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We consider the effects of interaction with the environment on decoherence in quantum-dot

cellular automata (QCA). We model the environment as a Coulombically interacting random

assembly of quantum double-dots. The time evolution of our model system þ environment is

unitary and maintains one coherent state. We explicitly calculate the reduced density operators for

the system and for the environment from the full coherent state. From the reduced density matrix

of the system, we calculate the coherence vector and the Von Neumann entropy. The entanglement

of system and environmental degrees of freedom lead to decoherence, which drives the system into

the Zurek pointer states. The quantum information lost by the system, quantified by the entropy, is

present in the quantum mutual information between the system and the environment. We explore

the competition between environmental decoherence and system dynamics. For even a modest

environmental interaction, the pointer states are the QCA information-bearing degrees of freedom,

so that environmental decoherence, while destructive of quantum information, tends to stabilize

QCA bit information. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796186]

I. INTRODUCTION

A search is underway for a successor technology to the

solid-state transistor for logic applications.1 Field-effect tran-

sistors, which are basically voltage-controlled current

switches, have significant limitations when critical dimen-

sions are scaled down to a few nanometers.2 A successful al-

ternative would need to represent binary information, provide

an efficient switching mechanism between states, operate at

device densities down to the single-molecule scale, and dissi-

pate very little heat during a binary state transition.

One promising approach is quantum-dot cellular autom-

ata (QCA), in which binary information is represented by the

configuration of charge among a set of quantum dots. The

simplest QCA cell is a double-dot with a single mobile charge

whose location on one dot or the other represents a binary 1

or 0.3 In this case, a quantum dot can be considered any

potential well that can localize electrons or holes. Hopping

from dot to dot is through quantum mechanical tunneling.

The dots are arranged to form QCA cells; no current flows

from cell to cell. The intercellular coupling is through the

Coulomb interaction. Clocked control of QCA cells is made

possible by the effect of locally applied electric fields, which

can switch molecules between active information-bearing

states and a null state.4 If QCA cells can be synthesized and

placed on a surface in specific patterns, general-purpose com-

puting is possible. Circuit architectures that can efficiently

exploit QCA capabilities are an active area of research.5

Several ways of implementing the QCA paradigm are

being explored. QCA devices have been fabricated in semi-

conductor depletion dots in GaAs.6 QCA cells with dots

formed by carefully implanted donors in Si have also been

demonstrated.7 Wolkow et al.8 have used dots that are single

dangling bonds on a Si surface to form a QCA cell of single-

nanometer size operating at room temperature. Mixed-valence

molecules designed to have mobile electrons, which can tun-

nel from one site to another within the molecule have been

synthesized and shown to exhibit the requisite bistable satura-

tion. Fairly complex QCA circuits, including logic gates and

shift registers, have been demonstrated using dots formed

from isolated Al islands in the Coulomb blockade regime,

albeit at cryogenic temperatures. Power gain has been demon-

strated in these systems. A magnetic version of QCA, in

which magnetic dipoles replace electrical dipoles, has also

shown promise.9

QCA operation is quantum mechanical in that switching

is by quantum tunneling from dot to dot. Barriers between

dots must be high enough for mobile electrons to localize,

i.e., the expectation value of the number operator on a partic-

ular dot is very nearly integer. The bit information in QCA

is, however, encoded in the classical degree of freedom cor-

responding to the dipole or quadrupole moment of the charge

distribution. In fact, it is only the sign of the moment that

represents the bit. (There have been proposals for using the

continuous value to enable analog QCA operation.) QCA is

not quantum computing and does not use qubits to encode

information.

For molecular-scale implementations, including both

mixed-valence molecules and dangling surface bonds, how-

ever, it may be possible that quantum coherence across one

or several cells could be maintained, though that such coher-

ence could survive at room temperature is not clear. The

interesting question of whether phase coherence could in fact

pose problems for QCA operation has been recently raised

by Taucer et al.10

The issue of a possibly destructive result of quantum

phase coherence focuses attention on a fundamental fact

about any physical device that contains local memory.

Consider a physical system which stores and processes at

least one binary bit. Suppose, the value of the bit was written

to it by an input mechanism at sometime in the past, but the

input system no longer interacts with the memory/computinga)lent@nd.edu
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system after the writing is complete. At any subsequent time

t, whether the system is in the state representing a binary 1

or 0 must not be determined by the just the spatial boundary

conditions and the current Hamiltonian Ĥ . If it were, it could

not hold a value that depends on the input. The physical state

of a memory device cannot be determined simply by its sur-

roundings: it must be determined also by its history. The

state encoding a stored bit cannot be an eigenstate of Ĥ .

Since, from a physical point of view the bit could equally

well be in a 1 or a 0 state, the physical system must be in a

long-lived metastable state rather than a stationary state of

the Hamiltonian. As a consequence, if quantum coherence is

maintained indefinitely, the system should tunnel back and

forth between the 1 state and the 0 state, executing coherent

Rabi oscillations. (We are assuming here that there is no in-

ternal bias that prefers one state over another energetically.)

This consideration applies not just to QCA, but to any sys-

tem representing information by the physical system state.

The stationary states of the memory system are the symmet-

ric and antisymmetric superpositions of the 1 and 0 states.

In most systems, including CMOS and QCA, the energy

splitting between these two Hamiltonian eigenstates is

extremely small because there is a large effective barrier

between the 1 and 0 states. This normally provides a very

substantial kinetic barrier between the two information-

bearing states, and coherent oscillations—if they were

observable—would have a very long period. Decoherence

due to environmental interactions would destroy these Rabi

oscillations before they ever got started; but, clearly this

becomes a quantitative question which could be examined

in particular systems.

Here, we address the issue of unwanted coherent oscilla-

tions and environmental decoherence as part of a larger study

of the interaction between QCA systems and the environ-

ment. Our approach is to construct a simple model that con-

tains the minimal elements necessary to explore the

relationship between the coherent system dynamics and the

entanglement with the environment that causes decoherence.

We consider first a single QCA double-dot with an environ-

ment comprised of randomly oriented neutral double-dots at

zero temperature. This is by design a minimally perturbing

environment. Section II defines this model. Dynamics are

calculated both numerically and analytically by direct com-

putation of the unitary time evolution of the combined sys-

tem þ environment. Measures of coherence and quantum

information flow are also employed. Section III considers

the dynamics in the absence of an environment. Section IV

examines the dynamics, when the environment completely

dominates the internal system dynamics. The general case,

when both internal dynamics and environmental decoherence

compete is explored in Section V. The impact of a larger sys-

tem on the fragility of quantum coherence is addressed in

Section IV by using a pair of double-dot systems. A discus-

sion of the results follows.

We find particularly helpful in understanding this behav-

ior the contributions of Zurek and coworkers on the general

theory of decoherence and pointer states.11 In understanding,

the nature of the entropy as a measure of missing informa-

tion, the work of Ben-Naim is particularly clarifying.12

II. MODEL SYSTEM PLUS ENVIRONMENT

A. System

We consider a system which consists of a two-dot QCA

cell with one mobile electron and interdot distance a. We

take a¼ 0.7 nm, corresponding to the scale of QCA mole-

cules. This system cell in isolation is described using a two-

state basis.

jwSi ¼ c0j0Si þ c1j1Si: (1)

Here, j0Si and j1Si represent the system states with the elec-

tron completely localized on one or the other dot, encoding a

binary “0” or “1.” These completely localized states are the

computational basis states for the system.

The Hamiltonian for the isolated system cell is

Ĥ
0

S ¼ �c½j1Sih0Sj þ j0Sih1Sj�: (2)

We assume that in addition to the mobile electronic charge,

there are fixed neutralizing charges of þe/2 on each of the

two dots. In the actual molecule, this neutralizing charge is

either a donor center13 or a counterion.14,15 The model

reflects the reality that molecular QCA cells have a nonzero

dipole moment, but no net charge.

By design, the system Hamiltonian has no diagonal

terms that break the symmetry between the j0Si and j1Si
states, i.e., there is no preferred state. In QCA circuits, the

presence of a neighboring cell breaks this symmetry, provid-

ing the coupling between devices that makes logical opera-

tions possible.

