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ABSTRACT

Relativistic calculations of energy levels of few-electron atoms, including the Breit in-
teraction and radiative corrections, are treated using two different methods: many-body
perturbation theory and the configuration-interaction method. The point of departure of
both methods is the no-pair Hamiltonian, which is briefly discussed. To set a foundation
for few-electron calculations, the Dirac equation is reviewed and radiative corrections to
energy levels of one-electron ions are discussed. Second-, third-, and all-order many-body
perturbation theory, is applied to ground states of helium and helium-like ions and to low-
lying states of lithium and lithium-like ions. Corrections from the Breit interaction are
included in these studies. The relativistic configuration-interaction method, including the
Breit interaction, is applied to excited states of few-electron atoms and ions. Radiative
corrections to n = 2 states of highly-charged lithium-like ions are discussed in detail.

1. INTRODUCTION

Although the proper point of departure for relativistic atomic structure calculations is
quantum electrodynamics (QED), very few atomic structure calculations have been car-
ried out entirely within the QED framework. Indeed, almost all relativistic calculations
of the structure of many-electron atoms are based on some variant of the Hamiltonian
introduced a half century ago by Brown and Ravenhall [1] to understand the helium
fine structure. By decoupling the electron and radiation fields in QED to order α (the
fine-structure constant) using a contact transformation, Brown and Ravenhall obtained
a relativistic momentum-space Hamiltonian in which the electron-electron Coulomb in-
teraction was surrounded by positive-energy projection operators. Owing to the fact
that contributions from virtual electron-positron pairs are automatically projected out of
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the Brown-Ravenhall Hamiltonian, it has become known as the no-pair Hamiltonian. A
configuration-space version of the no-pair Hamiltonian was given by Mittleman [2, 3, 4],
who showed how to incorporate the Breit interaction and lowest-order radiative correc-
tions. An alternative derivation of the configuration-space no-pair Hamiltonian starting
from the Bethe-Salpeter formulation of QED was given by Sucher [5].

Later, in Sec. 4, we will give a detailed discussion of the need for the no-pair Hamil-
tonian in relativistic calculations, its limitations, and its relation to QED. To establish
a foundation for our studies of few-electron systems, we start in Sec. 2 with a discussion
of the one-electron central-field Dirac equation and radiative corrections to one-electron
atoms. In Sec. 3 we describe many-body perturbation theory (MBPT) calculations of
few-electron atoms, and finally, in Sec. 4 we turn to relativistic configuration-interaction
(RCI) calculations.

2. CENTRAL-FIELD DIRAC EQUATION

As a lowest-order approximation, we assume that each electron in an atom moves
in the field of the nucleus, which is described by a potential Vnuc(r), and a spherically
symmetric potential U(r) that accounts approximately for the remaining bound electrons.
The wave functions φk describing possible states of the electron satisfy the one-electron
Dirac equation

hφk = [h0 + U(r)]φk = εkφk, (1)

where the eigenvalue εk is the electron energy and h0 is the Dirac Hamiltonian,

h0 = cα · p+mc2β + Vnuc(r); (2)

α and β being 4× 4 Dirac matrices,

α =

(

0 σ

σ 0

)

, β =

(

I 0
0 −I

)

. (3)

In the above equation, I is the 2 × 2 identity matrix and σ = (σx, σy, σz) are Pauli
matrices,

I =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (4)

(Later, when making comparisons with nonrelativistic calculations, we subtract the elec-
tron rest energy mc2 from εk.) The choice of the potential U(r) is more or less arbitrary;
one important choice being the (Dirac) Hartree-Fock potential. Eigenstates of Eq. (1) fall
into three classes: bound states with −mc2 < εk < mc2, continuum states with εk > mc2,
and “negative energy” (positron) states εk ≤ −mc2. Since contributions from virtual
electron-positron pairs are projected out of the no-pair Hamiltonian, we will be concerned
primarily with bound and continuum electron states.

The total angular momentum is given by J = L + S, where L is the orbital angular
momentum, and S is the 4× 4 spin angular momentum matrix,

S =
1

2

(

σ 0
0 σ

)

, (5)
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in units h̄ = 1. It is an elementary exercise to show that J commutes with the Dirac
Hamiltonian h, provided the potential U is isotropic. We may, therefore, classify eigen-
states of h according to the eigenvalues of energy, J 2 and Jz. Eigenstates of J

2 and Jz are
easily constructed using the two-component representation of S. They are the spherical
spinors defined in the following subsection.

2.1. Spherical Spinors
We combine spherical harmonics Ylm(θ, φ), which are eigenstates of L2 and Lz, with

two-component spinors, χµ, which are eigenstates of S2 and Sz, to form spherical spinors,
which are eigenstates of J2 and Jz. The spherical spinors are denoted by Ωjlm(θ, φ) and
are defined by the equation

Ωj lm(θ, φ) =
∑

µ

C(l, 1/2, j;m− µ, µ,m)Yl m−µ(θ, φ)χµ . (6)

where C(j1, j2, j3;m1,m2,m3) is a Clebsch-Gordan coefficient [6]. The two-component
spinors χµ with µ = ±1/2 are

χ1/2 =

(

1
0

)

and χ−1/2 =

(

0
1

)

. (7)

From the discussion above, we obtain the following two-component representations of
spherical spinors for the two possible values, j = l ± 1/2:

Ωl+1/2 l m(θ, φ) =





√

l+m+1/2
2l+1

Yl m−1/2(θ, φ)
√

l−m+1/2
2l+1

Yl m+1/2(θ, φ)



 , (8)

Ωl−1/2 l m(θ, φ) =





−
√

l−m+1/2
2l+1

Yl m−1/2(θ, φ)
√

l+m+1/2
2l+1

Yl m+1/2(θ, φ)



 . (9)

Spherical spinors are eigenfunctions of σ ·L and, therefore, of the operator

K = −1− σ ·L.
The eigenvalue equation for K is

KΩjlm(θ, φ) = κ Ωjlm(θ, φ) , (10)

where the (integer) eigenvalues are κ = −l − 1 for j = l + 1/2, and κ = l for j = l − 1/2.
These values can be summarized as κ = ∓(j + 1/2) for j = l ± 1/2. The value of κ
determines both j and l. Consequently, the more compact notation, Ωκm ≡ Ωjlm can be
used. Spherical spinors satisfy the orthogonality relations

∫ π

0

sin θdθ

∫ 2π

0

dφΩ†κ′m′(θ, φ)Ωκm(θ, φ) = δκ′κδm′m . (11)

The parity operator P maps r → −r. In spherical coordinates, the operator P transforms
φ→ φ+ π and θ → π − θ. Under a parity transformation,

PYlm(θ, φ) = Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ) . (12)
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It follows that the spherical spinors are eigenfunctions of P having eigenvalues π = (−1)l.
The two spinors Ωκm(θ, φ) and Ω−κm(θ, φ), corresponding to the same value of j, have
values of l differing by one unit and, therefore, have opposite parity. Spherical spinors
transform as

σ · r̂Ωκm(θ, φ) = −Ω−κm(θ, φ) , (13)

under the operator σ · r̂, where r̂ = r/r.
Now, let us consider the operator σ · p. Using Eq. (13), it follows that

σ · p = σ · r̂ σ · r̂ σ · p = −iσ · r̂
[

i r̂ · p− σ · (r × p )
r

]

. (14)

In deriving this equation, we have made use of the identity

σ ·A σ ·B = A ·B + iσ · (A×B ) .

From Eq. (14), it follows that

σ · p f(r) Ωκm(θ, φ) = i

(

df

dr
+
κ+ 1

r
f

)

Ω−κm(θ, φ) , (15)

again in units h̄ = 1. The identities (13) and (15) are important in the reduction of the
central-field Dirac equation to radial form.

2.2. Separation of Dirac Equation
Solutions to the Dirac equation in a spherically symmetric potential U(r) for a state

with energy ε and angular momentum quantum numbers (κm) take the form

φκm(r) =
1

r

(

iPκ(r) Ωκm(r̂)
Qκ(r) Ω−κm(r̂)

)

. (16)

We find, with the help of the identities (13,15), that the radial functions Pκ(r) and Qκ(r)
satisfy the coupled first-order differential equations:

(V +mc2)Pκ + c

(

d

dr
− κ

r

)

Qκ = ε Pκ (17)

−c
(

d

dr
+
κ

r

)

Pκ + (V −mc2)Qκ = εQκ (18)

where V (r) = Vnuc(r) + U(r). The normalization condition for the orbital φκm(r),
∫

φ†κm(r)φκm(r) d
3r = 1, (19)

becomes
∫ ∞

0

[P 2
κ (r) +Q2

κ(r) ] dr = 1, (20)

when expressed in terms of the radial functions Pκ(r) and Qκ(r). The radial eigenfunc-
tions and their associated eigenvalues, ε, can be determined analytically for a Coulomb
potential. In most other cases, however, the eigenvalue problem must be solved numeri-
cally.
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2.3. Bound-State Coulomb Wave Functions
In this subsection, we discuss analytical solutions to the radial Dirac equations (17) and

(18) for the special case V (r) = −Z/r. (We adopt atomic units where h̄ = e = m = 1 in
this section and in the sequel.) As a first step in our analysis, we examine these equations
at large values of r. Retaining only dominant terms as r →∞, we find

c
dQκ

dr
= (ε− c2)Pκ , (21)

c
dPκ
dr

= −(ε+ c2)Qκ , (22)

in atomic units. This pair of equations can be converted into the second-order equation

c2
d2Pκ
dr2

+ (ε2 − c4)Pκ = 0, (23)

which has two linearly independent solutions, e±λr, with λ =
√

c2 − ε2/c2. The physically
acceptable solution is

Pκ(r) = e−λr . (24)

The corresponding solution Qκ is given by

Qκ(r) =

√

c2 − ε

c2 + ε
e−λr. (25)

Factoring the asymptotic behavior, we express the radial functions in the form

Pκ =
√

1 + ε/c2 e−λr(F1 + F2) , (26)

Qκ =
√

1− ε/c2 e−λr(F1 − F2) . (27)

Substituting this ansatz into (17) and (18), we find that the functions F1 and F2 satisfy
the coupled equations

dF1
dx

=
εZ

c2λx
F1 +

(

Z

λx
− κ

x

)

F2 , (28)

dF2
dx

= −
(

Z

λx
+
κ

x

)

F1 +

(

1− εZ

c2λx

)

F2 , (29)

where x = 2λr.
We seek solutions to Eqs. (28,29) that have the limiting forms F1 = a1x

γ and F2 = a2x
γ

as x → 0. Substituting these expressions into (28) and (29) and retaining only the most
singular terms, we find:

a2
a1

=
γ − εZ/c2λ

−κ+ Z/λ
=
−κ− Z/λ

γ + εZ/c2λ
. (30)

Clearing fractions in the right-hand equality, leads to the result γ2 = κ2 − Z2/c2 =
κ2 − α2Z2. Here, we have used the fact that c = 1/α in atomic units. The physically
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acceptable value of γ is given by the positive square root, γ =
√
κ2 − α2Z2. Next, we use

Eq. (28) to express F2 in terms of F1,

F2 =
1

−κ+ Z/λ

[

x
dF1
dx

− εZ

c2λ
F1

]

. (31)

This equation, in turn, can be used to eliminate F2 from Eq. (29), leading to

x
d2F1
dx2

+ (1− x)
dF1
dx

−
(

γ2

x2
− εZ

c2λ

)

F1 = 0 . (32)

Finally, we write

F1(x) = xγF (x) , (33)

and find that the function F (x) satisfies Kummer’s equation,

x
d2F

dx2
+ (b− x)

dF

dx
− aF = 0 , (34)

where a = γ − εZ/c2λ, and b = 2γ + 1. The solutions to Eq. (34) that are regular at the
origin are the confluent hypergeometric functions [7, chap. VI]:

F (a, b, x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

x3

3!

+ · · ·+ a(a+ 1) · · · (a+ k − 1)

b(b+ 1) · · · (b+ k − 1)

xk

k!
+ · · · . (35)

Therefore,

F1(x) = xγ F (a, b, x) . (36)

The function F2(x) can also be expressed in terms of confluent hypergeometric functions.
Using Eq. (31), we find

F2(x) =
xγ

(−κ+ Z/λ)

(

x
dF

dx
+ aF

)

=
(γ − εZ/c2λ)

(−κ+ Z/λ)
xγF (a+ 1, b, x) . (37)

Combining these results, we obtain the following expressions for the radial Dirac functions:

Pκ(r) =
√

1 + ε/c2 e−x/2xγ[(−κ+ Z/λ)F (a, b, x)

+ (γ − εZ/c2λ)F (a+ 1, b, x)
]

, (38)

Qκ(r) =
√

1− ε/c2 e−x/2xγ[(−κ+ Z/λ)F (a, b, x)

− (γ − εZ/c2λ)F (a+ 1, b, x)
]

. (39)

These solutions have yet to be normalized.
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We now turn to the eigenvalue problem. First, we examine the behavior of the radial
functions at large r. We find:

F (a, b, x) → Γ(b)

Γ(a)
exxa−b[1 +O(|x|−1)] , (40)

aF (a+ 1, b, x) → Γ(b)

Γ(a)
exxa+1−b[1 +O(|x|−1)] . (41)

The resulting radial wave function, therefore, grows exponentially unless the coefficient of
the exponential in Eqs. (40) and (41) vanishes. It follows that the radial wave functions
are normalizable if, and only if, the coefficient of the exponential in Eqs. (40) and (41)
vanishes. This occurs at the poles of Γ(a), which are located at the points a = −nr,
where nr = 0,−1,−2, · · · . We define the principal quantum number n through the
relation, n = k+nr, where k = |κ| = j+1/2. The eigenvalue equation a = −(n− k) can,
therefore, be written

εZ/c2λ = γ + n− k . (42)

The case a = −nr = 0 requires special attention. In this case, one can solve the eigenvalue
equation to find k = Z/λ. From this, it follows that the two factors −κ + Z/λ and
γ − εZ/c2λ in Eqs. (38) and (39) vanish for κ = k > 0. Non-trivial states with nr = 0
occur only for κ < 0. Therefore, for a given value of n > 0 there are 2n − 1 possible
eigenfunctions: n eigenfunctions with κ = −1,−2, · · · − n, and n− 1 eigenfunctions with
κ = 1, 2, · · ·n− 1.

