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Abstract

The (well-known) quantum mechanical expression for the stress
tensor is derived and applied to obtain a formula for the pressure in the
average-atom model. This average-atom pressure formula reduces to
the (well-known) expression for the pressure in a classical free-electron
gas when the average-atom continuum wave functions are replaced by
free-electron wave functions.

1 Derivation

We start with the time-dependent Schrödinger equation for an electron in a
potential V (r),

− h̄

i

∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ (1)

The expectation value of i-th component of the electron’s momentum inside
a region R is

〈pi〉 =
∫

R
dτ ψ†piψ. (2)

The rate of increase of momentum in R is

d

dt
〈pi〉 =

∫
R
dτ

[
∂ψ†

∂t
piψ + ψ†pi

∂ψ

∂t

]

= − ih̄

2m

∫
R
dτ

[
∇2ψ†piψ − ψ†pi∇2ψ

]
− i

h̄

∫
R
dτ ψ† [piV − V pi]ψ. (3)
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This expression can be rewritten as

d

dt
〈pi〉 = − ih̄

2m

∫
R
dτ ∇ ·

[
∇ψ†piψ − ψ†pi∇ψ

]
− i

h̄

∫
R
dτ ψ† [pi, V ] ψ. (4)

With the aid of Gauss’ theorem, Eq. (4) reduces to:

d

dt
〈pi〉 = − ih̄

2m

∫
R
dS

∑
j

nj

[
∂ψ†

∂xj
piψ − ψ†pi

∂ψ

∂xj

]
− i

h̄

∫
R
dτ ψ† [pi, V ]ψ

= − h̄2

2m

∫
R
dS

∑
j

nj

[
∂ψ†

∂xj

∂ψ

∂xi
− ψ† ∂2ψ

∂xi∂xj

]
−

∫
R
dτ ψ† ∂V

∂xi
ψ (5)

The first integral is the i-th component of the surface force on the region
and the second gives the i-th component of the volume force. We introduce
the stress-tensor

Tji =
h̄2

2m

[
∂ψ†

∂xj

∂ψ

∂xi
− ψ† ∂2ψ

∂xi∂xj

]
(6)

and the volume force

Fi = −
〈

∂V

∂xi

〉
.

We find that the time rare of change of momentum is

d

dt
〈pi〉 = −

∫
R
dS

∑
j

Tij nj + Fi. (7)

From this expression it follows that −∑
j Tijnj is the i-th component of the

force per unit area exerted by the surroundings on the region R through the
surface. Therefore Tij is the i-th component of the force/area, on a surface
with normal in direction nj exerted by the electrons in the region R on the
surroundings. The pressure is related to the trace of the stress tensor by

P =
1
3

∑
i

Tii. (8)

In the stationary state, we must have∫
R
dS

∑
j

Tij nj = Fi, (9)
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which reduces to ∑
j

∂Tij

∂xj
= −ψ†ψ

∂V

∂xi
(10)

in differential form.
It is not difficult to verify the differential form of the momentum conser-

vation law above directly from the single-particle Schrödinger equation. We
start with the equation for ∂ψ/∂xi

− h̄2

2m
∇2 ∂ψ

∂xi
= (E − V )

∂ψ

∂xi
− ∂V

∂xi
ψ. (11)

We left multiply this by ψ† to obtain

− h̄2

2m
ψ†∇2 ∂ψ

∂xi
= (E − V )ψ† ∂ψ

∂xi
− ψ† ∂V

∂xi
ψ. (12)

We next consider the equation for ψ† right multiplied by ∂ψ/∂xi.

− h̄2

2m
∇2 ψ† ∂ψ

∂xi
= (E − V )ψ† ∂ψ

∂xi
. (13)

Subtracting (13) from (12), one obtains

h̄2

2m

[
∇2 ψ† ∂ψ

∂xi
− ψ†∇2 ∂ψ

∂xi

]
= −ψ† ∂V

∂xi
ψ. (14)

This equatiom may be simplifed to

h̄2

2m
∇ ·

[
∇ ψ† ∂ψ

∂xi
− ψ† ∇ ∂ψ

∂xi

]
= −ψ† ∂V

∂xi
ψ. (15)

Setting

Tij =
h̄2

2m

[
∂ψ†

∂xj

∂ψ

∂xi
− ψ† ∂2ψ

∂xi∂xj

]
,

we see that Eq. (15) becomes

∑
j

∂Tij

∂xj
= −ψ†ψ

∂V

∂xi
,

which is precisely the differential form of the momentum conservation law
given earlier in Eq. (10).
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2 Evaluation of Pressure

We first evaluate the formula for pressure given in Eq. (8) for an electron in
state (nlm) with wave function

ψnlm(r) =
1
r
Pnl(r)Ylm(r̂) .