B. Environment

We construct here a very simple model of the environ-

ment using many two-dot cells to mimic degrees of freedom

in the environment that couple Coulombically to the system

cell. The intent is to make a simple, very minimal model of

the environment as a set of N neutral two-dot cells. The envi-

ronment cells are labeled with an integer k 2 ½1; 2; :::;N�; the

index k¼ 0 will denote the system cell. We assume that the

environment cells have no tunneling between the two dots

(cE ¼ 0), so the Hamiltonian for the kth environment cell in

isolation is Ĥ
E
k ¼ 0. This does not account for the Coulomb

interaction between environment cells, which will be

included later. We emphasize that these cells are not meant

to describe other QCA cells in the circuit, but rather repre-

sent a very minimal environment, which is neutral and non-

switching.

The state vector for kth environment cell in isolation is

given by

jwEk i ¼ ck
0j0Ek i þ ck

1j1Ek i: (3)

As with the system cell, a fixed neutralizing charge of þe/2

is present on each of the dots.

It will be helpful to label the computational basis states

j0i and j1i of the system and each environment cell with an

index m¼ 0 or 1 for the two states.
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For the system cell

jaS0 i ¼ j0Si; jaS1 i ¼ j1Si: (4)

For the kth environment cell

jaEk;0i ¼ j0Ek i; jaEk;1i ¼ j1Ek i: (5)

C. Geometry

Within our model, we establish a geometry for the sys-

tem and environment which provides control over the

system-environment interaction. In each case, the system is

placed at the origin, and the N cells providing the environ-

ment are placed at random sites on the surface of a sphere of

radius R centered on the system with random orientations.

The environment population N and radius R provide control

over the strength of the system-environment interaction, and

the random orientations of the environmental cells add non-

uniformity in this interaction.

Figure 1 shows one such geometry for a eight-cell envi-

ronment (N¼ 8). Each pair of small, colored balls connected

by a black stick represents a molecule. Each colored ball rep-

resents a quantum dot, and its color indicates the net charge

locally present: red indicates negative charge (the dot is

occupied by an electron), green indicates positive charge (no

electron is present), and grey is charge-neutral (the molecule

has zero polarization, with an expectation value of one-half

for finding the electron localized on either dot). The connect-

ing black stick is the tunneling path for intramolecular

charge tunneling. Figure 1 shows the system polarized in one

of the computational basis states with all the environment

cells in depolarized states.

D. Entanglement of the system with the environment

The system-plus-environment is represented by a single

pure state vector, which is in the space spanned by the direct

products of the states of the system cell and all environmen-

tal cells.

jwðtÞi ¼
X1

m0 ¼ 0

m1 ¼ 0

�

mN ¼ 0

cm0;m1;…;mN
ðtÞjaSm0

ijaE1;m1
ijaE2;m2

i…jaEN;mN
i:

(6)

Each basis state configuration of the environment in the

direct product space of Eq. (6) is specified by a set N integers

mk 2 f0; 1g, which we treat as an N-dimensional vector.

~m � ½m1;m2;…;mN�: (7)

There are NE ¼ 2N such vectors in the basis set, ½~m1; ~m2;
~m3;…; ~mNE �, each representing a specific configuration of E.

~m1 ¼ ½0; 0; 0;…; 0�;
~m2 ¼ ½1; 0; 0;…; 0�;
~m3 ¼ ½0; 1; 0;…; 0�;
~m4 ¼ ½1; 1; 0;…; 0�;

� �

~mNE ¼ ½1; 1; 1;…; 1�:

(8)

Equation (6) can be rewritten as a sum over the system

degrees of freedom and the environment degrees of freedom.

jwðtÞi ¼
X1

m0¼0

XNE
p¼1

cm0;~mp
ðtÞjaSm0

; aE~mp
i: (9)

E. Dynamics

The Hamiltonian of the system þ environment can be

written as the sum of the system Hamiltonian, the environ-

ment Hamiltonian, and the interaction between the system

and the environment.

Ĥ ¼ ĤS þ ĤE þ ĤSE ; (10)

where ĤS is the isolated system Hamiltonian of Eq. (2). The

Hamiltonian for the environment ĤE includes all the

Coulomb interactions between environment cells and ĤSE
represents the Coulomb interactions between the system cell

and the cells in the environment. The complete Hamiltonian

Ĥ can be represented by a 2Nþ1 � 2Nþ1 matrix.

The Hamiltonian for the environment ĤE , and the

system-environment interaction ĤSE , can each be expressed

in terms of the Coulomb potential energy for two interacting

cells.

Let Uj;k
mj;mk

be the electrostatic potential energy between

the jth cell in state mj (0 or 1) and the kth cell in state mk

(0 or 1). This energy is given by

FIG. 1. A schematic view of the model geometry. The system cell, a coupled

pair of quantum dots, is surrounded by the environment, represented by

quantum double dots. The small spheres represent quantum dots, and the

black bars connecting them represent intra-molecular interdot tunneling

paths. N environmental cells are randomly located on a sphere of radius R,

with random orientations. For this minimal representation of the environ-

ment, the environmental cells are always neutral, with equal probabilities of

electron occupancy on each dot.
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Uj;k
mj;mk

¼ PðmjÞPðmkÞe2

16p�o

1

rj;k
0;0

� 1

rj;k
0;1

� 1

rj;k
1;0

þ 1

rj;k
1;1

" #
; (11)

where e is the fundamental charge, �o is the permittivity of

free space, rj;k
mj;mk

is the distance between dot mj in cell j and

dot mk in cell k, and P(m) is the polarization of a cell in state

m. P(1)¼þ1 and P(0)¼�1.

Because each cell in the environment has no interdot

tunneling, the Hamiltonian for the environment ĤE is diago-

nal in this basis and is given by Eq. (9).

ĤE ¼
XNE
p¼1

jaE~mp
iEE~mp
haE~mp
j

" #
� ÎS : (12)

The diagonal elements of ĤE are the potential energies

associated with each basis state, which can be expressed as a

sum over all the pairwise interactions between environment

cells.

EE~mp
¼ 1

2

XNE
j; k¼1

j 6¼k

Uj;k

mj
p;mk

p

: (13)

Here, mk
p ¼ ½~mp�k, the state of the kth cell in environment

configuration p.

The system-environment interaction Hamiltonian ĤSE is

also diagonal in the site basis.

ĤSE ¼
XNE
p¼1

X1

m0¼0

jaSm0
; WE~mp

iESEm0;~mp
haSm0

; WE~mp
j: (14)

Here, jWE~mp
i is a product state of environmental cell compu-

tational basis states as specified by ~mp

jWE~mp
i ¼ jaE1;m1

ijaE2;m2
i � � � jaEN;mN

i: (15)

The energy ESEm0;~mp
is the Coulomb potential energy of

the state with the environment E in the state specified by ~mp

and the system S in the state specified by bit m0.

ESEm0;~mp
¼
XN

k¼1

U0;k
m0;mk

: (16)

We define the bit flip energy Eflip
~mp

for each configuration

of the environment.

Eflip
~mp
� ESE1;~mp

� ESE0;~mp
: (17)

This is the energy required to flip the system cell state from

0 to 1, for each environmental configuration ~mp.

The Hamiltonian for the two-dot system is embedded in

the larger Hilbert space, which includes the environmental

degrees of freedom.

ĤS ¼ 1̂E � Ĥ
0

S ¼ 1̂E � ½�ck̂
S
1 � : (18)

F. Density operator and time evolution

The density operator for the whole system þ environ-

ment is given by

q̂ðtÞ ¼ jwðtÞihwðtÞj: (19)

The system þ environment is one coherent quantum system

that evolves under the quantum Liouville equation.

q̂ðtÞ ¼ e�
i
�hĤ tq̂ð0Þeþ i

�hĤ t: (20)

The Hamiltonian, here is the complete Hamiltonian of

Eq. (10), the sum of ĤE from Eq. (12), ĤSE from Eq. (14),

and ĤS from Eq. (18).

