunneling energy, (c) the elements of the three coherence
vectors as the function of time for the PC, @(2) as the function of time for the

Hartree-Fock approximation (dotted), NNPC (solid), PC (solid) and the exact model
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Table 6.1. Number of (real) state variables as the functions of the number of
QCA cells for the Hartree-Fock model, the nearest neighbor pair correlations
only model (NNPC), the pair correlations only model (NNPC), and the density
matrix description.

Exact model
NN pair Pair (twice the # of
correlations | correlations | elements in
Hartree-Fock only only the density
# of cells approximation| approximation| approximation matrix)
1 3 3 3 8
2 6 15 15 32
3 9 27 36 128
5 15 51 105 2048
10 30 111 435 2097152
15 45 172 990 2.147x%0
3N+ 3N+
N 3N 9(N-1)= 9N(N-1)/2= 22N+1
12N-9 4.5N?-1.5N

The simulations were done by solving the (5.32-5.35) differential equations
numerically. Stiff ODE solvers must have been used. The best choice seemed to be the
odel5ssolver of MATLAB, restricting the maximum order of the method to 1 and
restricting the maximum time step to 0.2. The initial state was generated from the
stationary state coming from the exact model with the many body Hamiltonian. It had to
be refined to make all the time derivatives of PC/NNPC zero. In other words, the
stationary states from the exact model and for the PC/NNPC are numerically slightly

different. Starting the simulation from the stationary state of the exact model can cause
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oscillations. For the refinement a minimization algorithm was used trying to make the

derivatives zero.

6.1.2 The validity of the approximations

It is important to check whether the assumptions used for the approximation for
PC and NNPC are valid. PC approximates the three-point correlations supposing that the
elements of the three-point correlation tensors proper are zero. NNPC approximates even
the next-to-nearest neighbor two-point correlations based on the assumption that the
elements of the next-to-nearest neighbor two-point correlation tensors proper are zero. In
this subsection it will be examined through a concrete simulation example whether these
assumptions are fulfilled or no.

The simulation example for which the validity of the approximations will be
checked is the adiabatic switching of a line of five cells. The simulation results have
already been presented in Fig. 6.5 and Fig 6.6. First it will be checked whether the
elements of the three-point correlation tensors proper are sufficiently small. Not all of
them must be checked since not all of the correlations were approximated by PC, only the
14 of the possible 3x3x3=27 three-point correlations. The absolute maxima of these are
summarized in Table 6.2(a). (E.gzxrefers to the maximum adibg( M,, (i,i + 1,1 + 2))
during the whole time evolution.) Table 6.2(b) shows the maxima of the 10 correlation
tensor proper elements which are assumed to be zero by NNPC. For comparison, the
absolute maxima of the two-point correlation tensor proper elements are shown in Table
6.2.(c). (E.g.,zzrefers to the maximum ofabg M, (i,i + 1)) during the whole time

evolution.)
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Table 6.2. (a) The maxima of the largest elements of the three-point correlation tensor
propers for the three-point correlations approximated by PC. (b) The same for NNPC.
(c) The maxima of the elements of the two-point correlation tensor proper for
comparison.

Abs. Abs. Abs.

Max. Max. Max.
ZzX 0.081 zyy 0.071 zz 0.342
zyy 0.071 zZXxz 0.068 yy 0.317
ZXz 0.068 ZXX 0.034 XX 0.167
ZXX 0.034 yyz 0.026 Xz 0.132
yyz 0.026 XXZ 0.020 zZX 0.061

(@) (b) ()

Next it will be checked whether the elements of the further-than-nearest neighbor
pair correlation tensors proper are small. Fig. 6.7 shows the absolute maxima of the
elements of the two-point correlation tensors propki, i +dist) as the function of the
dist intercell distancedist=1 anddist=2 correspond to nearest neighbor and next-to-
nearest neighbor correlations, respectively. According to the figure, the pair correlations
decrease rapidly with the distance.

In summary, in the simulation example presented above, the assumptions on which

the approximation were based, seem to be valid.
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FIGURE 6.7. Absolute maximum of the elements of thii,i+dist) pair
correlation tensor proper as the function of intercellular distance.

6.1.3 Stationary solution of the dynamical equations

The stationary states of PC/NNPC can be obtained taking all the time derivatives
zero in the dynamical equations and solving for the coherence vector and correlation

tensor elements. The dynamics of the system can be written in the general form:

dr =
A = FA). (6.7)

Here A is a column vector containing coherence vector and correlation tensor elements
andF(A) is a vector-valued function of the vector variaBle .The stationary solution can

be obtained from

0 = F(Astad)- (6.8)
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Several numerical techniques can be used to fid.,, . It can be found through
the minimization of ||F(ﬁ)|| . Other possibility is the generalized Newton-Raphson
method. It converges very fast sin€€(7§) contains mostly linear terms, except for the
terms approximating the three-point correlations.

