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Abstract

We examine the Rydberg spectrum of the two actinide ions Th2+ and U5+. The
states of interest consist of a weakly bound electron interacting with the 5F5/2 ground
states of the respective one electron ions. First- and second-order correlation corrections
are worked out.

1 Basic Assumptions

We consider an N+1 electron with atom with one electron in a high Rydberg state. We
neglect the exchange interaction between the Rydberg electron and the N -electron ion. The
Hamiltonian of the atom is written

H = HN (~r1 · · · ~rN ) + h(~r) + U(~r, ~r1 · · · ~rN ) , (1)

where HN is the Hamiltonian of the N -electron ion, h is the Rydberg electron:

h(~r) = T + Vnuc(r) +
N

r
, (2)

and and U is the interaction Hamiltonian,

U(~r, ~r1 · · · ~rN ) =
N
∑

i=1

1

|~r − ~ri|
− N

r
(3)

=
∞
∑

L=1

L
∑

M=−L

CLM (r̂)

rL+1

N
∑

i=1

rL
i C

∗
LM (r̂i) . (4)

In the expansion of the interaction Hamiltonian, we assume that the Rydberg electron
wave-function has no overlap with the ionic core.
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In lowest-order, the atomic wave function may be written

Ψ0 = Φ0(~r1 · · ·~rN )φk(~r) , (5)

where

HN (~r1 · · ·~rN ) Φn(~r1 · · ·~rN ) = EnΦn(~r1 · · · rN ) (6)

h(~r)φl(~r) = εl φl(~r) . (7)

The lowest-order energy of a Rydberg state is E0 + εk.

2 First-Order Energy

The ground state of both of the N = 87 electron ions, Th3+ and U5+, is a J0 = 5/2 state
with a 5f5/2 valence electron outside a Rn-like core. The two valence electron systems
of interest here have a Rydberg electron with angular momentum (jkmk) coupled to the
(J0M0) ground-state to give a coupled two-electron state (FMF ). We use the notation of
hyperfine structure here, because of the similarity of the present analysis to the analysis of
hyperfine interactions.

The first-order energy is

E
(1)
F =

〈

(J0M
′
0, km

′
k)FMF |U | (J0M0, kmk)FMF

〉

(8)

= 〈J0M
′
0, km

′
k|FMF 〉〈J0M0, kmk|FMF 〉 ×

∑

LM

(−1)M
〈

km′
k

∣

∣

∣

CLM (r̂)

rL+1

∣

∣

∣kmk

〉〈

J0M
′
0

∣

∣

∣

∑

i

CL−M (r̂i) r
L
i

∣

∣

∣J0M0

〉

. (9)

Carrying out the sums over magnetic quantum numbers, we find

E
(1)
F =

∑

L=2,4

(−1)J0+k+F

{

J0 k F
k J0 L

}

×

〈k||CL||k〉
〈

1

rL+1

〉

k
〈J0||

∑

i

CL(r̂i) r
L
i ||J0〉 . (10)

Only two terms L=2 and L=4 contribute for the cases of interest where J0= 5/2. In the
HF approximation, the core parameters 〈F5/2||

∑

i r
L
i CL(r̂i)||F5/2〉 are found to be:

Ion 〈F5/2||r2C2||F5/2〉 〈F5/2||r4C4||F5/2〉
Th3+ -3.755 15.97
U5+ -2.207 4.718
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3 Second-Order Energy

The second-order energy is

∆E(2) = −
∑

(nl)6=(0k)

〈0k|U |nl〉〈nl|U |0k〉
En − E0 + εk − εl

(11)

= −
∑

n6=0, all l

〈0k|U |nl〉〈nl|U |0k〉
En − E0 + εk − εl

−
∑

l 6=k

〈0k|U |0l〉〈0l|U |0k〉
εk − εl

. (12)

We expand the denominator in the first term of Eq. (12) as

1

En − E0 + εl − εk
=

1

En − E0
+

εk − εl
(En − E0)2

+
(εk − εl)

2

(En − E0)3
+ · · ·

to find

∆E(2) = −
〈

k

∣

∣

∣

∣

∣

∣

∑

n6=0

〈0|U |n〉〈n|U |0〉
En − E0

∣

∣

∣

∣

∣

∣

k

〉

−
〈

k

∣

∣

∣

∣

∣

∣

∑

n6=0

〈0|[h, U ]|n〉〈n|U |0〉
(En − E0)2

∣

∣

∣

∣

∣

∣

k

〉

+ · · ·

−
∑

l 6=k

〈0k|U |0l〉〈0l|U |0k〉
εk − εl

. (13)

3.1 Polarizability correction

In this subsection, we examine the first term in Eq. (13), which leads to the correction to
the energy of the Rydberg state from the core polarizability. We have

∆E
(2)
pol = −〈J0M

′
0, km

′
k|FMF 〉〈J0M0, kmk|FMF 〉×

∑

L′M ′

L

∑

LML

〈

km′
k

∣

∣

∣

∣

∣

CL′M ′

L
(r̂)C∗

LML
(r̂)

rL+L′+2

∣

∣

∣

∣

∣

kmk

〉

×

∑

n6=0

〈

J0M
′
0|
∑

i r
L′

i C∗
L′M ′

L

|JnMn

〉〈

JnMn|
∑

j r
L
j CLML

|J0M0

〉

En − E0
(14)

We expand the product of two spherical tensors as

CL′M ′

L
(r̂)C∗

LML
(r̂) =

∑

JMJ

AJMJ
CJMJ

(r̂) , (15)
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and find

AJMJ
=

[J ]
√

[L][L′]