An initial density matrix is chosen for the system cell

q̂Sð0Þ and the density matrix q̂kð0Þ for each of the environ-

ment cells. The environment density matrix is the direct

product of the density matrices for each cell, and the com-

plete density matrix is the direct product of the environment

and system density matrices.

q̂Eð0Þ ¼ q̂1ðtÞ � q̂2ðtÞ…� q̂NðtÞ; (21)

q̂ð0Þ ¼ q̂Eð0Þ � q̂Sð0Þ: (22)

Note that only the initial state is a direct product state—the

time evolution given by Eq. (20) quickly mixes product

states together. In the calculations we report here, we always

take the initial state to be a direct product of pure states for

the system and environment, but the evolved system is

always in a superposition of product states, as in Eq. (9).

The reduced density matrix for the system is calculated

by directly summing over the 2N environmental degrees of

freedom.

q̂r
SðtÞ ¼ Tr

m1;m2;…;mN

q̂ðtÞ ¼ Tr
~m

q̂ðtÞ: (23)

The reduced density matrix for the environment is calculated

by summing over the system cell’s degrees of freedom.

q̂r
EðtÞ ¼ Tr

m0

q̂ðtÞ: (24)

In a similar way, the reduced density matrix for any subset

of the environment, or indeed any combination of cells, can

also be calculated by summing over the unwanted, or

unknown, degrees of freedom.

The reduced density matrix for the system cell must be

Hermitian and have unit trace. As a consequence it can be

written as a linear combination of the identity and the gener-

ators of SU(2), k̂1; k̂2, and k̂3 (the Pauli matrices).16

q̂r
SðtÞ ¼

1

2
f1̂ þ k1k̂1 þ k2k̂2 þ k3k̂3g;

¼ 1

2
1̂ þ k1

0 1

1 0

� �
þ k2

0 i

�i 0

� �
þ k3

1 0

0 �1

� �� �
:

(25)

This decomposition allows us to express the three real

degrees of freedom of the reduced density matrix as a real

coherence vector~kS ¼ ½k1; k2; k3�.
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If the system is entangled with the environment, q̂r
S repre-

sents a mixed state. Though, the entire system þ environment

remains in a pure state, information about any entanglement

with the environment has been lost in the trace operation of

Eq. (23). The coherence vector, like the reduced density ma-

trix, contains only the information about the system cell that

is local to that cell.

G. Polarization and coherence

The polarization operator for a two-dot QCA cell is the

difference of the projection operators on the two dot-

occupancy basis states, as visualized in Figure 2. Dots are

numbered for reference. The polarization of the system cell

is between �1 and 1, representing localization on one or the

other dot.

P̂S ¼ j1Sih1Sj � j0Sih0Sj; (26)

PS ¼ hP̂Si ¼ Tr q̂r
S k̂3: (27)

The expectation value of the electric dipole moment d of a

cell about its center is proportional to the polarization,

d¼ eaP.

The cell polarization is important in the QCA paradigm.

In QCA circuit operation, the polarization encodes bit infor-

mation. In conventional electronics a continuous real vari-

able, the voltage on a conductor, is used to represent a binary

value by segmenting its range into values that represent a

logic level 1, a logic level 0, or a null (undetermined) value.

So too in QCA, the continuous polarization of the cell

encodes a binary value—a sufficiently positive polarization

represents a binary 1, a sufficiently negative polarization rep-

resents a binary 0, and a polarization with a magnitude less

than some threshold holds no information.

For the calculations reported here, we model the envi-

ronment as cells with no tunneling between dots so the polar-

ization of environment cells is always zero. The expectation

value of the dipole moment of the environment cells is zero,

as is the expectation value of the charge on each dot.

Environment cells are in that sense neutral and unpolarized.

In a mean field sense, they are electrostatically invisible. The

environmental cells do not bias the system cell into one state

or another. They can, however, still interact with the system

cell Coulombically and become entangled with the system

and with each other.

H. Measures of coherence

We use several measures of the coherence or decoherence

of a cell to capture the extent to which the cell’s quantum state

information has delocalized and has become entangled

with the environment. The measures, we employ are the von

Neumann entropy, the quantum mutual information between

the cell and the environment, and the state purity.

The loss of local information results in an incomplete

description of the central cell that is quantified through prob-

abilities and the associated entropy. The reduced density ma-

trix is Hermitian and so can be diagonalized by a unitary

transformation. In this eigen-representation, the off-diagonal

matrix elements are zero and the diagonal matrix elements

are pi, i ¼ 1; 2;…; d, where d is the dimension of the open

system of interest. If all the pi are zero except one, which

must then be equal to 1, then the state is said to be a pure

state. If not, it is a mixed state. The values of pi can be inter-

preted as the probabilities of finding the system in the ith
state. These probabilities are an expression of missing infor-

mation.17 For q̂r
S , the reduced density matrix of the system,

the information is missing because some information is no

longer local, but rather bound up in the entanglement with

the environmental cells. For the complete density matrix of

the system þ environment, q̂, by contrast, there is no missing

information and it is always in a pure state as it evolves

under Eq. (20).

The Shannon entropy S is a measure, defined on any set

of probabilities pi, that expresses how much information,

measured in bits, is missing.18 The missing information

is what leads to a probabilistic description in the first

place. Probabilities quantify partial information. If there

were no missing information, there would be no need for

probabilities.12

The Shannon entropy of the eigenvalues of a reduced

density matrix q̂r is known as the von Neumann entropy of

the state (here measured in bits, instead of thermodynamic

units). For the system cell this can be written

SS ¼ �
Xd

i¼1

pi log2ðpiÞ ¼ �Trðq̂r
S log2q̂

r
SÞ: (28)

We denote the corresponding entropy of the environment SE
and of the whole system þ environment as simply S. The

von Neumann entropy measures the amount of information

about the quantum state of the system cell that, while present

in q̂ðtÞ, is missing from q̂r
SðtÞ. This loss of local quantum in-

formation is at the heart of decoherence.

Another measure of coherence, the quantum mutual in-

formation I, measures information (not missing information,

FIG. 2. Computational basis for the two-dot QCA system cell. Two com-

pletely localized, degenerate states of an isolated two-dot QCA cell provide

a computational basis. Black circles represent the quantum dots, the intramo-

lecular interdot tunneling path is indicated by a line connecting the two dots,

and a red disc represents a mobile electron. A fixed, neutralizing charge of

þe/2 is present at each dot but is not depicted. An electron localized on the

top dot yields a cell polarization of P¼þ1 and represents a bit value of 1.

An electron localized on the bottom dot yields a cell polarization of P¼�1

and represents a bit value of 0.
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as in the case of entropy) that is present in the entanglement

between two sub-systems. Applied to the cell and environ-

ment subsystems, we have

ISE ¼ SS þ SE � S: (29)

The quantum mutual information ISE is the difference

between the quantum information that is missing from the

individual subsystems, and that which is missing from the

composite whole.

Because the QCA concept avoids using quantum infor-

mation—it stores bits rather than qubits—the loss of local

quantum information from the cell does not correspond to

loss of information about the QCA bit.

State purity has often been used to quantify coherence.

The purity of the cell is the expectation value of the reduced

density operator itself. The purity �S is defined as

�S ¼ Tr½q̂r
S�

2: (30)

This measure has the advantage of being straightforward to

calculate even in large systems. A pure state has � ¼ 1. If

the number of degrees of freedom is d (d¼ 2 for the 2-dot

cell), a completely decoherent state has � ¼ 1=d.

III. ISOLATED PURE STATE: EVOLUTION DOMINATED
BY SYSTEM DYNAMICS

We consider first the limit in which the environment

plays no role. A system in isolation, with no interaction with

the environment (N¼ 0 or R ¼ 1), is described by the sys-

tem Hamiltonian ĤS alone; the environment Hamiltonian

ĤE and the interaction ĤSE are both zero. The Hamiltonian

governing this evolution is simply that of the system and has

only the tunneling term connecting the two states.

ĤS ¼ Ĥ
0

S ¼ �cS k̂1: (31)

The time evolution of the system is dominated by Rabi oscil-

lations for any initial state that is not a stationary state. The

Rabi oscillation of this system is evident in Figure 3, which

shows the time-varying polarization of the cell, the degree of

freedom on which a bit is encoded. The Rabi oscillation

occurs with period s given by

s ¼ p�h

cS
: (32)

This period s provides a characteristic time scale for the evo-

lution of the system.

