Thomson Scattering from WDM Average-Atom Approximation

W. R. Johnson, Notre Dame J. Nilsen & K. T. Cheng, LLNL

The cross section for Thomson scattering of x-rays by warm dense matter is studied within the framework of the average-atom model.

OTRE DAME

1= 990

イロト イポト イヨト イヨト

Thomson Scattering

- Elastic Scattering by lons
- Inelastic Scattering by Free Electrons
- Inelastic Scattering by Bound Electrons

JOTRE DAMI

ELE DQC

イロト イポト イヨト イヨト

Average-Atom Model

- Divide plasma into WS cells with a nucleus and Z electrons
- $\left| \frac{p^2}{2} \frac{Z}{r} + V \right| \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$
- $V(r) = V_{\mathrm{KS}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1+\exp[(\epsilon_{nl}-\mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

- Divide plasma into WS cells with a nucleus and Z electrons
- $\left[\frac{p^2}{2} \frac{Z}{r} + V\right]\psi_a(\mathbf{r}) = \epsilon_a\psi_a(\mathbf{r})$
- $V(r) = V_{\mathrm{KS}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1+\exp[(\epsilon_{nl}-\mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

- Divide plasma into WS cells with a nucleus and Z electrons
- $\left[\frac{p^2}{2} \frac{Z}{r} + V\right]\psi_a(\mathbf{r}) = \epsilon_a\psi_a(\mathbf{r})$
- $V(r) = V_{\mathrm{KS}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1+\exp[(\epsilon_{nl}-\mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Average-Atom Model

• Divide plasma into WS cells with a nucleus and Z electrons

•
$$\left[\frac{p^2}{2} - \frac{Z}{r} + V\right] \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$$

•
$$V(r) = V_{\mathrm{KS}}(n(r), r)$$

- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

Divide plasma into WS cells with a nucleus and Z electrons

•
$$\left[\frac{p^2}{2} - \frac{Z}{r} + V\right] \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$$

•
$$V(r) = V_{\mathrm{KS}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

• $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

Divide plasma into WS cells with a nucleus and Z electrons

•
$$\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$$

•
$$V(r) = V_{\mathrm{KS}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

•
$$4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_BT]} P_{nl}(r)^2$$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_e \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

Divide plasma into WS cells with a nucleus and Z electrons

•
$$\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$$

•
$$V(r) = V_{\mathrm{KS}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

•
$$4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_BT]} P_{nl}(r)^2$$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_e \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Average-Atom Model

Divide plasma into WS cells with a nucleus and Z electrons

•
$$\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$$

•
$$V(r) = V_{\mathrm{KS}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

•
$$4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_B T]} P_{nl}(r)^2$$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Aluminum Metal

三日 のへの

(日) (四) (日) (日) (日)

Aluminum Metal

三日 のへの

(日) (四) (日) (日) (日)

Elastic Scattering by lons nelastic Scattering by Free Electrons nelastic Scattering by Bound Electrons

イロト イポト イヨト イヨト

1= 990

Thomson Scattering

In nonrelativistic limit, this leads to

$$\frac{d\sigma}{d\omega_1 d\Omega} = |\epsilon_0 \cdot \epsilon_1|^2 r_0^2 \frac{\omega_1}{\omega_0} S(k, \omega)$$

with $k = |\mathbf{k}_0 - \mathbf{k}_1|$, $\omega = \omega_0 - \omega_1$, where $S(k, \omega)$ is the *dynamic structure function* of the plasma.

