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1 Elecrto-Weak Coupling

The weak coupling of bound atomic electrons to the nucleus through the
exchange of Zy bosons is primarily responsible for parity nonconservation
(PNC) in atoms. The PNC part of the electron-nucleus interaction Hamil-
tonian splits into two parts, HY) = A.Vy from the product of axial-vector
electron A, and vector nucleon Vy currents, and H® from the product of
vector electron V. and axial-vector nucleon Apn currents. These contribu-
tions are given in terms of electron and nucleon field operators as [1]

G _ _ —_
HY = E(wemwe)Z[clp (Upin" i) + cin (Gniy"vni) |, (1)

H(2) = % (’(Z)e’yuwe) Z [Cgp (’(/jpi')/u’}/i’)wpi) + con ((J}nz’y”fyk’)wnz)] ) (2)
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where the Standard-model coupling constants are

cip= 5 (1—4sin?fy) ~ 0.038, (3)
Cin = _%’ (4)
cop = +ga(l—4sin?0y) ~0.047, (5)
Con = —%gA (1 — 4sin2 QW) ~ —0.047. (6)

In the above, ga ~ 1.25 is a scale factor for the partially conserved axial
current Ay taken from p. 173 of Ref. [1]. The presently accepted value of
Weinberg’s angle is sin? fy = 0.23124(24).



1.1 Nonrelativistic Reduction
1.1.1 Reduction of HW

We assume that the nucleons are nonrelativistic and replace the nucleon
vector currents in Eq. (1) by

(Vp7"hp) = Bldpdu0  and  (PnVhn) — Bfdn o,

where ¢, and ¢,, are nonrelativistic field operators. From this we extract an
“effective” Hamiltonian to be used in the electron sector, namely

1 G
Hygl = 57595 (22 1p () + 2N 10 pu(r)] 7)

In this expression, p,(r) and p,(r) proton and neutron density functions
normalized to 1, and Z and N are proton and neutron numbers of the
nucleus. Assuming p,(r) = pp(r) = p(r), we may rewrite the effective
Hamiltonian as

G
H = Wk Qu p(r), (8)

where we have introduced the weak charge ., defined by
Quw=1[2Zcip+2Ncip|=—-N+Z (1 —4sin29w) )

The Dirac matrix 5 in the effective Hamiltonian (8) is
(0 I
=71 0 )

The nonrelativistic approximation for the nucleon axial currents in Eq. (2)
is

1.1.2 Reduction of H®?

((‘Z}pfyuf}%wp) - ¢]T30'i¢p 5m' and (&n’yuwn) - ¢LUz¢n 5m’~

The corresponding effective Hamiltonian in the electron sector is obtained
from

Y — _% o [ey (6o, )+ (ol 0on )], (9)



where (---) notation designates nuclear matrix elements. Typically, only a

few unpaired valence nucleons contribute to this interaction, so the size of

the H®) contribution is smaller than that from H® by a factor of ~ 1/Z.
Let us examine the angular part of the nuclear matrix element <¢T a'gb>

for the case of a single nucleon outside closed shells. We can write
M’

T R L A A L

It is also true that
M’

(IM'|L|IM) = /T(T + 1)(2] + 1)- £ . (11)

IM

We can therefore replace matrix elements of o, by suitable scaled matrix
elements of I,,. Specifically,

Ulloll 1) - _ {loll])

= . 12
T mn T Td s nelan (12)
For the single valence nucleon case,
(olt) _ [o@I+D) ppapf 1T 1Y
(I|H]1) I(I+1) 1/2 1/2 L
I+1
= —m fOI‘L—I—l/Q (14)
I
= m fOFL—I+1/2 (15)
_ k—1/2
= 0+ (16)

where k = F(I +1/2) for I = L +1/2. Combining this with Eq.(9), we
obtain for case of a nucleus with one valence nucleon:
@2 G k—-1/2
Hy = TAITED Y I [c2p ppo(T) + c2n pro(r)] (17)
where pp,(r) or pp,(r) are the valence nucleon density functions. In our
previous notation, we used Ky = cg, for a valence proton or Ky = ¢, for a
valence neutron and let p,(r) be the associated density, then

