Hyperfine Quenching: Review of Experiment and Theory

Walter Johnson University of Notre Dame

- I Two approaches: Perturbation Theory & Radiation Damping
- II Heliumlike lons
- III Neutrals, Be-like Ions, Mg-like Ions
- IV Ni-like lons and Other Systems

Collaborators on Hyperfine Quenching:

- K. T. Cheng and Mau Chen (LLNL)
- D. Plante (Stetson U)
- U. I. Safronova (U Nevada Reno)

Review

Hyperfine Interaction

ASOS10 - August 2010

2

Perturbation Theory

$$H_{\rm hfs} = \sum_k \, T_k^{(e)} \cdot T_k^{(n)}$$

1) F = I + J is conserved.

2) Level J splits into sublevels with
$$F=I+J$$
, $F=I+J-1$, $\cdots F=|I-J|$.

3) Assuming fine structure levels well spaced

$$W_J^F = E_J + (-1)^{I+J+F} \sum_k \left\{ \begin{array}{ccc} I & J & F \\ J & I & k \end{array} \right\} \langle J||T_k^{(e)}||J\rangle \langle I||T_k^{(n)}||I\rangle$$

4) Assuming several closely spaced levels γJ , we have

$$W_{\gamma J,\gamma'J'}^{F} = E_{\gamma J} \,\delta_{\gamma \gamma'} \,\delta_{JJ'} + (-1)^{I+J+F} \sum_{k \gamma'J'} \left\{ \begin{array}{ccc} I & J & F \\ J' & I & k \end{array} \right\} \,\langle \gamma J || T_{k}^{(e)} || \gamma'J' \rangle \langle I || T_{k}^{(n)} || I \rangle$$

ASOS10 - August 2010

3

Perturbation Theory (Continued)

5) Wave Function:

$$\Psi_{\gamma J} \rightarrow \Psi_{\gamma J} + \delta \Psi_{\gamma J}^{F}$$

$$\delta \Psi_{\gamma J}^{F} = (-1)^{I+J+F} \sum_{k \gamma' J'} \left\{ \begin{array}{ccc} I & J & F \\ J' & I & k \end{array} \right\} \frac{\langle \gamma J || T_{k}^{(e)} || \gamma' J' \rangle \langle I || T_{k}^{(n)} || I \rangle}{E_{\gamma J} - E_{\gamma' J'}} \Psi_{\gamma' J'}$$

$$\begin{split} \langle \Psi_{\gamma J} | Q_l | \Psi_0 \rangle &\to \langle \Psi_{\gamma J} | Q_l | \Psi_0 \rangle + \langle \delta \Psi_{\gamma J}^F | Q_l | \Psi_0 \rangle \\ \langle \delta \Psi_{\gamma J}^F | Q_l | \Psi_0 \rangle &= \sum_{\gamma' J'} C_{\gamma' J', \gamma J}^F \langle \Psi_{\gamma' J'} | Q_l | \Psi_0 \rangle \end{split}$$

Energy Matrix for F = 1/2 in He-like ³¹P (I=1/2)

	$2 {}^3\!P_0$	$2 {}^3\!P_1$	$2 \ {}^3\!P_2$	$2 {}^1\!P_1$
$2 {}^3\!P_0$	0.0000[0]	2.3384[1]	0.0000[0]	-1.4234[1]
$2 {}^3\!P_1$	2.3384[1]	2.4114[3]	0.0000[0]	2.2012[1]
$2\ {}^3\!P_2$	0.0000[0]	0.0000[0]	1.2196[4]	0.0000[0]
$2\ {}^1\!P_1$	-1.4234[1]	2.2012[1]	0.0000[0]	1.0183[5]
$W^{1/2}$	-2.2880[-1]	2.4116[3]	1.2196[4]	1.0183[5]
	Eigenve	ctor Matrix		
$2 {}^3\!P_0$	9.9995[-1]	9.6974[-3]	0.0000[0]	-1.3973[-4]
$2\ {}^3\!P_1$	-9.6974[-3]	9.9995[-1]	0.0000[0]	2.2138[-4]
$2\ {}^3\!P_2$	0.0000[0]	0.0000	1.0000[0]	0.0000
$2\ {}^1\!P_1$	1.4187[-4]	-2.2002[-4]	0.0000[0]	1.0000[0]

