Weak-Interactions in Atoms

W. R. Johnson

October 23, 1999

1 Elecrto-Weak Coupling

The weak coupling of bound atomic electrons to the nucleus through the exchange of Z_{0} bosons is primarily responsible for parity nonconservation (PNC) in atoms. The PNC part of the electron-nucleus interaction Hamiltonian splits into two parts, $H^{(1)}=A_{e} V_{N}$ from the product of axial-vector electron A_{e} and vector nucleon V_{N} currents, and $H^{(2)}$ from the product of vector electron V_{e} and axial-vector nucleon A_{N} currents. These contributions are given in terms of electron and nucleon field operators as [1]

$$
\begin{align*}
H^{(1)} & =\frac{G}{\sqrt{2}}\left(\bar{\psi}_{e} \gamma_{\mu} \gamma_{5} \psi_{e}\right) \sum_{i}\left[c_{1 p}\left(\bar{\psi}_{p i} \gamma^{\mu} \psi_{p i}\right)+c_{1 n}\left(\bar{\psi}_{n i} \gamma^{\mu} \psi_{n i}\right)\right], \tag{1}\\
H^{(2)} & =\frac{G}{\sqrt{2}}\left(\bar{\psi}_{e} \gamma_{\mu} \psi_{e}\right) \sum_{i}\left[c_{2 p}\left(\bar{\psi}_{p i} \gamma^{\mu} \gamma_{5} \psi_{p i}\right)+c_{2 n}\left(\bar{\psi}_{n i} \gamma^{\mu} \gamma_{5} \psi_{n i}\right)\right], \tag{2}
\end{align*}
$$

where the Standard-model coupling constants are

$$
\begin{array}{lc}
c_{1 p}= & \frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}\right) \approx 0.038, \\
c_{1 n}= & -\frac{1}{2}, \\
c_{2 p} & = \\
c_{2 n}= & -\frac{1}{2} g_{A}\left(1-4 \sin ^{2} \theta_{W}\right) \approx 0.047, \tag{6}\\
g_{A}\left(1-4 \sin ^{2} \theta_{W}\right) \approx-0.047 .
\end{array}
$$

In the above, $g_{A} \approx 1.25$ is a scale factor for the partially conserved axial current A_{N} taken from p. 173 of Ref. [1]. The presently accepted value of Weinberg's angle is $\sin ^{2} \theta_{W}=0.23124(24)$.

1.1 Nonrelativistic Reduction

1.1.1 Reduction of $H^{(1)}$

We assume that the nucleons are nonrelativistic and replace the nucleon vector currents in Eq. (1) by

$$
\left(\bar{\psi}_{p} \gamma^{\mu} \psi_{p}\right) \rightarrow \phi_{p}^{\dagger} \phi_{p} \delta_{\mu 0} \quad \text { and } \quad\left(\bar{\psi}_{n} \gamma^{\mu} \psi_{n}\right) \rightarrow \phi_{n}^{\dagger} \phi_{n} \delta_{\mu 0},
$$

where ϕ_{p} and ϕ_{n} are nonrelativistic field operators. From this we extract an "effective" Hamiltonian to be used in the electron sector, namely

$$
\begin{equation*}
H_{\mathrm{eff}}^{(1)}=\frac{G}{2 \sqrt{2}} \gamma_{5}\left[2 Z c_{1 p} \rho_{p}(r)+2 N c_{1 n} \rho_{n}(r)\right] . \tag{7}
\end{equation*}
$$

In this expression, $\rho_{p}(r)$ and $\rho_{n}(r)$ proton and neutron density functions normalized to 1 , and Z and N are proton and neutron numbers of the nucleus. Assuming $\rho_{p}(r)=\rho_{n}(r)=\rho(r)$, we may rewrite the effective Hamiltonian as

$$
\begin{equation*}
H_{\mathrm{eff}}^{(1)}=\frac{G}{2 \sqrt{2}} \gamma_{5} Q_{w} \rho(r), \tag{8}
\end{equation*}
$$

where we have introduced the weak charge Q_{w} defined by

$$
Q_{w}=\left[2 Z c_{1 p}+2 N c_{1 n}\right]=-N+Z\left(1-4 \sin ^{2} \theta_{W}\right) .
$$