G k—1/2

2 __5= Bl

(18)



1.1.3 Anapole

The electromagnetic interaction of the nuclear anapole moment and the
electron may be written

G K

HY = —K,—~ a1 . 19

eff \/§ a I(I+ 1) (& p’U(T) ( )

for a nucleus with a single valence nucleon, according to Ref. [2]. It is
convenient to combine the two terms that depend on nuclear spin into a

single interaction
HE = K —"—a -Ip(r), (20)

where

K=K,—(k—1/2)/k K>.

2 Dipole Matrix Element

The weak interaction induces parity violation in atomic states. As a con-
sequence, electric dipole transitions between states of the same parity, nor-
mally forbidden, become allowed. If |I) and |F’) represent two atomic states
of the same nominal parity, then to lowest nonvanishing order, the electric
dipole transition matrix element is

(Flez|n)(n|Hw|I) (F|Hw|n)(nlez|)

Flez|I) = + , 21

(Fleslt) = 3 g s + 3 S (1)
where Hy = H é;f) +H é? +H é?f) is the effective weak-interaction Hamiltonian
discussed above.

Now let us concentrate on particular hyperfine states
JEmp
FeMp | -

|FpMp) = —p="""|jrmp)|Ipr)
Ipp
Jjrmyp

FiM; .
|FyMp) = — peet™0|jpmy)|Tpug)

Ipr
In) = 10 jnmn) | pin)

Matrix elements of the spin-independent and spin-dependent terms behave
differently. Let us consider them in turn



2.1 Spin-independent term
If we consider only the part of the weak interaction H, é;f)
of nuclear spin, then we may write

Jrmp Jrmg Jrmp
FpMp | _FM;
(Flez|I) = ,uI,UF
]ImI

Z (rllezln jn) (n ol HY|57)
E, — F;

that is independent

n

Tpn=—T7

(GrlH M0 gn) (n julle21lir)

* E, —Er

) (22)

Tn=—TF

where we have dropped the subscript “eff”. Summing over magnetic quan-
tum numbers, this term becomes

FrMp
(Flea|l) = (~1)fF+Fi+T+1 [FIMFF}{FF Fi 1} 0
Jji Jgr 1
FrM;
3 Grllezngn) (n | HO | jr)
X En_EI
njn Tp=—T7]
Gl HD ||njn) (0 jnllez] 1)
23
+ - (23)
Tpn=—T"TF

If we ignore nuclear spin altogether, then we may write
Jrmp
. . 10
(Jrmrlezljrmr) = - Z{"'}a (24)
jrmyp  Mn

where the sum over n is identical to that in Eq. (23). For alkali-metal atoms
jr = jr = 1/2 and it is conventional to define the spin-independent PNC
matrix element as

B = rglezlirg) = 2= 30+

njn



Therefore, we may rewrite Eq. (23) in terms of the conventional PNC matrix
element for alkali-metal atoms as

FpMp
F Fr 1 10

(Fleslt) = (-t GETE{ [T ) ] b e 2. 9
FrMy

This expression can be used to extract the spin-independent matrix ele-
(1)

ment Epy o from measurements on individual hyperfine lines and provides
a working definition for the experimental PNC matrix element.