The generalized Newton-Raphson method is based on the Iinearizatk‘-:)(f\()f
around an initial guess,ﬁini . The next gué%ﬁaxt , will be the vector that makes the
linearized function zero. The Iinearizationlé(f\) is

F(A) —F(Rini) = I(Rini) (A-Rini) (6.9)
HereJ(ﬁini) is the Jacobian cﬁ(ﬁ) & . Since we are looking for the zeﬁ)(ﬁf) ,

the following equation must be solved ﬁﬁext

—F(Aini) = IRini) (AnextAini) - (6.10)

The solution is

Rnext = Nini =3 (Rin) F(Rini) (6.11)
This gives the next guess from the previous guess. Notice that the Jacobian must be
invertible since (6.11) explicitly contains its inverse. The Jacobian is singular if there is no
dissipation, thus adding (even very small) decoherence terms to the equations (See Section
5.1.7.) is necessary to find the stationary states. It is reasonable to determine the Jacobian
analytically instead of using numerical differentiation in order to increase the computation

speed and the accuracy as well.
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6.1.4 Conclusions

A method was shown how to truncate the system of dynamical equations obtained
from the coherence vector formalism. The Pair Correlation (“PC”) model kept all the two-
point correlations while approximation the three-point correlations. The Nearest Neighbor
Pair Correlation (“NNPC”) model approximated even the non-nearest neighbor pair
correlations. The usefulness of these models can be summarized as follows. (1) They
guantitativelyimprove the dynamics of the coherence vectors comparing to the mean-field
(Hartree-Fock) model. (2) They represent alsgualitativeimprovement since they give
the (approximate) dynamics of the correlation while mean-field models do not give
information on correlation. (3) These approximate models help understating which

guantum degrees of freedom are important from the point of view of the dynamics.

6.2 Modeling the majority gate with unequal input legs

Self-consistent mean-field type (self-consistent Hartree-Fock) methods usually
give even gquantitatively good results in determining the instantaneous ground state of
adiabatically switched QCA circuits. In this section a counter example, the so-called
majority logic gate with unequal input legs is presented. For this gate the results of the
mean-field type approximation are qualitatively wrong. An improved version of the self-
consistent mean-field approximation is presented which by including correlation effects
determines the ground state correctly.

The basis of the self-consistent mean-field method is the self-consistent iteration of

the single-cell time-independent Scrédinger equations:
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~

The W; cell state can be expressed as the linear combination of the polarization +1 and -1

states:
Q;
Wi = o[+ By -10= : (6.13)
Bi
The Hamiltonian is
A " 1.
H; = —y0,; +§0ziEzi - (6.14)

Herey is the interdot tunneling energy. The single cell Hamiltonian is coupled to the
neighboring cells througks;  which is the weighted sum:

Esi = —Z E;; (6,1 (6.15)
TheE; electrostatic intercell coupling onfor horizontal and vertical nearest neighbors, -
0.18, for diagonal neighbors and zero for others. (The minus sign is used for consistency
reasons.)

It is convenient to define a new quantity, the charge polarization of a cell, as

2 2
P = |og|”—|Bi|" (6.16)
Equivalently, it can be written as well as the expectation value ofdhe Pauli spin
matrix:
P, = -[6,0 (6.17)

With the polarizations of the neighbors (6.15) can be rewritten as

Es = Y EyP;. (6.18)
]
It can be proved[52] that to compute the polarization corresponding to the lowest

energy eigenstate of the single-cell Hamiltonian is equivalent to
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p= —2 (6.19)

1 + EEDZ
U2y O

which gives the steady-state polarization of a cell as the function of the polarizations of its
neighbors. (See Sec. 4.1.2) Thus this formula will be iterated instead of the single cell
time-independent Scrodinger equation. In this section a concrete example will be
considered for which the self-consistent mean field method gives qualitatively wrong

results.

6.2.1 Posing the problem

The circuit under consideration can be seen in Fig. 6.8. It is a majority gate with
unequal input legs. One of the input legs is only one cell long and coupled to a driver cell
(Pgrivers) With polarization -1. The other two input legs are longer (their length will be
denoted by) and they are coupled to driveRfier1,Pdriver2) With polarization +1.

When the gate is adiabatically switched, starting out from ground state, the
interdot barriers are raised gradually. Due to the adiabatic theorem the system stays
constantly in its ground state.When the barriers are high (the tunneling energy is low), the
ground polarization of the output of the majority gate is the majority of the polarizations
of the input drivers. The results of the self-consistent method for a seven-cell majority gate
(L=2) can be seen in Fig. 6.9. The interdot tunneling barriers are gradually raised (the
gamma tunneling energy is gradually decreased) as shown in Fig. 6.9(a). At the end the
output cell has +1 polarization as can be seen from the dynamics of the cell polarizations

shown in Fig. 6.9(b). For comparison, the cell polarizations of the exact instantaneous
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FIGURE 6.8. 11-cell majority gate with unequal input legs. At the end of the adiabatic
switching process, when the barriers are high, the output polarization of the majority
gate should be the majority polarization of the inputs. The self-consistent mean-field
calculation gives a qualitatively wrong answer predicting -1 for the output polarization.

ground state are also shown in Fig 6.9(c). It can be seen in Fig 6.9(b-c), that at the end all
the cells have +1 polarization except for the bottom neighbor of the gate cell which settles

in the polarization -1 state.
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FIGURE 6.9. Adiabatic switching of a 7-cell majority gate (L=2). (a) The time
dependence of the tunneling energy. The barriers are gradually raised. (b) The
cell polarizations as the function of time for the self-consistent mean field
method and (c) for the exact model.