The Dirac matrix γ_{5} in the effective Hamiltonian (8) is

$$
\gamma_{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) .
$$

1.1.2 Reduction of $H^{(2)}$

The nonrelativistic approximation for the nucleon axial currents in Eq. (2) is

$$
\left(\bar{\psi}_{p} \gamma^{\mu} \gamma_{5} \psi_{p}\right) \rightarrow \phi_{p}^{\dagger} \sigma_{i} \phi_{p} \delta_{\mu i} \quad \text { and } \quad\left(\bar{\psi}_{n} \gamma^{\mu} \psi_{n}\right) \rightarrow \phi_{n}^{\dagger} \sigma_{i} \phi_{n} \delta_{\mu i} .
$$

The corresponding effective Hamiltonian in the electron sector is obtained from

$$
\begin{equation*}
H_{\mathrm{eff}}^{(2)}=-\frac{G}{\sqrt{2}} \boldsymbol{\alpha} \cdot\left[c_{2 p}\left\langle\phi_{p}^{\dagger} \boldsymbol{\sigma} \phi_{p}\right\rangle+c_{2 n}\left\langle\phi_{n}^{\dagger} \boldsymbol{\sigma} \phi_{n}\right\rangle\right], \tag{9}
\end{equation*}
$$

where $\langle\cdots\rangle$ notation designates nuclear matrix elements. Typically, only a few unpaired valence nucleons contribute to this interaction, so the size of the $H^{(2)}$ contribution is smaller than that from $H^{(1)}$ by a factor of $\approx 1 / Z$.

Let us examine the angular part of the nuclear matrix element $\left\langle\phi^{\dagger} \boldsymbol{\sigma} \phi\right\rangle$ for the case of a single nucleon outside closed shells. We can write

$$
\left\langle I M^{\prime}\right| \sigma_{\mu}|I M\rangle=(-1)^{I+L+1 / 2} \sqrt{6}[I]\left\{\begin{array}{ccc}
I & I & 1 \tag{10}\\
1 / 2 & 1 / 2 & L
\end{array}\right\}-\uparrow_{I M}^{I M^{\prime}} 1 \mu
$$

It is also true that

$$
\begin{equation*}
\left\langle I M^{\prime}\right| I_{\mu}|I M\rangle=\sqrt{I(I+1)(2 I+1)}-\left.\right|_{I M} ^{I M^{\prime}} 1 \mu \tag{11}
\end{equation*}
$$

We can therefore replace matrix elements of σ_{μ} by suitable scaled matrix elements of I_{μ}. Specifically,

$$
\begin{equation*}
\sigma_{\mu} \rightarrow \frac{\langle I\|\sigma\| I\rangle}{\langle I\|I\| I\rangle} I_{\mu}=\frac{\langle I\|\sigma\| I\rangle}{\sqrt{I(I+1)(2 I+1)}} I_{\mu} \tag{12}
\end{equation*}
$$

For the single valence nucleon case,

$$
\begin{align*}
\frac{\langle I\|\sigma\| I\rangle}{\langle I\|I\| I\rangle} & =\sqrt{\frac{6(2 I+1)}{I(I+1)}}(-1)^{I+L+1 / 2}\left\{\begin{array}{ccc}
I & I & 1 \\
1 / 2 & 1 / 2 & L
\end{array}\right\} \tag{13}\\
& =-\frac{I+1}{I(I+1)} \quad \text { for } L=I-1 / 2 \tag{14}\\
& =\frac{I}{I(I+1)} \quad \text { for } L=I+1 / 2 \tag{15}\\
& \equiv \frac{\kappa-1 / 2}{I(I+1)} \tag{16}
\end{align*}
$$