2.2 Spin-dependent interaction

Now, let us examine the part of the interaction that depends on nuclear

spin, H( ) + H(a) = (=DH, H( ). The dipole matrix element may be

written:
]FmF ]ImI

(Flez|I) = 2 Mr_ LM Z WIpp|I-p|Tur) x

JFmFIeZIRJnmnManmnIH )\sz1>
En - EI
n]nmn

. 2 . . .
e B jurn) (0 gunlezljima) | o0
En_EF ’
We use the fact that
Tpr
ST (VMg Ipg) = VI + D[] - (27)
K Ipp
to write
JFME Jjrmr Iur
(Flez|T) = /T(T + V)[I][F]][Fp] - p—rMro ML ey
Ipp Tpy Ipp
ijF jnmn ,
> A 1 Grlezlinga) (nl B in)
- En_EI
njn InMn jrmr
ijF jnmrz o
L [0 eI a0 ez o

E,—-Er

Jjrmr



After summing over magnetic quantum numbers, this expression reduces to

FrMp
(Flez|l) = VIT + D)v/IEEFR - — %
FrM;
[y { B YT T (rllezln gu) tm gull H 1)
- Jn Jrp 1 Jn Jr Fr E, - Er
(- { o } { L } GEIH ) ) (0 ulle2 i)
gngr I Jn Jr Fp E, - Er
(29)
For the case of alkali-metal atoms, this expression can be used together with
Eq. (25) to define a spin-dependent PNC matrix element
Epnc = El(allx)lc + E1(321\)107 (30)
where El(gll\)IC was given in the previous subsection:
Elo=—%" (rllezlln jn) ngnl HM 1)
PNC NG < E,— E; I
Rl HD |1 jn) (n jnllez|ir)
1
Tn=—TF
and
-1
E(2) — I(I + 1) [I} (_1)FI+I+3/2 FF FI 1
PNC 6 1/2 1/2 I
S| d B EovV 11U Grlezlin o nl B i)
- Jgn 1/2 1 Jn 1/2 Fp E, — Ey

Cyperen [ Fe B LV T 1Y el H® ) (njallez i)
gn 1/2 1 Jn 1/2 Fp E,— Erp

(32)



3 Reduced Matrix Elements

ez: The reduced matrix element of the dipole matrix element is

<2H€ZH1> = €<I€2||01||I€1> / drr (G1G2 + FQFl). (33)
0

H®W: Introducing the scale factor

e
F — 2
W Qw
we find
UHM|TY = i U5, by / dr (FGr — GoFy). (34)
0

In Eq. (22) and subsequently, the reduced matrix element of H (@) is defined
as the coefficient of the dj,j, dm,m,. Although this is a unconventional
definition, we will use it here. It follows that

@IEO|L) = i FO / dr (oG — Ga ). (35)
0

H@): Let us introduce the scale factor
G K

o) o G B
V2 II+1)

and write
@H|1) =i FE) /O “drp(r) [ (—ramalolmima) FaGy
—(ramaloy,| — K1ma) G2F1:|. (36)
From this, it follows
@2HE®)|1) =i F&) /Ooodfﬂv(r) [(—@HUII%QFzGl
~(malloll = 1) GoFi . (37)

The reduced matrix elements of o are given by:

(—kollo||k1) = (_1)j2+iz—1/2 /6 [71][72] %zl{ 13'/12 1]72 [12 } (38)
(kollo|| — K1) = (_1)j2+l2—1/2 /6[j1][j2}512h{ 1];2 1j/22 1 },(39)

la



4 Units:

The weak interaction coupling constant G has the value

G = 89.61971 eV fm3
= 3.293465  a.u. fm?. (40)

The normalized nuclear density function can be written

3 1 1
== 41
o) dr N 3 [ <r—c>}’ (41)
1+exp [ —S
a
where ¢t = (4log 3)a is the 10%-90% fall-off distance and
c
N=N(2)
is a normalization factor given by
7T2 6 > (_1)n+1 —nx
N({L‘):l—Fﬁ—FF;TE (42)

Note: N(z) — 1 as x — oo. We express ¢ in fm and find that

Gy = 02779842 1
22\ T TN G, [Hexp(r—cﬂ’
a

where cg,, is the nuclear radius ¢ in fm.

a.u. (energy) (43)

References

[1] E. D. Commins and P. H. Bucksbaum, Weak interactions of leptons and
quarks, (Cambridge University Press, Cambridge, 1983), p. 343.

2]