If a cell is added to the long input legs<3) then the self-consistent method gives
gualitatively wrong answer since at the end of the adiabatic switching process the output
polarization is -1. Fig. 6.10(a) and (b) show the instantaneous ground state cell
polarizations computed with the self-consistent method and obtained from the exact
solution of the time-independent Scrédinger equation of the whole system, respectively.
As it can be seen in Fig. 6.10(a), three of the nine cells settle in the -1 polarization state.

(These are the gate cell, the bottom neighbor of the gate cell, and the output cell.)
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FIGURE 6.10. Adiabatic switching of a 9-cell majority gate (L=3). (a) The cell
polarizations as the function of time for the self-consistent mean field method
and (b) for the exact model.

Up to now it was not explained exactly how the starting guess of the self-consistent
solution is obtained. At a time instat#tAt, the polarizations computed for timare used
as initial guess. It seems to be reasonable to check whether there is another stationary state
of the self-consistent algorithm with lower energy, using another initial guess at each time
instant. The results are shown in Fig 6.11(a) ustwgt1 as initial guess. The polarization

of the output cell is now=+1, as it is expected in case of correct operation.
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FIGURE 6.11. Adiabatic switching of a 9-cell majority gate (L=3). (a) The cell
polarizations as the function of time for the self-consistent mean field method when
the P;=+1 initial guess is used for iterations. (b) The polarization of the gate cell for
the self-consistent mean field using the two different initial guesses for iteration. (c)
Energies of the majority gate for the two cases. For t<60 the polarizations and the
energies they are the same for both cases.
In order to determine which of the two methods give the ground state, it is

necessary to compute their energies. The energy is computed as

2N B35 3 Ey 6,16, where (6.20)
i D T j<i
in ground state

B,0= J1-P7, 6,0= 0, andB,0= P, . (6.21)
In (6.20) the driver cells are also included in the second sum although they are
unnumbered in Fig. 6.8. The drivers are not included in the first sum since their barriers
are highCp denotes the set of drivers.
The dynamics of the gate cell polarization and the energies of the instantaneous
ground state is shown for the two methods in Fig 6.11(b) and (c)t<¥af they give the

same results. At=60 there is an abrupt jump in the ground state given by the method
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usingP;=+1 as initial guess. Fdp60 it gives a qualitatively correct ground state unlike the
case when the previous cell polarizations were used as initial guess. (Notice, that except
for one all the cells have +1 polarization in Fig 6.11(a), as it is expected for the true ground
state.). Thus the self-consistent method has a stationary state which could be a
gualitatively correct ground state, however, it cannot find it if the cell polarization in the
previous time instant is used as the starting point of the iteration. At about t=80 this
stationary becomes the ground state and the “old” ground state becomes an excited state as
can be seen in Fig. 6.11(c).

Intuitively, the reason for the failure of the self-consistent method in modeling the
majority gate with unequal input legs can be understood as follows. The effect of the driver
of the short leg reaches the gate cell before the effect of the drivers of the long legs. It sets
the polarization of the gate cell and the output cell to -1. Later when the effect of the other
two drivers reaches the gate cell, they will be not able to flip it into +1 polarization. Notice
that at this moment two of the neighbors of the gate cell has +1 polarization, the other two

has -1.

6.2.2 Solution

Our goal is to construct an intermediate model between the self-consistent mean
field method and the exact model solving the time independent Scrédinger equation of the
whole system. (Modeling the whole gate with one many-body Hamiltonian would require
S0 many state variables that above 10-15 cells it is not feasible.) In order to do that it must
be examined which cell of the majority gate could still be modeled with the mean-field

approach and which should be modeled by a better method. The mean-field method
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assumes that the system is in a product state and the cells are uncorrelated. Thus it seems
to be reasonable to check how large the two-point, three-point, etc. correlations are in
different part of a, let say, 11-cell£3) majority gate.

The two-point correlation of cells andj can be characterized by the two-point

correlation tensor with elements:

M, (1,2) = 06,(1) - B,(1)0[6,(2) - Bp(200  ab=xy z (6.22)

All the nine elements of this tensor are zero if the two cells are uncorrelated.