Solving the eigenvalue equation for ε, we obtain

εnκ =
c2

√

1 + α2Z2

(γ+n−k)2
. (43)

It is interesting to note that the Dirac energy levels depend only on k = |κ|. Those levels
having the same values of n and j, but different values of ` are degenerate. Thus, for
example, the 2s1/2 and 2p1/2 levels in hydrogen-like ions are degenerate. By contrast,
levels with the same value of n and ` but different values of j, such as the 2p1/2 and 2p3/2
levels, have different energies. The separation between two such levels is the fine-structure
interval. Expanding (43) in powers of αZ, we find

εnκ = c2 − Z2

2n2
− α2Z4

2n3

(

1

k
− 3

4n

)

+ · · · . (44)

The first term in this expansion is just the electron’s rest energy (mc2) expressed in atomic
units. The second term is precisely the nonrelativistic Coulomb-field binding energy. The
third term is the leading fine-structure correction. The fine-structure energy difference
between the 2p3/2 and 2p1/2 levels in hydrogen is predicted by this formula to be

∆ε2p =
α2

32
a.u. = 0.3652 cm−1 ,
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in close agreement with the measured separation 0.3659 cm−1. The separation of the 2s1/2
and 2p1/2 levels in hydrogen is measured to be 0.0354 cm−1. The degeneracy between these
two levels predicted by the Dirac equation is lifted by the Lamb-shift, discussed in the
following subsection.

Let us introduce the (non-integer) parameter N = Z/λ = (γ + n− k)c2/ε. From (43),
we find N =

√

n2 − 2(n− k)(k − γ). Thus, N = n when n = k. With this definition, the
coefficients of the hypergeometric functions in Eqs. (38) and (39) can be written

(−κ+ Z/λ) = (N − κ) , (45)

(γ − εZ/c2λ) = −(n− k) . (46)

Introducing the normalization factor

Nnκ =
1

N Γ(2γ + 1)

√

Z Γ(2γ + 1 + n− k)

2 (n− k)! (N − κ)
, (47)

we can write the radial Dirac Coulomb wave functions as

Pnκ(r) =
√

1 + εnκ/c2Nnκe
−x/2xγ [(N−κ)F (−n+ k, 2γ + 1, x)

− (n−k)F (−n+ k + 1, 2γ + 1, x)] , (48)

Qnκ(r) =
√

1− εnκ/c2Nnκe
−x/2xγ [(N−κ)F (−n+ k, 2γ + 1, x)

+ (n−k)F (−n+ k + 1, 2γ + 1, x)] . (49)

These functions satisfy the normalization condition (20). It should be noted that the
ratio of the scale factors in (48) and (49) is

√

(1− εnκ/c2)/(1 + εnκ/c2) ≈ αZ/2n. Thus,
Qnκ(r) is several orders of magnitude smaller than Pnκ(r) for Z = 1. For this reason,
Pnκ and Qnκ are referred to as the large and small components of the radial Dirac wave
function, respectively.

As a specific example, let us consider the 1s1/2 ground state of an electron in a hydrogen-

like ion with nuclear charge Z. For this state, n = 1, κ = −1, k = 1, γ =
√
1− α2Z2,

εnκ/c
2 = γ, N = 1, λ = Z and x = 2Zr. Therefore,

P1−1(r) =

√

1 + γ

2

√

2Z

Γ(2γ + 1)
(2Zr)γe−Zr ,

Q1−1(r) =

√

1− γ

2

√

2Z

Γ(2γ + 1)
(2Zr)γe−Zr .

2.4. QED Corrections to One-Electron Energy Levels
The energy difference between the 2s1/2 and 2p1/2 levels in hydrogen and in hydrogen-

like ions (the Lamb shift) includes contributions from radiative corrections, reduced mass,
nuclear recoil, and finite nuclear size. These corrections are discussed here and in the
following two subsections.
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Self-Energy Vacuum Polarization

Figure 1. Feynman diagrams representing the one-loop self-energy and vacuum-
polarization corrections. Heavy lines represent bound-electrons and wavy lines represent
virtual photons.

Self Energy

The largest contribution to the Lamb shift in one-electron atoms or ions arises from the
electron self-energy and can be expressed in terms of a slowly varying functions F (nlj, αZ)
and G(nlj, αZ) through

∆ESE =
(α

π

) α2Z4

n3
FSE(nlj, αZ) +

(α

π

)2 α2Z4

n3
GSE(nlj, αZ), (a.u.), (50)

where FSE(nlj, αZ) gives the one-loop correction illustrated in the left panel of Fig. 1,
and GSE(nlj, αZ) gives the much smaller two-loop self-energy corrections. For low Z, it
is common to expand the functions F and G in powers of αZ, however, the convergence
of such expansions is poor and it is necessary to resort to numerical evaluation to obtain
reliable values for intermediate and high Z. One can write

FSE(nlj, αZ) =
4

3

{

[

ln(αZ)−2 +
11

24

]

δl0 + Lnl −
3Clj

8(2l + 1)
+ αZ A5

+(αZ)2
[

A61 ln(αZ)
−2 + A62 ln

2(αZ)−2 +H(αZ)
]

}

, (51)

where the term Lnl on the first line is the Bethe logarithm,

Lnl =







−2.984128556 for 1s
−2.811768893 for 2s
0.030016709 for 2p

The coefficient Clj on the first line of Eq. (51) is

Clj =

{

1/(l + 1) for j = l + 1/2
−1/l for j = l − 1/2
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The remaining coefficients of the “confirmed” radiative corrections are

A5 = 3π

[

1 +
11

128
− 1

2
ln 2

]

δl0

A61 =















7 ln 2− 63/80 for 1s
4 ln 2 + 67/40 for 2s

103/240 for 2p1/2
29/120 for 2p3/2

A62 = −3

4
δl0.

The function H(αZ) in Eq. (51) gives the remainder of FSE(nlj, αZ) not represented by
the analytical expressions above. It can be inferred from the precise numerical values
given by Jentschura et al. [8] for Z from 1 to 5 and from Mohr [9, 10, 11, 12] and Mohr
and Kim [13] for higher Z. Finite nuclear size corrections to FSE(nlj, αZ) have been
accurately evaluated by Mohr and Soff [14]. A similar expansion for the much smaller
two-loop corrections GSE(nlj, αZ) is given in Refs. [15, 16]. The leading term in that
expansion is

GSE(nlj, 0) =
Clj

2l + 1

[

197

144
+
π2

12
− π2

2
ln(2) +

3

4
ζ(3)

]

+

[

−4819

1296
− 49π2

108
+ 2π2 ln(2)− 3 ζ(3)

]

δl0 , (52)

where ζ(n) is Riemann’s zeta function.

Vacuum Polarization

The next largest correction to the Lamb shift is the vacuum polarization correction
illustrated by the Feynman diagram given in the right panel of Fig. 1. We write the
vacuum-polarization correction as

∆EVP =
(α

π

) α2Z4

n3
FVP(nlj, αZ) +

(α

π

)2 α2Z4

n3
GVP(nlj, αZ).

The dominant contribution to FVP can be obtained as the expectation value of the Uehling
potential [17]

δV (r) = −2αZ

3πr

∫ ∞

1

dt
√
t2 − 1

(

1

t2
+

1

2t4

)

e−2ctr. (53)

The expectation value of the Uehling potential leads to

FVP(nlj, 0) = −
4

15
δl0.

Corrections to FVP(nlj, αZ) of order (αZ)
n with n ≥ 1 have been considered byWichmann

and Kroll [18] and lead to an expansion similar to that given above for the self-energy.
Coefficients of higher-order terms in the Uehling and Wichmann and Kroll potentials are
given, for example, in Ref. [16].
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Figure 2. The three dominant contributions to the slowly varying function F (2s, αZ)
for the Lamb shift of 2s states of highly-charged hydrogen-like ions; self-energy, vacuum
polarization, and finite nuclear size, are given along the isoelectronic sequence.

Two-loop vacuum-polarization corrections can be expressed in terms of a slowly varying
function GVP(nlj, αZ) of the type introduced in Eq. (50), leading to [19]

GVP(nlj, 0) = −
82

81
δl0. (54)

The relative sizes of the dominant contributions to the slowly varying function F (2s, αZ)
for the Lamb shift of 2s states of highly-charged hydrogen-like ions; self-energy, vacuum
polarization, and finite nuclear size, are shown in Fig. 2.

2.5. Reduced Mass and Relativistic Recoil
Reduction of the two-body electron-nucleus Schrödinger equation to center of mass

coordinates leads to an equivalent one-body problem where the electron mass is replaced
by the reduced mass µ = mM/(M + m). The effect of this replacement is to scale the
infinite-mass Rydberg constant by µ/m. The corresponding shift of energy from the
infinite-mass value Enl is

∆RMEnl =

(

M

M +m
− 1

)

Enl = −
m

M +m
Enl . (nonrelativistic) (55)

The relativistic generalization of the above expression, which has been considered in
Refs. [20–23] is difficult in as much as there is no proper relativistic two-body Hamiltonian.
One starting point for the discussion of the relativistic electron-nuclear two-body problem
is the effective Hamiltonian

Heff =Mc2 +
p2

2M
+ cα · p+mc2β − Z

r
+
Z

r

(α · p+α · r̂ p · r̂)
M

, (56)
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which contains the rest energy of the electron and nucleus, the kinetic energies of the nu-
cleus and the electron, together with electrostatic and magnetostatic interactions between
the electron and nucleus. The energy from this expression accurate to order (αZ)4 and
to order m/M is

Enk = (M +m)c2 + µ[f(nk)− 1]− m

2M

α4Z4

4n4
,

where

f(nk) =

[

1 +
α2Z2

(n− k + γ)2

]−1/2
.

This expression gives the dominant recoil corrections

∆RMEnκ = − m

M +m
Enκ −

m

2M

α4Z4

4n4
(relativistic), (57)

where it is understood that the rest energy (M +m)c2 is omitted in Enκ.
A further relativistic reduced mass correction obtained from QED was given by Lathrup

et al. [24] and can be expressed as

FRM(nlj, αZ) =























−mM
[

4 ln(αZ)−2 + 4Lns +
6
5

]

for ns1/2

−mM
[

4Lnp − 1
3

]

for np1/2

−mM
[

4Lnp +
1
6

]

for np3/2

, (58)

in terms of the slowly varying function F (nlj, αZ) introduced previously.
An additional radiative correction that depends on the finite mass of the nucleus, re-

ferred to as a “radiative recoil correction”, was given in [25] and [26]. The leading terms
in the radiative recoil correction are

FRR(nlj, αZ) =























mZ
M

[

1
3 ln(αZ)−2 + 8

3L1s +
62
9 + 14

3 ln(2)
]

for 1s

−mZM
[

1
3 ln(αZ)−2 + 8

3L2s +
187
18

]

for 2s

mZ
M

[

8
3L2p −

7
18

]

for 2p

. (59)

An up to date discussion of the relativistic reduced mass and recoil corrections can be
found in the review article of Eides et al. [16].

2.6. Finite Nuclear Size
The finite size of the nuclear charge distribution modifies the nuclear potential near the

nucleus. If one assumes a spherically symmetric nuclear charge distribution, ρnuc(r), the
corresponding nuclear potential is

Vnuc(r) = −4π
∫ ∞

0

r′2ρnuc(r
′)

r>
dr′, (60)



13

Table 1
Finite nuclear size corrections ∆εnκ to energies of n = 1 and n = 2 states of hydrogen
(R = 1.04 fm) and hydrogen-like uranium (R = 7.25 fm).

State H (cm−1) U91+ (eV)
1s1/2 0.0000339 272.657
2s1/2 0.0000042 51.995
2p1/2 0.0 5.960
2p3/2 0.0 0.000

where r> = max(r, r′). Assuming a uniform distribution of nuclear charge over a sphere
of radius R, one finds

Vnuc(r) =











−Z
R

(

3

2
− r2

2R2

)

, for r ≤ R,

−Z
r
, for r > R.

(61)

The root-mean-square radius Rrms for this uniform distribution is Rrms =
√

3/5R. A
fit to nuclear radii obtained in electron-nucleus scattering experiments and muonic x-ray
measurements led to the empirical formula [27]

Rrms = 0.836A1/3 + 0.570 (0.05) fm A > 9, (62)

where A is the atomic mass number. Treating the finite size corrections to the Coulomb
potential as a perturbation, one finds that the correction to the energy of a level with
quantum numbers (n, κ) of a hydrogen-like ions is

∆εnκ =
3Z

γ(2γ + 1)(2γ + 3)
N2
nκ

(

2ZR

N

)2γ

×
[

(N − κ)2 + (n− k)2 − 2
γ + n− k

N
(N − κ)(n− k)

]

. (63)

In Table 1, we give the corrections to n = 1 and n = 2 states of hydrogen and hydrogen-
like uranium. The correction are seen to be most important for ns1/2 and np1/2 states;
they grow approximately as R2Z4 for these states and fall off roughly as n−3.

The behavior of wave functions near the nucleus, which is influenced by details of
the nuclear charge distribution, is important in calculations of hyperfine constants and
amplitudes of parity nonconserving transitions. The basic orbitals in such calculations
are obtained from self-consistent field calculations in which ρnuc(r) is assumed to be a
Fermi (or Woods-Saxon) distribution

ρnuc(r) =
ρ0

1 + exp[(r − C)/a]
. (64)

In this formula, C is the 50% fall-off radius of the distribution, and a is related to the
90%–10% fall-off distance t by t = 4 ln(3) a. (This potential is used in most of the
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calculations presented in this chapter with the value of t = 2.3 fm.) The corresponding
nuclear potential is

Vnuc(r) =















− Z

N C

[(

3

2
− r2

2C2
+
π2 a2

2C2
+

3 a2

C2
P2

)

+
6 a3

C2r
(S3 − P3)

]

, for r ≤ C,

− Z

N r

[

1 +
π2 a2

C2
+

6 a3

C3
(S3 − P3)−

3 ra2

C3
P2

]

, for r > C,

(65)

where

Sk =
∞
∑

n=1

(−1)n−1
kn

exp [−nC/a], (66)

Pk =
∞
∑

n=1

(−1)n−1
kn

exp [−n (r − C)/a]. (67)

Here,

N = 1 +
π2 a2

C2
+

6 a3

C3
S3. (68)

The root-mean-square radius of the nuclear charge distribution is related to the 50% fall
off radius C by

Rrms = C

√

3

5

(M
N

)

, (69)

with

M = 1 +
10π2 a2

3C2
+

7π4a4

3C4
+

120 a5

C5
S5. (70)

2.7. Summary for Radiative Corrections in Hydrogenic Ions
There have been numerous experimental studies of radiative corrections to levels in

hydrogen-like ions, all confirming to a high degree of accuracy the analysis described in
the previous three subsections. As a specific example, we compare results of measurements
of the 1s Lamb shift [differences between experimental energies and the Dirac-Coulomb
energies given in Eq. (43)] for hydrogen and hydrogen-like ions with theoretical predictions
from Johnson and Soff [27] in Fig. 3. The monograph of Beyer et al. [28] contains references
to the experimental data presented in this figure together with other similar comparisons.

