Lennard-Jones Potential inside a Spherical Cavity

W. R. Johnson
Department of Physics, Notre Dame University
Notre Dame, IN 46556

June 8, 2001

Abstract

The Lennard-Jones potential for an atom inside a conducting spherical cavity is derived. The interest is in possible anomalous effects near the focal point of a cavity viewed as a spherical mirror. We find a smooth dependence of the potential on the distance of the atom from the surface of the cavity.

1 Plane Mirror and the C_{3} coefficient

Let us consider first a plane mirror, assumed to lie in the $x-y$ plane. We locate a nucleus of charge Z at a distance L on the z axis above the plane. We suppose that there are Z electrons located at coordinates $\overrightarrow{\rho_{i}}=\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)$ relative to the nucleus. The image of the nucleus is at the point $(0,0,-L)$ and the images of the electrons are located at points $\left(\xi_{i}, \eta_{i},-L-\zeta_{i}\right)$.

Assuming that the mirror is grounded, $\Phi(x, y, 0)=0$, the potential at any point can be written as $\Phi(x, y, z)=\Phi_{0}(x, y, z)+\Phi_{I}(x, y, z)$, where Φ_{0} is the potential of the charges in the absence of the mirror and Φ_{I} is the potential of the image charges introduced to maintain the mirror potential at ground. We have

$$
\begin{align*}
\Phi_{I}(x, y, z)= & -\frac{Z|e|}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{x^{2}+y^{2}+(z+L)^{2}}} \\
& +\sum_{i} \frac{|e|}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{\left(x-\xi_{i}\right)^{2}+\left(y-\eta_{i}\right)^{2}+\left(z+L+\zeta_{i}\right)^{2}}} . \tag{1}
\end{align*}
$$

The potential energy

$$
\begin{equation*}
U=\frac{1}{2} \sum_{k} q_{k} \Phi\left(\vec{r}_{k}\right) \tag{2}
\end{equation*}
$$

breaks up into two parts $U=U_{0}+U_{I}$; the first U_{0} is the (uninteresting) energy of the atom in absence of mirror and the second U_{I} is the energy of interaction
of the atom and its image. We may write

$$
\begin{equation*}
U_{I}=Z|e| \Phi_{I}(0,0, L)-\sum_{j}|e| \Phi_{I}\left(\xi_{j}, \eta_{j}, L+\zeta_{j}\right) \tag{3}
\end{equation*}
$$

This expression may be rewritten as

$$
\begin{align*}
U_{I} & =-\frac{Z^{2} e^{2}}{4 \pi \epsilon_{0}} \frac{1}{2 L} \\
& +\frac{Z e^{2}}{4 \pi \epsilon_{0}} \sum_{i} \frac{1}{\sqrt{\xi_{i}^{2}+\eta_{i}^{2}+\left(2 L+\zeta_{i}\right)^{2}}} \\
& +\frac{Z e^{2}}{4 \pi \epsilon_{0}} \sum_{j} \frac{1}{\sqrt{\xi_{j}^{2}+\eta_{j}^{2}+\left(2 L+\zeta_{j}\right)^{2}}} \\
& -\frac{e^{2}}{4 \pi \epsilon_{0}} \sum_{i j} \frac{1}{\sqrt{\left(\xi_{i}-\xi_{j}\right)^{2}+\left(\eta_{i}-\eta_{j}\right)^{2}+\left(2 L+\zeta_{j}+\zeta_{j}\right)^{2}}} \tag{4}
\end{align*}
$$