Our examinations show that the correlations are large in the “cross” region around
the gate cell. Fig. 6.12 shows the time dependenddgfl,2), M,(4,5) andM,45,11). It
can be seen that the latter two (corresponding to correlation in the cross region) are much

larger. Thus it seems to be reasonable to model the five cells of the cross with a five-cell

M,(5,11) o
M,A4,5) "
MAL2)

0 20 40 60 80 100

time (a. u.)

FIGURE 6.12. Dynamics of the two-point correlations during the adiabatic switching
of a 11-cell majority gate (L=4)M,/1,2) (dashed)M,(4,5) (solid) andM,45,11)
(solid) are shown. The correlations are much larger in the cross region than away from
it.

Hamiltonian. The genuflection with the lowest energy would give the five cell ground

state. The remaining cells can be modeled by self consistent mean-field. The two regions

are connected also in a self-consistent manner.
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Simulation show that this approximation give the correct output for L<40. (Notice
the large improvement comparing to the self-consistent mean-field method that worked
correctly for L<2.) Fig. 6.13 shows the results for the 11-cell gated] comparing it to

that of the exact model and of the self-consistent mean field.

Pi ! j j j Pi ! Pi g
0.8 0.8] 03
0.6 0.6 06|
04 04 04
0.2 02 02
0 0 0|
02 -0.2 -0.2
~04 -04 -04
~06 -0.6 -0.6
08 -08 -0.8

4 4 . . . .
0 20 I 60 80 100 0 2 4 60 80 100 10 20 40 60 80 100

time (a. u.) time (a. u.) time (a. u.)
(a) (b) (c)

FIGURE 6.13. Adiabatic switching of a 11-cell majority gate (L=4). (a) The cell
polarizations as the function of time. The cross region is modeled with a five-cell
Hamiltonian while the remaining cells are modeled with self-consistent mean-field.
(b)The same for the self-consistent mean-field method and (c) for the exact model.

It is also interesting to see how much the correlations are restored in the cross
region by our approximation. Fig. 6.14(a) shows some of the two-point correlations in the
cross region. (Compare with the solid curves of Fig. 6.12.) For example, if the seven-cell
cross (obtained by attaching one cell from the top and one cell from the left to the five-cell

cross) is modeled with a many-cell Hamiltonian then the level of restoration is even better

as can be seen in Fig. 6.14(b).
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Mz/(5,11) M(5,11) °°

04 0.4

M 22(4,5) 0.35 M ZZ(4’5) 035
03 0.3

0.25, 0.25

02 02

0.15, 015

0] 01

0.05, 0.05

o
0 20 20 60 80 100 % 20 20 ) 30 00

time (a. u.) time (a. u.)
() (b)

FIGURE 6.14. Dynamics of the two-point correlations during the adiabatic
switching of a 11-cell majority gate (L=4) when the cross region is simulated
with a many-cell HamiltoniarM,(4,5) andM,5,11) are shown using (a) a five-
cell cross and (b) a seven-cell Hamiltonian for the cross. Compare with the solid
lines of Fig. 6.12.

The number of output cells can be increased adding new cells to the cross and
modeling these cells together with the cross with one many-cell Hamiltonian. One might
try to attach output cells modeled with self-consistent mean-field, however, more than two
or three additional cells cause the method to fail to give the right output. Another solution
could be to attach a line of output cell to the cross which are modeled by a separate many
cell Hamiltonian as shown. The advantage of using two separate many-cell Hamiltonian
instead of one is the large decrease in the number of state variables. For example, a 5-cell
cross with two extra output cells is modeled with a many-cell Hamiltonian, and 5
additional output cells are attached to it modeled by a separate many-cell Hamiltonian
then the method gives the correct output for L<36.

Originally it was thought that the self-consistent mean-field approach fails for the
majority gate since, because of the inequality of the input legs, the effect of one of the

drivers reaches the gate cell before the other two. The findings of this section support the
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idea that what caused the self-consistent mean-field approach to fail was its inability of
modeling the correlations in the cross region. The different length of the input legs is not
the main reason for the failure, since even with the new method they are modeled by self-
consistent mean-field. In summary, the competing inputs lead to failure of finding the
ground state only because of neglecting quantum correlation in the cross regions. As a
consequence, long-range quantum correlations and entanglement, at least in the (possibly
relatively long) input legs, are not necessary for the correct operation of the majority gate.
Originally it was thought that the self-consistent mean-field approach fails for the

majority gate since, because of the inequality of the input legs, the effect of one of the
drivers reaches the gate cell before the other two. The findings of this section support the
idea that what caused the self-consistent mean-field approach to fail was its inability of
modeling the correlations in the cross region. The different length of the input legs is not
the main reason for the failure, since even with the new method they are modeled by self-
consistent mean-field. In summary, the competing inputs lead to failure of finding the
ground state only because of neglecting quantum correlation in the cross regions. As a
consequence, long-range quantum correlations and entanglement, at least in the (possibly

relatively long) input legs, are not necessary for the correct operation of the majority gate.