 $W^{F=1/2}_{\gamma J,\gamma'J'}$ (1/cm)

Transition rates in He-like ${}^{31}P$ (I=1/2)

Induced E1 transitions from $2 \, {}^3\!P_{0,2}$ states to ground state

$$A_{E1}^{F}[{}^{3}\!P_{J}] = \frac{2.02613 \times 10^{18}}{3(2F+1)\lambda^{3}} \left| \sum_{\gamma'=1,3} C_{\gamma'1,3J}^{F} \langle 1 \, {}^{1}\!S_{0} \| Q_{1} \| 2 \, {}^{\gamma'}\!P_{1} \rangle \right|^{2}$$

Mode	P_2	P_0
$E1 \rightarrow 2 {}^3S_1$	0.0037	0.0409
$M2 ightarrow 1 \ {}^1\!S_0$	0.0689	0.0000
Induced $E1 ightarrow 1 {}^1\!S_0$	0.2214	0.1659
$A_{ m tot}$	0.2940	0.2068
Expt.	0.298(4)	0.205(4)

Difficulties with Previous Method

A case where above theory does not work: ${}^{3}P_{0}$ level in heliumlike 207 Ag. Theory: 384.8 (ns⁻¹) Expt: 251±23 (ns⁻¹)

Solution: Treat interaction with radiation field on same level as hyperfine interaction $H_{\rm hf} \to H_{\rm hf} + V_{\rm rad}$

Radiation Damping¹

$$\begin{split} V_{\rm rad} |\psi_E\rangle &= ie^2 \sum_{lq\lambda} \frac{(l+1)(2l+1)}{l \left[(2l+1)!!\right]^2} \sum_n k_n^{2l+1} Q_{lq}^{(\lambda)} |\psi_n\rangle \langle \psi_n | Q_{lq}^{(\lambda)\dagger} |\psi_E\rangle \\ &\quad \langle 2\,^{\gamma}P_1 | V_{\rm rad} | 2\,^{\gamma}P_1\rangle \approx i \frac{\hbar}{2} \left[A(2\,^{\gamma}P_1 \rightarrow^1 S_0) + A(2\,^{\gamma}P_1 \rightarrow^3 S_1) \right] \\ &\quad \langle 2\,^{3}P_1 | V_{\rm rad} | 2\,^{1}P_1\rangle \approx i \frac{\hbar}{2} \left[\frac{4}{9} \,k_0^3 \,\langle 1\,^{1}S_0 \| Q_1 \| 2\,^{1}P_1\rangle \langle 1\,^{1}S_0 \| Q_1 \| 2\,^{3}P_1\rangle \right. \\ &\quad \left. + \frac{4}{9} \,k_1^3 \,\langle 2\,^{3}S_1 \| Q_1 \| 2\,^{1}P_1\rangle \langle 2\,^{3}S_1 \| Q_1 \| 2\,^{3}P_1\rangle \right] \end{split}$$

¹F. Robicheaux et al., Phys. Rev. A **52**. 1319 (1995).

UNIVERSITY OF NOTRE DAME

Radiation Damping for He-lke ¹⁰⁷**Ag**

Eigenvalues of $(H_0 + H_{hf} + iV_{rad})_{\gamma J,\gamma' J'}$ for F = 1/2.