where $\kappa=\mp(I+1 / 2)$ for $I=L \pm 1 / 2$. Combining this with Eq.(9), we obtain for case of a nucleus with one valence nucleon:

$$
\begin{equation*}
H_{\mathrm{eff}}^{(2)}=-\frac{G}{\sqrt{2}} \frac{\kappa-1 / 2}{I(I+1)} \boldsymbol{\alpha} \cdot \mathbf{I}\left[c_{2 p} \rho_{p v}(r)+c_{2 n} \rho_{n v}(r)\right] \tag{17}
\end{equation*}
$$

where $\rho_{p v}(r)$ or $\rho_{n v}(r)$ are the valence nucleon density functions. In our previous notation, we used $K_{2}=c_{2 p}$ for a valence proton or $K_{2}=c_{2 n}$ for a valence neutron and let $\rho_{v}(r)$ be the associated density, then

$$
\begin{equation*}
H_{\mathrm{eff}}^{(2)}=-\frac{G}{\sqrt{2}} K_{2} \frac{\kappa-1 / 2}{I(I+1)} \boldsymbol{\alpha} \cdot \mathbf{I} \rho_{v}(r) \tag{18}
\end{equation*}
$$

1.1.3 Anapole

The electromagnetic interaction of the nuclear anapole moment and the electron may be written

$$
\begin{equation*}
H_{\mathrm{eff}}^{(a)}=\frac{G}{\sqrt{2}} K_{a} \frac{\kappa}{I(I+1)} \boldsymbol{\alpha} \cdot \mathbf{I} \rho_{v}(r) . \tag{19}
\end{equation*}
$$

for a nucleus with a single valence nucleon, according to Ref. [2]. It is convenient to combine the two terms that depend on nuclear spin into a single interaction

$$
\begin{equation*}
H_{\mathrm{eff}}^{\left(2^{\prime}\right)}=\frac{G}{\sqrt{2}} K \frac{\kappa}{I(I+1)} \boldsymbol{\alpha} \cdot \mathbf{I} \rho_{v}(r), \tag{20}
\end{equation*}
$$

where

$$
K=K_{a}-(\kappa-1 / 2) / \kappa K_{2} .
$$

2 Dipole Matrix Element

The weak interaction induces parity violation in atomic states. As a consequence, electric dipole transitions between states of the same parity, normally forbidden, become allowed. If $|I\rangle$ and $|F\rangle$ represent two atomic states of the same nominal parity, then to lowest nonvanishing order, the electric dipole transition matrix element is

$$
\begin{equation*}
\langle F| e z|I\rangle=\sum_{n} \frac{\langle F| e z|n\rangle\langle n| H_{W}|I\rangle}{E_{n}-E_{I}}+\sum_{n} \frac{\langle F| H_{W}|n\rangle\langle n| e z|I\rangle}{E_{n}-E_{F}}, \tag{21}
\end{equation*}
$$

where $H_{W}=H_{\text {eff }}^{(1)}+H_{\text {eff }}^{(2)}+H_{\text {eff }}^{(a)}$ is the effective weak-interaction Hamiltonian discussed above.

Now let us concentrate on particular hyperfine states

$$
\begin{aligned}
&\left|F_{F} M_{F}\right\rangle=-\underbrace{j_{F} m_{F}}_{I \mu_{F}}{ }_{F} M_{F}\left|j_{F} m_{F}\right\rangle\left|I \mu_{F}\right\rangle \\
&\left|F_{I} M_{I}\right\rangle=-\left.\right|_{I \mu_{I}} ^{j_{I} m_{I}} M_{I} \\
&\left.F_{I} M_{I} m_{I}\right\rangle\left|I \mu_{I}\right\rangle \\
&|n\rangle=r
\end{aligned}
$$

Matrix elements of the spin-independent and spin-dependent terms behave differently. Let us consider them in turn