Ultimately, we sum the electron partial pressures over closed subshells. For
one electron, we have

P =
h̄2

6m

[
∇ψ† · ∇ψ − ψ†∇2ψ

]
(16)

We note that

∇ψnlm(r) =
d

dr

(
Pnl(r)

r

)
Y

(−1)
lm (r̂) +

Pnl(r)
r

√
l(l + 1)

r
Y

(1)
lm (r̂). (17)

Thus

∇ψ†
nlm · ∇ψnlm =[

d

dr

(
Pnl(r)

r

)]2

(−1)m Y
(−1)

l−m (r̂) · Y (−1)
lm (r̂)

+

√
l(l + 1)

r

Pnl(r)
r

d

dr

(
Pnl(r)

r

)
(−1)m

[
Y

(−1)
l−m (r̂) · Y (1)

lm (r̂) + Y
(1)

l−m(r̂) · Y (−1)
lm (r̂)

]

+
l(l + 1)

r2

(
Pnl(r)

r

)2

(−1)m Y
(1)

l−m(r̂) · Y (1)
lm (r̂) . (18)

Furthermore, we have

ψ†
nlm∇2ψnlm =
Pnl(r)

r

[
1
r2

d

dr
r2 d

dr

(
Pnl(r)

r

)
− l(l + 1)

r2

Pnl(r)
r

]
(−1)m Yl−m(r̂)Ylm(r̂)

(19)

2.1 Useful Identities

One may easily establish the following theorem:

∑
m

(−1)mYl−m(r̂)Ylm(r̂) =
[l]
4π

. (20)
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We expand the vector harmonics as

Y
(1)

JM (r̂) =

√
J + 1
[J ]

YJJ−1M (r̂) +

√
J

[J ]
YJJ+1M (r̂) (21)

Y
(0)

JM (r̂) =

√
J + 1
[J ]

YJJM (r̂) (22)

Y
(−1)

JM (r̂) =

√
J

[J ]
YJJ−1M (r̂) −

√
J + 1
[J ]

YJJ+1M (r̂). (23)

We can prove by diagrammatic methods that

∑
M

(−1)MYJK−M (r̂) · YJLM (r̂) = (1)J+L+1 [J ]
4π

δKL. (24)

With the aid of this result, it follows that

∑
M

(−1)MY
(λ)

J−M (r̂) · Y (µ)
JM (r̂) = (−1)λ+1 [J ]

4π
δλµ. (25)

2.2 Summary

Combining Eqs. (18) and (19), we find

∑
m

[
∇ψ†

nlm · ∇ψnlm − ψ†
nlm∇2ψnlm

]
=

[l]
4π

{[
d

dr

(
Pnl(r)

r

)]2

− Pnl(r)
r2

d2Pnl(r)
dr2

+
2l(l + 1)

r2

(
Pnl(r)

r

)2
}

. (26)

The partial pressure from a closed subshell nl point r may, therefore, be
written

P =
h̄2

6m

2[l]
4πr2

{
r2

[
d

dr

(
Pnl(r)

r

)]2

+
l(l + 1)

r2
P 2

nl(r) +
2m

h̄2 (Enl − V (r))P 2
nl(r)

}
.

(27)
If we choose r to be the radius of the average atom V (R) = 0 then

P =
h̄2

6m

2[l]
4π

{[
d

dr

(
Pnl(r)

r

)]2

+
l(l + 1)

r2

(
Pnl(r)

r

)2

+
2m

h̄2 Enl

(
Pnl(r)

r

)2
}

R

.

(28)
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There are two contributions to the pressure at the surface of the average
atom sphere:

Pbound =
1

24πm

∑
nl

2(2l + 1)
1 + e(εnl−µ)/kT{[

d

dr

(
Pnl(r)

r

)]2

+
l(l + 1)

r2

(
Pnl(r)

r

)2

+
2m

h̄2 Enl

(
Pnl(r)

r

)2
}

R

(29)

Pcontin =
1

24πm

∫ ∞

0

dε

1 + e(ε−µ)/kT

∑
l

2(2l + 1)

{[
d

dr

(
Pnl(r)

r

)]2

+
l(l + 1)

r2

(
Pnl(r)

r

)2

+ p2

(
Pnl(r)

r

)2
}

R

(30)

2.3 Free Electron Gas

For a free electron gas,

Pεl(r) =
√

2m

πp
pr jl(pr).

The corresponding pressure at the surface of the average atom sphere R is

Pfree =
h̄2

24πm

∫ ∞

0

dε

1 + e(ε−µ)/kT

2m

πp
p4

∑
l

2(2l + 1)

{(
djl(z)

dz

)2

+
l(l + 1)

z2
j2
l (z) + j2

l (z)

}
z=pR

(31)

Now, we state a few useful theorems:

1. First we use Eq. (10.1.50) in [1]∑
l

(2l + 1)j2
l (z) = 1.

2. Differentiating with respect to z gives

∑
l

(2l + 1)jl(z)
djl(z)

dz
= 0.
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3. Differentiating once again, one finds∑
l

(2l + 1)
(

djl(z)
dz

)2

= −
∑

l

(2l + 1)jl(z)
d2jl(z)

dz2
.

4. Substituting from the differential equation for spherical Bessel func-
tions,∑

l

(2l + 1)
(

djl(z)
dz

)2

=
∑

l

(2l + 1)
[
2
z
jl(z)

djl(z)
dz

+
(

1 − l(l + 1)
z2

)
j2
l (z)

]

=
∑

l

(2l + 1)
(

1 − l(l + 1)
z2

)
j2
l (z)

5. From this, it follows that

∑
l

2(2l + 1)

{(
djl(z)

dz

)2

+
l(l + 1)

z2
j2
l (z) + j2

l (z)

}

= 4
∑

l

(2l + 1)j2
l (z) = 4. (32)

With the aid of Eq. (32), we we may rewrite the expression for the pressure
as

Pfree =
(2m)3/2

3π2

∫ ∞

0

ε3/2dε

1 + e(ε−µ)/kT

=
(2mkT )5/2

6mπ2

∫ ∞

0

y3/2dy

1 + e(y−x)

=
(2mkT )5/2

6mπ2
I3/2(x) (33)

where x = kT . This expression agrees with the classical expression for the
pressure of a free electron gas given, for example, in Feynman et al. [2]
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