
Photoabsorption in Hot Dense Plasmas

W. R. Johnson
Department of Physics – 225 Nieuwland Science Hall

University of Notre Dame
Notre Dame, IN 46556

February 11, 2001

Abstract
This is a preliminary version of the time-dependent local-density approxi-

mation designed to study photoabsorption in hot dense plasmas. The theory
developed so far is applied to study the photoexcitation in aluminum and he-
lium plasmas and photoionization in aluminum plasmas.

1 Self-consistent LDA at finite temperatures

These notes describe a version of the time-dependent local-density approxima-
tion (TDLDA) that can be used to give a multichannel description of photoex-
citation and photoionization in a dense plasma. A similar, but less complete,
study was carried out earlier by Grimaldi, Grimaldi-Lecourt, and Dharma-
wardana [1] and used to study light absorption in an iron plasma.

Our point of departure is a muffin-tin local-density approximation (LDA)
model for a dense plasma. In this model, an average atom in the plasma
is described by a collection of electrons in a neutral, spherically symmetric,
potential produced by the nucleus and a thermal distribution of bound and
continuum electrons. The electrons are constrained to lie inside a Wigner-Seitz
sphere of volume v and radius R determined by the material density ρm (g/cm3)
and atomic weight A (g/mol):

v = A
Aρm

, R =
(
3v
4π

)1/3

,

where A = 6.022 × 1023 is Avagadro’s number. The equations defining our
model are solved self-consistently to determine energy levels, level populations,
and the self-consistent potential. Our model is similar to, but less complete
than, other average atom models, such as inferno [2], that have been intro-
duced over the years. The present model is a generalization of the Thomas-
Fermi model of a hot dense plasma, introduced a half century ago by Feynman,
Metropolis, and Teller [3] and elucidated by Cowan and Ashkin [4].
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1.1 Basic Equations

In the model, each bound electron is assumed to satisfy[
h0 − Z

r
+ V

]
ua(r) = εaua(r) , (1.1)

where, in the present work, h0 is taken to be the Dirac Hamiltonian

h0 = cα · p+ βmc2 . (1.2)

The Dirac equation is used here since it automatically accounts for the fine
structure of inner shells.1 The self-consistent potential V (r) = Vdir + Vexc

which is taken to be a functional of the electron density ρ(r), supports a finite
number of bound states. The eigenvalues εa are approximations to the binding
energies of these states. The direct part of the potential is given by

Vdir =
∫
d3x

ρ(x)
|r − x| , (1.3)

where the electron density ρ = ρb + ρc has contributions from bound and
continuum electrons. The bound-electron contribution is

ρb(r) =
∑
a

fa(T ) |ua(r)|2 , (1.4)

where a ranges over all bound states. The factor fa(T ) is the Fermi-Dirac factor

fa(T ) =
1

1 + exp[(εa − µ)/kT ]
.

The contribution from continuum electrons ρc is (for the present) evaluated in
the semi-classical Thomas-Fermi approximation:

ρc(r) =
(2mkT )3/2

2π2
I1/2(b, x) , (1.5)

where Ij(b, x) is the incomplete Fermi-Dirac integral given by

Ij(b, x) =
∫ ∞

b

yjdy

1 + exp[y − x]
.

The arguments of the Fermi-Dirac integral are

x =
(
µ− V + Z/r

)
/kT, and

b =
(
−V + Z/r

)
/kT .

1The Dirac equation was used previously in the plasma studies by Liberman [2], Rozsnyai [5],
and Belenski and Ishikawa [6].
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A derivation of Eq. (1.5) is given in Appendix A.
The exchange potential is taken to be the Kohn-Sham potential

Vexc = −
(
3
π

ρ(r)
)1/3

. (1.6)

For completeness, we include the derivation of Eq. (1.6) in Appendix B.
Equations (1.1) through (1.6) are solved self consistently. The chemical

potential µ is chosen to insure electric neutrality:

Z =
∫
r<R

ρ(r) d3r ≡
∫ R

0

4πr2ρ(r) dr , (1.7)

where R is the muffin-tin radius.
The continuum density is automatically constrained to lie inside the Wigner-

Seitz sphere. We impose MIT bag model boundary conditions on the Dirac
bound-state wave functions at r = R to insure that ρb(r) lies inside the sphere.
A short discussion describing how the bag-model boundary conditions are im-
posed in our point-by-point integration scheme is given in Appendix C.

1.2 Example: Iron at kT=100 eV

As an illustrative example, we solve the above LDA equations for an iron plasma
Z=26 and A=55.845 gm/mol at normal density ρm=7.874 gm/cc.2 The cor-
responding Wigner-Seitz radius is R=2.6672 a0. In our example, we choose
kT=100 eV. In Fig. 1, we show the resulting electron density ρ(r) together
with the bound and continuum contributions ρb(r) and ρc(r). The electron
density shown in this figure is indistinguishable from the corresponding result
of Rozsnyai given in Fig. 1 of Ref. [5].

It is interesting to compare results from the present model with results from
similar models. In Table 1, we compare the binding energies εnlj , the chemical
potential µ, the bound-state occupation numbers Nnlj , and the number of con-
tinuum electrons/ion Ncont with nonrelativistic results from [1] and relativistic
results from [5] for the plasma considered in Fig. 1. For levels with principal
quantum numbers n ≤ 3, our states are more tightly bound than those of [1]
but less tightly bound than those of [5]. Our 4p electrons dissolve into the
continuum as do those in the [1]. In Ref. [5], the 4p levels are bound and there
is a second bound 4s level, not shown in the table, that was introduced to ap-
proximate valance bands in a solid. The chemical potential from the present
calculation lies between the values given by the two comparison calculations,
as does the number of continuum electrons/ion. At a qualitative level, at least,
our average atom model describes the same physics as the comparison models.
Our numerical results agree better with the nonrelativistic calculations of [1].

2Properties of materials quoted here are taken from the web-elements world-wide web site [7].
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Figure 1: Electron density 4πr2ρ(r) of an iron ion in a plasma of normal metal-
lic density and temperature kT=100 eV. Contributions from both bound ρb and
continuum ρc electrons are shown. q(r) is the charge inside a sphere of radius r.

