Many-Body Methods Applied to Parity Nonconserving Transitions in Atoms: The Weak Charge and Anapole Moment of ¹³³Cs

Walter Johnson University of Notre Dame, Notre Dame, IN (USA) http://www.nd.edu/~johnson

- I. Atomic Theory Considerations for PNC Calculations
- a) Correlation effects in heavy alkali-metals atoms are large.
- b) Relativistic effects in heavy alkali-metal atoms are important.
- c) Precise *ab-initio* theory is essential in PNC studies.

Outline

- (Quick) Review of Relativistic MBPT
- 2nd- and 3rd-Order Energies
- 2nd- and 3rd-Order Matrix Elements
- All-order SDCC and SD Equations.
- SD Energies & Fine-Structure Intervals.
- SD Dipole Matrix Elements & Hyperfine Constants.
- Polarizabilities.

Dirac Hamiltonian

One-electron atoms:

$$h_0 = c \, oldsymbol{lpha} \cdot oldsymbol{p} + eta m c^2 + U(r) + V_{
m nuc} \, .$$

 $h_0 \phi_i = \epsilon_i \phi_i$

The spectrum of h_0 consists of electron scattering states ($\epsilon_i > mc^2$), electron bound states ($mc^2 > \epsilon_i > 0$) and negative energy (positron) states ($-mc^2 > \epsilon_i$).

Many-electron atoms:

The *no-pair* Hamiltonian

is a many-electron generalization obtained from the field-theoretic Hamiltonian of QED by performing a contact transformation to eliminate the electron - photon interaction to order e^2 .

The *no-pair* Hamiltonian¹ can be written

$$H = H_0 + V$$

 $H_0 = \sum_i \epsilon_i a_i^{\dagger} a_i$ $V = rac{1}{2} \sum_{ijkl} v_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k - \sum_{ij} U_{ij} a_i^{\dagger} a_j$

where,

- 1. sums are restricted to electron states only,
- 2. v_{ijkl} is a two-particle matrix element of Coulomb + Breit interactions,
- 3. U_{ij} compensates for including U(r) in h_0 .

¹ BROWN, G.E. & RAVENHALL, D.G. 1951 Proc. R. Soc. London, Ser. A 208, 552-559.

MBPT (One Valence Electron)

Choose $U=V_{
m DHF}$, then $\Psi^{(0)}=\Psi_{
m DHF}$

$$\Psi = \Psi^{(0)} + \Psi^{(1)} + \dots$$
$$E = E^{(0)} + E^{(1)} + \dots$$

Cross-talks in the physics of many-body systems - Dec. 2006

Review

Example

2nd- & 3rd-Order Energies

Valence State Energies for Alkali-Metal Atoms (a.u.).

		L L	/			
Term	Li $2s$	Na $3s$	K $4s$	$Rb\ 5s$	Cs 6 <i>s</i>	Fr 7 <i>s</i>
DHF	-0.19632	-0.18203	-0.14749	-0.13929	-0.12737	-0.13108
$E^{(2)}$	-0.00165	-0.00593	-0.01246	-0.01507	-0.01782	-0.02174
$E^{(3)}$	-0.00012	-0.00032	0.00205	0.00309	0.00570	0.00770
Sum	-0.19809	-0.18829	-0.15790	-0.15127	-0.13949	-0.14512
NIST	-0.19814	-0.18886	-0.15952	-0.15351	-0.14310	-0.14967
Δ %	0.03	0.3	1.0	1.5	2.8	3.0

Lesson: It is necessary to go beyond 3rd-order MBPT to obtain energies accurate to better than 1% for heavy alkali-metal atoms.

Dipole Matrix Elements for Alkali-Metal Atoms

Lesson: Third-order transition moments for heavy alkali-metal atoms are accurate to about 1%

Examples

Dipole Matrix Elements (Gauge)

Term	L	V	L	V
Cs	$6s_{1/2}$ -	$-6p_{1/2}$	$6s_{1/2}$ -	$-6p_{3/2}$
1st	5.2777	5.0371	7.4265	7.0662
2nd	4.9747	4.9747	7.0137	7.0137
3rd	4.5402	4.5400	6.3892	6.3891
Fr	$7s_{1/2}$ -	$-7p_{1/2}$	$7s_{1/2}$ -	- 7p _{3/2}
1st	5.1438	4.8402	7.0903	6.6424
2nd	4.7741	4.7741	6.6268	6.6268
3rd	4.3236	4.3234	5.9450	5.9448

Lesson: "Dressed" third-order dipole matrix element are independent of gauge.