6.2.3 Delayed-gate approximation

When simulating the behavior of an adiabatically switched QCA circuit, it may be
cumbersome to divide the cells into groups in order to provide that the simulations give

the correct result. A very simpled hocmethod will be proposed which, by applying it to
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the self-consistent mean-field approach, leading to the qualitatively correct modeling of
the majority gate.

As it was seen, it can lead to wrong results for the self-consistent mean-field
method, if the effect of one input reaches the gate cell much earlier than the others. The
problem of the competing inputs can be solved if the polarization of the gate cell is fixed
to zero until at least three of its four neighbors has a sufficiently large (€?;3:0J35)
polarization. Thus the driver with the shortest input leg cannot flip the gate cell and the
output cell just because it is closer. Fig. 6.15 shows the results of an 11-cellLgaie (

with four extra output cells.

Pt

0 2I0 4IO GIO 8I0 100
time (a. u.)

FIGURE 6.15. Adiabatic switching of a 11-cell majority gate (L=4) with four

output cells. The cell polarization as the function of time for the delayed gate

mean-field approximation.

6.2.4 Conclusions

A method was presented for modeling the majority gate of Quantum-dot Cellular
Automata cells with unequal input legs. The self-consistent mean-field type

approximation fails to determine the ground state correctly when the gate is adiabatically
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switched. It was found that if the five-cell cross region of the majority gate is modeled
with a many-body Hamiltonian while all the other cells are still modeled by the mean-field
method, the ground state of the system is determined qualitatively correctly up to a very
large difference in the length of the input legs. After the theoretical analysiagddroc
method, the delayed-gate approximation was proposed to provide the qualitatively correct

ground state not only for a majority gate, but even for more complicated QCA circuits.
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APPENDIX A

DYNAMICS OF THE CORRELATIONS FOR TWO QCA CELLS

The correlation of two QCA cells is described by the 9 element correlation tensor which
has the elements of the form:
Kij = [6;(1)6,(2)3 L =%y z (Al
In order to get the dynamics of thl!§ij 's, first the dynamics of the dynamics of the
G6;(1)6(2) terms must be computed then the expectation values will give the dynamics
for the elements of the correlation tensor. The computations will be given in full detail for
one element of the correlation tensdt,, ), while for the other elements only the final
result is presented.
The dynamics of théxi(l)éj(Z) terms can be obtained from the equation giving

the time dependence of an operator in the Heisenberg picture:

Y PO
5:0 = [0.A], (A.2)

where Hamiltonian for the two-cell system is:

. . ) E.. .
A = —y16,(1) - V,0,(2) + 5'6,(1)5,(2). (A.3)
To get the time dependence I&K,Z , the time dependenﬁg,(df)c“fz(Z) must be obtained
with (A.2):
d5.(1)5,02) = | 5 (1) —y,5.(2) - 256.(1)5.(2), 5.(1)5.(2 A4
F6/D82) = V18,1 -v,6,(2) - 56,(1)5,(2), 6,(1)5,(2) | (A4)
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The commutator relations for the relevant terms are:

[_ylax(l)! 6'y(1)6'2(2)] = _yl[a-x(l)’ Gy(l)]GZ(Z) = (A-S)
—v1(2i6,(1))6,(2) = -2iy;6,(1)G,(2),
[_yzax(2)7 6y(:]-)az(z)] = _yzay(l)[a-x(z)! 6-2(2)] = (A-6)
~y,6,(1)(-2i6,(2)) = 2iy,0,(1)6,(2),

[—5% (1842).6,(1)5,(2) | = “SH6,(0), 8,(11(6,2)° = (A7)

2 "z Z\=/r Yy z o LY\ Py z :
Ev, ... .
_7(_2l 0-x(]-)) = IEko-x(:l-)-
After substituting (A.5-A.7) into (A.4), the following equation is obtained:
hS(6,(1)5,(2)) = 2;5,(1)6,(2) - 21,6,(1D8,(D) ~E5,(1).  (AB)

Taking the expectation values one gets:

h% 6,(1)6,(2)0= 2y, [6,(1)6,(2)0-2y,[6,(1)8,(2)3-E B,(1)0  (A.9)

Substituting the coherence vector and correlation tensor elements in the place of

expectation values the dynamics.l@jZ is given as:

dK,,
e Y% = 2y1K,,— 27K — EAL(D). (A.10)

For the other eight elements the computations are very similar. The time dependence of

the nine elements of the correlation tensor can be given as:
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To check the manual symbolical computations, an object oriented program was written in

MATLAB handling Pauli spin matrices symbolically. Its output is given in Fig. A.1.
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>> CorrDynTwoCells

*hkkkkkkkhkhkkhkhkkhhhhkhhhhhhhhhhhhhhhhhhkhhhhkhkhhhhkhhkhiihik

Dynamical equation for the correlation tensor of two cells
computed from the two-cell Hamiltonian symbolically

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkk

The form of the equation is:

dKvector
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>

where
CoeffMatrix =

o0 0, 0,0 00 O, O, 0, 0]
0, ga2, 0, 0, 0O, O, O

-ga2, 0, 0, O, O, 0, 0O, (O]
o, 0, 0,0 0, 0, ga1, O

, 0, 0, gaz, 0, gal, 0]
, 0,-ga2, O,
-gal, 0, O,
, 0,-gal, O,
, 0, 0,-gal,

, 0, 0]
, 0, ga?]
,-ga2, 0]

olecleolojeoNoNaolo)

leNeNoNeNo)
e eNoNcNoNe!