Table 1: Bound-state energies (a.u.) and level populations for an average atom in
an iron plasma at normal density and temperature kT = 100 eV from the present
model are compared with results from other calculations.

Present Non. Rel. LDA [1] Rel. LDA [5]
Level εnlj Nnlj εnl Nnl εnlj Nnlj

1s -261.251 2.0000 -258.140 2.0000 -266.021 2.0000
2s -34.205 1.9988 -32.942 1.9984 -35.746 1.9990
2p1/2 -30.186 1.9964 -29.008 1.9954 -31.831 1.9972
2p3/2 -29.721 3.9919 -29.008 3.9908 -31.363 3.9937
3s -6.246 0.9087 -5.411 0.8234 -6.524 0.8506
3p1/2 -5.005 0.7453 -4.195 0.6690 -5.283 0.6912
3p3/2 -4.926 1.4707 -4.195 1.3380 -5.196 1.3611
3d3/2 -2.945 1.0131 -2.218 0.9076 -3.233 0.9286
3d5/2 -2.933 1.5159 -2.218 1.3614 -3.218 1.3886
4s -0.351 0.2868 -0.166 0.2876 -0.533 0.9709
4p1/2 -0.186 0.0442
4p3/2 -0.174 0.0881
Nbound 15.9277 15.3716 16.4547
Ncont 10.0723 10.6284 9.5453
µ (a.u.) -6.9187 -6.7232 -7.6302
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2 Time-Dependent LDA Equations

In this section, we set up the version of the TDLDA that we use to investigate
photoabsorption in a dense plasma. To this end, we consider the response of
an average atom in the plasma to an applied time-dependent perturbation. We
will later associate the perturbation with an incident photon beam and use the
equations developed here to study photoabsorption in the plasma. The non-
relativistic TDLDA was developed and used to study photoionization of free
atoms by Zangwill and Soven [8], and, as mentioned earlier, a nonrelativistic
version of the TDLDA was used in Ref. [1] to study photoionization in hot
dense plasmas. A relativistic version of the TDLDA for free atoms was devel-
oped by Parpia [9] and applied to study atomic photoionization [10, 11] and
polarizabilities [12] of atoms. In the paragraphs below, we set up a version
of the relativistic TDLDA appropriate to our plasma model. The TDLDA is
closely related to the random-phase approximation (RPA). In fact, if we were to
apply the arguments below to an atom in a Dirac-Hartree-Fock (DHF) ground
state, then we obtain would the equations of the relativistic RPA, as shown in
Ref. [13]. The TDLDA can be considered as a simplified version of the RPA.
Both the TDLDA and the RPA account for interchannel coupling. The RPA
also accounts for the modified potential seen by the ionized electron, whereas
a the TDLDA does not. Formalism for the RPA in a plasma has been given
by des Cloizeaux [14] and by Csanak and Kilcrease [15], and a single channel
version of the RPA has been used to study a He atom in a dense plasma by
Csanak and Meneses in Ref. [16].

2.1 Basic Inhomogeneous Equations

Let us introduce a time-dependent interaction

Vint(r, t) = −e
[
φ(r)e−iωt + φ†(r)eiωt

]
(2.1)

into a plasma described in the average atom LDA. The result is that the single-
particle orbitals become time dependent;

ua(r)→ ψa(r, t).

These time-dependent orbitals satisfy the time-dependent generalization of the
plasma orbital equations

−i
∂ψa
∂t

=
[
h0 − Z

r
+ V (ρ, r) + Vint(r, t)

]
ψa. (2.2)

In this equation,

ρ(r, t) =
∑
b

fb(T ) ψ
†
b(r, t)ψb(r, t) + ρc(r, t) . (2.3)
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The function fb(T ) is the Fermi-Dirac weight factor for state b determined
from a time-independent average atom calculation. The quantity ρc(r, t) is the
contribution to the density from continuum electrons. In the present model,
we treat the continuum in a semi-classical approximation and ignore the time
dependence of ρc.

We assume that the time-dependent orbital wave function ψa(r.t) has the
form

ψa(r, t) =
[
ua(r) + wa+(r) e−iωt + wa−(r) eiωt

]
e−iεat . (2.4)

Substituting this wave function into Eq. (2.2), linearizing the right-hand side in
powers of the perturbing potential, and identifying terms with the same time
dependence on the right and left hand sides, we obtain[

h0 − Z

r
+ V (ρ0, r)

]
ua(r) = εa ua(r) (2.5)

for the lowest-order terms, where

ρ0(r) =
∑
b

fb(T ) |ub(r)|2 + ρc(r) . (2.6)

Eq. (2.5), which is identical to Eq. (1.1), describes bound-states in the unper-
turbed average atom. The first-order perturbations wa±(r) satisfy[

h0 − Z

r
+ V (ρ0)− (εa + ω)

]
wa+(r) + δV+ ua(r) = eφ(r)ua(r) (2.7)[

h0 − Z

r
+ V (ρ0)− (εa − ω)

]
wa−(r) + δV− ua(r) = eφ†(r)ua(r), (2.8)

where δV± are the positive and negative components of the perturbed potential.
In the present model, the perturbed potential is given by

δV± = δVdir± + δVexc±.