3. MANY-BODY PERTURBATION THEORY

Now let us turn to the many-body perturbation theory treatment of atoms with more
than one electron. As discussed in the introduction, our approach is the no-pair Hamil-
tonian, which is given by

H(n.p.) =
∑

i

h0(i) +
1

2

∑

i6=j
Λ+(ij)

(

1

rij

)

Λ+(ij) (71)
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Figure 3. Comparison of theory and experiment for the 1s Lamb shift along the hydrogen
isoelectronic sequence. The slight rise at high Z is due to finite nuclear size.

in configuration-space, where Λ+ is a positive-energy projection operator:

Λ+(ij) =
∑

εk>−mc2

εl>−mc2

φk(ri)φ
†
k(r

′
i) φl(rj)φ

†
l (r

′
j).

For simplicity, we write only the Coulomb interaction in (71); however, to obtain correct
two-electron fine structure intervals it is also necessary to include the Breit interaction
bij, discussed in the following subsection.

It should be noted that the projection operator Λ+ and, consequently, the no-pair
Hamiltonian depends on the background potential U . One finds however that energies
obtained from the no-pair Hamiltonian are only weakly dependent on the potential and
that small differences between calculations starting from different potentials can be ac-
counted for in terms of omitted negative-energy corrections. We elaborate on this point
in Sec. 4.

To bypass the complicated issue of constructing Λ+ in configuration space, we work
with the second-quantized version of the no-pair Hamiltonian,

H(n.p.) = H0 + VI (72)

H0 =
∑

ij

εi a
†
iai (73)

VI =
1

2

∑

ijkl

vijkl a
†
ia
†
jalak −

∑

ij

Uij a
†
iaj . (74)

In this expression, ai and a†j designate electron annihilation and creation operators, re-
spectively. The projection operators in Eq. (71) are implemented by simply restricting the
indices i, j, k, l to bound states and positive-energy continuum states, omitting contribu-
tions from negative-energy states entirely. In Eq. (74), the quantity εi is the eigenvalue
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of the Dirac equation corresponding to state φi, the quantity

vijkl =

〈

ij

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

kl

〉

≡
∫ ∫

d3r1d
3r2

1

r12
φ†i (r1)φk(r1) φ

†
j(r2)φl(r2) (75)

is the two-particle matrix element of the Coulomb (or Coulomb + Breit) interaction, and
the quantity

Uij =

∫

d3r φ†i (r)U(r)φj(r), (76)

is a one-particle matrix element of the background potential U(r).
If we treat VI as a perturbation, then the lowest-order many-electron state vector for

an N -electron atom in which the quantum states a, b, c, · · · are occupied is

Ψ0 = a†aa
†
ba
†
c · · · |0〉. (77)

This state vector, which is the second-quantized counterpart of a configuration space
Slater determinant wave function, is a solution of the equation

H0Ψ0 = E(0)Ψ0 (78)

corresponding to energy

E(0) = εa + εb + εc + · · · . (79)

The first-order correction to the energy from VI is easily found to be

E(1) = 〈Ψ0 |VI |Ψ0〉 =
1

2

∑

ab

(vabab − vabba)−
∑

a

Uaa, (80)

where the sums run over occupied states. We introduce the notation ṽijkl = vijkl − vijlk
to designate anti-symmetrized two-electron matrix elements, and note that

∑

b

(vibjb − vibbj) ≡
∑

b

ṽibjb = (VHF)ij

where (VHF)ij, is the matrix element of the (non-local) Hartree-Fock potential, conven-
tionally defined through the relation

VHF φb(r) =
∑

a

{∫

d3r′

|r − r′|
[

φ†a(r
′)φa(r

′)
]

φb(r)

−
∫

d3r′

|r − r′|
[

φ†a(r
′)φb(r

′)
]

φa(r)

}

. (81)

It follows that

E(1) =
∑

a

[

1

2
VHF − U

]

aa

. (82)
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If we choose the background potential to be the Hartree-Fock potential, U = VHF, then
we find that the energy through first-order is

E(0) + E(1) =
∑

a

[

εa −
1

2

∑

a

(VHF)aa

]

=
∑

a

[

(h0)aa +
1

2

∑

b

ṽabab

]

. (83)

The sum on the right hand side of this expression is precisely the expectation value of the
Hamiltonian in the independent-particle approximation. Since the sum on the right-hand
side of Eq. (83) is the starting point for a variational treatment of the (Dirac) Hartree-Fock
approximation, it follows that choosing U = VHF leads to E(0) + E(1) = EHF.

3.1. Breit Interaction
The Breit interaction [29, p. 170] is that part of the interaction between electrons

mediated by exchange of transverse photons. The lowest-order energy shift associated
with the exchange of a transverse photon between two electrons in states a and b is

B(1) = − 1

2π2

∫

d3r1

∫

d3r2

∫

d3k eik·(r1−r2)
(

δij − kikj/|k|2
)

×
[

1

k2
φ†a(r1)αiφa(r1)φ

†
b(r2)αjφb(r2)

− 1

k2 − k20
φ†a(r1)αiφb(r1)φ

†
b(r2)αjφa(r2)

]

, (84)

where k0 = |εa − εb|/c. The integral over d3k above can be carried out leading to B(1) =
babab − babba, the difference between direct babab and exchange babba matrix elements of the
“frequency-dependent” Breit operator

b12(k0) = −
α1 ·α2

r12
cos (k0 r12) +α1 ·∇1 α2 ·∇2

[

cos (k0 r12)− 1

k20 r12

]

. (85)

In the direct matrix element babab, where k0 = 0, the frequency-dependent Breit interaction
reduces to its limiting static form:

lim
k0→0

b12(k0) = b12 = −
α1 ·α2

r12
+
α1 ·α2 − (α1 · r̂12) (α2 · r̂12)

2r12
(86)

The first term on the right-hand side of Eq. (86) is also referred to as the “unretarded”
Breit interaction since it arises in the Feynman gauge as the unretarded current-current
interaction; the second term, which arises from the retardation correction to the charge-
charge interaction in the Feynman gauge is referred to as the “retardation” correction.
To summarize, direct matrix elements of the frequency-dependent Breit interaction bijij
are evaluated using the static limit, whereas exchange matrix elements bijji are evaluated
using Eq. (85) with k0 = |εi − εj|/c. It was shown by Mittleman [4] that the form of
the “frequency-dependent” Breit operator appropriate for evaluating off-diagonal matrix
elements bijkl is

b12(k0)→
1

2
b12(|εi − εk|/c) +

1

2
b12(|εj − εl|/c) . (87)
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Differences between the frequency-dependent Breit interaction and its static limit given in
Eq. (86) are of relative order α2Z2, and therefore important primarily for highly-charged
ions.

The correction to the many-electron Hamiltonian of Eq. (74) from the Breit interaction
is

BI =
1

2

∑

ijkl

bijkl a
†
ia
†
jalak. (88)

The corresponding first-order Breit correction to the energy of a closed-shell atom is
B(1) = 1

2

∑

ab b̃abab.

3.2. Second- and Third-Order MBPT for Closed-Shell Atoms
The rules of perturbation theory associated with the relativistic no-pair Hamiltonian

are identical to the well-known rules of nonrelativistic many-body perturbation theory,
except for the restriction to positive-energy states. The nonrelativistic rules are explained
in great detail, for example, in Lindgren and Morrison [30]. Let us start with a closed-
shell system such as helium or beryllium in its ground state, and choose the background
potential to be the Hartree-Fock potential. Expanding the energy in powers of VI as

E = E(0) + E(1) + E(2) + · · · =
∑

a

[

εa −
1

2
(VHF)aa

]

+ E(2) + · · · , (89)

we find after a straight-forward application of Rayleigh-Schrödinger perturbation theory

E(2) = −1

2

∑

abmn

vabmnṽmnab

εm + εn − εa − εb
(90)

E(3) =
∑

abcmnr

ṽacnrṽnmbaṽrbmc

(εn + εm − εa − εb)(εr + εn − εa − εc)

+
1

2

∑

abcdmn

ṽcdmnvnmbavbadc
(εn + εm − εa − εb)(εn + εm − εc − εd)

+
1

2

∑

abmnrs

ṽabsrvnmbavrsnm
(εn + εm − εa − εb)(εr + εs − εa − εb)

. (91)

In the above equations, we denote sums over occupied levels by letters (a, b, · · · ) at
the beginning of the alphabet, virtual states by letters (m, n, · · · ) in the middle of the
alphabet. Later, we use indices i or j to designate sums over both occupied and virtual
states. The restriction to positive-energy states in the no-pair Hamiltonian leads to the
restriction that virtual states be bound states and positive-energy continuum states in the
expressions for the second- and third-order energy. Owing to the relatively small size of
the Breit interaction, only terms linear in bijkl are important for most applications. The
second-order correction B(2) from one Breit and one Coulomb interaction is easily found
to be

B(2) = −
∑

abmn

babmnṽmnab

εm + εn − εa − εb
(92)
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from Eq. (90). The term B(3) linear in the Breit interaction and quadratic in the Coulomb
interaction can be obtained by replacing vijkl by vijkl + bijkl in Eq. (91), and linearizing
the resulting expression in bijkl.

To evaluate the multiple sums in the expressions above, we first do a reduction to sums
of radial integrals and then use make use of finite basis sets to put the resulting expressions
into a form suitable for numerical evaluation.

3.3. Angular Reduction of the Coulomb Interaction
The first step in reducing the MBPT expressions into a form suitable for numerical eval-

uation is a decomposition of the Coulomb integrals vijkl into sums of products of angular
momentum coupling coefficients and radial integrals. To accomplish this decomposition,
we first expand the kernel of the Coulomb integrals 1/r12 as

1

r12
=
∑

LM

(−1)MCLM(r̂1)CL−M(r̂2)
rL<
rL+1>

, (93)

where r< = min(r1, r2) and r> = max(r1, r2), and where CLM(r̂) is the normalized spher-
ical harmonic,

CLM(r̂) =

√

4π

2L+ 1
YLM(r̂).

With the aid of this expansion, one finds

vabcd =
∑

L

JL(abcd)XL(abcd), (94)

where the dependence on magnetic quantum numbers is entirely contained in

JL(abcd) =
∑

M

(−1)ja+jb+L−ma−mb−M
(

ja L jc
−ma M mc

)(

jb L jd
−mb −M md

)

, (95)

where the round brackets designate Wigner three-j symbols [6], and where

XL(abcd) = (−1)L〈a‖CL‖c〉〈b‖CL‖d〉RL(abcd). (96)

The coefficient 〈a‖CL‖c〉 is a reduced matrix element of CLM(r̂), given by

〈a‖CL‖b〉 =
√

(2ja + 1)(2jb + 1) (−1)ja+1/2
(

ja jb L
−1/2 1/2 0

)

, (97)

when la + lb + L is even. When la + lb + L is odd, 〈a‖CL‖b〉 vanishes. The quantity
RL(abcd) in Eq. (96) is a relativistic Slater Integral defined by

RL(abcd) =

∫ ∞

0

∫ ∞

0

dr1dr2
rL<
rL+1>

[Pa(r1)Pc(r1) +Qa(r1)Qc(r1)]

× [Pb(r2)Pd(r2) +Qb(r2)Qd(r2)] . (98)
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The factor J(abcd) in Eq. (94) contains the entire dependence on magnetic quantum
numbers. With the aid of the identity

JL(abdc) = −[L]
∑

K

{

ja jd K
jb jc L

}

JK(abcd), (99)

where we have introduced the notation [L] = 2L + 1, the anti-symmetrized Coulomb
matrix elements may be written

ṽabcd =
∑

L

JL(abcd)ZL(abcd), (100)

with

ZL(abcd) = XL(abcd) + [L]
∑

K

{

ja jd K
jb jc L

}

XK(abdc). (101)

Substituting (94) and (100) into Eq. (90) and carrying out the sums over magnetic
quantum numbers, one can express the second-order energy in terms of radial integrals as

E(2) = −1

2

∑

L

1

[L]

∑

abmn

ZL(mnab)XL(mnab)

εm + εn − εa − εb
. (102)

Similarly, the third-order energy can be written

E(3) =
∑

L

1

[L]2

∑

abcmnr

(−1)ja+jb+jc+jm+jn+jr+L+1

× ZL(acnr)ZL(mnba)ZL(rbcm)

(εm + εn − εa − εb)(εr + εn − εa − εc)

+
1

2

∑

abcdmn
L1L2L3

(−1)ja+jb+jc+jd
{

L1 L2 L3
jb jd jn

}{

L1 L2 L3
ja jc jm

}

× ZL1
(dcnm)XL2

(nmba)XL3
(badc)

(εn + εm − εa − εb)(εn + εm − εc − εd)

+
1

2

∑

abmnrs
L1L2L3

(−1)ja+jb+jm+jn

{

L1 L2 L3
jn jr jb

}{

L1 L2 L3
jm js ja

}

× ZL1
(basr)XL2

(nmba)XL3
(rsnm)

(εn + εm − εa − εb)(εr + εs − εa − εb)
.(103)

To evaluate the sums over virtual states in Eqs. (102) and (103), we make use of the
B-spline basis functions described later in this section.

3.4. Angular Reduction of the Breit Interaction
As shown in detail in Ref. [31], the matrix elements of the first term in (86), the

unretarded Breit interaction,

mijkl =

∫ ∫

d3r1d
3r2

1

r12
φ†i (r1)α1 φk(r1) · φ†j(r2)α2 φl(r2) (104)
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can be decomposed in a spherical basis as

mijkl =
∑

L

JL(ijkl) [ML(ijkl) +NL(ijkl)] , (105)

where JL(ijkl) is the angular-momentum factor given in Eq. (95), and where

ML(ijkl) = (−1)L〈i‖CL‖k〉〈j‖CL‖l〉
[

L+ 1

2L+ 3

∫ ∞

0

dr1

∫ ∞

0

dr2
rL+1<

rL+2>

Qik(r1)Qjl(r2)

+
L

2L− 1

∫ ∞

0

dr1

∫ ∞

0

dr2
rL−1<

rL>
Pik(r1)Pjl(r2)

]

, (106)

and

NL(ijkl) = (−1)L+1〈−i‖CL‖k〉〈−j‖CL‖l〉

× (κi + κk)(κj + κl)

L(L+ 1)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL<
rL+1>

Vik(r1)Vjl(r2), (107)

where we have introduced

Pik(r) = Uik(r) +
κk − κi
L

Vik(r), (108)

Qik(r) = −Uik(r) +
κk − κi
L+ 1

Vik(r), (109)

Uik(r) = Pi(r)Qk(r)−Qi(r)Pk(r), (110)

Vik(r) = Pi(r)Qk(r) +Qi(r)Pk(r). (111)

We use the notation 〈−i‖CL‖j〉 in Eq. (107) to designate the reduced matrix element
defined in Eq. (97) with κi → −κi.

