Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of ¹³³Cs

Walter Johnson University of Notre Dame

- 1) Weak charge Q_W of ¹³³Cs provides a test of the Standard Electroweak Model.
- 2) First (only) observation of an anapole moment κ_a was in ¹³³Cs.
- 3) Q_W^{exp} and κ_a^{exp} require accurate calculations together with error estimates!

Collaborators: J. Sapirstein, S. Blundell, and M. S. Safronova

Atomic Parity Nonconservation

A consequence of Z exchange is violation of Laporte's rule: "Radiative (E_1) transitions take place only between states of opposite parity."

Laporte: http://www.nap.edu/books/0309025494/html/268.html

Otto Laporte (1902-1971) discovered the law of parity conservation in physics. He divided states of the iron spectrum into two classes, even and odd, and found that no radiative transitions occurred between like states.¹

¹ O. Laporte, Z. Physik **23** 135 (1924).

Z Exchange in the Standard Model²

$$H_{\mathsf{PV}} = \frac{G}{\sqrt{2}} \left[\bar{e} \gamma_{\mu} \gamma_{5} e \left(c_{1u} \, \bar{u} \gamma_{\mu} u + c_{1d} \, \bar{d} \gamma_{\mu} d + \cdots \right) \right. \\ \left. + \bar{e} \gamma_{\mu} e \left(c_{2u} \, \bar{u} \gamma_{\mu} \gamma_{5} u + c_{2d} \, \bar{d} \gamma_{\mu} \gamma_{5} d + \cdots \right) \right]$$

where $\cdots = t, b, s, c$

$$c_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \qquad c_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W$$
$$c_{2u} = -\frac{1}{2} \left(1 - 4 \sin^2 \theta_W \right) \qquad c_{2d} = \frac{1}{2} \left(1 - 4 \sin^2 \theta_W \right)$$

²W. J. Marciano in *Precision Tests of the Standard Electroweak Model*, Ed. P. Langacker, (World Scientific, Singapore, 1995), p. 170.

NOTRE DAME

Electron Axial-Vector – Nucleon Vector

Contribution of *coherent* vector nucleon current:

$$H^{(1)} = \frac{G}{2\sqrt{2}} \gamma_5 Q_W \rho(r)$$

where $\rho(r)$ is a nuclear density (\sim neutron density) and

$$Q_W = 2[(2Z+N)c_{1u} + (Z+2N)c_{1d}]$$
$$= -N + Z(1 - 4\sin^2\theta_W)$$
$$\sim -N$$

Electron Vector – Nucleon Axial-Vector

Contribution of vector axial-vector nucleon current:

$$H^{(2)} = -\frac{G}{\sqrt{2}} \boldsymbol{\alpha} \cdot \left[c_{2p} \left\langle \phi_p^{\dagger} \boldsymbol{\sigma} \phi_p \right\rangle + c_{2n} \left\langle \phi_n^{\dagger} \boldsymbol{\sigma} \phi_n \right\rangle \right]$$

where $\langle \cdots \rangle$ designates nuclear matrix elements.

 $c_{2p} \sim 1.25 \times c_{2u} = -0.068$ $c_{2n} \sim 1.25 \times c_{2d} = 0.068$

A) Nucleon Axial-Vector Contribution

$$H^{(2)} = \frac{G}{\sqrt{2}} \kappa_2 \alpha \cdot \mathbf{I} \rho(r)$$

 κ_2 from "Extreme" Shell Model and from Nuclear Calculations.^3

Element	A	State	κ_2 [Sh. Mod.]	κ_2 [3]
K	39	$1d_{3/2}\;(p)$	0.0272	
Cs	133	$1g_{7/2}\;(p)$	0.0151	0.0140
Ba	135	$2d_{3/2}\left(n ight)$	-0.0272	
ΤI	205	$3s_{1/2}\ (p)$	-0.136	-0.127
Fr	209	$1h_{9/2}\;(p)$	0.0124	

³W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. Lett. **86**, 5247 (2001).