From Eq. (1.3), it follows that the perturbed direct potential is

δVdir± ≡
∫
d3x

ρ±(x)
|r − x| , (2.9)

where the perturbed density is

ρ±(r) =
∑
b

fb(T )
[
w†
b∓(r)ub(r) + u†

b(r)wb±(r)
]
. (2.10)

The perturbed exchange potential is

δVexc± = −1
3

(
3
π

ρ0

)1/3
ρ±
ρ0

. (2.11)

Putting the direct and exchange parts together, we find that the perturbed
potential contribution to Eqs. (2.7) and (2.8) is

δV± =
∫
d3x

ρ±(x)
|r − x| −

1
3

(
3
π

ρ0

)1/3
ρ±
ρ0

. (2.12)
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2.2 Homogeneous TDLDA

It is of interest to study the homogeneous equations obtained by setting the
right-hand sides of Eqs. (2.7) and (2.8) to zero:[

h0 − Z

r
+ V (ρ0)− εa

]
wa+(r) + δV+ ua(r) = ω wa+(r) (2.13)[

h0 − Z

r
+ V (ρ0)− εa

]
wa−(r) + δV− ua(r) = −ω wa−(r) . (2.14)

These coupled equations constitute a linear eigenvalue problem for the exci-
tation energy ω. If we let wλ

a±(r) be the the set of perturbed eigenfunctions
belonging to the eigenvalue ωλ, then we obtain the following orthogonality re-
lation:

∑
a

∫
d3r

[
wλ†
a+(r)w

µ
a+(r)− wµ†

a−(r)w
λ
a−(r)

]
= sign(ωλ) δλµ (2.15)

Expanding the solutions to the inhomogeneous Eqs. (2.7) and (2.8) in terms
of the eigenfunctions of the homogeneous Eqs. (2.13) and (2.14), we find

wa+(r) =
∑
µ

Tµ
ω − ωµ

wµ
a+(r) (2.16)

w†
a−(r) =

∑
µ

Tµ
ω − ωµ

wµ†
a−(r) , (2.17)

where

Tµ = −e
∑
a

∫
d3r

[
wµ†
a+(r)φ(r)ua(r) + u†

a(r)φ(r)w
µ
a−(r)

]
. (2.18)

The time-dependent atomic wave function, therefore, has poles at the eigenval-
ues ωµ with residues Tµ. Comparing with perturbation theory, one concludes
that the (positive) frequencies ωµ are excitation energies of the atom and that
Tµ is the amplitude of the transition from the unperturbed state, which is
described by orbitals ua(r), to the µ-th excited state of the atom.

2.3 Angular Decomposition

In this section we carry out the angular momentum decomposition of the homo-
geneous TDLDA functions wa± introduced in the previous section. We choose
the solutions to the homogeneous equations in such a way that they describe
a perturbed state of the average atom that has angular momentum (JM).
To understand just how such solutions are constructed, we first note that in
the time-dependent picture the unperturbed many electron wave function is a
Slater determinant that oscillates with frequency E0 =

∑
a εa. The part of the
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perturbed many-electron wave function that oscillates with frequency E0 + ω
consists of a sum of Slater determinants in which each orbital ua is replaced by
its associated perturbed orbital wa+. The many-electron wave function pro-
duced by removing orbital a : (ja, ma) has angular momentum (ja,−ma). Re-
placing ua by an excited orbital wa+ with angular momentum (jm, mm) leads
to an excited state that has indefinite angular momentum; however, replac-
ing ua with the coupled “particle-hole” linear combination of excited orbitals,
described below, leads to an excited state with angular momentum (JM).

2.3.1 Radial TDLDA Equations

To construct a many-electron wave function describing the excitation of the
spherically symmetric (J = 0, M = 0) average atom to a state with angular
momentum (J M), we expand the perturbation wa± as a linear combination of
Dirac angular momentum states wJM

am±(r):

wa+(r) =
∑
m

(−1)ja−ma〈ja −ma, jmmm|JM〉wJM
am+(r) (2.19)

wa−(r) =
∑
m

(−1)ja−ma+M 〈ja −ma, jmmm|J −M〉wJM
am−(r) . (2.20)

The coupling coefficients are those appropriate to a particle-hole excitation of
a closed-shell system. With this expansion, the perturbed many-body wave
function has angular momentum (J M).

The perturbed orbitals wJM
am±(r) describe individual excitation channels

a → m contributing to the excited state. These orbitals can be decomposed
into radial and angular parts in the usual way:

wJM
am±(r) =

1
r

(
i SJam±(r) Ωκmmm

(r̂)
T J
am±(r) Ω−κmmm

(r̂)

)
. (2.21)

We designate the two-component radial function associated with wJM
am± by

RJ
am±(r) =

(
SJam±(r)
T J
am±(r)

)
. (2.22)

Similarly, the unperturbed orbital ua(r) is given by

ua(r) =
1
r

(
iGa(r) Ωκama

(r̂)
Fa(r) Ω−κama

(r̂)

)
, (2.23)

and the two-component radial orbital corresponding to ua(r) is given by

Fa(r) =
(

Pa(r)
Qa(r)

)
. (2.24)
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Using the above expansion, we can rewrite the radial density ρ+ from Eq. (2.10)
in terms of the radial orbitals as

ρ+(r) = (−1)J−1
√
4π YJM (r̂)×

1
4πr2

∑
bn

fb(T )〈b||CJ ||n〉
[
RJ†
bn−(r)Fb(r) + F †

b (r)R
J
bn+(r)

]
. (2.25)

With the aid of these equations, one finds

δVdir + = (−1)J−1
√
4π YJM (r̂)

∑
bn

fb(T )
〈b||CJ ||n〉

[J ]
vJ([nb], r) , (2.26)

where

vJ([nb], r) =
∫ ∞

0

rJ<
rJ+1
>

[
RJ†
bn−(r)Fb(r) + F †

b (r)R
J
bn+(r)

]
dr. (2.27)

Similarly,

δVexc + = (−1)J−1
√
4π YJM (r̂)

∂Vexc

∂ρ

∣∣∣∣
0

×

1
4πr2

∑
bn

fb(T ) 〈b||CJ ||n〉
[
RJ†
bn−(r)Fb(r) + F †

b (r)R
J
bn+(r)

]
, (2.28)

where
∂Vexc

∂ρ

∣∣∣∣
0

≡ 1
3ρ0

Vexc(ρ0) ≡ − 1
3ρ0

(
3
π
ρ0

)1/3

. (2.29)

Now, we note that

(−1)J−1
√
4π YJM (r̂)ua(r) =

∑
κmmm

(−1)ja−ma〈ja−ma, jmmm|JM〉×

〈a||CJ ||m〉 1
r

(
i Pa(r) Ωκmmm

(r̂)
Qa(r) Ω−κmmm

(r̂)

)
.