The matrix element of the retardation part of the Breit interaction takes a similar form,
the details being given in [32]. We find

rijkl =
∑

L

JL(ijkl) OL(ijkl), (112)

with

OL(ijkl) = (−1)L+1〈i‖CL‖k〉〈j‖CL‖l〉

×
[

(L+ 1)2

(2L+ 1)(2L+ 3)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL+1<

rL+2>

Qik(r1)Qjl(r2)

+
L2

(2L+ 1)(2L− 1)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL−1<

rL>
Pik(r1)Pjl(r2)

+
L(L+ 1)

2(2L+ 1)

∫ ∞

0

dr1

∫ r1

0

dr2

(

rL−1<

rL>
− rL+1<

rL+2>

)

Qik(r1)Pjl(r2)

+
L(L+ 1)

2(2L+ 1)

∫ ∞

0

dr1

∫ ∞

r1

dr2

(

rL−1<

rL>
− rL+1<

rL+2>

)

Pik(r1)Qjl(r2)

]

. (113)

Matrix elements of the frequency-dependent Breit interaction b12(k0) are somewhat
more complicated; they can be evaluated using the formulas given above with the following
replacements:
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(a) In Eqs. (106), (107) and in the first two lines of Eq. (113) replace expressions of the
form

rK<
rK+1
>

→ −k0 (2K + 1) jK(k0r<) yK(k0r>),

where jK(x) and yK(x) are spherical Bessel and Hankel functions, respectively, and

(b) replace the last two lines of Eq. (113) by

L(L+ 1)

(2L+ 1)

∫ ∞

0

dr1

∫ r1

0

dr2

{

− 2

[

k0jL−1(k0 r2) yL+1(k0 r1) +
2L+ 1

k20

rL−12

rL+21

]

×Qik(r1)Pjl(r2)− 2 k0jL+1(k0 r2) yL−1(k0 r1)Pik(r1)Qjl(r2)

}

.

3.5. B-Spline Basis Sets
To carry out the sums over states in the MBPT expressions introduced in the previous

two subsections, it is convenient to employ finite bases set methods. In the calculations
presented in this section and the next, we make use of basis functions constructed as linear
combinations of B-splines [33]. Other possible choices of basis functions for relativistic
problems are discussed later, in Sec. 4.1. In as much as we are considering correlation
corrections to atomic bound states which have limited size, we consider finite-range basis
functions. We, therefore, restrict our attention to a finite (but large) cavity of radius R.
To study the ground-state or low-lying excited states of ions, the radius of this cavity is
chosen to be R ≈ 40/Zion a.u., where Zion is the ionic charge. For such large cavities,
the results of correlation calculations are independent of the cavity radius. We require
that the large component of the radial wave function vanish at the origin [Pκ(0) = 0] and
that Massachusetts Institute of Technology (MIT) bag model [34] boundary conditions
[Pκ(R) = Qκ(R)] be satisfied at the cavity boundary. The bag model boundary conditions
damp the radial Dirac wave function outside the cavity in such a way that the often
discussed difficulty leading to the Klein paradox [35, p. 102] is avoided. The spectrum of
the Dirac equation in a cavity is discrete but infinite.

Next, we expand the solutions to the radial Dirac equation in a finite basis. This basis
is chosen to be a set of n B-splines of order k. Following deBoor [33], we divide the
interval [0, R] into segments. The end points of these segments are given by the knot
sequence {ti}, i = 1, 2, · · · , n+k. The B-splines of order k, Bi,k(r), on this knot sequence
are defined recursively by the relations,

Bi,1(r) =

{

1, ti ≤ r < ti+1,
0, otherwise,

(114)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r

ti+k − ti+1
Bi+1,k−1(r) . (115)

The function Bi,k(r) is a piecewise polynomial of degree k− 1 inside the interval ti ≤ r <
ti+k and Bi,k(r) vanishes outside this interval. The knots defining our grid have k-fold
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Figure 4. The n = 30 B-splines of order k = 6 are used to cover the interval 0 to 40 on
an “atomic” grid. Note that the splines sum to 1 at each point.

multiplicity at the endpoints 0 and R; i.e. t1 = t2 = · · · = tk = 0 and tn+1 = tn+2 = · · · =
tn+k = R. The knots tk+1, tk+2, · · · , tn are distributed on an exponential scale between 0
and R. In Fig. 4, we show 30 B-splines of order k covering the interval r = 0 − 40 a.u.
This set of B-splines could be used as a basis set for expanding radial wave functions.

The set of B-splines of order k on the knot sequence {ti} forms a complete basis for
piecewise polynomials of degree k − 1 on the interval spanned by the knot sequence. We
represent the solution to the radial Dirac equation as a linear combination of these B-
splines and work with the B-spline representation of the wave functions rather than the
wave functions themselves.

The radial Dirac wave functions Pκ(r), Qκ(r) satisfies the variational equation δS = 0,
where

S =
1

2

∫ R

0

{

cPκ(r)

(

d

dr
− κ

r

)

Qκ(r)− cQκ(r)

(

d

dr
+
κ

r

)

Pκ(r)

+V (r)
[

P 2
κ (r) +Q2

κ(r)
]

+mc2
[

P 2
κ (r)−Q2

κ(r)
]

}

− 1

2
ε

∫ R

0

[

P 2
κ (r) +Q2

κ(r)
]

dr . (116)

The parameter ε is a Lagrange multiplier introduced to insure that the normalization
constraint

∫ R

0

[

P 2
κ (r) +Q2

κ(r)
]

= 1 , (117)

is satisfied. The variational principle δS = 0 leads to the radial Dirac equations.
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We expand Pκ(r) and Qκ(r) in terms of B-splines of order k as

Pκ(r) =
n
∑

i=1

piBi(r), Qκ(r) =
n
∑

i=1

qiBi(r). (118)

The subscript k has been omitted from Bi,k(r) for notational simplicity. The action S
becomes a quadratic function of the expansion coefficients (pi, qi) when the expansions
(118) are substituted into the action integral. The variational principle then leads to a
system of linear equations for the expansion coefficients,

∂S

∂pi
= 0,

∂S

∂qi
= 0, i = 1, · · · , n . (119)

The resulting equations can be written in the form of an 2n× 2n symmetric generalized
eigenvalue equation,

Av = εBv , (120)

where v is the vector of expansion coefficients,

v = (p1, p2, · · · , q1, q2, · · · ) . (121)

The 2n× 2n matrices A and B are given by1

A =

[

(V ) +mc2(C) c [(D) + (κ/r)]
−c [(D) + (κ/r)] (V )−mc2(C)

]

, B =

[

(C) 0
0 (C)

]

(122)

in terms of the following n× n matrices:

(C)ij =

∫ R

0

Bi(r)Bj(r)dr (D)ij =

∫ R

0

Bi(r)
d

dr
Bj(r)dr (123)

(V )ij =

∫ R

0

Bi(r)V (r)Bj(r)dr (κ/r)ij =

∫ R

0

Bi(r)
κ

r
Bj(r)dr (124)

It should be mentioned that the matrices A and B are diagonally dominant banded ma-
trices. The solution to the eigenvalue problem for such matrices is numerically stable.
Routines from the lapack library [37] can be used to obtain the eigenvalues and eigen-
vectors numerically.

Solving the 2n dimensional generalized eigenvalue equation, one obtains 2n real eigen-
values ελ and 2n eigenvectors vλ. The eigenvectors satisfy the orthogonality relations,

∑

i,j

vλi Bijv
µ
j = δλµ , (125)

which leads to the orthogonality relations

∫ R

0

[P λ
κ (r)P

µ
κ (r) +Qλ

κ(r)Q
µ
κ(r)]dr = δλµ, (126)
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Figure 5. B-spline decomposition of the large-component radial function for a 2s1/2 state
in a Coulomb field with Z = 2 obtained using n = 30 B-splines of order k = 6. The
dashed curve is the resulting function P2s1/2

(r).

for the corresponding radial wave functions.
In Fig. 5, we show the B-spline decomposition of the large-component radial wave

function P2s1/2
(r) for the 2s1/2 state in a Coulomb potential with Z = 2 obtained using

n = 30 splines of order k = 6.
The cavity spectrum is complete in the space of piecewise polynomials of degree k − 1

and, therefore, can be used instead of the real spectrum to evaluate correlation corrections
to states confined to the cavity. The spectrum splits into two distinct equal halves, the
lower energy half of the spectrum with ελ < −mc2 represents the positron states and the
upper half represents electron bound and continuum states. In evaluating the sums over
states in the MBPT expressions for E(2) and E(3) in Eqs. (102) and (103), we of course
omit contributions from the lower half of the spectrum.

Since the cavity boundary is chosen to be far larger than the atomic radius, the lower
few bound states are precisely represented in the B-spline basis. The quality of the
numerically generated B-spline spectrum can be tested by using it to evaluate sum rules.
It is found [36], for example, that the generalized Thomas Reiche-Kuhn (TRK) sum rule
is satisfied to parts in 107 using 40 splines of order 7 for a given κ and to parts in 109

using 50 splines of order 9.

3.6. Ground-State of He-like ions
Now, let us consider the helium ground state. As a first step, we solve the Hartree-Fock

equation

[h0 + VHF]φ1s = ε1sφ1s,

1The modifications to the matrix A needed to ensure that the boundary conditions are satisfied are given
in [36].
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Figure 6. The (Dirac) Hartree-Fock energy −EHF and the first order Breit correction
B(1) are given for helium-like ions. −EHF grows approximately as Z2 and B(1) grows
approximately as Z3 for large Z.

where

VHF φb =
∑

a

[∫

d3r′
φ†a(r

′)φa(r
′)

|r − r′| φb(r)−
∫

d3r′
φ†a(r

′)φb(r
′)

|r − r′| φa(r)

]

= 2v0(1s, 1s, r) φb(r)−
1

2l + 1
vl(1s, b, r) φ1s(r). (127)

Here, vl(a, b, r) is the multipole potential

vl(a, b, r) =

∫ ∞

0

rl<
rl+1>

[Pa(r
′)Pb(r

′) +Qa(r
′)Qb(r

′)] dr′.

For the (1s)2 helium ground state, the HF Potential reduces to

VHFφ1s = v0(1s, 1s, r)φ1s(r).

Solving the HF equation, we find ε1s = 0.9179907 a.u.. The resulting lowest-order energy is
E(0) = 2ε1s = −1.8359814 a.u., and the first-order correction is E(1) = −〈1s|v0(1s, 1s, r)|1s〉
= −1.0258319 a.u., giving a total through first-order EHF = E(0) + E(1) = −2.8618133
a.u.. The helium binding energy is the difference between the energy of the atom and
the energy of the ion with one electron removed. The latter, which is given by Eq. (43),
is Eion = −2.0001069 a.u., leading to a theoretical value Ebind = −0.8617064 a.u. in
the Hartree-Fock (first-order) approximation. This is in only fair agreement with the
experimental binding energy Eexpt = −0.9035704 a.u.. (The HF energy, which grows
approximately as Z2 for large Z, is plotted in Fig. 6 where we also show the lowest-order
Breit correction for comparison.)

To go further, we must evaluate the higher-order corrections. Setting a = b = 1s in
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Table 2
Partial wave contributions (a.u.) to the second-order ground-state energy E (2) in helium.

L term L term
0 -0.0134991 5 -0.0001675
1 -0.0189775 6 -0.0000876
2 -0.0031927 7 -0.0000500
3 -0.0009326 8 -0.0000306
4 -0.0003618 9–∞ -0.0000743

Total -0.0373736

Eq. (102), we obtain the following simple expression for the second-order energy:

E(2) = −
∑

L

[

2L

[L]2

∑

mn

R2
L(1s, 1s,mκ, nκ)

εmκ + εnκ − 2ε1s

∣

∣

∣

∣

κ=L

+
2L+ 2

[L]2

∑

mn

R2
L(1s, 1s,mκ, nκ)

εmκ + εnκ − 2ε1s

∣

∣

∣

∣

κ=−L−1

]

. (128)

Taking the radial wave functions and energies for states nκ from the B-spline basis set,
we may easily carry out the double sums in (128). The partial-wave contributions to E (2)

from terms in square bracket are listed in Table 2. These terms fall-off approximately as
L−4 for large L and may easily be extrapolated. We find E(2) = −0.0373736 a.u., leading
to a binding energy of -0.8990800 a.u., differing from experiment by 0.5%.

The third-order energy is evaluated in a similar way, leading to E (3) = −0.0036756 a.u.,
and a binding energy E(0) + E(1) + E(2) + E(3) − Eion = −0.9027556 a.u., within 0.1%
of experiment. Plots of the second- and third-order correlation energy along the helium
isoelectronic sequence are presented in Fig. 7, where it is seen that E (2) remains approx-
imately constant. Although difficult to see in the graph, E (3) has its largest magnitude
(about 10% of E(2) for Z = 2 and decreases approximately as 1/Z for larger Z. To go
further in our study of helium-like ions, we turn to all-order methods.

3.7. Breit Interaction for the Helium Ground State
The Breit interaction in second-quantized form, written in normal order relative to a

closed-shell core is

B =
1

2

∑

ijkl

bijkl :a
†
ia
†
jalak : +

1

2

∑

ab

b̃abab, (129)

where bijkl = mijkl + rijkl is the sum of the magnetic and retardation matrix elements.
The lowest-order Breit correction for a closed-shell atom is, consequently,

B(1) = 〈Ψ0 |B|Ψ0〉 =
1

2

∑

ab

b̃abab ≡ −
1

2

∑

ab

babba, (130)



28

0 20 40 60 80 100
Nuclear Charge Z

0

1

2

3

4

5

6
C

ou
lo

m
bE

ne
rg

ie
s

0 20 40 60 80 100
Nuclear Charge Z

−2

−1

0

1

2

B
re

it 
E

ne
rg

ie
s

−EHF/Z
2
−100 Z E

(3)
−100 E

(2) 10
5
 B

(1)
/Z

3

10
5
 B

(2)
/Z

2

Figure 7. In the left panel, we give the scaled HF energies, −EHF/Z
2, second-order

Coulomb energies −100E(2), and scaled third-order Coulomb energies −100ZE(3) for the
(1s)2 ground states of helium-like ions. In the right panel we give scaled values of first-
and second-order ground-state Breit energies 105B(1)/Z3 and 105B(2)/Z2 along the helium
isoelectronic sequence.

where we have made use of the fact that the direct part of the Breit matrix element babab
vanishes when summed over closed shells. The Breit matrix element takes a particularly
simple form for helium or helium-like ions, where we find

B(1) =
16

3

∫ ∞

0

dr

∫ ∞

0

dr′
r<
r2>

[P1s(r)Q1s(r)] [P1s(r
′)Q1s(r

′)] .