〈

L′M ′
L |CJMJ

|LML

〉

. (16)

Therefore,

CL′M ′

L
(r̂)C∗

LML
(r̂) =

∑

JMJ

[J ]
√

[L][L′]

〈

L′M ′
L |CJMJ

|LML

〉

CJMJ
(r̂) . (17)

It follows that
〈

km′
k

∣

∣

∣

∣

∣

CL′M ′

L
(r̂)C∗

LML
(r̂)

rL+L′+2

∣

∣

∣

∣

∣

kmk

〉

=
∑

JMJ

[J ]
√

[L][L′]
×

〈

L′M ′
L |CJMJ

|LML

〉 〈

km′
k |CJMJ

| kmk

〉

〈

1

rL+L′+2

〉

k
, (18)

Carrying out the sums over magnetic quantum numbers, we find

∆E
(2)
pol =

∑

J

(−1)J0+k+F

{

J0 k F
k J0 J

}

[J ] 〈k||CJ ||k〉×

∑

LL′

1
√

[L][L′]
〈L′||CJ ||L〉

〈

1

rL+L′+2

〉

k

∑

n6=0

(−1)L′

{

L′ L J
J0 J0 Jn

}

〈

J0||
∑

i r
L′

i CL′ ||Jn

〉 〈

Jn||
∑

j r
L
j CL||J0

〉

En − E0
. (19)

For the 5F5/2 state of interest here, J0=5/2 and J < 2J0 = 5; moreover, J is even. It
follows that J = 0, 2, 4.

3.1.1 Contribution of J = 0

In the following, we include only those terms with L+ L′ ≤ 4. If we set J = 0 in Eq. (19),
then we find

∆E
(2)
0 = −1

2

〈

ᾱ1

r4

〉

k
− 1

2

〈

ᾱ2

r6

〉

k
, (20)

where ᾱ1 and ᾱ2 are the scalar parts of the dipole and quadrupole polarizabilities, respec-
tively. The scalar polarizabilities are defined by

ᾱL =
2

[L][J0]

∑

n

∣

∣

∣

〈

Jn||
∑

j r
L
j CL||J0

〉∣

∣

∣

2

En − E0
. (21)
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3.1.2 Contribution from J = 2, 4

The J = 2 and 4 terms in Eq. (19) consists of partial contributions from all L > 1. The
corresponding values of L′ have the same parity as L and satisfy max (1, |L− J |) ≤ L′ ≤
L+ J .

Terms with L = L′ = 1: We consider the L = L′ = 1 term first. This term arises only
for J = 0 and 2. We have already evaluated the J = 0 part. The J = 2, L = L′ = 1 term
can be rewritten in terms of the L = 1 tensor polarizability

α1t = 4

√

5

6

(

J0 2 J0

−J0 0 J0

)

∑

Jn

(−1)J0+Jn

{

1 1 2
J0 J0 Jn

}

∣

∣

∣

〈

Jn||
∑

j rj C1||J0

〉∣

∣

∣

2

En − E0
. (22)

We note in passing that

(

J0 2 J0

−J0 0 J0

)

=

√

J0(2J0 − 1)

(J0 + 1)(2J0 + 1)(2J0 + 3)
. (23)

Substituting into Eq. (19), we find that the L = L′ = 1 contribution to the J = 2 term is:

∆E
(2)
2

∣

∣

∣

11
= −1

2
(−1)J0+k+F

{

J0 k F
k J0 2

}

〈k||C2||k〉
(

J0 2 J0

−J0 0 J0

)−1 〈
α1t

r4

〉

k
. (24)

There are no further second-order corrections falling off as 1/r4.

Terms with L = L′ = 2: The J > 0 terms with L = L′ = 2 can be summarized as

∆E
(2)
2

∣

∣

∣

22
= −

∑

J=2,4

(−1)J0+k+F

{

J0 k F
k J0 J

}

〈k||CJ ||k〉
〈

1

r6

〉

k
×

〈2||CJ ||2〉
∑

Jn

(−1)J0+Jn

{

2 J0 Jn

J0 2 J

}

∣

∣

∣

〈

Jn||
∑

j r
2
j C2||J0

〉∣

∣

∣

2

En − E0
. (25)

For the record, we note that

〈2||C2||2〉 = −
√
70

7
and 〈2||C4||2〉 =

√
70

7
.
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Terms with L = 1, 3 and L′ = 3, 1: The sum of the terms with L = 1, 3 and L′ = 3, 1
can be written

∆E
(2)
2

∣

∣

∣

13
= −2

∑

J=2,4

(−1)J0+k+F

{

J0 k F
k J0 J

}

〈k||CJ ||k〉
〈

1

r6

〉

k
×

[J ]√
21
〈3||CJ ||1〉

∑

Jn

{

3 J0 Jn

J0 1 J

}

〈

J0||
∑

i r
3
i C3||Jn

〉

〈

Jn||
∑

j rj C1||J0

〉

En − E0
. (26)

We note that

〈3||C2||1〉 =
3
√
5

5
and 〈3||C4||1〉 = −

2
√
3

3
,

and further that 〈1||CJ ||3〉 = 〈3||CJ ||1〉, for J = 2, 4. This completes the second-order
energy contributions that fall off as 1/r6.

3.1.3 Summary

The contributions to the second-order polarization energy that fall off as 1/r4 and 1/r6 are
given by Eqs. (20), (24), (25), and (26), above. The contributions to the first-order energy
fall off as 1/r3 and 1/r5. These first-order contributions are given given in Eq. (10).
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