2.1 Spin-independent term

If we consider only the part of the weak interaction $H_{\text {eff }}^{(1)}$ that is independent of nuclear spin, then we may write

$$
\begin{align*}
& \langle F| e z|I\rangle=-\underbrace{\substack{j_{F} m_{F} \\
F_{F} \\
M_{F}}}_{I \mu_{F}}-\underbrace{j_{I} m_{I}}_{I \mu_{I}}{ }_{F_{I}} M_{I}-\underbrace{j_{F} m_{F}}_{j_{I} m_{I}} \quad \delta_{\mu_{I} \mu_{F}} \times \\
& \sum_{n}\left\{\left.\frac{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{(1)}\right\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{I}}\right. \\
& \left.+\left.\frac{\left\langle j_{F}\left\|H^{(1)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{F}}\right\}, \tag{22}
\end{align*}
$$

where we have dropped the subscript "eff". Summing over magnetic quantum numbers, this term becomes

$$
\begin{gather*}
\langle F| e z|I\rangle=(-1)^{j_{F}+F_{I}+I+1} \sqrt{\left[F_{I}\right]\left[F_{F}\right]}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
j_{I} & j_{F} & I
\end{array}\right\}-\uparrow_{F_{F} M_{I}}^{F_{F} M_{F}} 10 \\
\sum_{n j_{n}}\left\{\left.\frac{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{(1)}\right\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{I}}\right. \\
\left.\quad+\left.\frac{\left\langle j_{F}\left\|H^{(1)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{F}}\right\} \tag{23}
\end{gather*}
$$

If we ignore nuclear spin altogether, then we may write

$$
\begin{equation*}
\left\langle j_{F} m_{F}\right| e z\left|j_{I} m_{I}\right\rangle=-\left\{_{j_{I} m_{I}}^{j_{F} m_{F}} \sum_{n j_{n}}^{10}\{\cdots\},\right. \tag{24}
\end{equation*}
$$

where the sum over n is identical to that in Eq. (23). For alkali-metal atoms $j_{F}=j_{I}=1 / 2$ and it is conventional to define the spin-independent PNC matrix element as

$$
E_{\mathrm{PNC}}^{(1)}=\left\langle j_{F} \frac{1}{2}\right| e z\left|j_{I} \frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}} \sum_{n j_{n}}\{\cdots\}
$$

Therefore, we may rewrite Eq. (23) in terms of the conventional PNC matrix element for alkali-metal atoms as

$$
\langle F| e z|I\rangle=(-1)^{F_{I}+I+3 / 2} \sqrt{6\left[F_{I}\right]\left[F_{F}\right]}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \tag{25}\\
1 / 2 & 1 / 2 & I
\end{array}\right\} E_{\mathrm{PNC}}^{(1)}-\begin{array}{|c}
F_{F} M_{F} \\
\frac{10}{F_{I} M_{I}}
\end{array}
$$

This expression can be used to extract the spin-independent matrix element $E_{\mathrm{PNC}}^{(1)}$ from measurements on individual hyperfine lines and provides a working definition for the experimental PNC matrix element.

2.2 Spin-dependent interaction

Now, let us examine the part of the interaction that depends on nuclear spin, $H_{\mathrm{eff}}^{(2)}+H_{\mathrm{eff}}^{(a)} \equiv \sum_{\mu}(-1)^{\mu} I_{-\mu} H_{\mu}^{\left(2^{\prime}\right)}$. The dipole matrix element may be written:

