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Abstract

The Lennard-Jones potential for an atom inside a conducting spherical
cavity is derived. The interest is in possible anomalous effects near the
focal point of a cavity viewed as a spherical mirror. We find a smooth
dependence of the potential on the distance of the atom from the surface
of the cavity.

1 Plane Mirror and the C3 coefficient

Let us consider first a plane mirror, assumed to lie in the x−y plane. We locate
a nucleus of charge Z at a distance L on the z axis above the plane. We suppose
that there are Z electrons located at coordinates ~ρi = (ξi, ηi, ζi) relative to the
nucleus. The image of the nucleus is at the point (0, 0, −L) and the images of
the electrons are located at points (ξi, ηi, −L− ζi).
Assuming that the mirror is grounded, Φ(x, y, 0) = 0, the potential at any

point can be written as Φ(x, y, z) = Φ0(x, y, z) + ΦI(x, y, z), where Φ0 is the
potential of the charges in the absence of the mirror and ΦI is the potential of
the image charges introduced to maintain the mirror potential at ground. We
have

ΦI(x, y, z) = − Z|e|
4πε0

1√
x2 + y2 + (z + L)2

+
∑
i

|e|
4πε0

1√
(x− ξi)2 + (y − ηi)2 + (z + L+ ζi)2

. (1)

The potential energy

U =
1

2

∑
k

qkΦ(~rk) (2)

breaks up into two parts U = U0+UI ; the first U0 is the (uninteresting) energy
of the atom in absence of mirror and the second UI is the energy of interaction
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of the atom and its image. We may write

UI = Z|e|ΦI(0, 0, L)−
∑
j

|e|ΦI(ξj , ηj , L+ ζj). (3)

This expression may be rewritten as

UI = −Z
2e2

4πε0

1

2L

+
Ze2

4πε0

∑
i

1√
ξ2i + η

2
i + (2L+ ζi)

2

+
Ze2

4πε0

∑
j

1√
ξ2j + η

2
j + (2L+ ζj)

2

− e2

4πε0

∑
ij

1√
(ξi − ξj)2 + (ηi − ηj)2 + (2L+ ζj + ζj)2

(4)

The following 2nd-order expansion formulas are useful:

1√
ξ2i + η

2
i + (2L+ ζi)

2
=
1

2L

[
1− ζi
2L
+
3ζ2i − ρ2i
8L2

]
(5)

and

1√
(ξi − ξj)2 + (ηi − ηj)2 + (2L+ ζj + ζj)2

=
1

2L

[
1− ζi + ζj

2L
+
3ζ2i + 3ζ

3
j − ρ2i − ρ2j
8L2

+
ξiξj + ηiηj + 2ζiζj

4L2

]
, (6)

where ρ2i = ξ
2
i + η

2
i + ζ

2
i . Substituting into Eq. (4) from Eqs. (5) and (6), one

finds that all terms of 0th and 1st order in atomic dimensions cancel leaving as
a remainder

UI = − e
2

8πε0

1

8L3

∑
ij

(ξiξj + ηiηj + 2ζiζj) . (7)

For a spherically symmetric atom one can average the double sum over electronic
coordinates to find〈∑

ij

(ξiξj + ηiηj + 2ζiζj)

〉
=
4

3

〈∑
ij

~ρi · ~ρj
〉
=
4

3

〈
R2atom

〉
, (8)

where Ratom is the atomic radius. One finally obtains the well-known Lennard-
Jones [1] result for the atom-surface interaction:

〈UI〉 = − e
2

4πε0

C3

L3
, (9)

with

C3 =
1

12
〈R2atom〉. (10)
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2 Spherical Images

Now, let us consider a conducting sphere of radius a and imagine an atom with
nuclear charge Z located at the point R < a, which we choose for convenience
to be on the z axis, ~R = Rẑ. The bound electrons are assumed to be located at
positions ~ri = ~R+ ~ρi. The image of the nucleus is located at a distance

d =
a2

R

from the origin on the z axis. Similarly, the images of the electrons are at
distances

di =
a2

ri

from the origin and have the same polar angles θi and φi as the respective real
charges.
The image potential can be written:

ΦI(~r) = − Z|e|
4πε0

a√
a4 − 2a2~r · ~R+R2r2

+
∑
i

|e|
4πε0

a√
a4 − 2a2~r · ~ri + r2i r2

(11)

The interaction energy is again given by Eq. (2) leading to

UI = −Z
2e2

8πε0

a

a2 −R2

+
Ze2

8πε0

∑
i

a√
a4 − 2a2 ~R · ~ri + r2iR2

+
Ze2

8πε0

∑
j

a√
a4 − 2a2 ~R · ~rj + r2jR2

− e2

8πε0

∑
ij

a√
a4 − 2a2~ri · ~rj + r2i r2j

. (12)

We use the expansions

a√
a4 − 2a2 ~R · ~ri + r2iR2

=
a

a2 −R2
[
1 +

~R · ~ρi
a2 −R2 +

3(~R · ~ρi)2 −R2ρ2i
2(a2 −R2)2

]
, (13)

and

a√
a4 − 2a2~ri · ~rj + r2i r2j

=
a

a2 −R2
[
1 +
~R · ~ρi + ~R · ~ρj
a2 −R2
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Figure 1: The function f(R/a) for a conducting spherical cavity.

+
3(~R · ~ρi)2 + 3(~R · ~ρj)2 −R2ρ2i −R2ρ2j

2(a2 −R2)2

+
a2~ρi · ~ρj + (~R · ~ρi)(~R · ~ρj)

(a2 −R2)2
]
. (14)

Expanding the terms in Eq. (12), one can easily verify that the terms of 0th and
1st order in the electron-nucleus separation vanish. The residual second-order
terms give

UI = − e
2

8πε0

a3

(a2 −R2)3
∑
ij

(
~ρi · ~ρj + R

2

a2
ζiζj

)
. (15)

Assuming spherical symmetry for the atom and averaging over electron coor-
dinates, one can rewrite this as

〈UI〉 = − e
2

4πε0

C3

(a−R)3 f(R/a), (16)

where C3 = 〈R2atom〉/12 is the plane-mirror Lennard-Jones constant and where
the dimensionless function f(x) is

f(x) =
6

(1 + x)3

(
1 +
1

3
x2
)
. (17)

The function f(R/a) which is plotted in Fig. 1 has the limiting value 1 at the
surface of the cavity and 6 at the center. The interaction energy has limits

〈UI〉 → − e
2

4πε0

C3

(a−R)3 as R→ a− (18)

→ − e
2

4πε0

6C3
a3

as R→ 0. (19)
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