B) Nuclear Anapole Moment Contribution

PNC in nucleus \Rightarrow nuclear anapole:

$$H^{(a)} = e \, \boldsymbol{\alpha} \, \cdot \, \boldsymbol{A} \to \frac{G}{\sqrt{2}} \, \kappa_a \, \boldsymbol{\alpha} \cdot \mathbf{I} \, \rho(r)$$

Theoretical estimates⁴ for ¹³³Cs gave $\kappa_a = 0.063 - 0.084$. Experiment: ⁵ $\kappa_a = 0.09(2)$

$$\kappa_a \sim 5\kappa_2$$

⁴ V. V. Flambaum, I. B. Khriplovich, O. P. Sushkov Phys. Letts. B **146** 367-369 (1984).

⁵ V. V. Flambaum and D. W. Murray, Phys. Rev. C**56**, 1641 (1997); W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. **51**, 261 (2001)

NOTRE DAME

C) Hyperfine Interference Contrubution

Interference between the hyperfine interaction H_{hf} and $H^{(1)}$ gives another nuclear spin-dependent correction of the form

$$H^{(\mathrm{hf})} = \frac{G}{\sqrt{2}} \,\kappa_{\mathrm{hf}} \,\alpha \cdot \mathbf{I} \,\rho(r)$$

¹³³Cs:
$$\kappa_{\rm hf} = 0.0078$$

²⁰⁵Tl: $\kappa_{\rm hf} = 0.044$

$$\kappa_{
m hf}\simrac{1}{2}~\kappa_2$$

Summary of Phenomenology

$$H^{(1)}=rac{G}{2\sqrt{2}}\,\gamma_5\,Q_W\,
ho(r)$$

$$H^{(2)} \Rightarrow \frac{G}{\sqrt{2}} \kappa \, \alpha \cdot \mathbf{I} \, \rho(r)$$

where $\kappa = \kappa_2 + \kappa_a + \kappa_{\rm hf}$.

- 1. Measure Q_W as a test of Standard Model
- 2. Measure κ as a test of weak nuclear forces!

Optical Rotation Experiments

Aim is to measure $E_{\mathsf{PNC}} = \langle f | z | i \rangle \propto Q_W$:

The plane of polarization of a linearly polarized laser beam passing through a medium with $n_+ \neq n_-$ is rotated. The rotation angle $\phi \propto R_{\phi} = \text{Im} (E_{\text{PNC}}) / M_1$.

Optical Rotation Experiments

 $R_{\phi} = \operatorname{Im}\left(E_{\mathsf{PNC}}\right)/M_{1}$

Measured values of R_ϕ				
Element	Transition	Group	$10^8 imes R_\phi$	
205 Tl	${}^{2}\!P_{1/2} - {}^{2}\!P_{3/2}$	Oxford (95)	-15.33(45)	
^{205}TI	${}^{2}P_{1/2} - {}^{2}P_{3/2}$	Seattle (95)	-14.68(20)	
^{208}Pb	${}^{3}\!P_{0} - {}^{3}\!P_{1}$	Oxford (94)	-9.80(33)	
^{208}Pb	${}^{3}\!P_{0} - {}^{3}\!P_{1}$	Seattle (95)	-9.86(12)	
^{209}Bi	${}^4\!S_{3/2} - {}^2\!D_{3/2}$	Oxford (91)	-10.12(20)	

Stark-Interference Experiment

Boulder PNC apparatus: A beam of cesium atoms is optically pumped by diode laser beams, then passes through a region of perpendicular electric and magnetic fields where a green laser excites the transition from the 6S to the 7S state. The excitations are detected by observing the florescence (induced by another laser beam) with a photo-diode.