Examples

Hyperfine Matrix Elements

Cesium Hyperfine Constants (MHz)

Term	$6s_{1/2}$	$6p_{1/2}$	$6p_{3/2}$
A (1)	1423.77	160.92	23.92
A (2)	292.18	40.67	18.85
BO(3)	718.60	84.73	16.12
SR(3)	-7.97	5.43	-7.49
No(3)	-22.80	-1.20	-0.23
A (3)	687.83	88.96	8.40
Sum	2403.78	290.55	51.17
Expt.	2298.16	291.89	50.28
Δ %	4.6%	0.5%	1.8%

Lesson: (once again) One must go beyond 3rd-order to obtain matrix elements accurate to better than 1% for heavy alkali-metal atoms.

UNIVERSITY OF NOTRE DAME

Reminder

Coupled-Cluster Expansion

$$\begin{split} \Psi_v &= \exp\left\{1 + S_1 + S_2 + \dots + S_N\right\} \Psi_{\mathsf{DHF}} \\ &\approx \left\{1 + S_1 + S_2 + \frac{1}{2}S_1^2 + S_1S_2 + \frac{1}{2}S_2^2 + \frac{1}{6}S_1^3 + \frac{1}{2}S_1^2S_2 + \frac{1}{24}S_1^4\right\} \Psi_{\mathsf{DHF}} \\ &S_1 &= S_{1c} + S_{1v} = \sum_{ma} \rho_{ma} a_m^{\dagger} a_a + \sum_{m \neq v} \rho_{mv} a_m^{\dagger} a_v \\ &S_2 &= S_{2c} + S_{2v} = \frac{1}{2}\sum_{mnab} \rho_{mnab} a_m^{\dagger} a_n^{\dagger} a_b a_a + \sum_{mna} \rho_{mnvb} a_m^{\dagger} a_n^{\dagger} a_b a_v \end{split}$$

Nonlinear terms account for about 10% of correlation energy in Cs and about 4% in Na. These nonlinear corrections are partially canceled by triples!

mna

UNIVERSITY OF NOTRE DAME

All-Order SD Approximation

$$\begin{split} \Psi_{v} &= \Psi_{\text{DHF}} + \delta \Psi \\ \delta \Psi &= \left\{ \sum_{am} \rho_{ma} a_{m}^{\dagger} a_{a} + \frac{1}{2} \sum_{abmn} \rho_{mnab} a_{m}^{\dagger} a_{n}^{\dagger} a_{b} a_{a} \right. \\ &+ \sum_{m \neq v} \rho_{mv} a_{m}^{\dagger} a_{v} + \sum_{bmn} \rho_{mnvb} a_{m}^{\dagger} a_{n}^{\dagger} a_{b} a_{v} \right\} \Psi_{\text{DHF}} \\ E_{c} &= E_{c}^{\text{DHF}} + \delta E_{c} \\ E_{v} &= E_{v}^{\text{DHF}} + \delta E_{v} \end{split}$$

Later, we will discuss triples!

Core Excitation Equations

$$\begin{aligned} (\epsilon_a - \epsilon_m)\rho_{ma} &= \sum_{bn} \tilde{v}_{mban}\rho_{nb} + \sum_{bnr} v_{mbnr}\tilde{\rho}_{nrab} - \sum_{bcn} v_{bcan}\tilde{\rho}_{mnbc} \\ (\epsilon_a + \epsilon_b - \epsilon_m - \epsilon_n)\rho_{mnab} &= v_{mnab} + \sum_{cd} v_{cdab}\rho_{mncd} + \sum_{rs} v_{mnrs}\rho_{rsab} \\ &+ \left[\sum_r v_{mnrb}\rho_{ra} - \sum_c v_{cnab}\rho_{mc} + \sum_{rc} \tilde{v}_{cnrb}\tilde{\rho}_{mrac}\right] + \left[a \leftrightarrow b \quad m \leftrightarrow n\right] \\ &\delta E_c = \frac{1}{2}\sum_{abmn} v_{abmn}\tilde{\rho}_{mnab} \end{aligned}$$

15,000,000 ρ_{mnab} coefficients for Cs ($\ell = 6$).

Cross-talks in the physics of many-body systems - Dec. 2006

13

+ exchange terms

 $m a n b = m a n b + a \frac{m}{r} - \frac{n}{s} b m \frac{a}{c} - \frac{b}{d} n$

+ exchange terms

Brueckner-Goldstone Diagrams for the core SD equations.

