Xray Scattering from WDM Thomson Scattering in the Average-Atom Approximation

W. R. Johnson, Notre Dame Collaborators: Joe Nilsen & K. T. Cheng, LLNL

Computational Challenges in WDM

・ロト ・回 ト ・ヨト ・ヨト

Outline

Average-Atom

- 2 Thomson Scattering
 - Elastic Scattering by lons
 - Scattering by Free Electrons
 - Inelastic Scattering by Bound Electrons

3 Applications

- Hydrogen
- Beryllium
- Titanium
- Tin

11 9 9 9 C

イロト イポト イヨト イヨト

Procedure

- Use the average-atom model¹ to describe plasma
 - Input: atomic species (Z, A), density, temperature
 - Output: $\psi_a(r), n_b(r), n_c(r), Z_i, \mu ...$
- Evaluate Thomson scattering² with input from A-A
- Applications

¹Feynman, Metropolis & Teller (1949) ²Chihara (2000), Gregori et al. (2003)

• • • • • • • • • • •

= 200

Divide plasma into neutral cells that include nucleus and Z electrons

- $\left| \frac{p^2}{2} \frac{Z}{r} + V \right| \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$
- $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3 r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

Divide plasma into neutral cells that include nucleus and Z electrons

•
$$\left[\frac{p^2}{2} - \frac{Z}{r} + V\right] \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$$

• $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$

•
$$n(r) = n_b(r) + n_c(r)$$

•
$$4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_B T]} P_{nl}(r)^2$$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3 r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Divide plasma into neutral cells that include nucleus and Z electrons

- $\left[\frac{p^2}{2} \frac{Z}{r} + V\right] \psi_a(\mathbf{r}) = \epsilon_a \psi_a(\mathbf{r})$
- $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

Divide plasma into neutral cells that include nucleus and Z electrons

• $\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$

•
$$V(r) = V_{\text{Kohn-Sham}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

• $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

Divide plasma into neutral cells that include nucleus and Z electrons

- $\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$
- $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3 r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

Divide plasma into neutral cells that include nucleus and Z electrons

• $\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$

•
$$V(r) = V_{\text{Kohn-Sham}}(n(r), r)$$

•
$$n(r) = n_b(r) + n_c(r)$$

•
$$4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} - \mu)/k_BT]} P_{nl}(r)^2$$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_c \sim 500$
- Equations are solved self-consistently

NOTRE DAME

Divide plasma into neutral cells that include nucleus and Z electrons

- $\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(r)=\epsilon_a\psi_a(r)$
- $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_B T]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_\epsilon \sim 500$
- Equations are solved self-consistently

Divide plasma into neutral cells that include nucleus and Z electrons

- $\left[\frac{p^2}{2}-\frac{Z}{r}+V\right]\psi_a(\mathbf{r})=\epsilon_a\psi_a(\mathbf{r})$
- $V(r) = V_{\text{Kohn-Sham}}(n(r), r)$
- $n(r) = n_b(r) + n_c(r)$
- $4\pi r^2 n_b(r) = \sum_{nl} \frac{2(2l+1)}{1 + \exp[(\epsilon_{nl} \mu)/k_BT]} P_{nl}(r)^2$

•
$$Z = \int_{r < R_{\rm WS}} n(r) d^3r$$

- Number of equations = $N_b + N_l \times N_e \sim 500$
- Equations are solved self-consistently

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Example: AI metal T=10eV

$$A = 27$$
 $\rho = 2.7$ (gm/cc) $R_{\rm ws} = 2.99$ (au)

State	W(au)	occ#
1 <i>s</i>	-54.591	2.00
2 <i>s</i>	-3.388	2.00
2р	-2.019	5.97
N _b		9.97
N _c		3.03

$$\begin{array}{ll} \mu = -0.0209 \mbox{ (au)} & Z_i = 2.32 \\ n_i = 6.02 \times 10^{22} \mbox{ cm}^{-3} & n_e = 1.40 \times 10^{23} \mbox{ cm}^{-3} \end{array}$$

NOTRE DAME

围

Al metal T=10eV, continued

n _l	V(r)	V=0	Δ
n_0	0.630	0.601	0.029
n ₁	1.132	0.838	0.294
n_2	0.859	0.533	0.326
n ₃	0.285	0.236	0.049
n ₄	0.089	0.081	0.008
n ₅	0.024	0.023	0.001
n ₆	0.006	0.005	0.000
n ₇	0.001	0.001	0.000
n ₈	0.000	0.000	0.000
N _c	3.026	2.318	0.708