$$
\begin{align*}
\langle F| e z|I\rangle= & -\left.\right|_{I \mu_{F}} ^{j_{F} m_{F} M_{F}}-\left.\right|_{I \mu_{I}} ^{j_{I} m_{I}} \sum_{\mu}^{j_{I}} M_{I}(-1)^{\mu}\left\langle I \mu_{F}\right| I_{-\mu}\left|I \mu_{I}\right\rangle \times \\
& \sum_{n j_{n} m_{n}}\left\{\frac{\left\langle j_{F} m_{F}\right| e z\left|n j_{n} m_{n}\right\rangle\left\langle n j_{n} m_{n}\right| H_{\mu}^{\left(2^{\prime}\right)}\left|j_{I} m_{I}\right\rangle}{E_{n}-E_{I}}\right. \\
& \left.+\frac{\left\langle j_{F} m_{F}\right| H_{\mu}^{\left(2^{\prime}\right)}\left|n j_{n} m_{n}\right\rangle\left\langle n j_{n} m_{n}\right| e z\left|j_{I} m_{I}\right\rangle}{E_{n}-E_{F}}\right\} . \tag{26}
\end{align*}
$$

We use the fact that

$$
\begin{equation*}
\sum_{\mu}(-1)^{\mu}\left\langle I \mu_{F}\right| I_{-\mu}\left|I \mu_{I}\right\rangle=\sqrt{I(I+1)[I]}-\left\{_{I \mu_{F}}^{I \mu_{I}},\right. \tag{27}
\end{equation*}
$$

to write

$$
\begin{align*}
& \langle F| e z|I\rangle=\sqrt{I(I+1)[I]\left[F_{I}\right]\left[F_{F}\right]}-\underbrace{\sum_{F_{F} m_{F}}^{F_{F}} M_{F}}_{I \mu_{F}}-\underbrace{\sum_{F_{I}}^{j_{I} m_{I}} M_{I}}_{I \mu_{I}}-\left.\right|_{I \mu_{F}} ^{I \mu_{I}} \quad 1 \mu \\
& \sum_{n j_{n}}\{-\stackrel{\dagger_{j_{F} m_{F}}^{10}}{j_{n} m_{n}}-\underbrace{j_{n} m_{n}}_{j_{I} m_{I}} \frac{1 \mu}{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{\left(2^{\prime}\right)}\right\| j_{I}\right\rangle} ⿻ E_{n}-E_{I} \quad \\
& \left.+-\begin{array}{|c}
j_{j_{F} m_{F}} \\
j_{n} m_{n}
\end{array}-\begin{array}{|c}
j_{n} m_{n} \\
j_{I} m_{I}
\end{array} \frac{\left\langle j_{F}\left\|H^{\left(2^{\prime}\right)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{F}}\right\} . \tag{28}
\end{align*}
$$

After summing over magnetic quantum numbers, this expression reduces to

$$
\begin{align*}
& \langle F| e z|I\rangle=\sqrt{I(I+1)} \sqrt{[I]\left[F_{I}\right]\left[F_{F}\right]}-\hat{\mid c}_{F_{F} M_{F}}^{10} \times \\
& \quad \sum_{n j_{n} M_{I}}\left[(-1)^{j_{I}-j_{F}+1}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
j_{n} & j_{F} & I
\end{array}\right\}\left\{\begin{array}{ccc}
I & I & 1 \\
j_{n} & j_{I} & F_{I}
\end{array}\right\} \frac{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{\left(2^{\prime}\right)}\right\| j_{I}\right\rangle}{E_{n}-E_{I}}\right. \\
& \left.\quad+(-1)^{F_{I}-F_{F}+1}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
j_{n} & j_{I} & I
\end{array}\right\}\left\{\begin{array}{ccc}
I & I & 1 \\
j_{n} & j_{F} & F_{F}
\end{array}\right\} \frac{\left\langle j_{F}\left\|H^{\left(2^{\prime}\right)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{F}}\right] . \tag{29}
\end{align*}
$$