The first-order Breit correction, which grows approximately as Z3, is compared with the
Hartree-Fock energy for helium-like ions in Fig. 6.

Owing to its small size, the dominant correlation corrections to the Breit interaction are
those associated with one Breit and many Coulomb terms. As mentioned earlier, these
dominant corrections can be obtained from MBPT formulas such as those in Eqs. (102)
and (103) by substituting vijkl → vijkl + bijkl and linearizing in bijkl. The second-order
(one Breit–one Coulomb) correlation energy from Eq. (92) is

B(2) = −
∑

L

1

[L]

∑

abmn

BL(abmn)ZL(abmn)

εm + εn − εa − εb
, (131)

where BL(abmn) =ML(abmn) +NL(abmn) +OL(abmn); ML and NL from the magnetic
current-current interaction and OL from retardation.

We find that for the ground states of helium-like ions, the second-order retardation
correction is smaller than the second-order magnetic contribution by a factor of about
4 and has an opposite sign. We plot scaled values of the first- and second-order Breit
interaction for the ground states of helium-like ions in the right panel of Fig. 7. It is
interesting to note that the second-order Breit energy is larger in magnitude than the
second-order Coulomb energy for Z > 70.
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3.8. Single-Double (SD) Equations
To go further, we turn to so-called “all-order” methods. We start by considering rel-

ativistic calculations of type carried out by Lindroth [38] and Blundell et al. [39], which
account for all possible single and double excitations of the ground-state helium HF wave
function. These calculations have the potential of giving an exact helium ground-state
energy.

Following [30], we write the no-pair Hamiltonian in normal order with respect to the
(1s)2 closed shell. Thus, H (n.p.) = H0 + V0 + V1 + V2 with

H0 =
∑

i

εi a
†
iai

V0 =
∑

a

[

1

2
(VHF)aa − Uaa

]

V1 =
∑

ij

[

(VHF)ij − Uij

]

:a†iaj :

V2 =
∑

ijkl

vijkl :a
†
ia
†
jalak :, (132)

where the operators sandwiched between the colons : · · · : are in normal order with respect
to the closed atomic core. To simplify the calculation, we choose U = VHF, the ground-
state Hartree-Fock potential. With this choice, V1 vanishes. The state vector for the
ground-state of a helium-like ion is taken to be the sum of all possible single or double
excitations of the (1s)2 HF core:

|Ψ〉 =
[

1 +
∑

am

ρma a
†
maa +

∑

mnab

ρmnab a
†
ma

†
naaab

]

|Ψ0〉. (133)

This wave function satisfies the Schrödinger equation

(H0 + V0 + V2)|Ψ〉 = E|Ψ〉. (134)

Left-multiplying by 〈Ψ0| and assuming the intermediate-normalization condition

〈Ψ0|Ψ〉 = 1,

we find

δE ≡ E − EHF = 〈Ψ0|V2|Ψ〉 =
1

2

∑

abmn

vabmnρ̃mnab (135)

If we substitute the all-order wave function |Ψ〉 into the Schrödinger equation (134), we
obtain the following equations for the single- and double-excitation coefficients.

[εa − εm + δE]ρma =
∑

bn

ṽmbanρnb +
∑

bnr

vmbnrρ̃nrab −
∑

bcn

vbcanρ̃mnbc, (136)
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[εa + εb − εm − εn + δE]ρmnab = vmnab +
∑

cd

vcdabρmncd +
∑

rs

vmnrsρrsab

+

[

∑

r

vmnrbρra −
∑

c

vcnabρmc +
∑

rc

ṽcnrbρ̃mrac

]

+

[

a↔ b
m↔ n

]

. (137)

These equations are reduced to radial form and solved iteratively.
To carry out the angular reduction of the SD equations, we write

ρma = δma S(ma) (138)

and let

ρmnab =
∑

k

Jk(mnab)Sk(mnab) , (139)

where Jk(abcd) is the angular-momentum factor introduced in Eq. (95). With these
substitutions, the equations for the single excitation coefficients become

[εa − εm + δE]S(ma) =
∑

nb

[

[b]R0(mban) +
∑

k

(−1)b+a+k
[a]

Xk(mbna)

]

δκnκb
S(nb)

+
∑

knrb

(−1)a+b+n+r
[a][k]

Xk(mbnr)S̃k(nrab)

−
∑

knbc

(−1)a+b+c+n
[a][k]

Xk(bcan)S̃k(mnbc) . (140)

In this equation,

S̃k(mnab) = Sk(mnab) + [k]
∑

k′

{

m a k
n b k′

}

Sk′(mnba) . (141)

For the double excitation coefficient, we obtain

[εa + εb − εm − εn + δEC ]Sk(mnab) = Xk(mnab)

+
∑

k′lcd

(−1)a+b+m+n[k]

{

k′ l k
a m c

}{

k′ l k
b n d

}

Xl(cdab)Sk′(mncd)

+
∑

k′lrs

(−1)a+b+m+n[k]

{

k′ l k
m a r

}{

k′ l k
n b s

}

Xl(mnrs)Sk′(rsab)

+

[

∑

r

Xk(mnrb)δκrκaS(ra)−
∑

c

Xk(cnab)δκmκcS(mc)

−
∑

rc

(−1)k+c+r
[k]

Xk(cnrb)S̃k(mrac)

−
∑

lrc

(−1)k+c+r
{

c r k
n b l

}

Xl(cnbr)S̃k(mrac)

]

+

[

m↔ n
a↔ b

]

. (142)
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Table 3
Partial wave contributions (a.u.) to the all-order ground-state energy δE in helium.

L δE(L) δE
0 -0.0173678 -0.0173678
1 -0.0214896 -0.0388574
2 -0.0022208 -0.0410782
3 -0.0005576 -0.0416358
4 -0.0001991 -0.0418349
5 -0.0000876 -0.0419225
6 -0.0000443 -0.0419668
7 -0.0000247 -0.0419915

8–∞ -0.0000491 -0.0420406

The expression for the correlation energy δE becomes

δE =
1

2

∑

abmnk

(−1)a+b+m+n

[k]
Xk(abmn)S̃k(mnab) . (143)

We solve Eqs. (141–143) iteratively. As a first step, we restrict the virtual orbitalsmn in
the above radial equations to those with L = 0, namely, s1/2 orbitals. The corresponding
energy δE(0) is listed in the first row of Table 3. In the next step, we include orbitals p1/2
and p3/2 with L = 1 and find the correction δE(1) shown in the second row of Table 3.
We continue this procedure through L = 7 as shown in the table. The partial-wave
contributions δE(L) again fall off as L−4 and can be extrapolated to give an all-order
correlation energy δE = −0.0420406 a.u., listed on the last line of the table. Adding this
to the HF binding energy brings theory into agreement with experiment to about 0.01%.
The Breit interaction, QED, and recoil corrections, are responsible for the residual small
difference.

Generalizations of this iterative scheme were developed and applied to evaluate energies
of (1s2p) triplet and (1s2p) singlet states of helium-like ions in Refs. [40, 41]. These
iterative all-order calculations lead to energies in close agreement with the configuration-
interaction (CI) calculations discussed later in this chapter. It should be emphasized here
that as Z increases along the isoelectronic sequence, Breit and QED corrections become
more and more important.

3.9. Three-Electron Atoms
Now we turn to lithium and three-electron lithium-like ions. Again we start with

the normally-ordered no-pair Hamiltonian given in Eq. (132), and choose the starting
potential to be the Hartree-Fock potential of the (1s)2 helium-like core. We expand the
energy of an atomic state in powers of the interaction potential

E = E(0) + E(1) + E(2) + . . . ,

and find that in each order of perturbation theory

E(k) = E(k)
core + E(k)

v .
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The terms E
(k)
core give the k-th order contributions to the energy of the helium-like core,

and are independent of the valence state. These are precisely the terms evaluated in the
previous section. The terms E

(k)
v are the k-th order contributions to the energy of the

atom relative to the ionic core; in other words −E(k)
v is the k-th order contribution to the

valence-electron removal energy. A straight forward application of Rayleigh-Schrödinger
perturbation theory [42] gives,

E(0)
v = εv (144)

E(1)
v = 0 (145)

E(2)
v = −

∑

amn

vvamnṽmnva

εm + εn − εv − εa
+
∑

abm

vabmvṽmvab

εm + εv − εa − εb
(146)

E(3)
v =

∑

mrabc

ṽacrvṽvmbaṽrbmc

(εvm − εab)(εrv − εac)
+
∑

mnrac

ṽcvrmṽnmvaṽranc
(εmn − εav)(εrn − εcv)

+
∑

mnabc

ṽcamnvnmbaṽvbvc
(εmn − εab)(εnm − εac)

+
∑

mnrab

ṽabnrvnmbaṽrvmv

(εmn − εab)(εrn − εab)

+
∑

nabcd

ṽcdvnvvnbavbadc
(εvn − εab)(εvn − εcd)

+
∑

mnrsa

ṽavsrvnmvavrsnm
(εmn − εav)(εrs − εav)

+

[

∑

nrabc

ṽcanrṽnvbaṽrbvc
(εvn − εab)(εrn − εac)

+
∑

mnrac

ṽacrmṽnmvaṽrvnc
(εmn − εav)(εrm − εac)

+
∑

mracd

ṽcdrmṽvmvavradc
(εm − εa)(εrm − εcd)

+
∑

mrsac

ṽacsrṽmvvavrsmc

(εm − εa)(εrs − εac)

+
∑

mrsab

ṽabsrvvmbavrsmv

(εmv − εab)(εrs − εab)
+
∑

mnacd

ṽcdmnvnmvavvadc
(εmn − εav)(εmn − εcd)

+ c.c.

]

, (147)

where we have introduced the notation εij = εi+εj. Although we have in mind applications
to Li and Li-like ions, the above equations are written for the more general case of an
atom or ion with one valence electron outside of a closed core.

The lowest approximation to the removal energy is seen to be −εv, where εv is the
eigenvalue of the “frozen-core” Hartree-Fock equation. It should be emphasized that
the valence orbital is not treated self consistently. The orbitals of the closed-shell core
are determined self-consistently, then the valence electron HF equation is solved in the
“frozen” potential of the core. From Eq. (145) it follows that there is no first-order
correction to the removal energy in the frozen-core HF potential.

It is interesting to note that the second-order energy E
(2)
v can be written as the diagonal

matrix element of the second-order “self-energy” operator defined by

Σ
(2)
ij (ε) = −

∑

amn

viamnṽmnja

εm + εn − ε− εa
+
∑

abm

vabmiṽmjab

εm + ε− εa − εb
. (148)

With this definition, E
(2)
v =

[

Σ(2)(εv)
]

vv
. It is an elementary exercise to show that, in

configuration-space, the self-energy operator has the asymptotic form

lim
r→∞

Σ(2)(ε, r, r′) = − α

2r4
δrr′ ,
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Figure 8. The radial density 4πr2ρ2s(r) given in the HF approximation is shown together
with the modification 4πr2δρ2s(r) × 100 to the radial density found in the Brueckner
approximation.

where

α =
2

3

∑

am

〈m|z|a〉〈a|z|m〉
εm − εa

(149)

is the Hartree-Fock approximation to the polarizability of the closed atomic core. Ap-
proximate calculations of high Rydberg levels of monovalent atoms and of electron-ion
scattering are often based on a modified version of the Hartree-Fock equation [see 43, for
example]

(

h0 + VHF −
α

2r4

)

ψ = εψ, (150)

which accounts for the core polarizability and, consequently, accounts approximately for
correlation corrections. In this spirit, one introduces Brueckner orbitals [44, 45] as solu-
tions to

[h0 + VHF + Σ(ε)]ψ = εψ, (151)

To second-order, we may write ψ ≈ φv + δφv, and ε = εv + δεv where

[h0 + VHF − εv]φv = 0 (152)

[h0 + VHF − εv] δφv =
[

δεv − Σ(2)(εv)
]

φv (153)

The inhomogeneous Eq. (153) has a nontrivial solution only if the right-hand side is
orthogonal to φv, the solution to the homogeneous equation. This leads to the relation

δεv =
[

Σ(2)(εv)
]

vv
= E(2)

v . (154)

The approximate Brueckner orbitals, φv+δφv differ from Hartree-Fock orbitals φv in that
the peaks in the radial wave functions are drawn in toward the nucleus by the attractive
polarizability force. The attractive character of this force is illustrated in Fig. 8, where we
plot the radial density of 2s valence electron in neutral lithium in the HF approximation
together with the modification caused by the Brueckner-orbital correction.
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Table 4
Contributions to the removal energy (a.u.) of lithium in perturbation theory.

Term 2s1/2 2p1/2 2p3/2
E(0) -0.196320 -0.128638 -0.128636
E(2) -0.001649 -0.001375 -0.001375
E(3) -0.000125 -0.000145 -0.000145
Sum -0.198114 -0.130158 -0.130156
Expt. -0.198142 -0.130236 -0.130234

3.10. Angular Reduction
To put the MBPT formulas (146-147) into a form suitable for numerical evaluation, we

carry out an angular momentum decomposition of the two-electron matrix element and
sum over magnetic quantum numbers. This leads to

E(2)
v = −

∑

Lmna

XL(mnva)ZL(mnva)

[L][jv](εm + εn − εv − εa)
+
∑

Lmab

XL(mvab)ZL(mvab)

[L][jv](εm + εv − εa − εb)
. (155)

The angular reduction of the third-order E
(3)
v , which is much more complicated, is rele-

gated to the Appendix.
Let’s look at specific results. For neutral lithium, the lowest-order Dirac-Hartree-Fock

energies E
(0)
v = εv for the 2s and 2p states are given in the first row of Table 4. The

Hartree-Fock energies are within 1–2% of the measured removal energies. Including
second-order corrections accounts for the major part of the residual difference, while
third-order corrections improve the differences with measurement to less than 0.1%, as
shown in the table.

The Hartree-Fock energies increase roughly as Z2 along the lithium isoelectronic se-
quence; the second-order energy E(2) increases rapidly at low Z and stays roughly con-
stant at intermediate and high Z, and the third-order energy increases rapidly at low Z
and falls off approximately as 1/Z at high Z. The contributions of E (2) and E(3) for 2s1/2,
2p1/2, and 2p3/2 states are plotted against nuclear charge Z for lithium-like ions in Fig. 9.