Stark-Interference Experiments

Evolving values of $R={\sf Im}\left(E_{\sf PNC} ight)/eta\left({\sf mV/cm} ight)$ for $^{133}{\sf Cs}$				
Transition	Group	R_{4-3}	R_{3-4}	
$egin{array}{rll} 6s_{1/2}-7s_{1/2}\ 6s_{1/2}-7s_{1/2}\ 6s_{1/2}-7s_{1/2}\ 6s_{1/2}-7s_{1/2} \end{array}$	Paris (1984) Boulder (1988) Boulder (1997)	-1.5(2) -1.64(5) -1.635(8)	-1.5(2) -1.51(5) -1.558(8)	

The vector current contribution from the last row is

$$R_{\rm V} = -1.593 \pm 0.006$$

$$\mathrm{Im}\left[E_{\mathrm{V}}^{\mathrm{exp}}(6s \to 7s) \times 10^{11}\right] = -0.8376 \pm (0.0031)_{\mathrm{exp}} \pm (0.0021)_{\mathrm{th}}$$

Other Experiments

Element	Transition	Group
Fr	$7S_{1/2} \rightarrow 8S_{1/2}$	Stoney Brook
Fr	$7S_{1/2}[F=4] \rightarrow 7S_{1/2}[F=5]$	Maryland, TRIUMF
Yb	$(6s^2) {}^1\!S_0 \to (6s5d) {}^3\!D_1$	Berkeley
Yb	$(6s6p) {}^3\!P_0 ightarrow (6s6p) {}^3\!P_1$	Berkeley
Ba^+	$6S_{1/2} \rightarrow 5D_{3/2}$	Seattle
Dy	$(4f^{10}5d6s)[10] \rightarrow (4f^95d^26s)[10]$	Berkeley
Sm	$(4f^66s^2) {}^7\!F_J \to (4f^66s^2) {}^5\!D_{J'}$	Oxford

Calculations of the $6s \rightarrow 7s$ Amplitude in Cs

Units: $i(-Q_W/N) imes 10^{-11} ea_0$

- SD(T) ⁶ -0.909 (4)
 CI+MBPT⁷ -0.905
- PTSCI⁸ -0.908 (5)
- PNC-Cl⁹ -0.904
- SDCC ¹⁰ -0.907

⁶S. A. Blundell et al., Phys. Rev. D45, 1602 (1992).
⁷M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, PRL 86, 3260 (2001).
⁸V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev. D 66, 076013 (2002).
⁹V. M. Shabaev et al., Phys. Rev. A 72 (2005)
¹⁰B. P. Das et al., THEOCHEM 768, 141 (2006)

NOTRE DAME

Example of a PNC Calculation

$$E_{\mathsf{PNC}} = \sum_{n} \frac{\langle 7s|D|np\rangle\langle np|H^{(1)}|6s\rangle}{E_{6s} - E_{np}} + \sum_{n} \frac{\langle 7s|H^{(1)}|np\rangle\langle np|D|6s\rangle}{E_{7s} - E_{np}}$$

"Weak" RPA gives E_{PNC} accurate to about 3%. Therefore, we organize calculation as follows:

- n = 6 9 valence states: evaluate matrix elements using SD wave functions (98%)
- n = 1 5 core states and n > 10: evaluate using "weak" RPA amplitudes (2%)

Contributions to PNC Amplitude

Contributions to $E_{\sf PNC}$ in units $-iea_0Q_W/N$.

n	$\langle 7s \ D \ np \rangle$	$\langle np \ H^{(1)} \ 6s angle$	$E_{6s} - E_{np}$	Contrib.
6	1.7291	-0.0562	-0.05093	1.908
7	4.2003	0.0319	-0.09917	-1.352
8	0.3815	0.0215	-0.11714	-0.070
9	0.1532	0.0162	-0.12592	-0.020
n	$\langle 7s \ H^{(1)} \ np angle$	$\langle np \ D \ 6s angle$	$E_{7s} - E_{np}$	Contrib.
6	-1.8411	0.0272	0.03352	-1.493
7	0.1143	-0.0154	-0.01472	0.120
8	0.0319	-0.0104	-0.03269	0.010
9	0.0171	-0.0078	-0.04147	0.003
n = 6 - 9				-0.894(4)
RPA part				-0.015(1)
Total				-0.909(4)