0
0
0
0

and
RemVector =

o
o

Y1

o

o
(-1)*x1’
y2
'(-1)*x2’
o

Here the correlation is described by Kvector that
is a 9 element column vector:

T
Kvector=[<x1x2> <x1y2> <x1z2> ... <z1z2>]

>>

FIGURE A.1.Output of the MATLAB program computing the dynamics of the correlation
tensor symbolically for two coupled cellgal, ga2 stand fory; andy,. xn, yn and zn
(n=1,2) are shorthand notations fg(n) &,(N) angn)
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APPENDIX B: DYNAMICS OF THE CORRELATIONS FOR A CELL LINE

>> CorrDyn

khkhkkkhhkkkkhhkkhhhkhhhhkrhhhkrhhhkkrhhhkrrhhhkrrhhkrrhhriirx

Dynamical equation for the correlation tensor of cells#2/3
computed from the four-cell Hamiltonian symbolically

kkkkkkkkkkkkkkhkkkkkkkkkkhhkkhkkkhkkkkkkhhkkhkkkkhkkkkkkhkhkkkk

The form of the equation is:

dKvector23
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
dt
where
CoeffMatrix =
[ 00 O, O, O, O, O, O, O, 0]
[ 00 0,0a3 0, 0, O, O, 0O, 0]
[ 0,-ga3, O, O, O, O, 0O, 0O, Q]
[ 00 O, O, O, O, O, ga2, 0, 0]
[ 00 O, O, O, O, ga3, 0, ga2, 0]
[ 00 O, O, 0,-ga3, 0O, 0O, O, ga?]
[ 00 O, 0,-ga2, 0, O, 0O, 0O, 0]
[ 00 O, O, 0,-ga2, 0, O, O, ga3]
[ 00 O, O, O, 0O,-ga2, 0,-ga3, 0]
and
RemVector =
'z1*y2*x3+x2*y3*z4’
'21*y2*y3+(-1)*x2*x3*z4’
'z1*y2*23+y2’

'(-1)*z1*x2*x3+y2*y3*z4’
"(-1)*z1*x2*y3+(-1)*y2*x3*z4’
'(-1)*z1*x2*z3+(-1)*x2’
'y3+z22*y3*z4’
'(-1)*x3+(-1)*z2*x3*z4’

0

Here the correlation is described by Kvector23 that
is a 9 element column vector:

T
Kvector23=[<x2x3> <x2y3> <x2z3> ... <z2z3>]

FIGURE B.1. Output of the MATLAB program computing the dynamics of the
correlation tensor symbolically for cell #2 and #3 of a line of cadis2, ga3stand fory,
andys. xn, ynandzn(n=1,2,..) are shorthand notations fiy(N) 6y(n) andn)
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>> CorrDyn2

*hkkkkkkkhkhkkhkhkkhhhhkhhhhhhhhhhhhhhhhhhkhhhhkhkhhhhkhhkhiihik

Dynamical equation for the correlation tensor of cells#2/4
computed from the five-cell Hamiltonian symbolically

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkk

The form of the equation is:

dKvector24
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
dt
where
CoeffMatrix =
[ 00 O, O, O, O, O, O, O, 0]
[ O, 0,024, 0O, O, O, O, 0O, 0]
[ 0,-ga4, O, O, O, O, 0O, 0O, Q]
[ 00 O, O, O, O, O, gaz, 0, 0]
[ 00 O, O, O, O, gad4, 0, ga2, Q]
[ 00 O, O, O,-ga4, 0O, O, O, ga?]
[ 00 O, 0,-ga2, 0, O, 0O, 0O, 0Q]
[ 00 O, O, 0,-ga2, 0O, 0O, O, ga4d]
[ 00 O, O, O, 0O,-ga2, 0,-ga4, 0]
and
RemVector =

'21*y2*x4+y2*73*X4+X2*23*yA+x2*y4*Z5’
'21*y2*yA+y2*73*yA+(-1)*x2*23*x4+(-1)*x2*x4*Z25’
'21*y2*z24+y2*73*z4’
'(-1)*21*x2*x4+(-1)*x2*23*x4+y2*23*yA+y2*y4*75’
'(-1)*z1*x2*y4+(-1)*x2*z3*y4+(-1)*y2*z23*x4+(-1)*y2*x4*Z5’
'(-1)*z1*x2*z4+(-1)*x2*23*24’