For the case of alkali-metal atoms, this expression can be used together with Eq. (25) to define a spin-dependent PNC matrix element

$$
\begin{equation*}
E_{\mathrm{PNC}}=E_{\mathrm{PNC}}^{(1)}+E_{\mathrm{PNC}}^{(2)} \tag{30}
\end{equation*}
$$

where $E_{\mathrm{PNC}}^{(1)}$ was given in the previous subsection:

$$
\begin{align*}
E_{\mathrm{PNC}}^{(1)}=\frac{1}{\sqrt{6}} \sum_{n j_{n}}\{ & \left.\frac{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{(1)}\right\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{I}} \\
& \left.+\left.\frac{\left\langle j_{F}\left\|H^{(1)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{I}}\right|_{\pi_{n}=-\pi_{F}}\right\}, \tag{31}
\end{align*}
$$

and

$$
\begin{align*}
& E_{\mathrm{PNC}}^{(2)}=\sqrt{\frac{I(I+1)[I]}{6}}(-1)^{F_{I}+I+3 / 2}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
1 / 2 & 1 / 2 & I
\end{array}\right\}^{-1} \\
& \quad \sum_{n j_{n}}\left[(-1)^{1}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
j_{n} & 1 / 2 & I
\end{array}\right\}\left\{\begin{array}{ccc}
I & I & 1 \\
j_{n} & 1 / 2 & F_{I}
\end{array}\right\} \frac{\left\langle j_{F}\|e z\| n j_{n}\right\rangle\left\langle n j_{n}\left\|H^{\left(2^{\prime}\right)}\right\| j_{I}\right\rangle}{E_{n}-E_{I}}\right. \\
& \left.\quad+(-1)^{F_{I}-F_{F}+1}\left\{\begin{array}{ccc}
F_{F} & F_{I} & 1 \\
j_{n} & 1 / 2 & I
\end{array}\right\}\left\{\begin{array}{cc}
I & I \\
j_{n} & 1 / 2 \\
F_{F}
\end{array}\right\} \frac{\left\langle j_{F}\left\|H^{\left(2^{\prime}\right)}\right\| n j_{n}\right\rangle\left\langle n j_{n}\|e z\| j_{I}\right\rangle}{E_{n}-E_{F}}\right] . \tag{32}
\end{align*}
$$

3 Reduced Matrix Elements

$e z$: The reduced matrix element of the dipole matrix element is

$$
\begin{equation*}
\langle 2\|e z\| 1\rangle=e\left\langle\kappa_{2}\left\|C_{1}\right\| \kappa_{1}\right\rangle \int_{0}^{\infty} d r r\left(G_{1} G_{2}+F_{2} F_{1}\right) \tag{33}
\end{equation*}
$$

$H^{(1)}$: Introducing the scale factor

$$
\mathcal{F}^{(1)}=\frac{G}{2 \sqrt{2}} Q_{W}
$$

we find

$$
\begin{equation*}
\langle 2| H^{(1)}|1\rangle=i \mathcal{F}^{(1)} \delta_{\kappa_{2}-\kappa_{1}} \delta_{m_{2} m_{1}} \int_{0}^{\infty} d r\left(F_{2} G_{1}-G_{2} F_{1}\right) . \tag{34}
\end{equation*}
$$

In Eq. (22) and subsequently, the reduced matrix element of $H^{(1)}$ is defined as the coefficient of the $\delta_{j_{2} j_{1}} \delta_{m_{2} m_{1}}$. Although this is a unconventional definition, we will use it here. It follows that

$$
\begin{equation*}
\left\langle 2\left\|H^{(1)}\right\| 1\right\rangle=i \mathcal{F}^{(1)} \int_{0}^{\infty} d r\left(F_{2} G_{1}-G_{2} F_{1}\right) . \tag{35}
\end{equation*}
$$