Brueckner-Goldstone Diagrams for the SDCC Equations

Data Analysis

$$\begin{split} E_{\mathsf{PNC}}^{\mathsf{exp}} &= E_{\mathsf{PNC}}^{\mathsf{th}} \left[\frac{Q_W}{-N} + \kappa \ \epsilon_{F'F} \right] \\ \beta \ (a_0^3) & 27.024(80) \\ E_{34}^{\mathsf{exp}} / \beta \ (\mathsf{mV/cm}) & -1.6349(80) \\ E_{43}^{\mathsf{exp}} / \beta \ (\mathsf{mV/cm}) & -1.5576(77) \\ E_{34}^{\mathsf{exp}} \ (10^{-11}) & -0.8592(49) \\ E_{43}^{\mathsf{exp}} \ (10^{-11}) & -0.8186(47) \\ E_{\mathsf{V}}^{\mathsf{exp}} \ (10^{-11}) & -0.8376(37) \\ E_{\mathsf{PNC}}^{\mathsf{th}} \ (10^{-11}) & -0.9085(45) \\ Q_W^{\mathsf{exp}} & -71.91(46) \\ \kappa^{\mathsf{exp}} & 0.117(16) \end{split}$$

Analysis of $6s \rightarrow 7s$ Amplitude in ¹³³Cs

Combining the calculations and the measurements

 $Q_W^{\exp}(^{133}{\rm Cs}) = -71.91(46)$

differs with the standard model value

$$Q_W^{\rm SM}(^{133}{\rm Cs}) = -73.09(3)$$

by 2.5 σ .

Additional Corrections:

- Breit Interaction
- Vacuum Polarization
- αZ Vertex Corrections
- Nuclear Skin Effect

Analysis of $6s \rightarrow 7s$ Amplitude in ¹³³Cs

Combining the calculations and the measurements

$$Q_W^{\exp}(^{133}\text{Cs}) = -71.91(46) \implies -72.73(46)$$

differs with the standard model value

$$Q_W^{\rm SM}(^{133}{\rm Cs}) = -73.09(3)$$

by 2.5 σ . \Rightarrow 0.8 σ .

Additional Corrections:

- Breit Interaction -0.6%
- Vacuum Polarization +0.4%
- αZ Vertex Corrections -0.7%
- Nuclear Skin Effect -0.2%

Constraints on New Physics

Coupled-Cluster Symposium - July 2008

Anapole Moment of ¹³³Cs

Group	κ	κ_2	κ_{hf}	κ_a
Safronova and Johnson	0.117(16)	0.0140^{1}	0.0049	0.098(16)
Haxton <i>et al.</i>	$0.112(16)^2$	0.0140	0.0078 ³	0.090(16)
Flambaum and Murray	$0.112(16)^4$	0.0111^{5}	0.0071^{6}	$0.092(16)^7$
Bouchiat and Piketty		0.0084	0.0078	

¹from Haxton *et al.*

⁵Shell-model value with $\sin^2 \theta_W = 0.23$.

⁶This value was obtained by scaling the analytical result from Flambaum and Khriplovich ($\kappa_{hf} = 0.0049$) by a factor 1.5.

⁷Contains a 1.6% correction for finite nuclear size; the raw value is 0.094(16).

²from Flambaum and Murray

³from Bouchiat and Piketty

⁴The spin-dependent matrix elements from Kraftmakher are used.

Constraints on Nuclear Weak Coupling Constants¹¹

¹¹B. Desplanques, J. F. Donoghue, and B. Holstein, Ann. Phys. (NY) **124** 449 (1980); W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. **51**, 261 (2001)

NOTRE DAME

Conclusions

- Measurements of the weak charge in heavy atoms provide important tests of the validity of the electroweak standard model and provide limits on possible extensions.
- Measurements of the nuclear anapole moment provide constraints on nucleon-nucleon weak coupling constants that are inconsistent with PNC experiments in light nuclei. New measurements badly needed!
- Measurements of PNC in atoms depend on precise atomic manybody calculations to provide useful new information concerning weak interaction physics. Error estimates on calculations of PNC amplitudes are mandatory!