The following 2 nd-order expansion formulas are useful:

$$
\begin{equation*}
\frac{1}{\sqrt{\xi_{i}^{2}+\eta_{i}^{2}+\left(2 L+\zeta_{i}\right)^{2}}}=\frac{1}{2 L}\left[1-\frac{\zeta_{i}}{2 L}+\frac{3 \zeta_{i}^{2}-\rho_{i}^{2}}{8 L^{2}}\right] \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{1}{\sqrt{\left(\xi_{i}-\xi_{j}\right)^{2}+\left(\eta_{i}-\eta_{j}\right)^{2}+\left(2 L+\zeta_{j}+\zeta_{j}\right)^{2}}} \\
& \quad=\frac{1}{2 L}\left[1-\frac{\zeta_{i}+\zeta_{j}}{2 L}+\frac{3 \zeta_{i}^{2}+3 \zeta_{j}^{3}-\rho_{i}^{2}-\rho_{j}^{2}}{8 L^{2}}+\frac{\xi_{i} \xi_{j}+\eta_{i} \eta_{j}+2 \zeta_{i} \zeta_{j}}{4 L^{2}}\right] \tag{6}
\end{align*}
$$

where $\rho_{i}^{2}=\xi_{i}^{2}+\eta_{i}^{2}+\zeta_{i}^{2}$. Substituting into Eq. (4) from Eqs. (5) and (6), one finds that all terms of 0 th and 1st order in atomic dimensions cancel leaving as a remainder

$$
\begin{equation*}
U_{I}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{1}{8 L^{3}} \sum_{i j}\left(\xi_{i} \xi_{j}+\eta_{i} \eta_{j}+2 \zeta_{i} \zeta_{j}\right) \tag{7}
\end{equation*}
$$

For a spherically symmetric atom one can average the double sum over electronic coordinates to find

$$
\begin{equation*}
\left\langle\sum_{i j}\left(\xi_{i} \xi_{j}+\eta_{i} \eta_{j}+2 \zeta_{i} \zeta_{j}\right)\right\rangle=\frac{4}{3}\left\langle\sum_{i j} \vec{\rho}_{i} \cdot \vec{\rho}_{j}\right\rangle=\frac{4}{3}\left\langle R_{\text {atom }}^{2}\right\rangle, \tag{8}
\end{equation*}
$$

where $R_{\text {atom }}$ is the atomic radius. One finally obtains the well-known LennardJones [1] result for the atom-surface interaction:

$$
\begin{equation*}
\left\langle U_{I}\right\rangle=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{C_{3}}{L^{3}} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{3}=\frac{1}{12}\left\langle R_{\mathrm{atom}}^{2}\right\rangle . \tag{10}
\end{equation*}
$$

2 Spherical Images

Now, let us consider a conducting sphere of radius a and imagine an atom with nuclear charge Z located at the point $R<a$, which we choose for convenience to be on the z axis, $\vec{R}=R \hat{z}$. The bound electrons are assumed to be located at positions $\vec{r}_{i}=\vec{R}+\vec{\rho}_{i}$. The image of the nucleus is located at a distance

$$
d=\frac{a^{2}}{R}
$$

from the origin on the z axis. Similarly, the images of the electrons are at distances

$$
d_{i}=\frac{a^{2}}{r_{i}}
$$

from the origin and have the same polar angles θ_{i} and ϕ_{i} as the respective real charges.

The image potential can be written:

$$
\begin{align*}
& \Phi_{I}(\vec{r})=-\frac{Z|e|}{4 \pi \epsilon_{0}} \frac{a}{\sqrt{a^{4}-2 a^{2} \vec{r} \cdot \vec{R}+R^{2} r^{2}}} \\
& \quad+\sum_{i} \frac{|e|}{4 \pi \epsilon_{0}} \frac{a}{\sqrt{a^{4}-2 a^{2} \vec{r} \cdot \vec{r}_{i}+r_{i}^{2} r^{2}}} \tag{11}
\end{align*}
$$

The interaction energy is again given by Eq. (2) leading to

$$
\begin{align*}
U_{I} & =-\frac{Z^{2} e^{2}}{8 \pi \epsilon_{0}} \frac{a}{a^{2}-R^{2}} \\
& +\frac{Z e^{2}}{8 \pi \epsilon_{0}} \sum_{i} \frac{a}{\sqrt{a^{4}-2 a^{2} \vec{R} \cdot \vec{r}_{i}+r_{i}^{2} R^{2}}} \\
& +\frac{Z e^{2}}{8 \pi \epsilon_{0}} \sum_{j} \frac{a}{\sqrt{a^{4}-2 a^{2} \vec{R} \cdot \vec{r}_{j}+r_{j}^{2} R^{2}}} \\
& -\frac{e^{2}}{8 \pi \epsilon_{0}} \sum_{i j} \frac{a}{\sqrt{a^{4}-2 a^{2} \vec{r}_{i} \cdot \vec{r}_{j}+r_{i}^{2} r_{j}^{2}}} . \tag{12}
\end{align*}
$$