$^{3}P_{0}$	${}^{3}\!P_{1}$	${}^{3}\!P_{2}$	${}^{3}P_{1}$
\Re Eigenvalu	ues in cm $^{-1}$		
1.0699[0]	-6.3188[3]	1.6955[6]	1.9426[6]
$2\Im$ Eigenva	lues in ns^{-1}		
2.6851[2]	1.5807[6]	7.8768[2]	3.8868[6]

$$\begin{split} \Psi(2 \ ^{3}\!P_{0})(t) &\sim \exp[i(W^{(1/2)} + i\Gamma^{(1/2)}/2)t] \\ \Gamma^{(1/2)} &= 268.5 \ \mathrm{ns}^{-1} \\ \Gamma_{\mathrm{Expt}} &= 251 \pm 23 \ \mathrm{ns}^{-1} \end{split}$$

Hyperfine Quenching for He-like lons (Theory)

- PT 1/Z calculations of quenching rates of ${}^{3}\!P_{0,2}$ levels for He-like ions.²
- RD MCDF calculations of quenching rates of ${}^{3}P_{0}$ levels for He-like ions with Z=46-92 including the Breit interaction and the Lamb shift.³
- PT MCHF calculations of quenching rates of ${}^{3}P_{0}$ levels for He-like F, Na and Al including Breit-Pauli corrections.⁴
- RD Relativistic CI calculations of ${}^{3}P_{0,2}$ levels for He-like ions with Z=6-100 including the Breit interaction and Lamb shift.⁵
- PT 1/Z calculations of quenching rates of ${}^{3}P_{0}$ levels for He-like ions including Coulomb and Breit interactions.⁶

⁵W. Johnson, K.T. Cheng and D. Plante, Phys. Rev. A **55**, 2728 (1997).

⁶A. Volotka et al. Can. J. of Phys. **80**, 1263 (2002).

²P. J. Mohr in *Beam-Foil Spectroscopy*, Vol.1, pp. 9-103 (1976).

³P. Indelicato et al., Phys. Rev. A **40**, 3505 (1989).

⁴A. Aboussaïd et al. Phys. Rev. A **51**, 2031 (1995).

(1s2p) $^{3}P_{0}$ Decay in He-like lons

Comparison of theory & experiment for lifetimes (ns)) of (1s2p) $^{3}P_{0}$ in heliumlike ions.

lon	I	μ_I	Expt.	Theory	Ref.
^{19}F	1/2	2.6289	9.48(20)	9.574	Engsrtröm et al.
^{27}AI	5/2	3.6415	4.80(20)	4.695	Denne et al.
^{31}P	1/2	1.1316	4.88(9)	4.836	Livingston & Hinterlong
⁶¹ Ni	3/2	-0.75002	0.47(5)	0.4455	Dunford et al.
^{107}Ag	1/2	-0.11368	0.00398(37)	0.003724	Marrus et al.
^{109}Ag	1/2	-0.13069	0.00284(32)	0.002810	Simionovici et al.
^{155}Gd	3/2	-0.25810	0.01343(27)	0.01357	Indelicato et al.
^{157}Gd	3/2	-0.33860	0.00765(55)	0.00801	Indelicato et al.
¹⁹⁷ Au	3/2	0.14816	0.02216(81)	0.002261	Toleikis et al.

Determination of Fine-Structure Interval

For high Z, the decay rate of the $(1s2p)^3 P_0$ state is determined (approx.) by the eigenvalues of the matrix⁷

$$\begin{pmatrix} \langle {}^{3}\!P_{0}|H_{\rm hf} + iV_{\rm rad}|{}^{3}\!P_{0}\rangle & \langle {}^{3}\!P_{0}|H_{\rm hf} + iV_{\rm rad}|{}^{3}\!P_{1}\rangle \\ \langle {}^{3}\!P_{1}|H_{\rm hf} + iV_{\rm rad}|{}^{3}\!P_{0}\rangle & E_{10} + \langle {}^{3}\!P_{1}|H_{\rm hf} + iV_{\rm rad}|{}^{3}\!P_{1}\rangle \end{pmatrix}$$

where E_{10} is the interval between the ${}^{3}P_{1}$ and ${}^{3}P_{0}$ states. E_{10} is treated as an adjustable parameter to give the observed rate.