The time evolution of the system can be visualized by

considering the motion of the coherence vector ~kðtÞ as

shown in Figure 4. The coherence vector for the fully coher-

ent isolated system has unit length and so is always on the

surface of the unit sphere, known as the Bloch sphere. The

coherence vector’s initial condition is marked in the figure

by an arrow, and the path traced out by the tip in time is indi-

cated by a curve. In this case, since the k̂1 operator com-

mutes with the Hamiltonian, the motion keeps k1 constant.

Unitary evolution results in ~k rotating around the k1-axis

with a constant projection, for any initial state. The cell

polarization is equal to the projection of ~k on the k̂3-axis.

The stationary states are represented by~k ¼ ½61; 0; 0�.

IV. DECOHERENCE: EVOLUTION DOMINATED
BY ENVIRONMENTAL INTERACTIONS

A. Dynamics

We now consider the limit in which the system-

environment interaction completely dominates system dy-

namics. Here, we take ĤS ¼ 0, so the Hamiltonian governing

the evolution of the system-environment composite has two

components

Ĥ ¼ ĤE þ ĤSE ; (33)

where ĤE includes interactions among the environmental

cells and ĤSE includes interactions between the system and

the environment.

We calculate the unitary evolution of the whole system

þ environment in time using Eq. (20), and at each time

FIG. 3. Polarization oscillations and bit instability in an isolated system cell.

The polarization of the system cell in isolation with tunneling energy cS
exhibits Rabi oscillation with period s ¼ p�h=cS . Polarization is plotted in

time for three different initial conditions: kS3 ð0Þ ¼ 1 (solid blue trace);

kS3 ð0Þ ¼ 0:866 (dashed green trace); and kS3 ð0Þ ¼ 0:5 (dashed and dotted red

trace). Because QCA bit information is encoded in the sign of the polariza-

tion, perfectly coherent evolution results in periodic bit flips.

FIG. 4. The coherence vector~k of an of an isolated system cell. The evolu-

tion in time is shown for the same conditions as in Figure 3. In each case,

the coherence vector traces out a circle in on the unit sphere with constant

k1.
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explicitly calculate the reduced density matrix for the system

using Eq. (23), and for the environment using Eq. (24). The

coherence vector, cell polarization, and other measures can

be calculated from either the full density matrix or the

reduced density matrices.

For the response of the system to the environment, we

choose a time scale based on the strongest possible interac-

tion Eflip
e between the system cell and a cell on the environ-

mental sphere of radius R. Eflip
e is determined by the bit flip

energy as defined in Eq. (17) and reduces to the expression

Eflip
e ¼ e2

4p�o

1

R
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ a2
p

� �
: (34)

In an environment of many cells, there is likely a cell that

interacts with the system with an energy approaching Eflip
e .

The corresponding characteristic time for environmental-

ly–induced changes is

se ¼
2p�h

Eflip
e

: (35)

Figure 5 illustrates that the polarization in this case is

constant in time for any initial value, in contrast to the Rabi

oscillations seen in Figure 3. Since the system cannot switch,

this is hardly surprising. Far more interesting behavior is

revealed when we examine the full coherence vector and var-

ious coherence measures.

Figure 6 shows the temporal evolution of the coherence

vector for several initial states. In each case, interaction with

the environment causes the coherence vector to move toward

the k̂3 axis. The k1 and k2 components do not vanish linearly,

but they die out quickly, being almost entirely gone by

t ¼ se=10. Figure 7 shows the k1 and k2 components of the

system cell as a function of time for the case when the initial

polarization is zero (k3ð0Þ ¼ 0) and Figure 8 shows these co-

herence vector components for the environmental cells. Note

that the environment cells have k3 ¼ 0 always.

The behavior illustrated here can be understood in terms

of the decoherence paradigm of Zurek.11 The system cell is

being driven to the k̂3 axis by its interaction with the envi-

ronment. States on the k̂3 axis are “pointer states,” in

Zurek’s terminology. (The term originates in idea is that

pointer states are those which are represented by the needle

pointer on a laboratory gauge.) Both system and environ-

mental states lose coherence, move off the surface of the

Bloch sphere, and are driven to the subspace of pointer

states. The selection of a particular set of these preferred sys-

tem states is called einselection (environmentally induced

selection).

What determines, which states are pointer states? Why

is this one axis of the Bloch sphere singled out? The cell

polarization is an observable corresponding to the operator

FIG. 5. Bit stabilization in a system dominated by the environmental interac-

tion. The system cell polarization is shown as a function of time for

the same three initial conditions as those for the isolated system shown

in Figures 3 and 4. In this case, however, there are N¼ 8 randomly posi-

tioned and oriented environmental cells distributed on a sphere of radius

R¼ 3.375 a (a is the interdot distance). Plotting just the polarization masks

much of the underlying behavior, however. Figure 6 represents the same

temporal evolution as in this calculation, but displays the coherence vector

of the system.

FIG. 6. Time evolution of the system coherence vector~k when the environ-

mental interaction dominates. This is the same calculation, with the same

three initial states (P¼ 1, 0.866, and 0.5) as is shown in Figure 5. The envi-

ronment consists of N¼ 8 cells on a sphere of radius R¼ 3.365 a. The sys-

tem cell’s time evolution is indicated by the curve traced out by the tip of

the coherence vector in time. Here, the cell maintains constant polarization

(the bit is stabilized with constant k3), but quantum coherence is destroyed

as coherence vector components k1 and k2 decay to zero. This corresponds

to the decay of the off-diagonal elements of the reduced density matrix q̂r
S .

The system þ environment remains in a pure state undergoing unitary evolu-

tion. The k̂3 axis is the locus of Zurek pointer states. Decoherence drives the

system into the classical subspace of these pointer states.

FIG. 7. Decoherence of the system due to interaction with the environment.

The double-dot system cell here initially is in an unpolarized (k3 ¼ 0) but

fully coherent state. Interaction with the environment causes the k1 and k2

components to decay, though not monotonically. The environment here is

the same as for the simulations shown in Figures 5 and 6 (N¼ 8 and

R¼ 3.365 a).
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P̂ ¼ ÎE � fk̂3gS ; (36)

in the full system þ environment Hilbert space. This observ-

able commutes with the interaction Hamiltonian.

½P̂; ĤSE� ¼ 0: (37)

The interaction Hamiltonian will therefore leave states in

this subspace unaltered. This is a fundamental insight of

Zurek’s decoherence theory—the eigenspace of operators

which commute with the interaction Hamiltonian are einse-

lected for local survival by the environment. Other states

decohere rapidly, which means they become entangled with

the environment and cannot be represented by local quantum

information.

This is decoherence, not measurement. Figure 6 might

suggest “projection,” but in reality there is no projective

measurement happening here, just unitary evolution of the

whole system þ environment. The overall state remains a

single coherent state. Decoherence explains why the pointer

state subspace is selected, but not why a specific value (of

position, say) would be the result of a particular measure-

ment event. The probabilities remain, describing potential

outcomes of measurements. Decoherence does not solve the

“measurement problem” of quantum mechanics—why a par-

ticular outcome occurs in a specific measurement and other

possible outcomes do not.

B. Entropy and information

We directly calculate the von Neumann entropy of the

system from the reduced density matrix using Eq. (28). We

also calculate the reduced density matrix of the environment

at each point in time, and find the corresponding entropy.

The von Neumann entropy, calculated from the complete

density matrix q̂ðtÞ, of the entire system þ environment is

always zero.

If the system is initially fully polarized (P ¼ k3 ¼ 1),

then the interaction with the environment has no effect: the

coherence vector remains on the k̂3 axis and there is no

change in the entropy.

The other limit is more interesting. Suppose, the system

is initially on the ~k3 ¼ 0 circle (the equator of the Bloch

sphere). In this case, there is no QCA bit information in the

system; it is in the QCA “null” state. The system neverthe-

less holds local quantum information in its quantum state.

This information entangles with the environment and is

lost to the system under unitary evolution of the system þ
environment.