Valence Equations

$$(\epsilon_{v} - \epsilon_{m} + \delta E_{v})\rho_{mv} = \sum_{bn} \tilde{v}_{mbvn}\rho_{nb} + \sum_{bnr} v_{mbnr}\tilde{\rho}_{nrvb} - \sum_{bcn} v_{bcvn}\tilde{\rho}_{mnbc}$$

$$(\epsilon_{v} + \epsilon_{b} - \epsilon_{m} - \epsilon_{n} + \delta E_{v})\rho_{mnvb} = v_{mnvb} + \sum_{cd} v_{cdvb}\rho_{mncd} + \sum_{rs} v_{mnrs}\rho_{rsvb}$$

$$+ \left[\sum_{r} v_{mnrb}\rho_{rv} - \sum_{c} v_{cnvb}\rho_{mc} + \sum_{rc} \tilde{v}_{cnrb}\tilde{\rho}_{mrvc}\right] + \left[\begin{array}{c} v \leftrightarrow b \\ m \leftrightarrow n \end{array}\right]$$

$$\delta E_{v} = \sum_{ma} \tilde{v}_{vavm}\rho_{ma} + \sum_{mab} v_{abvm}\tilde{\rho}_{mvab} + \sum_{mna} v_{vbmn}\tilde{\rho}_{mnvb}$$

1,000,000 ho_{mnvb} coefficients for each state (Cs)

Perturbation Expansion of SD Energy

- δE_c agrees with MBPT through third-order.
- $\delta E_v^{(3)}$ disagrees with $E_v^{(3)}$ from MBPT.

Add a limited class of triple excitations to the SD wave function

$$\frac{1}{6} \sum_{abmnr} \rho_{mnrvab} a_m^{\dagger} a_n^{\dagger} a_r^{\dagger} a_v a_b a_a \Psi_{\mathsf{DHF}}$$
$$\delta E_{\mathsf{extra}} = \frac{1}{2} \sum_{mnab} \tilde{v}_{abmn} \rho_{mnvvab}$$

• $\delta E_v + \delta E_{\text{extra}}$ includes the entire third-order MBPT valence correlation energy

Example

Lithium Energy Levels

Summary for lithium 2s and 2p states (a.u.)

Term	$2s_{1/2}$	$2p_{1/2}$	$2p_{3/2}$
DHF	-0.196320	-0.128638	-0.128636
δE_{SD}	-0.001853	-0.001606	-0.001606
δE_{extra}	0.000011	0.000010	0.000010
Breit + RM + MP	0.000019	0.000009	0.00008
Total	-0.198143	-0.130226	-0.130225
Expt.	-0.198142	-0.130236	-0.130235

Sodium Energy Levels

Summary for sodium 3s and 3p states (cm⁻¹)

Term	3s	$3p_{1/2}$	$3p_{3/2}$
DHF	-39951.6	-24030.4	-24014.1
δE_{SD}	-1488.8	-463.9	-461.6
δE_{extra}	-9.2	-1.5	-1.6
Breit	1.2	1.4	0.1
RM + MP	1.0	0.5	0.5
Theory	-41447.3	-24493.9	-24476.7
Expt.	-41449.4	-24493.3	-24476.1

Energy Comparisons for Alkali-Metal Atoms

SD Energies for Heavy Atoms

Energies for cesium and francium cm^{-1}

Cs	6s	7s	8s	9s
Theory	31262	12801	7060	4479
Expt.	31407	12871	7089	4496
Cs	$6p_{1/2}$	$7p_{1/2}$	$8p_{1/2}$	$9p_{1/2}$
Theory	20204	9621	5687	3760
Expt.	20228	9641	5698	3769
Fr	7s	8s	9s	10s
Fr Theory	7 <i>s</i> 32735	8 <i>s</i> 13051	9 <i>s</i> 7148	10 <i>s</i> 4522
Fr Theory Expt.	7 <i>s</i> 32735 32849	8 <i>s</i> 13051 13106	9 <i>s</i> 7148 7168	10 <i>s</i> 4522 4538
Fr Theory Expt. Fr	$rac{7s}{32735}\ 32849} \ 7p_{1/2}$	$rac{8s}{13051} \\ 13106 \\ 8p_{1/2}$	$\begin{array}{r} 9s \\ \hline 7148 \\ 7168 \\ 9p_{1/2} \end{array}$	$ \begin{array}{r} 10s \\ 4522 \\ 4538 \\ 10p_{1/2} \\ \end{array} $
Fr Theory Expt. Fr Theory	$egin{array}{c} 7s \ 32735 \ 32849 \ 7p_{1/2} \ 20583 \end{array}$	$\begin{array}{c} 8s \\ 13051 \\ 13106 \\ 8p_{1/2} \\ 9712 \end{array}$	$\begin{array}{r} 9s \\ \hline 7148 \\ 7168 \\ 9p_{1/2} \\ \hline 5724 \end{array}$	$ \begin{array}{r} 10s \\ 4522 \\ 4538 \\ 10p_{1/2} \\ 3782 \end{array} $

