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Abstract

The (well-known) quantum mechanical expression for the stress
tensor is derived and applied to obtain a formula for the pressure in the
average-atom model. This average-atom pressure formula reduces to
the (well-known) expression for the pressure in a classical free-electron
gas when the average-atom continuum wave functions are replaced by
free-electron wave functions.

1 Derivation

We start with the time-dependent Schrodinger equation for an electron in a
potential V (),
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The expectation value of i-th component of the electron’s momentum inside
a region R is
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The rate of increase of momentum in R is
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This expression can be rewritten as
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With the aid of Gauss’ theorem, Eq. (4) reduces to:
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The first integral is the ¢-th component of the surface force on the region
and the second gives the i-th component of the volume force. We introduce

the stress-tensor
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We find that the time rare of change of momentum is
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and the volume force

From this expression it follows that — Zj T;;n; is the i-th component of the
force per unit area exerted by the surroundings on the region R through the
surface. Therefore Tj; is the i-th component of the force/area, on a surface
with normal in direction n; exerted by the electrons in the region R on the
surroundings. The pressure is related to the trace of the stress tensor by
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In the stationary state, we must have
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which reduces to
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in differential form.
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It is not difficult to verify the differential form of the momentum conser-
vation law above directly from the single-particle Schrédinger equation. We

start with the equation for 0v/dx;
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We next consider the equation for ¢ right multiplied by dv/dz;.
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Subtracting (13) from (12), one obtains
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This equatiom may be simplifed to
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we see that Eq. (15) becomes
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which is precisely the differential form of the momentum conservation law

given earlier in Eq. (10).



2 Evaluation of Pressure

We first evaluate the formula for pressure given in Eq. (8) for an electron in
state (nlm) with wave function
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Ultimately, we sum the electron partial pressures over closed subshells. For
one electron, we have

12 )
P=— vyl - Vy -2y (16)

We note that
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2.1 Useful Identities
One may easily establish the following theorem:
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We expand the vector harmonics as
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We can prove by diagrammatic methods that
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With the aid of this result, it follows that
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2.2 Summary

Combining Egs. (18) and (19), we find
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The partial pressure from a closed subshell nl point r may, therefore, be
written
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If we choose r to be the radius of the average atom V(R) = 0 then
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There are two contributions to the pressure at the surface of the average
atom sphere:
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2.3 Free Electron Gas

Py(r) = \/%pr Ji(pr).

The corresponding pressure at the surface of the average atom sphere R is

For a free electron gas,
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Now, we state a few useful theorems:

1. First we use Eq. (10.1.50) in [1]
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2. Differentiating with respect to z gives
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3. Differentiating once again, one finds
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4. Substituting from the differential equation for spherical Bessel func-
tions,
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5. From this, it follows that
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With the aid of Eq. (32), we we may rewrite the expression for the pressure

as
» _(2m)3/2 oo 63/2d6
free — 371'2 0 1+ e(e_ﬂ)/kT

B (2ka)5/2 /oo y3/2dy
0

6mm2 1+ ely—2)
(2mkT)>/?
:Wfs/z(w) (33)

where x = kT. This expression agrees with the classical expression for the
pressure of a free electron gas given, for example, in Feynman et al. [2]
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