Figure 9 shows three quantum information measures

evolving in time due to the interaction of the system with the

environment: the system entropy SSðtÞ, the environment en-

tropy SEðtÞ, and the quantum mutual information ISEðtÞ. The

system is initially in the~k ¼ k̂1 state. Both system and envi-

ronment start in coherent states with zero entropy, i.e., no in-

formation is missing from the local description provided by

the reduced density matrix. The quantum mutual information

is initially zero because the system and environment are

unentangled. As the system interacts with the environment

and becomes entangled with it, one bit of local information

goes missing from the system and so the system entropy rises

to one bit. Similarly, local information is lost from the envi-

ronment and the environmental entropy climbs accordingly

(in a bipartite system, these must mirror each other19). These

two bits missing locally from the system and environment

are manifest in the entanglement of the system with the envi-

ronment in the form of the quantum mutual information,

which rises to two bits. There is no information missing from

the system þ environment taken as a whole, so its entropy

remains zero throughout.

We emphasize that QCA bit information is different

from quantum information and is unaffected by decoherence

in this case. The cell polarization is preserved as decoher-

ence drives the system into the pointer states. This is because

the pointer states are precisely those which encode QCA

information.

FIG. 8. Decoherence of the environment cells. Just as the system cell under-

goes decoherence, so do the environment cells. For the same time evolution

shown in Figure 7, the k2 and k3 components of the N¼ 8 environment cells

are shown as functions of time. The somewhat slower decoherence of the

environment cells, compared to the system cell, is due to the fact that in this

model geometry, environmental cells have fewer close neighbors than the

system cell (see Figure 1). The system þ environment remains in a pure

state throughout.

FIG. 9. The loss of local information from the system cell and the environ-

ment. The entropy and quantum mutual information are shown for the same

temporal evolution as described in Figures 7 and 8. The system cell is ini-

tially unpolarized with ~kðt ¼ 0Þ ¼ k̂1. The system þ environment evolves

under the Hamiltonian of Eq. (33), causing decoherence in both the system

and the environment. The von Neumann entropy of the system SS and

the entropy of the environment SE both increase as entanglement and deco-

herence proceed. One bit of local quantum information goes missing

from the system S and one bit goes missing from the environment E.

Correspondingly, two bits are manifested in the entanglement between S
and E in the form of quantum mutual information ISE .
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V. THE GENERAL CASE: SYSTEM DYNAMICS
COMPETE WITH ENVIRONMENTAL INTERACTIONS

We consider the more general case where both internal

dynamics and coupling to the environment play a role. The

Hamiltonian, given by Eq. (10), includes tunneling between

the system cell dots, Coulomb interaction with environmen-

tal cells, and the Coulomb coupling between environmental

cells. As in the previous two cases, the environmental cells

have no net charge or electric dipole moment, and have no

internal dynamics.

A. Dynamics

The relative strength of the internal dynamics and the

environmental coupling can be quantified by the ratio of the

characteristic times, or equivalently, the ratio of energies.

We define this ratio as follows:

v � s
se
¼ Eflip

e

2cS
: (38)

The isolated system considered in Sec. III corresponds to

v ¼ 0, while the system which is completely dominated by

environmental interactions, as in Sec. IV, has v ¼ 1. In this

section, we consider finite values of v > 0.

The effect of entanglement with even a one-cell envi-

ronment is striking. Figure 10 shows the polarization as a

function of time for a system cell in the presence of one envi-

ronmental cell at R/a¼ 1.5. The entanglement suppresses the

Rabi oscillations, so that the polarization does not change

sign, which is important for QCA operation.

A larger environment (N¼ 8) stabilizes the oscillations

more, as shown in Figure 11 for several initial polarizations.

The corresponding evolution of the coherence vector is

shown in Figure 12. These are to be compared with Figures

3 and 4, for the case of an isolated cell, and Figures 5 and 6,

for the case of a cell with only environmental decoherence

and no internal dynamics. In the present intermediate case,

the system cell substantially decoheres, but not completely,

with some small coherent oscillations continuing indefinitely.

The coherence vector in this case moves rapidly off the Bloch

sphere, in a time characterized by se, and approaches the k̂3

axis, but does not go all the way to the axis.

The strength of the interaction between the system cell

and the environment varies as the radius R changes. Figure

13 shows the system polarization for various values of R.

The ratio v varies from v ¼ 0:12 for R/a¼ 7.6, the weakest

interaction shown, to v ¼ 11:5 for R/a¼ 1.5, the strongest

interaction. It is clear that the stronger the interaction, the

more the polarization is stabilized and Rabi oscillations are

suppressed.

Figure 14 shows the magnitude of the effect of variations

in the specific orientational configuration of the environment,

FIG. 10. Bit stabilization for a system cell in a minimal environment. In the

presence of a single environment cell, Rabi oscillations in the system cell

are sufficiently reduced that the polarization maintains its sign, and thus the

QCA bit is stabilized. In this case, the environment cell is aligned with the

system cell at R¼ 1.5 a, for which v ¼ 1:54. The polarization of the system

cell in isolation, with only internal system dynamics, is also shown (green

dashed trace) for comparison.

FIG. 11. Competition between Rabi oscillations due to internal dynamics

and environmental decoherence. An N¼ 8 cell environment with R¼ 3.38 a
causes the system cell to partially decohere, but with residual oscillations.

This plot of the system cell polarization for several different initial values,

can be compared to Figure 3, which shows the case of no environment

(v ¼ 0), and Figure 5 for the case of a dominant environment (v ¼ 1).

Here, the situation is intermediate with v ¼ 1:2. The effect of environmental

decoherence is to stabilize the QCA bit value represented by the sign of the

polarization.

FIG. 12. The time evolution of the coherence vector for the case when envi-

ronmental decoherence competes with system-driven oscillations. The co-

herence vector, shown here for three different initial states, quickly moves

off the surface of the Bloch sphere and toward the k̂3 axis. The long-term

behavior retains some oscillatory character and, in contrast with the environ-

mentally dominant case shown in Figure 6, the coherence vector is not

driven completely to the pointer states on the axis. The environment consists

of N¼ 8 cells randomly arranged and randomly oriented on a sphere of ra-

dius R¼ 3.38 a, yielding a ratio v ¼ 1:2.
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and Figure 15 shows the polarization for a larger environ-

ment, here with N¼ 26 cells. More cells also means, of

course, a stronger total coupling between the system and the

environment. Calculating the response with this many cells is

only tractable using the analytic results of the Appendix.

B. Pointer states

For strong environmental decoherence (large v), we

have seen that the system is driven into the subspace of

pointer states, which here are along the k̂3 axis. We can see

how as v decreases, the system smoothly transitions from

this behavior to regular oscillatory motion, when the internal

system dynamics dominate, by examining the long-time limit

of the coherence vector motion. An analytic expression,

Eq. (A16), for the time dependence of the coherence vector

in this general case is derived in the Appendix. At long

times, the motion oscillates around a point in the k̂1—k̂3

plane, which depends on the initial value of~k.

The locus of these limit points changes when v changes,

as shown in Figure 16. Note that the lines in the figure show

FIG. 13. Effect of varying the coupling to the environment. Bit stabilization

weakens as the system-environment interaction is reduced by extending the

radius R of the eight-cell (N¼ 8) sphere of environmental cells (see Figure

1). Rabi oscillations becomes the dominant feature of system cell dynamics.

On the other hand, as R is reduced, bit stabilization improves, with a higher

asymptotic value and reduced fluctuation. This is the limit where system-

environment interactions dominate internal system dynamics and approaches

the situation shown in Figure 5.

FIG. 14. Effect of the random configuration of the environment cells. The

ten individual black traces each show the time-varying polarization of a

system cell interacting with an eight-cell environment (N¼ 8) of radius

R¼ 2.95 a (v ¼ 3:94) for a random configuration of ten environment cells.

The red trace is the average of these.

FIG. 15. Calculated polarization for a large environment. The time-varying

polarization for a system interacting with an environment composed of

N¼ 26 cells around a radius R¼ 2.75 a yielding v ¼ 4:5. This result is cal-

culated using the analytical results of Eq. (A16).