Combining the above equations, we can rewrite Eq. (2.13) as a radial Dirac
equation [

H0(κm)− Z

r
+ V (ρ0)

]
RJ
am+(r) + 〈a||CJ ||m〉 δV (r)Fa(r)

= (εa + ω)RJ
am+(r), (2.30)

where the perturbed radial potential is

δV (r) =
∑
bn

fb(T )
〈b||CJ ||n〉

[J ]
vJ([nb], r) +

∂Vexc

∂ρ

∣∣∣∣
0

×

1
4πr2

∑
bn

fb(T ) 〈b||CJ ||n〉
[
RJ†
bn−(r)Fb(r) + F †

b (r)R
J
bn+(r)

]
.

(2.31)
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and where the unperturbed potential V (ρ0) is given in Sec. 1. In a similar way,
it follows that[

H0(κm)− Z

r
+ V (ρ0)

]
RJ
am−(r) + 〈a||CJ ||m〉 δV (r)Fa(r)

= (εa − ω)RJ
am−(r). (2.32)

Equations (2.30), (2.31), and (2.32) are the basic equations of the TDLDA.
It should be noticed that the perturbed potential δV couples all excitation
channels; it also couples positive and negative frequency excitations. Indeed,
when we ignore δV , the positive frequency radial orbital RJ

bn+(r) satisfies the
radial Dirac equation for an electron with energy εa + ω in the unperturbed
potential V (ρ0) that can be used to study photoionization in the independent-
particle approximation (IPA):[

H0(κm)− Z

r
+ V (ρ0)

]
Ram(r) = (εa + ω)Ram(r). (2.33)

2.3.2 Multipole Transition Amplitude

Let us replace the perturbing potential in Eq. (2.18) by a multipole potential

eφ(r)→ φkq(r) = Ckq(r̂)φk(r), (2.34)

where

Ckq(r̂) =

√
2k + 1
4π

Ykq(r̂).

The transition amplitude from the ground state to the excited state (JM)
studied in the previous subsection is given by Eq. (2.18), which can be rewritten

Tµ → 〈JM |Tkq|00〉 =∑
am

[
(−1)ja−ma〈ja −ma, jmmm|JM〉

∫
d3r wJ†

am+(r)φkq(r)ua(r)

+(−1)ja−ma+M 〈ja −ma, jmmm|J −M〉
∫
d3r u†

a(r)φkq(r)w
J
am−(r)

]
.

(2.35)

Carrying out the sum over magnetic substates, the reduced matrix element of
T (which vanishes unless k = J) can be written in terms of radial functions
only as

〈J ||Tk||0〉 = δJk(−1)J−1×∑
am

〈a||CJ ||m〉
∫ ∞

0

dr
[
RJ
am+(r)φJ (r)Fa(r) + Fa(r)φJ (r)RJ

am−(r)
]
.

(2.36)
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2.4 Photoexcitation and Photoionization

Photoexcitation rates and photoionization cross sections in the average-atom
model of a plasma can be evaluate following the well-known methods used
in free atoms. We treat these processes in the dipole approximation and use
Eq. (2.36) to evaluate reduced dipole matrix elements. Since the average atom
is spherically symmetric, dipole excitations always lead to states with J=1 in
this model. We begin by recalling a few basic formulas for photoexcitation.

Photoexcitation The Einstein A-coefficient, giving the probability per
unit time for a transition from the average atom state |a〉 to an excited state
|m〉 with Jm=1 is

Ama =
4
3
ω3

c2
Sma, (2.37)

where the line strength Sma = |〈m‖T1‖a〉|2, ω is the excitation energy, and c is
the speed of light. We can express Ama, alternatively, as

Ama =
16π
3

k3Sma (Ryc) =
2.02613× 1018

λ3
Sma (s−1). (2.38)

Here, Ry is the Rydberg constant and λ is expressed in (Å). The dimensionless
(absorption) oscillator strengths fma for transitions from the ground state |a〉
to an excited state |m〉 is defined in terms of the line strength Sma by the
relation

fma =
2
3
ωSma =

303.756
λ

Sma, (2.39)

where, again, λ is expressed in (Å).

Photoionization A detailed description of the theory of photoionization in
the nonrelativistic RPA was given by Amusia and Cherepkov a quarter century
ago in Ref. [17] and a similar, but less exhaustive, description of photoion-
ization in the relativistic RPA was given two decades ago in Refs. [18] and
[19]. The formalism developed in [18, 19] can be used without alteration in
our relativistic TDLDA study of plasmas. Indeed, this formalism was previ-
ously used in Refs. [10] and [11] to carry out relativistic TDLDA calculations
of photoionization cross sections and angular distributions in free atoms.

The differential cross section for photoionizing a closed-shell system leaving
a ion with a vacancy in subshell a can be written

dσa
dΩ

=
σa
4π

[
1 + βaP2(cos θ)

]
, (2.40)

where σa is the integrated cross section and βa is the angular-distribution asym-
metry parameter. The angle θ in the above equation is the angle between the
outgoing photoelectron momentum vector p and the photon polarization vector
ε, as illustrated in Fig. 2. The quantities σa and βa can be evaluated in terms
of the reduced dipole matrix element as shown below.
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Figure 2: Coordinate system used for the photoelectron angular distribution.

To describe the photoionization process discussed above, we consider final
states in which an orbital ua in subshell (na, κa) is excited to a perturbed orbital
w1
am+ with (εm, κm) in the continuum by a photon with energy ω = εm − εa.
The resulting final state is referred to as an excitation channel. Each subshell
(na, κa) is associated with three possible energy degenerate excitation channels
satisfying dipole selection rules3 κm = −κa, κa±1 . All three channels contribute
to the cross section σa. For a given value of ω, other channels in which a
bound electron (nb, κb) is excited to (εn, κn), with εn = εb + ω, are energy
degenerate with the original three channels. These channels are, in principal,
distinguishable from the first three, since they lead to continuum electrons with
energies εn different from εm. However, all possible energy degenerate channels
contribute to the photoabsorption cross section. In the RPA and TDLDA, all
possible energy degenerate channels are also included coherently in the sum
over (bm) in the expression for the reduced matrix element given in Eq. (2.36).
The rather complicated analysis of photoionization in the multichannel case
is given in detail in Ref. [18]. Below, we outline the simpler analysis in the
independent-particle approximation.