'22*%23*y4+2722*y4*75’

'(-1)*22*z23*x4+(-1)*22*x4*z5’

0

Here the correlation is described by Kvector24 that
is a 9 element column vector:

T
Kvector24=[<x2x4> <x2y4> <x2z4> ... <z274>]

FIGURE B.2. Output of the MATLAB program computing the dynamics of the
correlation tensor symbolically for cell #2 and #4 of a line of cals2 ga4 stand fory,
andy,. xn, ynandzn(n=1,2,..) are shorthand notations fy(n) &6,(n)  andn)
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>> CorrDyn3

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

Dynamical equation for the correlation tensor of cells#2/5
computed from the six-cell Hamiltonian symbolically

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkk

The form of the equation is:
dKvector25
hbar * ---------- = CoeffMatrix*Kvector+Ek*<RemVector>
where
CoeffMatrix =

0, 0, 0, 0, 0, 0, 0, 0]

[ O :
[ O, O,ga5 O O, O, O, 0O, 0]
[ 0,-ga5, 0, O, O, O, O, O, O]
[ 00 OO0 OO0 O, O, O, 0ga2, O, 0]
[ 00 O, O, O, O, ga5 0, ga2, 0]
[ 00 O, O, 0O,-ga5 0O, 0O, O, ga?]
[ 00 O, O0,-ga2, O, O, O, O, O]
[ 00 O, O, 0,-ga2, 0O, 0O, O, gab]
[ 00 O, O, O, 0O,-ga2, 0,-gab, 0]
and
RemVector =

'21*y2*x5+y2*73*X5+x2*24*y5+x2*y5*z6’
'21*y2*y5+y2*z73*y5+(-1)*x2*24*x5+(-1)*x2*x5*z6’
'21*y2*25+y2*23*z5’
'(-1)*21*x2*x5+(-1)*x2*23*x5+y2*z4*y5+y2*y5*z6’
'(-1)*z1*x2*y5+(-1)*x2*z3*y5+(-1)*y2*z4*x5+(-1)*y2*x5*z6’
'(-1)*z1*x2*25+(-1)*x2*23*z5’

'22*24*y5+722*y5*76’

'(-1)*22*z24*x5+(-1)*22*x5*26’

0

Here the correlation is described by Kvector25 that
is a 9 element column vector:

T
Kvector25=[<x2x5> <x2y5> <x2z5> ... <2275>]

FIGURE B.3. Output of the MATLAB program computing the dynamics of the
correlation tensor symbolically for cell #2 and #5 of a line of cedis2 ga5 stand fory,
andys. xn, ynandzn(n=1,2,..) are shorthand notations fag(n) G,(N) andgn)
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APPENDIX C

APPROXIMATE DYNAMICAL EQUATIONS FOR THE TWO-POINT
CORRELATIONS

In Sec. 6.1 it was shown how to eliminate the three-point correlations from the
equations of the two point correlations assuming that the three-point correlation propers
are zero. In this Appendix the approximate dynamical equations for the two-point
correlations for a cell inside a cell line are given explicitly.

The exact equations of the two-point correlations (rewriting (5.33-5.35))are
ds,. . P A A
haK(l,j) = Q;K(i, j)—K(i, j)Qi + E.C(i, ), (C.1
where for nearest neighbojsig1)

0 0 A)
CGli,i+1) =| o 0 At
AG+1) A(i+1) 0

(C.2)

0, ()0, (i + 1) —0,(i)0,(i + 1)
oy(i)o,(i +1) —0,()o,(i +1)
0,(i)0,(i +1) ~0,(i)e,(i +1)

o O

o,(i +2)0+

o

0,(1)0,(i +1) ~o,(i)a,(i +1) 0"
0, (i)o,(i +1) —0,(i)a,(i +1) 0] O(i—1)]
0,(1)0,(i +1) —0,(i)o(i +1) O

and for further than nearest neighbors
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o,(i)oy(j) —o,(i)ox(j) O
C(i,j) = Doy (i)oy(j) —o,(i)ou(j) 0 [(0,(]=1)+0,(j+1))l+ (C.3)
o,(i)oy(j) —o,(i)ox(j) O

T
0,(1)0x(j) —0,(1)ax(i) O
0,(1)0,(j) —0,(1)0,(j) 0| (O(i~1)+a(i+ 1)1
0,(1)0,(]) —0,()a,(j) O
Let us consider the dynamics of a single nearest neighbor correlation tensor

element:

ﬁ%KXX(i,i +1) = E [o,(i)o (i + 1)o,(i +2)[H+ E, Dby(i)ox(i +1)o(i —1)L.(C.4)
This equation can be obtained from (C.1) and (C.2), consideringxkeément of theK

correlation tensor. Notice that on the right hand side of (Ctl)((i)oy(i +1)o,(i +2)U
and Eby(i)ox(i +1)0,(i —1)Uare three-point correlations.
The approximate dynamical equation for the two-point correlation can be obtained
using
[ABC= TABOITH+ [BCTAT+ DA CIBO- 2 CATBIICO (C.5)

for the three-point correlations. Substituting (C.5) into (C.4) one obtains:

d, . . _ o . o . (C.6)
WK (1,1 +1) = E{ ny(l,l +DA(i+2) + KyZ(I + 1,1+ 2)A, (1) +