FIG. 16. Dependence of asymptotic value upon the relative influence of in-

ternal system dynamics and system-environmental interaction. Asymptotic

values of k1 and k3 are plotted for various system cell initial conditions of

the form~kð0Þ ¼ ðk1;o; 0; k3;oÞ. Initial states are marked by a blue open circle,

and all start on the Bloch sphere (black circle). Asymptotic states are

denoted by a red dot, with each linked by a blue line to its initial state. This

illustrates only the connection between the initial state and the asymptotic

state—not the full temporal evolution. In the limit of dominant system-

environmental interaction (v!1), asymptotic values lie on the k3 axis,

with k3 as a constant of motion, yielding perfect environmental bit stabiliza-

tion. In the limit of dominant system internal dynamics v! 0, the k1 system

degree of freedom is a constant of motion as the system undergoes Rabi os-

cillation about the k1 axis.

124302-10 E. P. Blair and C. S. Lent J. Appl. Phys. 113, 124302 (2013)

Downloaded 08 Apr 2013 to 129.74.250.206. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



the association of each limit point with the initial ~k value,

but do not represent the actual evolution of ~k. For large v,

the limit points are very near the k̂3 axis, and are approached

rapidly as the system decoheres and oscillations become

small. These states represent the classical pointer states. As

the environmental coupling v decreases, the limit points

move away from the k̂3 axis and oscillatory behavior

emerges. For very small v, the limit points are near the k̂1

axis and the motion becomes dominated by Rabi oscillations

in planes perpendicular to the k̂1 axis, approaching the iso-

lated system limit shown in Figure 3.

C. Entropy and information

We examine again the loss of local quantum information

that accompanies decoherence. As in the case shown in

Figure 9, we examine the situation when the cell polarization

is initially zero and ~kðt ¼ 0Þ ¼ k̂1. Figure 17 shows the

movement of information out of local degrees of freedom in

the system and into the entanglement with the environment.

The missing local information, quantified by the system en-

tropy, increases as a result of environmental interaction on a

time-scale determined by se. As in the previous case, the

information missing from the local system (the system

entropy) is exactly equal to that missing from the environ-

ment (the environmental entropy). The net missing local in-

formation shows up in the quantum mutual information,

which captures information which resides in neither system

nor environment, but rather in the entanglement between

the system and the environment. The effect of the competi-

tion between environmental decoherence and local system

dynamics is seen in that the entropy does not increase to a

full bit, and there are non-monotonic mini-revivals when the

information of entanglement briefly returns to the system.

VI. A LARGER SYSTEM: THE FOUR-DOT CELL

A. Geometry and polarization

In actual QCA circuits information is rarely held in a

single cell, but rather in QCA bit packets comprised of sev-

eral cells.20 We here consider the simplest extension in that

direction—a four-dot cell composed of two parallel double-

dot cells with the four dots forming a square, as shown in

Figure 18. The QCA information is now distributed over two

cells.

The polarization of the four-dot cell is defined in terms

of the projection operators onto each of the four dots.

P̂ ¼ P̂2 þ P̂3 � P̂1 � P̂4

P̂1 þ P̂2 þ P̂3 þ P̂4

: (39)

Here

P̂1 ¼ j1Lih1Lj � 1̂
R
;

P̂2 ¼ j0Lih0Lj � 1̂
R
;

P̂3 ¼ 1̂
L � j1Rih1Rj ; and

P̂4 ¼ 1̂
L � j0Rih0Rj :

(40)

The operator P̂ acts in the four-dimensional Hilbert space of

the density matrix q̂S (or reduced density matrix q̂r
S) of the

four-dot cell. The cell polarization is proportional to the elec-

tric quadrupole moment around the cell center. The

Coulomb interaction favors alignment of neighboring four-

dot cells with the same polarization.

B. Internal system dynamics

For an identical coupling between dots, the four-dot cell

in isolation exhibits Rabi oscillations with a longer period

than the two-dot cell. Figure 19 compares the polarization

oscillations for an initially fully polarized four-dot and two-

dot cell.

The longer Rabi oscillation period is due to a higher

effective kinetic barrier between the two polarization states.

To switch from a P¼ 1 state to the energetically degenerate

P¼�1 state, the four-dot cell must go through a higher-

FIG. 17. Loss of local information from the system cell and the environment

for the situation where local dynamics and decoherence are competing with

each other. As was the case shown in Figure 9, the system interacts with the

environment and they become entangled, with a resulting loss of local infor-

mation. Here, the value of the ratio v, which quantifies the relative strengths

of the internal dynamics and system-environment interaction (Eq. (38)), has

the value 1.26; for the situation shown in Figure 9, v is infinite. There is an

increase in the system entropy SS and the environmental entropy SE , which

each express the amount of missing local information. This information

appears in the entanglement of the system with the environment, represented

by the quantum mutual information ISE . The result of the non-zero local dy-

namics is that somewhat less than one full bit of local quantum information

goes missing from both the system and the environment. In the limit, where

v ¼ 0, i.e., no coupling to the environment, no information would leave the

system, resulting in a constant SS ¼ SE ¼ 0. Here, brief mini-revivals are

also evident, when information returns from the entanglement to the local

systems. The entropy of the full system þ environment is always zero.

FIG. 18. Four-dot QCA cell. A four-dot QCA cell is comprised of two paral-

lel two-dot cells. The four dots form a square, and they are numbered 1–4

for reference, with individual two-dot cells labeled “L” and “R”.
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energy “kink” state in which both mobile electrons are on

the top (or bottom) of the cell.

This enhanced kinetic barrier for switching is a general

feature of longer multicell bit packets as well. For example,

for a packet composed of four four-dot cells to switch from

[þ1, þ1, þ1, þ1] to [�1, �1, �1, �1] (labeling cell by its

polarization) it must go through intermediate states such as

½þ1;þ1;þ1;þ1� ! ½�1;þ1;þ1;þ1� ! ½�1;�1;þ1;þ1�
! ½�1;�1;�1;þ1� ! ½�1;�1;�1;�1�:

The three intermediate states have higher energy than the ini-

tial or final states. The longer the bit packet, the “wider” is

the effective kinetic barrier to switching, and the longer is

the corresponding Rabi oscillation time. This longer charac-

teristic oscillation time has as a consequence that environ-

mental decoherence will have more time in which to drive

the system into the subspace of pointer states.

C. System internal dynamics in competition
with the system-environment interaction

We compare the effect of the environment, as modeled

in Sec. II, on the four-dot and two-dot QCA cells. Figure 20

shows the effect of an identical environmental configuration,

with N¼ 7, R/a¼ 3.375, v ¼ 1:26, on initially–fully polar-

ized four-dot and two-dot cells. The cell interdot tunneling

energies, defined by Eq. (2), are identical for both cells. The

Rabi oscillations for the four-dot cell are clearly more sup-

pressed by interaction with the environment than for the

two-dot cell.

The enhanced environmental bit stabilization for the

larger system can be understood as a consequence of the in-

herent bistability of the two (or more) electron system. This

bistability plays the role in QCA circuits that voltage gain

plays in conventional devices. (Power gain is a feature of

clocked QCA system, see Ref. 21).

The decoherence paradigm provides another view on

the enhanced stability: the fragility of quantum information

in extended systems. The larger four-dot system has more

ways to interact with the environment and entanglement is

more effective at removing local quantum information than

for the smaller system. Figure 21 shows the system entropy

(missing information) in the two and four-dot systems with

identical environments, shown here, as with Figure 17, for

initially unpolarized cells. Of course, the larger system has

more quantum information: two bits rather than one. More

important to note is that (a) the quantum information is lost

from the system faster in the four-dot cell and (b) it stays

lost more completely, showing smaller signs of quantum

revivals.

Figure 22 shows a comparison of another measure of

decoherence, the system purity. The four-dot cell has a mini-

mum purity of 1/4 and the two-dot cell has a minimum purity

of 1/2. Decoherence drives the larger system to its minimal

purity and keeps it very close to that.

FIG. 19. Slower internal system dynamics of a four-dot cell. Rabi oscilla-

tions in the cell polarization of a two-dot cell is compared with those of a

four-dot cell comprised of identical two-dot cells. Both systems have the

same interdot tunneling energy. The Rabi oscillation period s of the two-dot

cell provides the time scale. The slower intrinsic response of the larger sys-

tem is due to the additional kinetic barrier for switching.