$H^{\left(2^{\prime}\right)}$: Let us introduce the scale factor

$$
\mathcal{F}^{\left(2^{\prime}\right)}=\frac{G}{\sqrt{2}} K \frac{\kappa}{I(I+1)}
$$

and write

$$
\begin{align*}
\langle 2| H_{\mu}^{\left(2^{\prime}\right)}|1\rangle=i \mathcal{F}^{\left(2^{\prime}\right)} \int_{0}^{\infty} d r \rho_{v}(r)[& \left\langle-\kappa_{2} m_{2}\right| \sigma_{\mu}\left|\kappa_{1} m_{1}\right\rangle F_{2} G_{1} \\
& \left.-\left\langle\kappa_{2} m_{2}\right| \sigma_{\mu}\left|-\kappa_{1} m_{1}\right\rangle G_{2} F_{1}\right] . \tag{36}
\end{align*}
$$

From this, it follows

$$
\begin{align*}
\left\langle 2\left\|H^{\left(2^{\prime}\right)}\right\| 1\right\rangle=i \mathcal{F}^{\left(2^{\prime}\right)} \int_{0}^{\infty} d r \rho_{v}(r)[& {\left[-\kappa_{2}\|\sigma\| \kappa_{1}\right\rangle F_{2} G_{1} } \\
& \left.-\left\langle\kappa_{2}\|\sigma\|-\kappa_{1}\right\rangle G_{2} F_{1}\right] \tag{37}
\end{align*}
$$

The reduced matrix elements of σ are given by:

$$
\begin{align*}
\left\langle-\kappa_{2}\|\sigma\| \kappa_{1}\right\rangle & =(-1)^{j_{2}+\bar{l}_{2}-1 / 2} \sqrt{6\left[j_{1}\right]\left[j_{2}\right]} \delta_{\bar{l}_{2} l_{1}}\left\{\begin{array}{ccc}
j_{1} & j_{2} & 1 \\
1 / 2 & 1 / 2 & \bar{l}_{2}
\end{array}\right\} \tag{38}\\
\left\langle\kappa_{2}\|\sigma\|-\kappa_{1}\right\rangle & =(-1)^{j_{2}+l_{2}-1 / 2} \sqrt{6\left[j_{1}\right]\left[j_{2}\right]} \delta_{l_{2} \bar{l}_{1}}\left\{\begin{array}{ccc}
j_{1} & j_{2} & 1 \\
1 / 2 & 1 / 2 & l_{2}
\end{array}\right\} . \tag{39}
\end{align*}
$$

4 Units:

The weak interaction coupling constant G has the value

$$
\begin{array}{rll}
G & =89.61971 & \\
& \mathrm{eV} \mathrm{fm} \tag{40}\\
\\
& =3.293465 & \\
\text { a.u. } \mathrm{fm}^{3} .
\end{array}
$$

The normalized nuclear density function can be written

$$
\begin{equation*}
\rho(r)=\frac{3}{4 \pi} \frac{1}{\mathcal{N} c^{3}} \frac{1}{\left[1+\exp \left(\frac{r-c}{a}\right)\right]}, \tag{41}
\end{equation*}
$$

where $t=(4 \log 3) a$ is the $10 \%-90 \%$ fall-off distance and

$$
\mathcal{N} \equiv \mathcal{N}\left(\frac{c}{a}\right)
$$

is a normalization factor given by

$$
\begin{equation*}
\mathcal{N}(x)=1+\frac{\pi^{2}}{x^{2}}+\frac{6}{x^{3}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}} e^{-n x} \tag{42}
\end{equation*}
$$

Note: $\mathcal{N}(x) \rightarrow 1$ as $x \rightarrow \infty$. We express c in fm and find that

$$
\begin{equation*}
\frac{G}{2 \sqrt{2}} \rho(r)=\frac{0.277984(2)}{\mathcal{N} c_{\mathrm{fm}}^{3}} \frac{1}{\left[1+\exp \left(\frac{r-c}{a}\right)\right]}, \quad \text { a.u. (energy) } \tag{43}
\end{equation*}
$$

where c_{fm} is the nuclear radius c in fm .

References

[1] E. D. Commins and P. H. Bucksbaum, Weak interactions of leptons and quarks, (Cambridge University Press, Cambridge, 1983), p. 343.
[2]