“ Kygiy i+ 2)A (1 + 1) =27, (DA (I + D)A(i +2) +
ny(i,i +DA(i-1)+K (i +1,i- 1))\y(i) +
Ky i = DA +1) = 2N (DA, + DA - 1)}
Notice that now on the right hand side there are only two-point correlations (e. g.,

Ky (ivi + 1) ) and coherence vector elements (e. §5(i +2) ), but there are no three-

point correlations.
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Similar transformations can be made with all the dynamical equations for the two-point
correlations, eliminating the three-point correlations from the equations. The model
obtained this way considers only the two-point correlations and neglects higher order
correlations. (It was called “PC” referring to pair correlation.)

Further simplification can be done by approximating the next-to-nearest neighbor
correlations by the multiplication of two coherence vector elements, e.g.,
K, (i, 1 +2) = A (i)A(i +2). Changing (C.6) according to this results in

d, .. _ . . o . (C.7)
haKxx(l, I +1) = E{ ny(l,l + 1A (1+2) + Kyz(l +1,i+2)A () +

MDA+ DAL +2) +
Kyis i+ DAL = 1) + K (i, i = DA + 1) +

Ay (DAL + AL 1)}
Notice that theK,,(i,i +2) andK,,(i+1,i—1) nextto nearest neighbor correlations
which could be found in (C.6) are not in (C.7). In a similar fashion the further than nearest
neighbor correlation terms can be eliminated from the dynamical equation of the nearest
neighbor correlations. The model obtained this way considers only the nearest neighbor
two-point correlations and neglects higher order correlations. (It was called “NNPC”

referring to nearest neighbor pair correlation.)
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At the end of this appendix we summarize the dynamical equations used to model

an inner cell of a line with the “NNPC” approximation:

Koyli —1,1) + K00, i +1)

ROR() = GR() + K (i1 1) ~K (i, +1)| (€8)
0
»h%R(i,i +1) = Qi+ 1K (i, i +1)—K(i,i +1)Q; + E.C(i,i +1), (C.9)
. 0 0 Ay(0) (C.10)
C(i,i+1) = 0 0o A0t

A(i+1) A (i+1) 0

O'X(i)O'y(i +1) —o,(i)o,(i+1) O
O o (i)o,(i+1) —o.(i)o,(i+1) O o,(i +2)0H+
g,(i)oy,(i +1) —0,(i)o,(i+1) O

0,()0,(i +1) —0,(i)a,(i +1) 0
o, (i)o,(i +1) —0,(i)o,(i +1) 0] O,(i—1)0
0 ()0(i + 1) —0,(i)o(i +1) 0

using the following approximation for the three-point correlations:

Kap(ini + 1,1 +2) = B,(1)6,(i + 1)8.(i +2)0= K (i, i + DA (i +2) +
Kpelii +2)A (i + 1) —
AL (DG + DA +2),

abc=xyVyz

(C.11)
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The “PC” equations can be summarized as
g . sz(i.— 1, i? + Kyz(i., i.+ 1)
A () = QA + B K, (i -1,1) =K (i,i +1)|
0
ds,. . A s A A
hK @ 0) = QK3 KA Qi+ BCA, ),
where for nearest neighbojsif1)
0 0 Ay(1)
CGii+1) =] o 0 A
A(i+1) =M (i+1) O

o,(i)oy(i +1) —o,(i)o,(i+1) O
0 o (i)oy(i+1) —o (i)o,(i+1) O o,(i +2)0+
o(i)oy(i +1) —0,(i)o,(i+1) O

o, (i)o,(i +1) —0,(i)o,(i+1) 0 T
o,(i)o,(i +1) —0,(i)o,(i +1) 0 0Li—1)1
0,()0(i + 1) —0,(i)o(i +1) O

and for further than nearest neighbqrs+«1)

A 0,(1)0,(}) ~0,()o.(j) 0
C(i, 1) = Ooy(i)oy(j) —o,(i)oy(i) 0 [(0,(i—1)+0,(j+1))0+
o,(i)oy(j) —o,(i)oy(j) O
0, (1)) ~0,(1)o,(0) 0]
0,(1)oy(j) —0,(1)oy(j) 0] (0,(i =1)+0,(i+1))1
0, (1)0,(j) —0,(1)a,(j) O
The following approximation for the three-point correlations is used:

Kabcli:J:K) = [8(1)Gp())Gc(K)O= K gp(is A(K) + Kpe(i, K)AL(]) +
Kacli; K)OA(1) = 2N (D) Ap(1A(K)

abc=xyz
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