	Expt.	Theor.	Ref.
Ag	0.79(04)	0.801	Birkett et al.
Gd	18.57(19)	18.57	Indelicato et al.

⁷Indelicato, et al., Phys. Rev. A **40**, 3505, (1989).

(1s2p) $^{3}P_{2}$ Decay in He-like lons

 $^{3}\!P_{2}$ rates (ns⁻¹): Cases where HF contribution > 5% and $\tau > 1$ ps.

	μ_I	Ι	A_{M2+E1}	$A_{\sf hf}$	A _{tot}	% from HFS
45 Sc	4.7565	7/2	1.693	0.3928	2.085	23
50 V	3.3457	6	3.188	0.3622	3.550	11
51 V	5.1487	7/2	3.188	0.9453	4.133	29
51 Mn	3.5683	5/2	5.891	0.9584	6.850	16
55 Mn	3.4687	5/2	5.891	0.9056	6.797	15
59 Co	4.6270	7/2	10.59	2.733	13.33	25
63 Cu	2.2273	3/2	18.49	1.453	19.94	7
65 Cu	2.3816	3/2	18.49	1.662	20.15	8
69 Ga	2.0166	3/2	31.31	2.035	33.35	6
71 Ga	2.5623	3/2	31.31	3.285	34.60	10
79 Br	2.1064	3/2	82.74	5.908	88.65	7
81 Br	2.2706	3/2	82.74	6.865	89.61	8
87 Rb	2.7515	3/2	129.6	15.83	145.4	12
93 Nb	6.1705	9/2	298.5	134.9	433.4	45
⁹⁹ Тс	5.6847	9/2	440.6	169.3	609.9	38

(1s2s) $^{1}S_{0}$ Decay in He-like lons

(1s2p) ${}^{3}P_{0}$ and (1s2s) ${}^{1}S_{0}$ levels in He-like ions cross near Z=62 making the ions He-like Eu and He-like Gd interesting for atomic PNC experiments. Quenching of the (1s2s) ${}^{1}S_{0}$ decay caused by mixing with the (1s2s) ${}^{3}S_{1}$ state which decays to the $(1s)^{2}$ ${}^{1}S_{0}$ via an M1 transition has been evaluated.⁸

Induced M1 transition rates (s⁻¹) of the (1s2s) ¹S₀ state of He-like Eu and Gd.

	μ_I	Ι	A_{M1} hf
151 Eu	3.4717	5/2	0.68[8]
153 Eu	1.5330	5/2	0.13[8]
^{155}Gd	-0.2591	3/2	0.58[6]
^{157}Gd	-0.3398	3/2	0.99[6]

Effects of magnetic fields and nuclear polarization on this transition have also been studied. 9

⁸L. N. Labzowsky et al., Phys. Rev. A**63**, 054105,(2001), Li et al., Eur. Phys. J. D **51**, 313 (2009). ⁹Bondarevskaya et al., Phys. Lett. A **322**, 6642, (2008).

${}^{3}\!P_{0} - {}^{1}S_{0}$ Transitions in Alkaline Earth Atoms

 ${}^{3}\!P_{0} - {}^{1}S_{0}$ & ${}^{3}\!P_{2} - {}^{1}S_{0}$ transitions in neutral alkaline earth atoms are candidates for ultra-precise atomic clocks: $A[{}^{3}\!P_{0}]/\Delta E \sim 10^{-18}$

Quenched rates for ${}^{3}\!P_{0}$ states in Alkaline Earth Atoms 10					
	Ι	μ_I	Q (b)	$A[{}^{3}\!P_{0}]$ (s ⁻¹)	
^{25}Mg	5/2	-0.85546	0.1994(20)	4.44[-4]	
^{43}Ca	7/2	-1.31727	-0.0408(8)	2.22[-3]	
87 Sr	9/2	-1.09283	0.335(20)	7.58[-3]	
171 Yb	1/2	0.4919		4.35[-2]	
¹⁷³ Yb	5/2	-0.6776	2.800(40)	3.85[-2]	

A CI + MBPT effective Hamiltonian $H = H_{HF} + \Sigma$ was used in the calculation. Comparison: For Be-like Mg, Garstang¹¹ obtained $A[^{3}P_{0}] = 4.2[-4]$ (s⁻¹), However, for ${}^{3}P_{2}$ decay, serious differences arise in the F-dependent results.