FIG. 20. Enhanced bit stabilization in a four-dot cell. The polarization as a

function of time is shown for both a two-dot cell and four dot cell with the

same inter-dot tunneling dynamics. Each is allowed to interact with an iden-

tical seven-cell environment with v ¼ 1:26. Decoherence with the environ-

ment is more effective at stabilizing the larger system against coherent Rabi

oscillations.

FIG. 21. System entropy of a decohering four-dot cell compared with a two-

dot cell. The four-dot cell and the two-dot cell interact with identical envi-

ronments and have the same interdot tunneling energy c. The von Neumann

entropy of the four-dot cell rises faster and saturates more closely to its max-

imum entropy value (two bits) than does the two-dot cell, which has a maxi-

mum entropy of one bit.
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VII. DISCUSSION

Quantum information is inherently fragile. By quantum

information, we here mean of course, quantum information

local to the system. In most quantum computing approaches,

maintaining quantum coherence throughout the system is de-

sirable. The fragility of quantum information is due to the

fact that any interaction with the environment can result in a

loss of system coherence.

Loss of coherence in the system is the entanglement of

the system with environmental degrees of freedom. As a

result of this entanglement, though the system þ environ-

ment together maintain a unitary time evolution, the best

local description of the system itself, the reduced density ma-

trix, looses quantum information. This information loss is

quantified by in an increase in the Von Neumann entropy of

the system measured in bits; the entropy is the amount of in-

formation that is missing locally. In our model, we see that

missing information showing up in the quantum mutual in-

formation between the system and environment.

The QCA approach is less ambitious than quantum com-

puting and seeks to encode only classical bit information in

the system. Quantum mechanical tunneling is crucial for the

time evolution of QCA circuits, but the bit information itself

is encoded in the sign of the cell polarization, a classical

degree of freedom. In this context Rabi oscillations, which

can flip the sign of the polarization, are a good thing for

quantum computing—they show that system coherence is

being preserved—but are problematic for QCA because they

can cause a loss of QCA information. Von Neumann entropy

measures the degree to which quantum, not QCA informa-

tion, has gone missing.

Decoherence, which is deadly for quantum computing,

is revealed to be a friend to QCA. We have seen (Figure 10)

that even a single environmental cell can suppress Rabi

oscillations and stabilize QCA bit information. Larger envi-

ronments provide even more stabilization (Figure 15). The

interaction with the environment tends to drive the system

into the Zurek pointer states. For QCA, the pointer states are

precisely the information-encoding states of definite polar-

ization. The fundamental reason for this is that QCA

encodes information in the spatial position of particles. The

Coulombic interaction Hamiltonian with charges in the envi-

ronment is a function of the position operator, so position

eigenstates are einselected by this interaction and become

the pointer state subspace. (Other environmental interactions

are possible, of course, but here the Coulomb interaction

dominates.)

To assess the exact balance between internal dynam-

ics—which produces oscillations—and decoherence requires

a knowledge of v from the specifics of the environment. It is

nevertheless clear that coherence is very difficult to maintain

(a fact well known in quantum computing) and that the effect

of decoherence is to stabilize QCA-encoded bits. As the sys-

tem becomes larger, as in a multi-cell bit packet, the stability

increases, as shown in Figure 20.

We have explored the limits of complete isolation (v ¼ 0),

domination by environmental decoherence (v ¼ 1), and com-

petition between the internal system dynamics with intermedi-

ate values of v. An environment at non-zero temperature would

cause even more rapid decoherence. We have not here exam-

ined the situation where the environment can exchange not

only information, but also energy, with the system. This has

been done using small cellular models,21 phenomenological

models,22 and correlation expansions of Mahler.16,23 The pres-

ent discussion has also not included clocked QCA cells and

memories. These remain for future work.
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APPENDIX: THE DEVELOPMENT OF ALGEBRAIC
EXPRESSIONS FOR THE EVOLUTION OF THE
SYSTEM CELL’S COHERENCE VECTOR

An analytic form for the evolution of the system cell’s

coherence vector will allow us to calculate the dynamics of a

system cell in interaction with an environment larger than

practicable for simulation on currently available resources,

and it allows the determination of the center of motion of the

system cell’s coherence vector. To this end, we outline the

algebra behind the development of expressions for the dy-

namics of the system cell’s coherence vector. We perform

this analysis in two regimes: first, in the limit of dominant

system-environment interaction over system internal dynam-

ics (cS ¼ 0), resulting in perfect bit stabilization; and, sec-

ond, in the regime where system internal dynamics competes

with system-environment interaction to determine the time

variance of the system cell’s coherence vector. In each case,

we assume a unicellular system cell with a two-cell environ-

ment, since this three-cell system-environment composite pro-

vides the generality of an N-cell environment (here, N¼ 2)

with minimal algebraic complexity. The environmental cells

FIG. 22. Quantum purity of a decohering four-dot cell compared with a two-

dot cell. The four-dot cell and the two-dot cell interact with identical envi-

ronments and have identical interdot tunneling energies. The larger four-dot

cell’s quantum purity falls faster and settles more closely to its minimum pu-

rity value (�min ¼ 0:25, dashed and dotted red line) than does the two-dot

cell’s purity (�min ¼ 0:5, dashed red line), indicating a more rapid and more

complete decoherence for the four-dot cell than for the two-dot cell.
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will be fixed in a depolarized state to provide a minimal,

charge-neutral environment having several quantum degrees

of freedom with which the system may entangle.

For both regimes as discussed above, the same basis is

used, and the first two steps are identical. We first describe

the basis for the calculation. Then, we list the equation of

motion, establish the initial condition, and finally show the

analytic form for the system cell’s coherence vector obtained

from both Mathematica
VR

and direct analysis.

1. Basis kets

We use as the basis kets jwi those kets formed by taking

the direct product of the various combinations of computa-

tional basis kets fj0i; j1ig for the individual cells. The basis

kets for the individual cells are states in which the cell’s

single mobile electron is completely localized to dot m
(m 2 f0; 1g): BS ¼ fj0Si; j1Sig in the Hilbert space of the

system; and BE1 ¼ fj0E1i; j1E1ig and BE2 ¼ fj0E2i; j1E2ig in the

respective Hilbert spaces of the two environment cells,

numbered 1 and 2. Our ordered basis B for simulating the

coherent evolution of the three-cell composite, then, is

B ¼ fjwm0;~mp
ig, where m0 identifies a computational basis

state for the system, and ~mp ¼ ½m1;m2�, with mk 2 f0; 1g,
specifies an environmental basis state

~mp ¼ ½m1;m2� $ jðm2ÞE2ijðm1ÞE1i: (A1)

Here, we use the shorthand notation jaijbi for the direct

product jai � jbi. The subscript p 2 f1; 2;…;NEg assigns a

counting number to each of the NE ¼ 2N environmental basis

states. For our three-cell composite, the basis kets of B take

the form

jw0;½0;0�i ¼ j0E2ij0E1ij0Si ðp ¼ 1Þ;
jw1;½0;0�i ¼ j0E2ij0E1ij1Si ðp ¼ 1Þ;
jw0;½1;0�i ¼ j0E2ij1E1ij0Si ðp ¼ 2Þ;

�

jw1;½1;1�i ¼ j1E2ij1E1ij1Si ðp ¼ 4Þ:

(A2)

2. Equation of motion

The quantum Liouville equation is the equation of

motion for the density matrix q̂ðtÞ of the system-

environment composite

q̂ðtÞ ¼ e�
i
�hĤ tq̂ð0Þeþ i

�hĤ t: (A3)

3. Initial condition

As a next step, we establish the initial condition. The

most general initial coherence vector~k
Sð0Þ is chosen for the

system

~k
Sð0Þ ¼ ½kS1 ð0Þ; kS2 ð0Þ; kS3 ð0Þ�; (A4)

and depolarized coherence vectors are chosen for environ-

mental cells 1 and 2

~k
E;1ð0Þ ¼ ½kE;11 ð0Þ; k

E;1
2 ð0Þ; 0�;

~k
E;2ð0Þ ¼ ½kE;21 ð0Þ; k

E;2
2 ð0Þ; 0�:

(A5)

The corresponding initial cellular density matrices q̂Sð0Þ,
q̂E;1ð0Þ, and q̂E;2ð0Þ may be constructed from the coherence

vectors ~k
Sð0Þ;~kE;1ð0Þ, ~kE;2ð0Þ, and a symbolic form of the

initial density matrix q̂ð0Þ for the system-environment com-

posite is obtained by taking the following direct product

q̂ð0Þ ¼ q̂E;2ð0Þ � q̂E;1ð0Þ � q̂Sð0Þ: (A6)

In the derivation of an algebraic result, one must be careful

with the mechanics: the order of the direct product must be

consistent with the ordered basis B, and this order must be

kept in mind when constructing the Hamiltonian Ĥ .