We use the expansions

$$
\begin{equation*}
\frac{a}{\sqrt{a^{4}-2 a^{2} \vec{R} \cdot \vec{r}_{i}+r_{i}^{2} R^{2}}}=\frac{a}{a^{2}-R^{2}}\left[1+\frac{\vec{R} \cdot \vec{\rho}_{i}}{a^{2}-R^{2}}+\frac{3\left(\vec{R} \cdot \vec{\rho}_{i}\right)^{2}-R^{2} \rho_{i}^{2}}{2\left(a^{2}-R^{2}\right)^{2}}\right], \tag{13}
\end{equation*}
$$

and

$$
\frac{a}{\sqrt{a^{4}-2 a^{2} \vec{r}_{i} \cdot \vec{r}_{j}+r_{i}^{2} r_{j}^{2}}}=\frac{a}{a^{2}-R^{2}}\left[1+\frac{\vec{R} \cdot \vec{\rho}_{i}+\vec{R} \cdot \vec{\rho}_{j}}{a^{2}-R^{2}}\right.
$$

Figure 1: The function $f(R / a)$ for a conducting spherical cavity.

$$
\begin{align*}
& +\frac{3\left(\vec{R} \cdot \vec{\rho}_{i}\right)^{2}+3\left(\vec{R} \cdot \vec{\rho}_{j}\right)^{2}-R^{2} \rho_{i}^{2}-R^{2} \rho_{j}^{2}}{2\left(a^{2}-R^{2}\right)^{2}} \\
& \left.+\frac{a^{2} \vec{\rho}_{i} \cdot \vec{\rho}_{j}+\left(\vec{R} \cdot \vec{\rho}_{i}\right)\left(\vec{R} \cdot \vec{\rho}_{j}\right)}{\left(a^{2}-R^{2}\right)^{2}}\right] . \tag{14}
\end{align*}
$$

Expanding the terms in Eq. (12), one can easily verify that the terms of 0th and 1 st order in the electron-nucleus separation vanish. The residual second-order terms give

$$
\begin{equation*}
U_{I}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{a^{3}}{\left(a^{2}-R^{2}\right)^{3}} \sum_{i j}\left(\vec{\rho}_{i} \cdot \vec{\rho}_{j}+\frac{R^{2}}{a^{2}} \zeta_{i} \zeta_{j}\right) . \tag{15}
\end{equation*}
$$

Assuming spherical symmetry for the atom and averaging over electron coordinates, one can rewrite this as

$$
\begin{equation*}
\left\langle U_{I}\right\rangle=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{C_{3}}{(a-R)^{3}} f(R / a), \tag{16}
\end{equation*}
$$

where $C_{3}=\left\langle R_{\text {atom }}^{2}\right\rangle / 12$ is the plane-mirror Lennard-Jones constant and where the dimensionless function $f(x)$ is

$$
\begin{equation*}
f(x)=\frac{6}{(1+x)^{3}}\left(1+\frac{1}{3} x^{2}\right) . \tag{17}
\end{equation*}
$$

The function $f(R / a)$ which is plotted in Fig. 1 has the limiting value 1 at the surface of the cavity and 6 at the center. The interaction energy has limits

$$
\begin{align*}
\left\langle U_{I}\right\rangle & \rightarrow-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{C_{3}}{(a-R)^{3}} \quad \text { as } \quad R \rightarrow a^{-} \tag{18}\\
& \rightarrow-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{6 C_{3}}{a^{3}} \quad \text { as } \quad R \rightarrow 0 . \tag{19}
\end{align*}
$$

References

[1] J. E. Lennard-Jones, Trans. Faraday Soc. 28, 333 (1932).