Independent Particle Approximation Let us consider the IPA ob-
tained from the TDLDA by neglecting δV . In the IPA, the radial equations
(2.33) govern the continuum orbital w1

am+. We choose solutions to orbital equa-
tions (2.33) that are regular at the origin and normalized on the energy scale.
The resulting phase shifts δm depend on the orbital energy εm. We ignore all
other excitation channels (nb) and the negative-frequency excitations R1

am−.
We then find that the reduced dipole matrix element in Eq. (2.36) takes the
form 〈m‖T1‖a〉 → (−1)jm−jaDma, where Dna is the reduced dipole matrix

3If κa = −1, only κm = 1 or κm = −2 are possible; similarly, if κa = 1, only κm = −1 and
κm = 2 are possible.
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element between single-particle orbitals only:

Dma = 〈w1
am+‖φ1‖ua〉 = 〈m‖C1‖a〉

∫ ∞

0

drR1
am+(r) r Fa(r) . (2.41)

It is convenient to introduce the complex dipole matrix element

Dam = i−lm+1eiδmDma . (2.42)

The cross section for ionization of subshell a can then be written

σa =
4π2α

3
ω

∑
m

|Dma|2 , (2.43)

where the sum is over the three channels having κm = −κa, κa ± 1. Since
the final-state orbitals are normalized on the energy scale, we may write the
differential oscillator strength, following Eq. (2.39), in the form

dfma

dE
=
2
3
ω |Dma|2 . (2.44)

From this, it follows that the cross section can be expressed in atomic units as

σa = 2π2α
∑
m

dfma

dE
(a2

0). (2.45)

Transforming to the more usual megabarn (Mb) units, we find

σa = 4.0336
∑
m

dfma

dE
(Mb). (2.46)

For the record, we note that the angular distribution asymmetry parameter for
photoelectrons from subshell a is given by

βa =
1
σ̄a

∑
κmκm′

√
30 〈κm′ ||C2||κm〉 (−1)jm′+ja

{
1 1 2

jm′ jm ja

}
�[DamD∗

am′ ] ,

(2.47)
where

σ̄a =
∑
m

|Dma|2 .

2.5 Applications: Discrete Transitions

Aluminum A study of the temperature and density dependence of pho-
toabsorption in an average-atom model was published a quarter century ago by
Rozsnyai [20] and applied to aluminum and cesium. Although photoionization
cross sections were given for various temperatures, oscillator strengths for dis-
crete transitions were given only for kT = 0. It is of interest to reconsider the

13



Table 2: Orbital energies εnlj and occupation numbers Nnlj for a average atom in
an Al (Z=13) plasma with density ρm=0.027 gm/cc (0.01 × metallic density) at
temperature kT=10eV. The chemical potential is µ = −1.801 and the Wigner-Seitz
radius is R=13.879 a0.

Shell εnlj Nnlj Shell εnlj Nnlj

1s1/2 -56.10808 2.0000 4s1/2 -0.19808 0.0252
2s1/2 -4.73745 1.9993 4p1/2 -0.12799 0.0209
2p1/2 -3.36223 1.9718 4p3/2 -0.12762 0.0417
2p3/2 -3.34575 3.9411 4d3/2 -0.04027 0.0329
3s1/2 -0.78759 0.1193 4d5/2 -0.04023 0.0494
3p1/2 -0.53671 0.0621 5s1/2 -0.02667 0.0159
3p3/2 -0.53526 0.1238 4f5/2 -0.01606 0.0463
3d3/2 -0.23642 0.0559 4f7/2 -0.01604 0.0617
3d5/2 -0.23638 0.0838

Nbound 10.6511
Ncont. 2.3489

discrete transitions in this case for finite temperatures. Our average-atom code
gave the results shown in Table 2 for energies and occupation numbers in an Al
plasma at density 0.027 gm/cc and temperature kT=10eV. As seen from the
table, the 10 electron Ne-like core is almost completely occupied and 2.3 of the
remaining 3 electrons are in the continuum. The bound n=3, 4, and 5 levels
are sparsely occupied at kT=10 eV.

There are 54 allowed electric-dipole transitions between the average-atom
levels shown in Table 2. We give the transition energies ∆E and absorption
oscillator strengths fjj for strongest of these transitions (2s → 3p, 2p → 3s,
and 2p → 3d) in columns 2 and 3, respectively, of Table 3. Sums over j
values belonging to a given l are carried out to give the oscillator strengths
fL in column 5. It is instructive to compare the model energies and oscillator
strengths with corresponding values for Ne-like ion Al+3. The present energies
are about 10% smaller than energies ∆Eion for the free ion given in column 4
of Table 3. The oscillator strengths fL, on the other hand, are smaller than
the free-ion values fion, given in column 6 of the table, by a factor of 2. In this
regard, it should be mentioned that correlation corrections are known to be very
important in low-Z ions such as Al+3. Indeed, the uncorrelated Al+3 oscillator
strengths f (0)

ion given in the 7th column of Table 3 are in closer agreement with
the present values. This example points up the necessity of including correlation
effects in average-atom calculations. The dominant correlation corrections to
oscillator strengths will be, as a matter of fact, included in the coupled TDLDA
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Table 3: Excitation energies ∆E and absorption oscillator strengths fjj for transi-
tions between average-atom levels in an Al plasma of density ρm=0.027 gm/cc and
temperature kT=10 eV calculated in the IPA. The quantities fL are sums of oscil-
lator strengths for levels with same initial and final l values. Comparison values for
the energies ∆Eion and oscillator strengths fion for the ion Al+3 are from relativistic
MBPT calculations [21]. Uncorrelated oscillator strengths f

(0)
ion for Al

+3 are from
DHF calculations.