SD Fine Structure Intervals

		Theory	Expt.
Rb	$5p_{3/2} - 5p_{1/2}$	236.5	237.6
	$6p_{3/2} - 6p_{1/2}$	76.5	77.5
	$7p_{3/2} - 7p_{1/2}$	34.8	35.1
	$8p_{3/2} - 8p_{1/2}$	18.6	18.9
Cs	$6p_{3/2} - 6p_{1/2}$	552.2	554.1
	$7p_{3/2} - 7p_{1/2}$	178.6	181.0
	$8p_{3/2} - 8p_{1/2}$	81.4	82.6
	$9p_{3/2} - 9p_{1/2}$	43.9	44.7
Fr	$7p_{3/2} - 7p_{1/2}$	1676	1687
	$8p_{3/2} - 8p_{1/2}$	536	545
	$9p_{3/2} - 9p_{1/2}$	244	250
	$10p_{3/2} - 10p_{1/2}$	132	136

SD Matrix Elements

$$\langle w | \left[\sum_{ij} z_{ij} a_i^{\dagger} a_j \right] | v \rangle = \left(z_{wv} + \sum_{i=a}^{t} Z_{wv}^{(i)} \right) / (N_w N_v)$$

$$Z_{wv}^{(a)} = \sum_{am} z_{am} \tilde{\rho}_{wmva} + \text{c.c.} \quad (\text{RPA})$$

$$Z_{wv}^{(b)} = -\sum_{a} z_{av} \rho_{wa} + \text{c.c.}$$

$$Z_{wv}^{(c)} = \sum_{m} z_{wm} \rho_{mv} + \text{c.c.} \quad (\text{BO})$$

$$\cdots \quad (\text{16 similar terms})$$

$$Z_{wv}^{(t)} = -\sum_{abmn} \rho_{mnba}^* z_{mv} \tilde{\rho}_{nwab} + \text{c.c.}$$

Matrix elements are complete through 3rd order!

Dipole Transitions

Matrix Elements for heavy alkali metals (a.u.)

	K	Rb	Cs	Fr
$np_{1/2}$ - $ns_{1/2}$	n = 4	n = 5	n = 6	n=7
SD	4.098	4.221	4.478	4.256
Expt.	4.102(5)	4.231(3)	4.489(7)	4.277(8)
$np_{3/2}-ns_{1/2}$	n = 4	n = 5	n = 6	n = 7
SD	5.794	5.956	6.298	5.851
Expt.	5.800(8)	5.977(4)	6.324(7)	5.898(15)

Examples

SD Hyperfine Matrix Elaments

	$3s_{1/2}$	$3p_{1/2}$	$3p_{3/2}$
DHF	623.5	63.39	12.59
MBPT	860.9	91.40	19.80
SD	888.1	94.99	18.84
Expt.	885.81	94.44(13)	18.534(12)

 23 Na hyperfine constants A (MHz)

Polarizabilities

For a valence s state:

$$\begin{aligned} \alpha_{v} &= \frac{1}{3} \sum_{m} \left(\frac{|\langle v||z||mp_{1/2} \rangle|^{2}}{E_{mp_{1/2}} - E_{v}} + \frac{|\langle v||z||mp_{3/2} \rangle|^{2}}{E_{mp_{3/2}} - E_{v}} \right) \\ \alpha_{c} &= \frac{2}{3} \sum_{ma} \frac{|\langle a||z||m \rangle|^{2}}{E_{m} - E_{a}} \\ \alpha_{vc} &= \frac{1}{3} \sum_{a} \frac{|\langle a||z||v \rangle|^{2}}{E_{a} - E_{v}} \end{aligned}$$

Examples

SD Results for Polarizabilities

Static polarizabilities (a.u.) of alkali-metal atoms.

	Na	K	Rb	Cs	Fr
α_v^{main}	162.06	284.70	308.43	383.8	294.0
$lpha_v^{ m tail}$	0.08	0.07	0.14	0.2	1.4
$lpha_c$	0.95	5.46	9.08	15.8	20.4
$lpha_{vc}$	-0.02	-0.13	-0.26	-0.5	-0.9
α^{SD}	163.07	290.10	317.39	399.3	314.9
Recom.	162.6(0.3)	290.2(0.8)	318.6(0.6)	399.9(1.9)	317.8(2.4)
Expt.	162.7(0.8)	293.6(6.1)	319.9(6.1)	403.6(8.1)	

Summary

The SD theory gives:

- Removal energies: $1-100 \text{ cm}^{-1}$
- Fine-structure intervals: 0.5%
- Transition Amplitudes: 0.3 1%
- Hyperfine constants: 0.1 1%
- Polarizabilities: 0.1 1%
- Applications to PNC in Cs and Fr (Next Lecture)