4. Hamiltonian

Next, we construct the Hamiltonian matrix Ĥ in the B
representation. The different dynamics between the system-

environment-interaction-dominated case (v!1) and the

system-internal-dynamic-dominated case (v! 0) demands a

different Ĥ for each case. In both cases, however, our

Hamiltonian is an 8� 8 matrix, with rows and columns each

corresponding to a unique m0; ~mp pairing

Row or Column 1$ m0 ¼ 0; ~mp ¼ ½0; 0�;
Row or Column 2$ m0 ¼ 1; ~mp ¼ ½0; 0�;
Row or Column 3$ m0 ¼ 0; ~mp ¼ ½1; 0�;

�

Row or Column 8$ m0 ¼ 1; ~mp ¼ ½1; 1�:

(A7)

5. System-environment interaction dominates system
internal dynamics

We implement the case where system-environment

interaction dominates by setting cS ¼ 0. This disables

switching by inter-dot tunneling in the system cell; and by

design, switching is prohibited in environmental cells. Thus,

there is no coupling between basis states in the evolution of

this system-environment composite, and all off-diagonal

terms of Ĥ are zero. The diagonal terms, however, are non-

trivial, and they correspond to electrostatic potential energy

of the array of molecules—both system and environmen-

tal—in the states as given by the subscripting label m0; ~mp of

each diagonal term. Thus, the Hamiltonian in the B represen-

tation takes the diagonal form

Ĥ ¼

E0;½0;0�
E1;½0;0�

. .
.

E1;½1;1�

2
6664

3
7775: (A8)

Next, we calculate the full density matrix q̂ðtÞ for the

system-environment composite using Eq. (A3) with the sym-

bolic forms Ĥ and q̂ð0Þ in Eqs. (A8) and (A6), respectively.
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Then, we calculate the system cell’s reduced density matrix

q̂r
SðtÞ by summing over the NE degrees of freedom ~mp of the

environment

½q̂r
SðtÞ�mo;m0o

¼
XNE
p¼1

½q̂ðtÞ�p;p;m0;m00
: (A9)

More explicitly, q̂r
SðtÞ is found element-wise from the ele-

ments of q̂ðtÞ:

½q̂r
SðtÞ�1;1 ¼ ½q̂ðtÞ�1;1 þ ½q̂ðtÞ�3;3 þ ½q̂ðtÞ�5;5 þ ½q̂ðtÞ�7;7;
½q̂r
SðtÞ�1;2 ¼ ½q̂ðtÞ�1;2 þ ½q̂ðtÞ�3;4 þ ½q̂ðtÞ�5;6 þ ½q̂ðtÞ�7;8;
½q̂r
SðtÞ�2;1 ¼ ½q̂ðtÞ�2;1 þ ½q̂ðtÞ�4;3 þ ½q̂ðtÞ�6;5 þ ½q̂ðtÞ�8;7;
½q̂r
SðtÞ�2;2 ¼ ½q̂ðtÞ�2;2 þ ½q̂ðtÞ�4;4 þ ½q̂ðtÞ�6;6 þ ½q̂ðtÞ�8;8:

(A10)

Here, counting number indices are used for element

subscripting.

Finally, we calculate the components of the coherence

vector using the elements of the system cell’s reduced den-

sity matrix

kS1 ðtÞ ¼ ½q̂r
SðtÞ�2;1 þ ½q̂

r
SðtÞ�1;2;

kS2 ðtÞ ¼
½q̂r
SðtÞ�2;1 � ½q̂

r
SðtÞ�1;2

i
;

kS3 ðtÞ ¼ ½q̂r
SðtÞ�1;1 � ½q̂r

SðtÞ�2;2:

(A11)

Direct algebraic analysis of Mathematica
VR

output from code

implementing Eqs. (A3)–(A11) yields an expression in terms

of the differences E1;~mp
� E0;~mp

. We recognize this as the

energy Eflip
~mp

required to flip the system bit from “0” to “1”

while the environment maintains the state given by ~mp

Eflip
~mp
� E1;~mp

� E0;~mp
: (A12)

Thus, our algebraic result for the components of system

cell’s time evolution when system-environment interaction

dominates system internal dynamics is

kS1 ðtÞ ¼ kS1 ð0Þf ðtÞ;
kS2 ðtÞ ¼ kS2 ð0Þf ðtÞ; and

kS3 ðtÞ ¼ kS3 ð0Þ;
(A13)

where

f ðtÞ ¼ 1

NE

XNE
p¼1

cos
Eflip
~mp

�h
t

 !
: (A14)

6. System internal dynamics competes
with system-environment interaction

Now we repeat our analysis, which differs from the case

given in Section A.5 by the construction of the Hamiltonian

Ĥ . Previously, we set the system cell’s tunneling energy cS
to zero to allow system-environment interaction to dominate

system internal dynamics in driving overall dynamics. Now,

we have a finite cS , and this manifests itself in coupling com-

posite states with the same environmental state, but different

system states. This results in a Hamiltonian with the form

Ĥ ¼

E0;½0;0� �cS
�cS E1;½0;0�

. .
.

E0;½1;1� �cS
�cS E1;½1;1�

2
666664

3
777775: (A15)

With the Hamiltonian in this form, we implement Eqs.

(A3)–(A11) with Eq. (A15) in lieu of Eq. (A8) in

Mathematica
VR

and simplify the output corresponding to Eq.

(A11) by direct algebraic analysis to yield

kS1 ðtÞ ¼
kS1 ð0Þ

NE

XNE
p¼1

4c2
S þ ðE

flip
~mp
Þ2cos

�~mp

�h
t

	 

�2
~mp

;

kS2 ðtÞ ¼
kS2 ð0Þ

NE

XNE
p¼1

cos
�~mp

�h
t

	 

þ � � �

þ kS3 ð0Þ
NE

XNE
p¼1

2cS
�~mp

sin
�~mp

�h
t

	 

; and

kS3 ðtÞ ¼�
kS2 ð0Þ

NE

XNE
p¼1

2cS
�~mp

sin
�~mp

�h
t

	 

þ � � �

þ kS3 ð0Þ
NE

XNE
p¼1

4c2
Scos

�~mp

�h
t

	 

þ ðEflip

~mp
Þ2

�2
~mp

;

(A16)

where

�~mp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2
S þ ðE

flip
~mp
Þ2

q
: (A17)

Equations (A16) and (A17) are a more general case of Eq.

(A13), which may be obtained from Eqs. (A16) and (A17) in

the limit of small cS .

FIG. 23. Exact agreement between calculated polarization and simulated

polarization for a target cell in an eight-cell environment. We used Eq.

(A16) to calculate the evolution of the system cell’s coherence vector (green

line). This matches perfectly with the polarization obtained from full simula-

tion of the system-environment composite (blue circles).
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7. Calculations using Eq. (A16)

Now we show, the accuracy of Eq. (A16) in Figure 23,

which provides a comparison between the results of the full

coherent simulation of the system-environment composite

and the calculated results using this equation. The agreement

is exact.

Figure 15, which provides a polarization trace for a sys-

tem cell interacting with an 26-cell environment (N¼ 26),

is a demonstration of the power of this equation. A full sim-

ulation of this size would require 262, 144 TB of memory

to store q̂ðtÞ alone, but a calculation of ~k
SðtÞ based on Eq.

(A16) is quite feasible.
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