Al metal T=10eV, continued

Continuum Wave Functions

PLWS-4 Xray Scattering

UNIVERSITY OF NOTRE DAME

三日 のへの

イロト イポト イヨト イヨ

Al metal T=10eV, continued

UNIVERSITY OF NOTRE DAME

ELE DQC

Al metal T=10eV, continued

PLWS-4 Xray Scattering

UNIVERSITY OF NOTRE DAME

ELE DQC

Wigner-Seitz Sphere in Electron-Ion Jellium

A simplified picture that emerges is of a single neutral average atom floating in a uniform sea of Z_i free electrons per cell balanced by an equal but opposite distributed positive ionic charge.

イロト イポト イヨト イヨ

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Thompson Scattering

Exchange of photons

イロト イポト イヨト イヨト

1= 990

In nonrelativistic limit, this leads to

$$\frac{d\sigma}{d\omega_1 d\Omega} = |\epsilon_0 \cdot \epsilon_1|^2 r_0^2 \frac{\omega_1}{\omega_0} S(k, \omega)$$

with $k = |\mathbf{k}_0 - \mathbf{k}_1|$, $\omega = \omega_0 - \omega_1$, where $S(k, \omega)$ is the *dynamic structure function* of the plasma.

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Dynamic Structure Function

The *dynamic structure function* $S(k, \omega)$ of a plasma can be decomposed into three parts:³

イロト 不得 トイヨト イヨト

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Dynamic Structure Function

The *dynamic structure function* $S(k, \omega)$ of a plasma can be decomposed into three parts:³

• $|f(k) + q(k)|^2 S_{ii}(k) \delta(\omega)$ elastic scattering by ions

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Dynamic Structure Function

The *dynamic structure function* $S(k, \omega)$ of a plasma can be decomposed into three parts:³

- $|f(k) + q(k)|^2 S_{ii}(k) \delta(\omega)$ elastic scattering by ions
- **2** $S_{ee}(k, \omega)$ scattering by free electrons.

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Dynamic Structure Function

The *dynamic structure function* $S(k, \omega)$ of a plasma can be decomposed into three parts:³

- $|f(k) + q(k)|^2 S_{ii}(k) \delta(\omega)$ elastic scattering by ions
- **2** $S_{ee}(k, \omega)$ scattering by free electrons.
- S_B (k, ω) inelastic scattering by bound electrons.

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

 $S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

• $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) \, dr$

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{\rm WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$
- Formulas by Yu.V. Arkhipov and A.E. Davletov (1998)

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$$

- $f(k) + q(k) = 4\pi \int_0^{R_{WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$
- Formulas by Yu.V. Arkhipov and A.E. Davletov (1998)
- Generalized by Gregori et al. (2006) to include $T_i \neq T_e$

Elastic Scattering by lons Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Elastic Scattering by lons

$S_{ii}(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k) \,\delta(\omega)$

- $f(k) + q(k) = 4\pi \int_0^{R_{\rm WS}} r^2 [n_b(r) + n_c(r)] j_0(kr) dr$
- $S_{ii}(k)$ is obtained from the Fourier transform of $V_{ii}(R)$
- Formulas by Yu.V. Arkhipov and A.E. Davletov (1998)
- Generalized by Gregori et al. (2006) to include $T_i \neq T_e$

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

NOTRE DAME

Scattering by Free Electrons

$$\mathcal{S}_{ee}(k,\omega) = -rac{1}{1-\exp(-\omega/k_{\scriptscriptstyle B}T)}rac{k^2}{4\pi n_e}\Im\left[rac{1}{arepsilon(k,\omega)}
ight]$$

Random-Phase Approximation for Dielectric function $\varepsilon(k, \omega)$:

$$\varepsilon(k,\omega) = 1 + \frac{4}{\pi k^2} \int_0^\infty \frac{p^2}{1 + \exp[(p^2/2 - \mu)/k_B T]} dp$$
$$\int_{-1}^1 d\eta \left[\frac{1}{k^2 - 2pk\eta + 2\omega + i\nu} + \frac{1}{k^2 + 2pk\eta - 2\omega - i\nu} \right],$$