Transition ∆E fjj ∆Eion fL fion f
(0)
ion

2s1/2 → 3p1/2 4.201 0.03481
2s1/2 → 3p3/2 4.202 0.06797 4.927 0.1028 0.1891 0.0614
2p1/2 → 3s1/2 2.575 0.04889
2p3/2 → 3s1/2 2.558 0.09948 2.796 0.1484 0.2828 0.1592
2p1/2 → 3d3/2 3.126 0.16092
2p3/2 → 3d3/2 3.109 0.03249
2p3/2 → 3d5/2 3.109 0.29236 3.455 0.4858 0.9714 0.4000

calculations.

Helium Csanak and Meneses recently developed a temperature-dependent
single-channel version of the RPA, referred to as the SCRPA and applied it to
helium at low temperatures. This calculation automatically includes the dom-
inant correlation corrections discussed in the previous section. As mentioned
earlier, the SCRPA is closely related to the TDLDA. In Table 4, we compare
average-atom energy levels and occupation numbers for a several states in He
at density 1.5× 1019 atoms/cc and temperature kT=10 eV obtained from the
present LDA code with values from Rozsnayi [22], and with values from the
inferno code [2] used as input in the SCRPA calculation. Except for the oc-
cupation numbers from [22] shown in column 5, which are conjectured to be
misprints, the three calculations are in fair agreement. In Table 5, we compare
transition energies and oscillator strengths from the present calculation in He
at density 1.5×1019 atoms/cc and temperature kT=10 eV with values from the
calculations of [22] and with SCRPA calculations [16]. The values of fL from
[22] were multiplied by 0.1630 to give the values shown in parentheses in column
5 of the table. This factor corresponds to an omitted initial state occupation
factor in the oscillator strengths given in [22], which are remarkably close to
values for the free He+1 ion. Assuming that the initial state occupation num-
ber N1s = 0.0630 given in Ref. [22], was a misprint of N1s = 0.1630, and that
this value was omitted in the calculations of fL, we obtain the values shown in
parentheses in Table 5. These conjectures have yet to be confirmed with Dr.
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Table 4: Average-atom energy levels εnl and occupation numbers Nnl for a few
states in He (Z=2) at density 1.5× 1019 atoms/cc and temperature kT=10 eV are
compared with values from other calculations.

Present Rozsnyai [22] inferno [2]
Shell εnl Nnl εnl Nnl εnl Nnl

1s -2.0474 0.1330 -2.0000 0.0630 -2.1901 0.1707
2p -0.4240 0.0051 -0.4427 0.0028 -0.4429 0.0048
3p -0.1516 0.0024 -0.1670 0.0013 -0.1611 0.0022
4p -0.0624 0.0020 -0.0729 0.0010 -0.0709 0.0017
5p -0.0255 0.0018 -0.0317 0.0009 -0.0346 0.0016
6p -0.0038 0.0016 -0.0132 0.0009

Nbound 0.1854 0.100? 0.2060
µ -3.0184 -3.0618

Table 5: Transition energies ∆E and oscillator strengths fL from the present calcu-
lation in He at density 1.5×1019 atoms/cc and temperature kT=10 eV are compared
with values from the calculations of [22] (modified as described in the text) and with
the scrpa calculations of [16].

Present Rozsnyai [22] scrpa [16]
Transition ∆E fL ∆E fL ∆E fL

1s → 2p 1.6234 0.05433 1.5574 (0.05700) 1.7093 0.07203
1s → 3p 1.8958 0.00978 1.8331 (0.01221) 2.0117 0.01221
1s → 4p 1.9851 0.00337 1.9272 (0.00443) 2.1096 0.00418
1s → 5p 2.0219 0.00140 1.9684 (0.00195) 2.1500 0.00164
1s → 6p 2.0436 0.00136 1.9869 (0.00085) 2.1607 0.00003

16



10
1

10
2

10
3

10
4

Photon Energy (eV)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ 
(M

b) 2p
2s
1s
Total

Free Al
+3

 Ion

Figure 3: Photoionization cross section for an isolated Al+3 ion.

Rozsnyai. The differences between the present IPA values of oscillator strengths
and the correlated values from the SCRPA calculation are unexpectedly small.

2.6 Applications: Photoionization

Aluminum As mentioned earlier, photoexcitation and photoionization of
Al and Cs at low temperatures and densities was considered by Rozsnyai [20].
In the previous subsection, we gave our values for the oscillator strengths of
discrete transitions in an Al plasma with density 0.027 gm/cc at temperature
kT=10 eV. Here we continue that discussion by considering photoionization
of an average atom in the same plasma. The energies and occupation num-
bers of an average atom in this plasma were shown previously in Table 2. As
noted earlier, the Ne-like core subshells are almost completely occupied and the
remaining bound levels are sparsely occupied. The cross section for photoion-
ization of the core subshells is therefore expected to be similar to that for a free
Al+3 ion, which is shown in Fig. 3. This cross section was obtained using the
Hartree-like model potential given in Ref. [23]. The contribution to the cross
section from each of the three subshells is shown in the figure.

The corresponding result for our average atom is shown in Fig. 4. Except
for the rapid oscillations in the inner shell cross sections near threshold, the
inner-shell cross sections are almost indistinguishable from the corresponding
results for the Al+3 ion shown in Fig. 3. These oscillations are shown in much
greater detail in Fig. 5. The radius of the Wigner-Seitz sphere in this case is
R=13.879 a0, and the resonances occur at those momenta for which an integral
number of wave lengths of the continuum electron fit inside the Wigner-Seitz
sphere.4 The maxima in the cross section occur when anti-nodes of the contin-

4A similar phenomenon occurs in classical scattering of electromagnetic radiation from a dielec-
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Figure 4: Photoionization cross section for an average atom in an Al plasma at
density ρm=0.027 gm/cc and temperature kT=10eV.

uum wave function are at the boundary r = R and minima occur when nodes
are at r = R. The contributions to the cross section for energies below the
n = 2 threshold near 100 eV arise entirely from the partially occupied levels
with principal quantum numbers n > 2. The contributions from n = 3 sub-
shells are shown in Fig. 4. The cross section found here is in fair agreement
with that given Rozsnyai in Fig. 3 of Ref. [20].