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

RPWDM-15

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

• $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] \, j_0(kr) \, dr$

RPWDM-15

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{\rm WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$
- Arkhipov and Davletov (1998) & Gregori et al. (2003)

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$
- Arkhipov and Davletov (1998) & Gregori et al. (2003)
- Modified by Gregori et al. (2006) to include $T_i \neq T_e$

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

NOTRE DAME

ELE DQC

イロト イポト イヨト イヨ

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

NOTRE DAME

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inelastic Scattering by Free Electrons

From Gregori et al. (2003):

$$\mathcal{S}_{ee}(k,\omega) = -rac{1}{1-\exp(-\omega/k_{\scriptscriptstyle B}T)}rac{k^2}{4\pi^2 n_e} {
m Im}\left[rac{1}{arepsilon(k,\omega)}
ight]$$

Random-phase approximation for dielectric function $\varepsilon(k, \omega)$:

$$\varepsilon(k,\omega) = 1 + \frac{4}{\pi k^2} \int_0^\infty \frac{p^2}{1 + \exp[(p^2/2 - \mu)/k_B T]} dp \\ \times \int_{-1}^1 d\eta \left[\frac{1}{k^2 - 2pk\eta + 2\omega + i\nu} + \frac{1}{k^2 + 2pk\eta - 2\omega - i\nu} \right]$$

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Dielectric Function

Scattering from AI metal, $k_B T = 5 \text{ eV}$, $\omega_0 = 3.1 \text{ keV}$, $\theta = 30^{\circ}$

= 200

イロト イポト イヨト イヨ

Elastic Scattering by Ions Inelastic Scattering by Free Electrons Inelastic Scattering by Bound Electrons

.

NOTRE DAME

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

Inelastic Scattering by Bound Electrons

$$S_{B}(k,\omega) = \sum_{nl} S_{nl}(k,\omega)$$
$$S_{nl}(k,\omega) = \frac{o_{nl}}{2l+1} \sum_{m} \int \frac{p \, d\Omega_{p}}{(2\pi)^{3}} \left| \int d^{3}r \, \psi_{p}^{\dagger}(r) e^{ik \cdot r} \, \psi_{nlm}(r) \right|_{E_{p}=\omega+E_{nl}}^{2}$$

Plane-wave Approximation: $\psi_{p}(\mathbf{r}) \approx \mathbf{e}^{i\mathbf{p}\cdot\mathbf{r}}$

$$\mathcal{S}_{nl}(k,\omega) = rac{o_{nl}}{\pi k} \int_{|p-k|}^{p+k} q \, dq \, |\mathcal{K}_{nl}(q)|^2, \quad ext{where}$$

$$K_{nl}(q) = \int_0^\infty dr \, r \, j_l(qr) P_{nl}(r).$$

Bound-state contribution to $S(k, \omega)$ for x-ray scattering from the *K*-shell of Be metal at $k_{B}T$ =18 eV.

NOTRE DAME

= 200

イロト イポト イヨト イヨ

 Average-Atom
 Elastic Scattering by lons

 Thomson Scattering
 Inelastic Scattering by Free Electrons

 Application to Aluminum
 Inelastic Scattering by Bound Electrons

Comparison with Sahoo et al. Phys. Rev. E 77, 046402 (2008)

UNIVERSITY OF NOTRE DAME

ELE DQC

・ロト ・ 同ト ・ ヨト ・ ヨト

RPWDM-15

Application to Aluminum

RPWDM-15

Summary:

- AA model is used to study x-ray scattering from WDM.
- Scattering from bound-states easily accommodated.
- Present results disagree with earlier AA results by Sahoo et al. for Al.

To be done:

• Understand why $T_i/T_e \neq 1$ is needed in $S_{ii}(k, \omega)$ in some equilibrium cases but not in others?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Go beyond RPA for S_{ee}(k, ω) and include correlation effects.

References

- G. Gregori et al., Phys. Rev. E 67, 026412 (2003)
- S. H. Glenzer & R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)
- G. Gregori et al., Phys. Rev. E 74, 026402 (2006)
- Y. Arkhipov & A. Davletov, Phys. Letts. A 227, 339 (1998)
- Johnson, Nilsen & Cheng, Phys. Rev. E 86, 036410 (2012)

ヘロト ヘ戸ト ヘヨト ヘヨト

= 200

S. Sahoo et al., Phys. Rev. E 77, 046402 (2008)