¹⁰S. Porsev and A. Derevianko, Phys. Rev. A**69**, 042506 (2004).

¹¹R. H. Garstang, J. Opt. Soc. Am. **52**, 845 (1962)

${}^{3}P_{0} - {}^{1}S_{0}$ Transition Rates (s⁻¹) for Be-like lons

	$Marques^{12}$	$Brage^{13}$	$Cheng^{14}$	$Andersson^{15}$	$Expt.^{16,17}$
15 N	9.47[-5]	3.62[-4]	3.27[-4]	3.27[-4]	4.0(1.3)[-4]
47Ti	0.356		0.673	0.677	0.56(3)

- RD MCDF calculations including relativistic and QED corrections but restricted to interaction between ${}^{3}P_{0}$ and ${}^{3}P_{1}$ states.¹² PT MCDF calculations for Be-like and Mg-like ions.¹³
- PT Relativistic CI calculations including Breit and QED corrections of the ${}^{3}P_{0}$ quenching rate for Be-like ions.¹⁴
- PT MCDF calculations of quenching rates for ${}^{3}P_{0}$ and ${}^{3}P_{2}$ states including Breit and QED corrections.¹⁵
- Exp. The experimental value of the ${}^{3}P_{0}$ quenching rate in 15 N is determined from observations of planetary nebula NGC3918.¹⁶
- Exp. Resonant electron-ion recombination in a heavy-ion storage ring is employed to monitor the time dependent population of the ${}^{3}P_{0}$ state.¹⁷
 - ¹²J. Marques et al., Phys. Rev. A,47, 929 (1993).
 - ¹³T. Brage et al., Ap. J. 500, 507 (1998).
 - ¹⁴K. T. Cheng et al., A **77**, 052504 (2008).
 - ¹⁵M. Andersson et al., A **79**, 032501 (2009).
 - ¹⁶T. Brage et al., Phys. Rev. Lett. **89**, 28(2002).
 - ¹⁷S. Schippers et al., Phys. Rev. Lett. **98**, 033001 (2007).

NOTRE DAME

${}^{3}P_{0} - {}^{1}S_{0}$ Transition Rates (s⁻¹) for Mg-like lons

	Marques ¹⁸	$Kang^{20}$	$Andersson^{21}$	Expt. ²²
$^{31}Al^{+}$	2.65[-2]	4.33[-2]	4.40[-2]	4.85(0.2)[-2]

- RD MCDF calculations including Breit and QED corrections using a complex matrix method of quenching rates for $(3s3p)^{3}P_{0}$ levels in Mg-like ions for atoms with nuclear charge Z=14-92.¹⁸
- PT MCHF calculations with Breit-Pauli corrections of quenching rates for ${}^{3}P_{0}$ levels in the Mg-like ions.¹⁹
- PT MCDF calculations of quenching rates for ${}^{3}P_{0}$ states of Mg-like ions (Z=13-78) including Breit and QED corrections. 20
- PT MCDF calculations including Breit and QED corrections of quenching rates for ${}^{3}P_{0}$ and ${}^{3}P_{2}$ states of Mg-like ions (Z=12-31).²¹
- Exp. Laser spectroscopy measurement of the lifetime of the ${}^{3}P_{0}$ state of Mg-like Al.²²

¹⁸J. Marques et al., At. Data & Nucl. Data Tables 55, 157 (1993).
¹⁹T. Brage et al., Ap. J. 500, 507 (1998).
²⁰H. Kang et al., J. Phys. B 42, 195002 (2009).
²¹M. Andersson et al., J. Phys. B 43, 095001 (2009)
²²Rosenband et al., Phys. Rev. Lett. 98, 220801 (2007).