In a coupled theory, such as the TDLDA, the strong dipole transitions from
the n = 2 shells, shown in Table 3, lead to resonances in the n = 3 photoioniza-
tion cross section. Thus, we expect resonances near ω = 70 eV from the 2p → 3s
transitions, and resonances near 85 eV from 2p → 3d transitions. Moreover,
2s → 3p resonances are expected in the inner shell 2p cross section near 114
eV. Such resonances will dramatically alter the appearance of the cross section
shown in Fig. 3. The influence of intershell coupling on photoabsorption was
previously studied for an iron plasma at metallic density and kT=100 eV by
Grimaldi et al. in Ref. [1] using nonrelativistic TDLDA .

tric sphere when the radius of the sphere is large compared to the wave length. A detailed analysis
of this limiting case, referred to as van de Hulst scattering can be found in Ref. [24].
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Figure 5: Photoionization cross section for the 1s subshell of average atom in an Al
plasma at density ρm=0.027 gm/cc and temperature kT=10 eV. Resonances occur
at momenta for which an integral number of photoelectron wavelengths are inside
the Wigner-Seitz sphere.

Appendices

A Thomas-Fermi Electron Density

We consider an atom with N electrons moving in a potential U(r). We suppose
that locally the electrons are moving in a box of side L and depth U(r). The
number of states in momentum interval d3p is

d3N = 2
L3

(2π)3
d3p ,

so that the particle density is

ρ =
N

L3
=

1
π2

∫ pf

0

p2dp =
p3
f

3π2
,

at zero temperature, assuming levels up to the Fermi level pf are occupied. At
finite temperature T this generalizes to

ρ =
1
π2

∫ ∞

0

p2dp[
1 + e(E−µ)/kT

] ,

where E is the particle energy, µ is the chemical potential, and k = 8.617342×
10−5 eV/K is Boltzman’s constant. Taking advantage of the energy-momentum
relation

p2

2m
+ U(r) = E ,

19



we may change the independent variable to E. We have pdp = mdE, from
which follows

ρ =
m

π2

∫ ∞

V (r)

pdE[
1 + e(E−µ)/kT

] . (A.1)

With the further change of variable ε = E − U , p =
√
2mε, we obtain

ρ =
(2m)3/2

2π2

∫ ∞

0

√
ε dε[

1 + e(ε+U(r)−µ)/kT
] . (A.2)

It is convenient to write this expression in terms of the Fermi integral

I1/2(x) =
∫ ∞

0

y1/2 dy

[1 + ey−x]
.

We find that

ρ(r) =
(2mkT )3/2

2π2
I1/2(x)

with
x = [µ− U(r)] /kT .

In our model, only those electrons with E ≥ 0 are treated in the Thomas-
Fermi approximation. With this understanding, Eqs. (A.1) and (A.2) become

ρc(r) =
m

π2

∫ ∞

0

pdE[
1 + e(E−µ)/kT

] (A.3)

=
(2m)3/2

2π2

∫ ∞

−U(r)

√
ε dε[

1 + e(ε+U(r)−µ)/kT
] . (A.4)

With the substitution y = ε/kT , this becomes

ρc(r) =
(2mkT )3/2

2π2
I1/2(b, x) , (A.5)

where Ij(b, x) is the incomplete Fermi-Dirac integral

Ij(b, x) =
∫ ∞

b

yjdy

1 + exp[y − x]
, (A.6)

with b = U(r)/kT . Equation (A.5), with U(r) = V (r)−Z/r, is used to evaluate
the continuum contribution to the electron density in our model.

B Kohn-Sham Exchange Potential

The following is a reprise of the derivation of the Kohn-Sham exchange potential
given in Ref. [25]. Let us consider an N electron atom and suppose that a given
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state can be described by a single determinantal wave function Ψabc···. The
energy of the atom in this state can be written

E =
∑
a

〈a|h0|a〉+ 1
2

∑
ab

∫ ∫
d3r1d

3r2

R
φ†
a(r1)φa(r1)φ

†
b(r2)φb(r2)

−1
2

∑
ab

∫ ∫
d3r1d

3r2

R
φ†
a(r1)φb(r1)φ

†
b(r2)φa(r2) . (B.1)

The term on the second line of Eq. (B.1) is the exchange energy Eexc. The
exchange energy is evaluated assuming that the single-particle orbitals are non-
relativistic plane waves:

φa(r) =
1√
V

eipa·rχσa
.

We find

Eexc = − 1
2V 2

∑
σaσb

(
χ†
σa

χσb

) (
χ†
σb
χσa

) ∑
papb

∫ ∫
d3r1d

3r2

R
eiq·R , (B.2)

with q = pb − pa and R = r1 − r2. We make use of the fact that

1
V

∑
pa

→ 1
(2π)3

∫
d3pa ,

and ∑
σaσb

(
χ†
σa

χσb

) (
χ†
σb
χσa

)
=

∑
σa

(
χ†
σa

χσa

)
= 2 ,

to rewrite the expression for the exchange energy as

Eexc = − 1
(2π)6

∫ ∫
d3r1d

3r2

∫ ∫
d3pad

3pb
1
R
eiq·R .

Change variables to R = r1 − r2, and r = r2; then d3r1d
3r2 = d3Rd3r and the

exchange energy becomes

Eexc = − 1
(2π)6

∫
d3r

∫ ∫
d3pad

3pb

∫
d3R

R
eiq·R .

One can evaluate the innermost integral (with damping at large R) as∫
d3R

R
eiq·R =

4π
q2

.

It follows that

Eexc = − 2
(2π)4

∫
d3r

∫
d3pa

∫ pf

0

p2
bdpb

∫ 1

−1

dµ

p2
a + p2

b − 2papbµ
. (B.3)
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The integral over µ can be carried out to give∫ 1

−1

dµ

p2
a + p2

b − 2papbµ
=

1
papb

ln
(

pa + pb
|pa − pb|

)
.

The integral over pb is next carried out to give∫ pf

0

dpb
pb
pa
ln

(
pa + pb
|pa − pb|

)
=

1
2pa

[(
p2
f − p2

a

)
ln

(
pf + pa
pf − pa

)
+ 2pfpa

]
.