Relativistic effects are apparent at large Z, where E
(2)
v departs from constancy, and where

differences between values of E
(2)
2p1/2

and E
(2)
2p3/2

and between E
(3)
2p1/2

and E
(3)
2p3/2

are seen.

3.11. Breit Interaction for Lithium-like Ions
As mentioned earlier, owing to its relatively small size, it is often sufficient to consider

only those contributions to the energy that are linear in the Breit interaction. Such contri-
butions may be obtained by replacing the Coulomb interaction in the MBPT expressions
for E(k) by the sum of the Coulomb plus Breit interaction and linearizing in the Breit
interaction. We let B(k) designate the contribution linear in the Breit interaction and of
order k−1 in the Coulomb interaction. To simplify the resulting expressions, we introduce
the notation

Bij
def
=
∑

a

b̃aiaj = −
∑

a

biaaj.
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Figure 9. Second-order E
(2)
v and third-order E

(3)
v energies of 2s1/2, 2p1/2, and 2p3/2 states

of lithium-like ions.

For atoms with one valence electron, we find

B(1)
v = Bvv (156)

B(2)
v = −2

∑

amn

bvamnṽmnva

εmn − εva
+ 2

∑

abm

babmvṽmvab

εmv − εab
+B

(2)
RPA (157)

B
(2)
RPA =

∑

am

[

Bamṽmvva

εm − εa
+ c.c.

]

(158)

B(3)
v ≈ B

(3)
BO +B

(3)
RPA (159)

B
(3)
BO =

∑

i6=v

{

Bvi

εi − εv

[

∑

amn

vmnavṽianm
εmn − εav

+
∑

abm

vabvmṽimba

εvm − εab

]

+ c.c.

}

(160)

B
(3)
RPA =

∑

abmn

[

Bbnṽnmabṽavvm
(εm − εa)(εn − εb)

+
Bnbṽmbnaṽavvm

(εm − εa)(εn − εb)
+ c.c.

]

, (161)

where only the dominant subset of contributions to B(3) is given.
The first two terms in Eq. (157) are evaluated in exactly the same way as the second-

order energy. The third term B
(2)
RPA, the random-phase approximation contribution, is

found to be an order of magnitude larger than the first two; it approximately equals in
magnitude (and for neutral lithium almost cancels) the first-order Breit interaction B

(1)
v .

Because the third term is so large, it is separated off and evaluated together with terms
B
(3)
RPA from third-order that have the same denominator structure. Indeed, we can recover
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the second- and third-order terms from the iterative solution to the RPA equations

BRPA = Bvv +
∑

an

tanṽnvva
εn − εa

+
∑

an

ṽavvntna
εn − εa

(162)

tna = Bna +
∑

bm

tbmṽnmba

εm − εb
+
∑

bm

ṽnbmatmb

εm − εb
(163)

tan = Ban +
∑

bm

tbmṽambn

εm − εb
+
∑

bm

ṽabmntmb

εm − εb
. (164)

When we solve these equations iteratively, we recover the first-order Breit energy together
with second-, third-, and higher-order RPA contributions. We plot BRPA against Z for
n = 2 states of lithium-like ions in the lower panel of Fig. 10.

The remaining third-order term B
(3)
BO is that associated with approximate Brueckner

orbitals. Note that the solution to the approximate Brueckner orbital equation (153) can
be written

δφv =
∑

i6=v

|i〉〈i
∣

∣Σ(2)(εv)
∣

∣ v〉
εv − εi

. (165)

Comparing this with Eq. (160), we find

B
(3)
BO = B(δv) v +Bv (δv) = −2

∑

a

b(δv)aav. (166)

We present the three contributions to the Breit interaction, BRPA, which includes the first-
order term together with higher-order RPA corrections, the residual second-order Breit
correction, and the third-order Brueckner correction for 2s and 2p states of lithium-like
ions, in Fig. 10.

3.12. Reduced Mass and Mass Polarization
For many electron atoms, there are two further corrections associated with the finite

mass of the nucleus. The first is the reduced-mass correction, discussed in Section 2.5 for
one electron ions:

∆ERM ≈ −
m

M +m
E, (167)

where m is the electron mass andM is the nuclear mass. In this equation, E is the energy
in atomic units, calculated assuming infinite nuclear mass.

The second correction, which is associated with nuclear recoil, is the mass-polarization
correction,

∆EMP =
M

(M +m)2

〈

Ψ
∣

∣

∣

∑

i>j

pi·pj

∣

∣

∣Ψ
〉

, (168)

where pk = 1
i
∇k is the electron momentum operator. The angle brackets designate the

expectation value of the enclosed two-particle mass-polarization operator P =
∑

i>j pi·pj.
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The reduced-mass and mass-polarization terms arise on transforming the many-electron
plus nucleus Hamiltonian to center of mass coordinates.

In second-quantization the mass-polarization operator takes the form

P =
1

2

∑

ijkl

pijkl :a
†
ia
†
jalak : +

∑

ij

pij :a
†
iaj : , (169)

where pijkl = 〈ij|p1·p2|kl〉 and pij = −
∑

a piaaj.
The angular decomposition of the two-particle matrix element pijkl is easily carried out

and leads to

pijkl =
∑

L

JL(ijkl)PL(ijkl) ≡ J1(ijkl)P1(ijkl), (170)

where JL(ijkl) is the product of three-j coefficients defined in Eq. (95). The coefficient
P1(ijkl), which is independent of magnetic quantum numbers, is given by

P1(ijkl) = −〈κi‖C1‖κj〉〈κj‖C1‖κl〉P (ik)P (jl) , (171)

where P (ij) are radial matrix elements of the momentum operator. It is interesting to
note that, by contrast to the decomposition of matrix elements of the Coulomb operator
vijkl and the Breit operator bijkl, the sum over L in Eq. (170) reduces to a single term
with L = 1. The radial part of the momentum operator in Dirac theory is

P (ba) =
1

i

∫ ∞

0

dr

[

Pb(r)

(

dPa
dr

+
ηa
r
Pa

)

+Qb(r)

(

dQa

dr
+
ζa
r
Qa

)]

, (172)

with ηa = la or −la − 1, for lb = la − 1 or lb = la + 1, respectively; and ζa = l′a or
−l′a − 1 for l′b = l′a − 1 or l′b = l′a + 1, respectively. Here l′ = l(−κ). The rules for the two
parameters ηa and ζa can be written in a somewhat simpler form by noting that only the
values κb = −κa or κb = κa ± 1 are permitted by angular momentum selection rules; the
corresponding values of ηa and ζa are given in the following small table.

κb ηa ζa
κa + 1 −κb −κa

κa − 1 or −κa κa κb

It is easy to prove that P (ab) = P (ba)∗.
Owing to the similarity of the mass-polarization operator and the Breit operator, the

mass-polarization corrections in MBPT can be classified using the scheme described for
the Breit interaction in the previous subsection. Correspondingly, we write the valence
contribution to the expectation value of P as

Pv ≈ PRPA + P (2) + P (3), (173)

where PRPA contains the lowest-order contribution and all higher-order iterates of the RPA
equations, P (2) is the residual second-order correction, and P (3) ≡ P

(3)
BO is the third-order

Brueckner-orbital correction.
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Figure 11. Scaled values of the mass-polarization operator P (2s)/(Z − 2) for the 2s state
and P (2p)/(Z − 2)2 for 2p1/2 and 2p3/2 states are plotted against Z for n = 2 states of
lithium-like ions. Units: a.u..

The expectation value of the mass-polarization operator, calculated as described above,
is presented for 2s and 2p states of lithium-like ions in Fig. 11. It should be mentioned
that for the special case of lithium-like ions, with a (1s)2 core, the RPA corrections to P (1)

identically vanish. Therefore, for lithium-like ions, PRPA ≡ P (1). Moreover, for ns states
of lithium-like ions, both P (1) and P

(3)
BO vanish. Thus, P (2s) = P (2)(2s) for lithium-like

ions.

3.13. Lithium-like Uranium and the 2s1/2 − 2p1/2 Lamb Shift
As a specific example of the considerations in the previous subsections, let us consider

the ion 238U+89. This is a particularly interesting case since lithium-like uranium is the
most highly charged ion for which both the 2s1/2 − 2p1/2 and 2s1/2 − 2p3/2 intervals have
been precisely measured. The 2s1/2−2p1/2 energy interval, 280.59 (0.10) eV, was measured
by Doppler-tuned spectrometry at Lawrence Berkeley Laboratory’s Bevelac by Schweppe
et al. [46] and the 2s1/2− 2p3/2 interval, 4459.37 (0.21) eV, was measured by Doppler-free
crystal spectrometry at Lawrence Livermore National Laboratory’s high-energy electron
beam ion trap by Beiersdorfer et al. [47, 48].

The charge form factor of the deformed 238U nucleus is accurately known from the
muonic x-ray measurements of Zumbro et al. [49] and can be parameterized by the de-
formed Fermi distribution

ρ(r) =
ρ0

1 + exp
[

r−R(r̂)
a

] , (174)

where a = 0.5046(9) fm and R(r̂) = c [1 + β2Y20(r̂) + β4Y40(r̂)], with c = 7.0110(12) fm,
β2 = 0.2653(19) and β4 = 0.0672(49). We average this distribution over angles and use
the resulting radial distribution to determine the nuclear potential Vnuc(r). The resulting
finite nuclear size corrections to the HF energies of the 2s1/2, 2p1/2 and 2p3/2 states are
1.3164, 0.1288, and -0.0082 a.u., respectively.

As seen in Table 5, the MBPT perturbation expansion of energies converges rapidly for
n = 2 states of lithium-like uranium. The dominant corrections to the HF energies are
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Table 5
Contributions to the binding energy (eV) of n = 2 states in Li-like 238U and comparisons
of residual differences with experiment with “screened” Lamb Shift calculations.

Term 2s1/2 2p1/2 2p3/2
E(0) -32917.9662 -32631.2771 -28403.1054
E(2) -0.2915 -0.8342 -0.3339
E(3) -0.0009 -0.0022 -0.0013
BRPA 34.2164 71.0080 24.9497
∆B(ω) 0.6513 0.2836 -6.4043
B(2) -0.2091 -0.3647 -0.0993
B(3) 0.0010 0.0055 0.0009
RM 0.0758 0.0750 0.0654
MP 0.0001 -0.0339 -0.0365

Etotal -32883.5232 -32561.1400 -28384.9646

Transition energy 2s1/2 − 2p1/2 2s1/2 − 2p3/2

MBPT 322.38 4498.56
Expt. (Refs. [46],[47]) 280.59(10) 4459.37(21)
Expt. – MBPT -41.79(10) -39.19(21)
Lamb Shift (Refs. [50],[51]) -41.77 -39.13(5)

from BRPA, the frequency-dependence of the Breit interaction ∆B(ω), and the second-
order correlation corrections E(2) and B(2). Mass-polarization corrections are also found
to be important in obtaining accurate values for 2s− 2p energy intervals.

From the table, we find that E2p1/2
−E2s1/2

= 322.38 eV andE2p3/2
−E2s1/2

= 4498.56 eV.
The differences between the measured and theoretical values, -41.79±0.10 eV and -39.19
±0.21 eV, for the 2s1/2− 2p1/2 and 2s1/2− 2p3/2 intervals, respectively, can be attributed
to omitted QED corrections. Self-energy and vacuum polarization corrections to these
intervals, including dominant contributions from higher-order diagrams associated with
“screening” corrections, were calculated by Blundell [51] who gave a value of -41.68±0.05
eV for the Lamb-Shift correction to the 2s1/2 − 2p1/2 interval. However, the most com-
pleted screened QED calculations for this interval were carried out by Yerokhin et al.
[50]. Their benchmark result of -41.77 eV for Li-like uranium is different from Blundell’s
value by 0.09 eV and is in better agreement with the deduced empirical QED energy. As
for the 2s1/2 − 2p3/2 interval, the QED correction of -39.13±0.10 eV shown in Table 5
is obtained by extrapolation from Blundell’s results at Z = 60, 70, 80 and 90, and the
uncertainty of 0.05 eV at Z = 90 is quoted here, even though this estimate is likely to
be too small. In Table 5, these theoretical and experimental values of the Lamb shift are
seen to be in remarkably good agreement for both intervals. Nevertheless, many small
corrections which are usually neglected cannot be ignored in these high-Z ions. Examples
are higher-order Breit corrections, negative-energy state contributions and two-loop Lamb
shifts. At the level of 0.1 eV or smaller, the good agreements shown here may be due in
part to cancellation of errors. We shall revisit these comparisons in Sections 4.4 and 4.5.
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Figure 12. Experimental values of the 2s1/2− 2p1/2 Lamb shift in lithium-like ions shown
by the black dots are compared with theoretical values of the “screened” Lamb shift from
Ref. [51].

Further comparisons of experimental and theoretical values of the 2s1/2 − 2p1/2 Lamb
shift in lithium-like ions with nuclear charges ranging from 10 to 92 are shown in Fig. 12.
The experimental values of the 2s1/2 − 2p1/2 intervals are taken from the review of Ph.
Bosselmann et al. [52]. The corresponding MBPT values are calculated using the prescrip-
tion given in Ref. [53]; the difference gives an “experimental” Lamb shift. The theoretical
Lamb shift shown in the plot is from Ref. [51].

In these examples, the perturbation series converged rapidly and one was able to infer
accurate values of the QED corrections from the difference between theory and experi-
ment. For neutral lithium or light lithium-like ions, the convergence of MBPT is much
slower and one must resort to all-order methods to obtain precise theoretical energies. We
briefly describe the all-order single-double method for lithium and lithium-like ions in the
next subsection.