NOTRE DAME

For Ni-like ¹²⁹Xe (I=1/2), only the F=5/2 sublevel of the ${}^{3}D_{3}$ level is quenched by mixing with ${}^{1,3}D_{2}$ states; the F=7/2 state decays by M3 emission only.

$$N[{}^{3}D_{3}](t) = N_{7/2}(0)e^{-\Gamma_{M3}t} + N_{5/2}(0)e^{-(\Gamma_{M3}+\Gamma_{E2}hf)t}$$

Rates determined from the measured decay curve²³ agree very well with MCDF calculations.²⁴

²³Träbert et al., Phys. Rev. Lett. 98, 263001 (2007); Träbert et al., Phys. Rev. A73, 022508 (2006);
 ²⁴Yao et al., Phys. Rev. Lett. 98, 269304 (2007).

NOTRE DAME

Other Cases

- Ti-like Theory lons in the Ti sequence have a ground state configuration $(4d)^{4} {}^5D_J$. The decay rate for the $J = 4 \rightarrow J' = 0$ transition within the ground multiplet is strongly modified by hyperfine quenching. The rate, which is very sensitive to the nuclear electric-quadrupole moment, can lead to a new method of measuring quadrupole moments.²⁵
- Zn-like Theory: Hyperfine quenching of $4p4s \, {}^{3}P_{0}$ levels in Zn-like ions Z=30-92 using MCDF wave functions and the radiation-damping method.²⁶ Expt.: Differences between dielectric recombination rate coefficients of even and odd A isotopes of Zn-like Pt were observed and attributed to hyperfine quenching.²⁷
- Ne-like Theory Calculations of quenching of the $(2p)^5 3s \, {}^3P_2$ and $(2p)^5 3s \, {}^3P_0$ levels of Ne-like ions were made for Z=13-79.²⁸

²⁵P. Indelicato, Phys. Scr. T**65**, 57 (1996). & F. Parente et al., Europhys. Lett.**26**, 437 (1994).

²⁶J. P. Marques et al., Eur. Phys. J. D**41**, 457 (2007).

²⁷Schippers et al., Nucl. Inst. & Methods B**235**, 265 (2005).

²⁸M. Andersson et al., J. Phys. Conf. Series **163**, 12013 (2009).

Other Cases (continued)

- Ra Theory MCDF calculations of decay of the 7s7p $^{3}P_{0}$ state through 2-photon E1M1 and hyperfine induced channels were made.²⁹
- Xell Expt. Using a state selective laser probing technique for lifetime measurement in an ion storage ring, evidence for a drastic differences between the decay rates of the hyperfine states of the metastable level $(5p)^4 5d^4 D_{7/2}$ in 129 Xe⁺ was found.³⁰

 ²⁹J. Bieron et al., Eur. Phy. J - Special Topics **144**, 75 (2007),
 ³⁰S. Mannervik et al., Phys. Rev. Lett. 76, 3675 (1996).

Summary and Conclusion

- Two Methods: "perturbation theory" and "radiation damping". The methods agree far away from level crossing. Radiation damping theory is appropriate near level crossing.
- He-like ions thoroughly studied theoretically. Experimental studies of F-dependent decays of (1s2p) ${}^{3}P_{2}$ levels would still be of interest.
- Theory is relatively complete for Be-like and Mg-like ions but there are few experiments.
- Experimental and theoretical studies of F-dependent HFQ for Ni-like ions agree well for Ni-like Xe. Similar studies for other ions would build confidence our understanding.
- Interesting possibilities for measuring nuclear quadrupole moments in Ti-like ions.