The integral over d3pa is next carried out to give

2π
∫ pf

0

dpa pa

[(
p2
f − p2

a

)
ln

(
pf + pa
pf − pa

)
+ 2pfpa

]
= 2πp4

f

This gives us finally,

Eexc = − 2
(2π)3

∫
d3r p4

f = − 3
4π
(3π2)1/3

∫
d3rρ4/3(r) , (B.4)

where we have used the relation

pf = (3π2ρ(r))1/3

to express the Fermi-momentum in terms of the particle density.

Variational Equations Wemay express the energy of a system of particles
in terms of the electronic wave functions as

E =
∫

d3r

{∑
a

φ†
ah0φa +

1
2

∫
d3r′ρ(r)ρ(r′)

R
− 3
4π
(3π2)1/3ρ4/3(r)

}
, (B.5)

where
ρ(r) =

∑
a

|φa(r)|2 .

In our discussion, we require

Na =
∫

d3r|φa(r)|2 = 1 .

The variation δφ†
a in the single-particle orbital φa leads to the variation

δ [E − εaNa]

=
∫

d3r δφ†
a

{
h0φa +

∫
d3r′ ρ(r′)

R
φa −

[
3
π
ρ(r)

]1/3

φa − εaφa

}
,
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in E − εaNa, where εa is a Lagrange multiplier introduced to insure that the
normalization constraint is satisfied. The condition δ [E − εaNa] = 0 leads to
the Kohn-Sham equations(

h0 +
∫

d3r′ ρ(r′)
R

+ Vexc(r)
)
φa = εaφa , (B.6)

where

Vexc(r) = −
[
3
π
ρ(r)

]1/3

. (B.7)

As shown in [25], the Kohn-Sham exchange potential is related to the average
exchange potential introduced earlier by Slater [26] by

Vexc(r) =
2
3
VSlater(r) .

Practical Matters In numerical codes, one deals with the radial parts
Pa(r) of the orbitals φa(r),

φa(r) ≡ φnalamaσa
(r) =

1
r
Pnala(r)Ylama

(r̂)χσa
,

which are normalized by ∫ ∞

0

dr [Pnala(r)]
2 = 1 .

The corresponding radial density for the atom is

n(r) =
∑
a

gaP
2
a (r) ,

where ga is the occupation number of the subshell a ≡ (nala). Averaging over
angles, one obtains ∫ ∞

0

dr n(r) = N ,

where N is the total number of electrons in the atom. We write the density in
terms of the radial density as

ρ(r) =
1

4πr2
n(r) ,

and consequently

Vexc(r) = −
[
3
4π2

n(r)
r2

]1/3

. (B.8)
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C MIT Bag Model

The Thomas-Fermi model automatically confines the continuum density ρc(r)
to the region inside the Wigner-Seitz sphere, r ≤ R. We also wish to constrain
the bound-state density ρb(r) to lie within the sphere. Nonrelativistically, this
can be done by introducing a very high potential barrier outside the sphere.
As the barrier height increases, the bound-state radial wave functions Pnl(r)
gets smaller and smaller at r = R, and, in the limit of an infinite potential,
Pnl(R)→ 0.

The well-known Klein paradox [27] shows us that a relativistic particle can
not be similarly confined by an arbitrarily high potential barrier. Nevertheless,
confinement of a relativistic particle to a sphere of radius R can be achieved,
using the MIT bag-model [28] boundary condition Pnκ(r) = Qnκ(R). This
condition, as shown below, is obtained by letting the particle’s mass m increase
to a large value in the region r > R.

The radial Dirac equations in the field-free region beyond the Wigner-Seitz
cavity may be written.

c
dQ

dr
= (E −mc2)P , (C.1)

c
dP

dr
= −(E +mc2)Q . (C.2)

This pair leads to the second-order equation

c2
d2P

dr2
+ (E2 −m2c4)P = 0 ,

which has two linearly independent solutions e±λr, with λ =
√

m2c2 − E2/c2.
The corresponding solutions are

P±(r) =

√
mc2 + E

2mc2
e±λr

Q±(r) = ∓
√

mc2 + E

2mc2
e±λr

Now, if we replace m → M � m, but fix the energy E, then the radial
functions associated with the solution that is regular at infinity becomes

P−(r)→
√
1
2

e−Mcr

Q−(r)→
√
1
2

e−Mcr .

It follows from these relations that to match a solution to the Dirac equation
inside the sphere to a large-mass solution beyond the sphere, we must have
P (R) = Q(R) at the boundary. It should be emphasized that the density does
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Figure 6: The radial density of an average-atom 4s electron in an iron plasma of
normal density and temperature kT=100 eV is shown in the solid line and the
integrated probability density is shown in the dashed line. The 4s radial wave
functions satisfy the MIT bag-model boundary conditions on the surface of the
Wigner-Seitz sphere.

not vanish at r = R, it simply approaches a finite (but small) value on the
boundary. The finite wave functions inside connect to functions that vanishes
exponentially outside the cavity. AsM approaches infinity, the fall-off distance
drops to zero!. In Fig. 6, we show the radial density of a 4s electron that
satisfies the bag-model boundary conditions. This wave function is from the
iron plasma considered in the example of Section 1.2.

The practical problem that we face is how to set up P (r) and Q(r) at a few
points beyond r = R in such a way that the bag-model boundary conditions are
satisfied at r = R and that P (r) and Q(r) are solutions of the equation with
mass m. Such initial values are needed to obtained “ingoing” solutions to the
radial Dirac equation. A combination of the mass m solutions which reduces
to P (R) = Q(R) is

P (r) = eλr + a eλ(2R−r)

Q(r) =
cλ

c2 + E

[
−eλr + a eλ(2R−r)

]
.

where

a = − (cλ+ c2 + E)2

2E(c2 + E)
= − (2 + λ/c+W/c2)2

2(1 +W/c2)(2 +W/c2)
.

For numerical stability the second form is probably better. It is also useful to
use the alternative expression for λ:

λ =
√

−W (2 +W/c2) .
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In both expressions, W = E − c2.
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