3.14. Single-Double (SD) Equations for Lithium-like Ions
The relativistic SD equations for lithium-like ions have been discussed at length in [54]

so we will give only a brief reprise of the equations here. In the SD approach, the wave
function Ψv of an atomic system with one valence electron is represented as:

Ψv =

[

1 +
∑

ma

ρmaa
†
maa +

1

2

∑

mnab

ρmnaba
†
ma

†
nabaa

+
∑

m6=v
ρmva

†
mav +

∑

mna

ρmnvaa
†
ma

†
naaav

]

Φv, (175)

where Φv is the lowest-order atomic state function, which is taken to be the frozen-core

Dirac-Hartree-Fock wave function of a state v.
The coefficients ρma and ρmnab are amplitudes for single and double excitations from

the core, respectively; ρmv is the amplitude for a single excitation of the valence electron,
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and ρmnva is the amplitude for excitation of the valence electron and a core electron.
Substituting the wave function (175) into the many-body Schrödinger equation, where the
Hamiltonian is taken to be the relativistic no-pair Hamiltonian with Coulomb interactions,
one obtains the coupled equations for single- and double-excitation coefficients [54]:

(εa − εm)ρma =
∑

bn

ṽmbanρnb +
∑

bnr

vmbnrρ̃nrab −
∑

bcn

vbcanρ̃mnbc. (176)

(εa + εb − εm − εn)ρmnab = vmnab +
∑

cd

vcdabρmncd +
∑

rs

vmnrsρrsab

+

[

∑

r

vmnrbρra −
∑

c

vcnabρmc +
∑

rc

ṽcnrbρ̃mrac

]

+

[

a↔ b
m↔ n

]

.(177)

As before, antisymmetrized excitation amplitudes are designated by ρ̃ijkl = ρijkl − ρijlk.
The correlation correction to the core energy is given in terms of the core excitation
amplitudes by

δEc =
1

2

∑

mnab

vabmnρ̃mnab. (178)

The equations governing the valence excitation amplitudes are:

(εv − εm + δEv)ρmv =
∑

bn

ṽmbvnρnb +
∑

bnr

vmbnrρ̃nrvb −
∑

bcn

vbcvnρ̃mnbc. (179)

(εv + εb − εm − εn + δEv)ρmnvb = vmnvb +
∑

cd

vcdvbρmncd +
∑

rs

vmnrsρrsvb

+

[

∑

r

vmnrbρrv −
∑

c

vcnvbρmc +
∑

rc

ṽcnrbρ̃mrvc

]

+

[

v ↔ b
m↔ n

]

,(180)

where δEv is the correlation correction to the valence energy for the state v, which is
given in terms of the excitation amplitudes by

δEv =
∑

ma

ṽvavmρma +
∑

mab

vabvmρ̃mvab +
∑

mna

vvbmnρ̃mnvb. (181)

To solve Eqs. (176–181), an angular momentum decomposition is first carried out and
the equations are then reduced to coupled equations involving single-body radial wave
functions only. The radial wave functions for states v, m, n, a, b, · · · are taken from a
B-spline basis set [36] and the resulting coupled radial equations are solved iteratively.
The core equations (176–177) are solved first and the valence equations (179–181) are
then solved for valence states of interest using the converged core amplitudes.

3.15. Triple Excitations and Perturbation Theory
One can show that the core correlation energy δEc obtained from Eq. (178) is complete

through third order in perturbation theory. The valence correlation energy δEv given in
Eq. (181), by contrast, includes only part of the third-order correlation energy. Indeed, the
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third-order contribution to the energy obtained by iterating Eqs. (176-177) and (179-180)
once, substituting into Eq. (181), and omitting second- and fourth-order terms is

δE(3)
v =

∑

mabcd

ṽabvmvcdabvmvcd

(εab − εvm)(εcd − εmv)
+
∑

mabrs

ṽabvmvmvrsvrsab
(εab − εvm)(εab − εrs)

+
∑

mabcr

ṽabvmṽcvrbṽmrac

(εab − εvm)(εac − εmr)
+
∑

mabcr

ṽabvmṽcmraṽvrbc
(εab − εvm)(εbc − εvr)

+
∑

mabnr

ṽvavmvmbnrṽnrab
(εa − εm)(εab − εnr)

−
∑

mabcn

ṽvavmvbcanṽmnbc

(εa − εm)(εbc − εmn)

+
∑

mnbcd

ṽvbmnvcdvbvmncd

(εvb − εmn)(εcd − εmn)
+
∑

mnbrs

ṽvbmnvmnrsvrsvb
(εvb − εmn)(εvb − εrs)

+
∑

mnbrc

ṽvbmnṽcnrbṽmrvc

(εvb − εmn)(εvc − εmr)
+
∑

mnbrc

ṽvbmnṽcmrvṽnrbc
(εvb − εmn)(εbc − εnr)

, (182)

which differs from the results of third-order MBPT given in Eq. (147). The missing
third-order terms are accounted for entirely by adding triple excitations of the form

1

6

∑

abmnr

ρmnrvaba
†
ma

†
na
†
ravabaaΦv

to the right-hand side of the wave function in Eq. (175). The contribution of this term to
the valence energy is

Ev extra =
1

2

∑

mnab

ṽabmnρmnvvab. (183)

When this term is evaluated to lowest nonvanishing order (third order), it leads to the
following contribution to the correlation energy:

E
(3)
v extra =

∑

mnabc

ṽabmnṽcmavṽnvbc
(εab − εmn) (εbc − εnv)

+
∑

mnabs

ṽabmnṽnvasṽmsvb

(εab − εmn) (εvb − εms)

+
∑

mnabc

vabmnṽcvbvṽmnca

(εab − εmn) (εca − εmn)
+
∑

mnabs

vabmnṽmvsvṽnsba
(εab − εmn) (εab − εns)

+
∑

mnabs

vabmnṽmnvsvvsba
(εab − εmn) (εab − εvs)

+
∑

mnabc

vabmnṽcvbavmnvc

(εab − εmn) (εvc − εmn)

+
∑

mnabc

vabmnṽcmabṽvnvc
(εab − εmn) (εc − εn)

+
∑

mnabs

vabmnṽmnasṽvsvb
(εab − εmn) (εb − εs)

. (184)

The sum δE
(3)
v + E

(3)
v extra gives the entire third-order valence correlation energy. In the

examples below, we add E
(3)
v extra to the SD correlation energy δEv to account for the

missing third-order terms.
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Table 6
Contributions to Li and Be+ energy levels (a.u.). Both third-order MBPT and all-order
SD values are given for comparison.

Li Be+

2s1/2 2p1/2 2p3/2 2s1/2 2p1/2 2p3/2
HF -0.196320 -0.128638 -0.128636 -0.666183 -0.519447 -0.519406
E(2) -0.001649 -0.001375 -0.001374 -0.002910 -0.003962 -0.003959
E(3) -0.000122 -0.000134 -0.000134 -0.000159 -0.000269 -0.000269
Breit 0.000003 0.000002 0.000001 0.000018 0.000022 0.000008

RM+MP 0.000016 0.000007 0.000007 0.000060 0.000016 0.000016
Total MBPT -0.198072 -0.130139 -0.130137 -0.669174 -0.523640 -0.523610

δSD -0.001853 -0.001608 -0.001607 -0.003143 -0.004369 -0.004366

E
(3)
extra 0.000011 0.000010 0.000010 0.000011 0.000018 0.000018

Breit+RM+MP 0.000019 0.000009 0.000075 0.000078 0.000038 0.000024
Total SD -0.198143 -0.130228 -0.130226 -0.669237 -0.523759 -0.523729
Expt. -0.198142 -0.130236 -0.130235 -0.669242 -0.523764 -0.523734

3.16. Application to Li and Be+

A typical application of the relativistic SD equations is given in Table 6, where we
compare MBPT and SD calculations of energies (relative to the ionization threshold)
of 2s1/2, 2p1/2, and 2p3/2 levels of lithium and singly ionized beryllium. The all-order
calculations include partial waves through lmax = 7. The second-order MBPT calculation
is carried out in a large (n = 100) basis set and includes partial waves up to lmax = 12;

The third-order values and E
(3)
extra are calculated with n = 40 spline basis set and lmax = 7.

Breit and reduced mass (RM) and mass polarization (MP) corrections values are taken
from [54]. The SD value of the 2p3/2−2p1/2 fine structure interval for Li is 0.00000156 a.u.
compared with the measured value 0.000001534(2) a.u.. The corresponding theoretical
and experimental values for Be+ are 0.00003001 a.u. and 0.00002998(3) a.u.. The tiny
differences between the SD energies and experiment on the last line of Table 6 are probably
dominated by the incomplete treatment of triple excitations.

4. RELATIVISTIC CONFIGURATION-INTERACTION METHOD

An alternative approach to the perturbation theory in treating many-electron systems
is the configuration-interaction (CI) method which is based on the variational principle.
Nonrelativistic CI techniques have been used extensively in atomic and molecular cal-
culations. The generalization to relativistic configuration-interaction (RCI) calculations,
however, presents theoretical as well as technical challenges. The problem originates from
the many-electron Dirac Hamiltonian commonly used in RCI calculations:

HDirac =
∑

i

h0(i) +
∑

i>j

[

VC(ij) + VB(ij)
]

, (185)
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∆ε

    −2 2mc

  0
    ε ε εa b s= = 1

  ε ε εn b−
= − ∆

  ε ε εm a+
= + ∆

Figure 13. The continuum dissolution problem. An electron making a transition to an
unoccupied negative-energy state imparts the resulting energy to the other electron.

where h0 = cα ·p+(β−1)c2+Vnuc(r) is the one-electron Dirac Hamiltonian with the rest
mass of the electron subtracted out, VC(ij) = 1/rij is the Coulomb interaction between
the electrons, and VB(ij) = bij is the frequency-dependent/independent Breit interaction
given in Eq. (85)/(86). This Hamiltonian is known to be problematic. Specifically in
relativistic calculations, the existence of negative-energy states, which enter into sums
over intermediate states in perturbation theory, results in the “continuum dissolution”
problem, also known as the Brown-Ravenhall disease [1], in many-electron systems. Using
the 1s2 ground state of helium-like ions as an example, this problem can be readily
demonstrated with the second-order energy E(2) given in Eq. (90)

E(2) = −1

2

∑

abmn

vabmnṽmnab

εm + εn − εa − εb
.

If an intermediate state |m+n−〉 consists of one 1s electron, denoted by a, being promoted
to a positive-energy continuum state |m+〉 with an energy εm+

= εa +∆ε > 0, while the
other 1s electron, denoted by b, being demoted to a negative-energy continuum state |n−〉
with an energy εn− = εb − ∆ε < 2mc2, the denominator, εm+

+ εn− − εa − εb, in the
above equation would vanish. In effect, any bound state in a many-electron system is
degenerate in energy with an infinite number of electron-positron continuum states, as
long as εm+

+ εn− = εa + εb. This situation is illustrated in Fig. 13.
However, the fact that the denominator can go to zero is not necessarily a problem.

The same situation is encountered in the autoionization of atoms. Since an autoionizing
state is embedded in the positive-energy continuum, second- and higher-order MBPT will
also lead to vanishing denominators similar to those discussed above. In that case, an
infinitesimal imaginary part must be added to the denominator, with the result that the
principal part of the matrix elements leads to a real energy shift while the imaginary part
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Table 7
Energies (eV) of the 1s2 ground state of helium-like uranium as calculated with basis func-
tions generated in Coulomb (Coul) and Dirac-Kohn-Sham (DKS) potentials. Eno−pair and
EDirac are RCI energies calculated without and with negative-energy states, respectively,
and their differences are given by ∆EDirac. EQED are energies from S-matrix calculations
and ∆EQED are contributions from negative-energy states given by differences between
EQED and Eno−pair.

Energy Potential Eno−pair EDirac ∆EDirac EQED ∆EQED

Coulomb Coul -262235.48 -262235.10 0.38 -262235.18 0.30
DKS -262235.42 -262235.10 0.32 -262235.18 0.24
∆E -0.06 0.00 0.00

Breit Coul 327.29 333.74 6.45
DKS 327.10 333.74 6.64
∆E 0.19 0.00

to an autoionization line width. But this is where the analogy ends. An autoionizing line
width from the imaginary part of the energy denominator here would mean that there are
no stable ground states for many-electron systems, as they can decay by “autoionizing”
into the electron-positron continuum. The stability of atomic ground states is, of course,
explained by the fact that the negative-energy sea is filled and that spontaneous pair
production is prohibited by the Pauli exclusion principle. Here lies the real problem
with the many-electron Dirac Hamiltonian: it has no provision to account for this fact
and hence cannot prevent the decay of positive-energy electrons into the negative-energy
continuum. The standard cure is to use the no-pair Hamiltonian which excludes negative-
energy states entirely. This is the starting point of our MBPT calculations and is the
starting point of our RCI calculations also.

Nevertheless, the use of the no-pair Hamiltonian does entail some compromises. Specif-
ically in nonrelativistic CI calculations, eigenenergies saturated with large configuration
expansions are independent of the basis functions used. Such is not the case here. By
starting from the no-pair Hamiltonian and neglecting negative-energy states, relativistic
basis sets are truncated and RCI as well as MBPT results are, in general, gauge and basis
set dependent. Numerically, this has been demonstrated by Sapirstein et al. [55] who
showed that the ground state RCI energy of helium-like uranium as calculated with the
no-pair Hamiltonian depends on the potential used in generating the one-electron basis
functions. These authors further showed that this potential dependence can be eliminated
mathematically by completing the basis set to include both the positive- and negative-
energy orbitals. Their results are shown in Table 7. It can be seen that negative-energy
state contributions are substantial, especially for the Breit energies.

However, while the inclusion of negative-energy basis functions, which is equivalent to
using the full Dirac Hamiltonian, does lead to potential independent results, it was also
found that the 1s2 ground state is no longer the lowest eigenstate of the RCI matrix
and is now surrounded by spurious energy levels characterized by configurations with one
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Figure 14. Ladder and crossed ladder diagrams for second-order correlation energies.

positive- and one negative-energy electrons. In effect, that was a numerical demonstration
of the Brown-Ravenhall disease where the 1s2 ground state is embedded in a discrete rep-
resentation of the (unphysical) electron-positron continuum when negative-energy basis
functions are also used in RCI calculations. These results can be found in Table III of
Ref. [55], along with more detailed discussions in that reference.