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

> UNIVERSITY OF NOTRE DAME

ELE DQC

ヘロト ヘワト ヘビト ヘビト

Dielectric Functions for Be metal T=10eV

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Example: $S_{ee}(k, \omega)$ for Be metal

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

Inelastic Scattering from Bound Electrons Plane-Wave Final States

$$S_{nl}(k,\omega) = \int \frac{p \, d\Omega_p}{(2\pi)^3} \left[\sum_m \left| \int d^3 r \, e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \, \psi_{nlm}(\boldsymbol{r}) \right|_{E_p = \omega + E_{nl}}^2 \right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

> UNIVERSITY OF NOTRE DAME

三日 のへで

イロン イロン イヨン イヨン

Example: AI 5eV Plane-Wave Final State

Elastic Scattering by Ions Scattering by Free Electrons Inelastic Scattering by Bound Electrons

> UNIVERSITY OF NOTRE DAME

> > = 990

Example: Be 10eV Average-Atom Final State

 $S_{nl}(\boldsymbol{k},\omega) = \int \frac{\rho \, d\Omega_{\rho}}{(2\pi)^3} \sum_{m} \left| \int d^3 \boldsymbol{r} \, \psi_{\rho}^{\dagger}(\boldsymbol{r}) \, e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \, \psi_{nlm}(\boldsymbol{r}) \right|_{E\rho=\omega+E_{nl}}^{*}$ 0.4 0.430 deg 150 deg 0.3 0.3 S(k, 00) (a.u.) Plane-Wave Plane-Wave 0.2 0.2 Coulomb Aver-Atom * Aver-Atom Coulomb * 10 0.1 0.1 0 0 0 5 10 15 20 0 5 10 15 20 ω (a.u.) ω (a.u.) ヘロト ヘワト ヘビト ヘビト

PLWS-4 Xray Scattering

Applications:

- Hydrogen (high density $n_e = 10^{24} \text{ cm}^{-3}$)
- Beryllium (light element with available experimental data)
- Titanium (intermediate atomic weight element)
- Tin (heavy metal with interesting bound-state features)

Hydrogen Beryllium Titanium Tin

Hydrogen: T = 50eV

三日 のへの

Hydrogen Beryllium Titanium Tin

Beryllium: Comparison with Experiment

Average-Atom model for xray scattering by Be metal (T = 18 eV, $n_e = 1.8 \times 10^{23}$) compared with measurement.⁴ $\omega_0 = 2963 \text{ eV} \& \theta = 40^{\circ}$.

⁴S. H. Glenzer & T. Doeppner, private communication

OTRE DAME

Hydrogen Beryllium Titanium Tin

Titanium metal (Z=22) at T = 10 eV, ω_0 = 2960 eV

UNIVERSITY OF NOTRE DAME

ELE DQC

ヘロト ヘアト ヘビト ヘビ

Hydrogen Beryllium Titanium **Tin**

Tin (Z=50) at T = 10 eV, ω_0 = 2960 eV

UNIVERSITY OF NOTRE DAME

ELE DQC

Hydrogen Beryllium Titanium **Tin**

Tin (Z=50) at T = 10 eV, ω_0 = 2960 eV

UNIVERSITY OF NOTRE DAME

ELE DQC

Hydrogen Beryllium Titanium **Tin**

Tin (Z=50) at T = 10 eV, ω_0 = 2960 eV

UNIVERSITY OF NOTRE DAME

ELE DQC

Hydrogen Beryllium Titanium **Tin**

Tin (Z=50) at T = 10 eV, ω_0 = 2960 eV

Summary:

- A-A model is used to study Xray scattering from WDM.
- Scattering from bound-states easily accommodated
- To be done:
 - Improve the treatment of S_{ii}(k) (hypernetted chains? or molecular dymamics?)
 - Go beyond RPA and include correlation corrections to $S_{ee}(k,\omega)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

References

- Feynman, Metropolis & Teller, Phys. Rev. 75, 1561 (1949)
- S. H. Glenzer & R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)
- G. Gregori et al., Phys. Rev. E 67, 026412 (2003)
- J. Chihara, J. Phys.: Condens. Matter 12, 231 (2000)
- W.R. Johnson et al., JQSRT, 99, 327 (2006)
- S. Sahoo et al., Phys. Rev. E 77, 046402 (2008)

1= 990

イロト イポト イヨト イヨト