While there are no numerical disasters from vanishing denominators in RCI calculations
when negative-energy basis functions are used, results of the full Dirac Hamiltonian,
though potential independent, are nevertheless incorrect. To see this, we note that if the
sum over intermediate states for the second-order energy is extended to included both
positive- and negative-energy orbitals, E(2) can be rewritten as

E
(2)
Dirac = −1

2

∑

abm+n+

vabm+n+
ṽm+n+ab

εm+
+ εn+

− εa − εb
− 1

2

∑

abm−n−

vabm−n− ṽm−n−ab
εm− + εn− − εa − εb

−1

2

∑

abm+n−

vabm+n− ṽm+n−ab

εm+
+ εn− − εa − εb

− 1

2

∑

abm−n+

vabm−n+
ṽm−n+ab

εm− + εn+
− εa − εb

. (187)

The first and second terms in the right-hand-side of Eq. (187) come from virtual electron-
electron and positron-positron pairs in the intermediate states, respectively, while the
third and fourth terms are from electron-positron pairs. E

(2)
Dirac can be compared with

rigorous second-order correlation energy E
(2)
QED which have been calculated in the S-matrix

formalism of QED from the ladder (L) and crossed ladder (X) diagrams shown in Fig. 14

[56, 57]. When these diagrams are taken together, E
(2)
QED = EL +EX have been shown to

be gauge invariant [56]. Formulas for EL and EX in the Coulomb gauge with the exchange
of two Coulomb photons have been given by Eqs. (16) and (17) in Ref. [55], respectively.
In the notations used here, they can be written as

EL = −1

2

∑

abi+j+

vabi+j+ ṽi+j+ab
εi+ + εj+ − εa − εb

+
1

2

∑

abi−j−

vabi−j− ṽi−j−ab
εi− + εj− − εa − εb

, (188)

EX = −1

2

∑

abi+j−

vaj−i+b vbi+j−a − vaj−i+a vbi+j−b
εj− − εi+

−1

2

∑

abi−j+

vaj+i−b vbi−j+a − vaj+i−a vbi−j+b
εi− − εj+

. (189)
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It can be seen that the ladder diagram has the same electron-electron term as E
(2)
Dirac, but

its positron-positron term has an opposite sign. Moreover, electron-positron terms, which
come from the crossed ladder diagram only, are very different from those in E

(2)
Dirac and

their denominators, which are given by εm+
− εn− , will not vanish. Thus, the correct QED

treatment of relativistic correlation energies is shown to be free of the Brown-Ravenhall
disease. S-matrix results of E

(2)
QED are shown in Table 7 and are clearly different from

E
(2)
Dirac.

When negative-energy states are excluded, both E
(2)
Dirac and E

(2)
QED reduce to the same

no-pair energy2

E
(2)
no−pair = −

1

2

∑

abm+n+

vabm+n+
ṽm+n+ab

εm+
+ εn+

− εa − εb
, (190)

which is a very good approximation to the true correlation energy. Residual contributions
from negative-energy states are usually quite negligible except for very high-Z ions and
can be treated as QED corrections from S-matrix calculations of the ladder and crossed
ladder diagrams. We shall present an example of these corrections for high-Z Li-like ions
later in this section. It should be noted that errors in EDirac from incorrect treatments
of electron-positron and positron-positron terms can be very subtle and EDirac may look
perfectly normal in RCI calculations when negative-energy basis functions are also in-
cluded. Nevertheless, it is very difficult, if not impossible, to identify and correct the
intrinsic errors in EDirac and the use of the many-electron Dirac Hamiltonian without the
projection operators should be avoided even if it does not appear to be giving nonsensical
results.

Before we proceed to discuss specific RCI calculations, we would like to clarify a common
confusion regarding the no-pair calculation. The purpose of the projection operator is to
filter out negative-energy states. But as the solutions of the homogeneous one-electron
Dirac equation form a complete basis set, positive-energy Dirac orbitals will invariably
include some admixtures of negative-energy orbitals from another potential through an
unitary transformation. This raises some doubts about the no-pair calculation since it
appears that there is no way of turning the effect of negative-energy states completely off
even with the use of projection operators. To address this concern, let us re-emphasize
that the intrinsic problem with the many-electron Dirac Hamiltonian is not that negative-
energy states exist but that it is unable to prevent the appearance of the unphysical
electron-positron pairs. To exclude these spurious pair contributions, it is sufficient to
project out the negative-energy states which come from the same potential as the bound
and positive-energy states currently in use. There is nothing wrong with contributions
from the negative-energy states of a different potential implicitly mixed-in through an

2Note that Eqs. (188) and (189) are derived with the background potential U set to zero and sums
over intermediate states i+ and j+ include unoccupied as well as occupied states. Limiting these sums
to unoccupied states m+ and n+ leads to an additional term

∑

m+
(VHF)am+

(VHF)m+a/(εa − εm+
) in

Eq. (190) from the remaining sums over occupied states in EL, but the same term will also show up from

the electron-electron pair term in E
(2)
Dirac if U is set to zero instead of to VHF. The bottom line is that the

no-pair limit of E
(2)
Dirac and E

(2)
QED will remain the same as long as the same local background potential

U(r) is used in both cases.
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unitary transformation which involves only linear superpositions of Dirac orbitals. Indeed,
it is well known that S-matrix calculations can be carried out in the Furry representation
[58] with an external local potential as long as the correct background potential U(r)
is used to counter any change in the representation. The same is true with no-pair
calculations, even though no-pair results will, in general, be gauge and potential dependent
as we have mentioned earlier. Note, however, that the analogy with S-matrix calculations
breaks down if the basis functions are individually optimized and do not correspond
to a common local potential. While there may not be any serious numerical problems
associated with these mixed-representation calculations, their intrinsic accuracy will be
all but impossible to assess.

4.1. Finite Basis Functions
The choice of basis functions can be critical to RCI calculations. Finite basis sets such

as the Slater-type and Gaussian-type orbitals have been used extensively in nonrelativistic
atomic and molecular CI calculations. Relativistically, since the energy functional is not
bounded from below due to the existence of the negative-energy states, expansions of
the 4-component spinor wave functions in terms of finite basis sets is known to lead to
variational instabilities in RCI calculations and to drastic problems such as the appearance
of spurious eigenstates and the “variational collapse” of eigenenergies. These problems
are not limited to many-electron systems and can affect the simple hydrogenic ions also.
Signs of trouble in Dirac-Fock calculations readily showed up in the first finite basis set
expansion attempt by Kim [59]. In most cases, additional constraints must be imposed
on the basis functions to bring these problems under control.

As an example, one of more well-known constraints on the basis functions is the so-called
“kinetic balance” condition [60, 61]. Specifically, most of the finite basis functions do not
form complete basis sets in the Hilbert space. If the large- and small-component radial
wave functions are expanded in terms of one of these orthonormal basis sets {ϕk} such that
P (r) =

∑

i aiϕi(r) and Q(r) =
∑

j bjϕj(r), then the operator identity (σ · p)(σ · p) = p2

will not necessarily translate into the matrix identity
∑

k

〈i|(σ · p)|k〉〈k|(σ · p)|j〉 = 〈i|p2|j〉 (191)

because
∑

k |k〉〈k| = I holds only approximately. This leads to wrong kinetic energies in
the nonrelativistic limit when c → ∞ which persist in relativistic calculations when c is
finite. To “balance” this effect, the expansion coefficients {ai} and {bj} should not be
varied independently but should be adjusted in such a way that P (r) and Q(r) satisfy
the condition

Q(r) = − 1

2mc

( d

dr
+
κ

r

)

P (r) (192)

in the nonrelativistic limit. Even so, additional constraints may still be needed to maintain
variational stabilities [61]. Detailed discussions of the criteria that physically acceptable
basis functions should satisfy and on the common types of finite basis sets used in RCI
calculations can be found in an article by Grant [62].

It should be mentioned that problems in RCI calculations are not limited to finite basis
set expansions of one-electron radial wave functions and can occur even if P (r) and Q(r)
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are generated numerically. Examples are the multiconfiguration Dirac-Fock (MCDF)
orbitals which are obtained by solving a set of coupled differential equations in a self-
consistent approximation. The trouble is that the inhomogeneous configuration-mixing
terms in MCDF equations do not necessarily have the correct nonrelativistic limit and can
lead to incorrect fine structure results. In some cases, ad hoc corrections have to be made
by explicitly subtracting out the spurious contributions that remain in the nonrelativistic
limit [see 63, for example]. MCDF orbitals are free of the variational instability problem
and, being highly optimized, are very efficient for RCI calculations, but they should be
used with care, especially in high-precision calculations.

While the numerical problems in relativistic basis set expansion calculations are largely
under control by now, the construction of positive-energy projection operators for the
no-pair Hamiltonian remains a very difficult task and is thus frequently ignored. Here, we
again use the B-spline basis sets described in Section 3.5 for RCI calculations. Expansions
of the radial wave functions P (r) and Q(r) in terms of the piecewise polynomial B-spline
functions Bi(r) shown in Eq. (118) are free of the problems mentioned above, and the re-
sulting one-electron B-spline orbitals cleanly separated into positive- and negative-energy
states so that the projection operators can be implemented by using only positive-energy
B-spline orbitals which readily provide an accurate, discrete representation of the bound
and continuum states for high-precision correlation energy calculations. Furthermore, B-
spline orbitals are solutions of the homogeneous one-electron Dirac equation and form
completed basis sets as confirmed by sum rule calculations [36]. They thus satisfy the
kinetic balance condition implicitly and are not known to lead to the appearance of spu-
rious eigenstates nor to variational instability problems. The only down side is that the
B-spline basis functions are not highly optimized and typical RCI calculations can in-
clude up to a few hundreds of these functions in the basis set, resulting in very large-scale
CI expansions. These RCI calculations were once limited to run on mainframe super-
computers. However, with advances in computing power, they can now be carried out
on fast workstations. In the following, we shall describe some of the high-precision RCI
calculations with B-spline basis functions for few-electron systems.

4.2. RCI Equation
For RCI calculations, it is more convenient to work in the configuration space. Our

starting point is the no-pair Hamiltonian given before with the Coulomb interaction only
in Eq. (71). Here, we rewrite it as

H(n.p.) =
∑

i

h0(i) +
∑

i>j

Λ+(ij)
[

VC(ij) + VB(ij)
]

Λ+(ij), (193)

which is the same as the many-electron Dirac Hamiltonian shown in Eq. (185) but with the
positive-energy projection operators Λ+(ij) added. The effects of finite nuclear size are
taken into account by using the Fermi charge distribution of the nucleus which are built
into the nuclear potential Vnuc in the one-electron Dirac Hamiltonian h0. For simplicity,
we shall use H to represent the no-pair Hamiltonian in the following.

The construction of a trial wave function Ψ(JM) for a N -electron atomic system starts
with a set of one-electron basis functions {ai}. B-spline orbitals here. The N -electron
configuration-state function φ(γJM) is a simultaneous eigenfunction of the angular mo-
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mentum operators J2 and JZ obtained from anti-symmetrized Slater determinant wave
functions |a1, a2, . . . , aN〉 such that

φ(γJM) =
∑

{mai}
|a1, a2, . . . , aN〉 〈ja1

ma1
, ja2

ma2
, . . . , jaN

maN
|γJM〉, (194)

where γ = {a1, a2, . . . , aN} is a set of quantum numbers representing different electronic
configurations and 〈ja1

ma1
, ja2

ma2
, . . . , jaN

maN
|γJM〉 is a generalized Clebsch-Gordon

coefficient. The atomic-state function Ψ(JM) with angular momentum (J,M) and parity
π is then expressed as a linear superpositions of configuration-state functions with the
same angular momentum and parity quantum numbers

Ψ(JM) =
∑

i

ci φ(γiJM). (195)

In terms of the expansion coefficients ci, the energy functional is given by

E = 〈Ψ|H|Ψ〉 =
∑

i,j

cicj〈φi|H|φj〉 =
∑

i,j

cicjHij. (196)

Variation of the energy functional with respect to ci, subject to the wave function nor-
malization condition

〈Ψ|Ψ〉 =
∑

i,j

cicj〈φi|φj〉 =
∑

i

c2i = 1 (197)

leads to the CI equation

∑

j

(Hij − λδij)cj = 0. (198)

The calculation is thus reduced to an eigenvalue problem in term of the real, symmetric
matrix Hij. Resulting atomic-state functions Ψ(JM) are simultaneous eigenfunctions of
H, J2 and JZ . These are large-scale calculations involving very big matrices and the
lowest-few eigenstates are determined using an implementation of the Davidson method
[64] by Stathopoulos and Fischer [65]. This is an iterative scheme based on the perturba-
tion theory and is very efficient for diagonally dominated CI matrices with fast rates of
convergence and modest demands on computer resources. In general, most of our com-
puter time is spent in setting up the Coulomb and, especially, the Breit matrices and
efficient algorithms have been developed to speed up these calculations. By comparison,
the computer time used in solving the matrix equation is relatively insignificant.

4.3. Two-Electron Systems
In this subsection, we deal with RCI calculations for helium-like ions B-spline basis

functions [66–68]. Two-electron configuration-state functions (CSF) are constructed from
positive-energy B-spline orbitals and are given by

φ(γJM) = |jajbJM〉 = ηab
∑

ma,mb

C(ja, jb, J ;ma,mb,M)|jama, jbmb〉, (199)
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where ηab = ηba is a normalization constants such that

ηab =

{

1 for a 6= b
1√
2

for a = b
. (200)

From the interchange symmetry of the Clebsch-Gordan coefficient, we have

|jajbJM〉 = (−1)ja+jb+J+1|jbjaJM〉. (201)

It follows that for two identical particles, |jajaJM〉 = 0 unless J is even.
The atomic state function Ψ(JM) is given by a linear combination of CSFs as shown

in Eq. (195). Let γi = {ab} and γj = {cd}, the Hamiltonian matrix element Hij defined
in Eq. (196) is given by

Hij = Kij + Vij, (202)

where Kij is the matrix element of the one-electron Hamiltonian operator and Vij is that
of the two-electron Coulomb and Breit operators. Here,

Kij = ηabηcd
[

Iacδbd + Ibdδac + (−1)ja+jb+J+1
(

Iadδbc + Ibcδad
)]

, (203)

with

Iab = 〈a|h0|b〉 = 〈b|h0|a〉 = Iba

=

∫

dr
{

c
[

Pa

( d

dr
− κb

r

)

Qb −Qa

( d

dr
+
κb
r

)

Pb

]

+Vnuc(r)
[

PaPb +QaQb

]

− 2mc2QaQb

}

δκaκb
δmamb

. (204)

If Coulomb basis functions are used such that h0|a〉 = εa|a〉, as is the case here for two-
electron systems, Kij is reduced to

Kij = (εa + εb)δij. (205)

As for the two-electron matrix element,

Vij = ηabηcd
∑

L

[

(−1)jb+jc+J+L
{

ja jb J
jd jc L

}

XL(abcd)

+ (−1)jb+jc+L
{

ja jb J
jc jd L

}

XL(abdc)

]

, (206)

where the Coulomb matrix element XL(abcd) has already been given by Eq. (96). When
frequency-independent Breit interaction is also included, Vij is still given by the above
expression, but the Coulomb matrix element XL(abcd) is replaced by

XL(abcd)→ XL(abcd) +ML(abcd) +NL(abcd) +OL(abcd), (207)

where the unretarded Breit matrix elementsML(abcd) andNL(abcd) are given by Eqs. (106)
and (107), respectively, while the retarded Breit matrix element OL(abcd) is given by
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Table 8
Contributions to the ionization energy (a.u.) of the 1s2p 3P0 state of helium-like neon.
ECoul, EBreit, EB×B and Eno-pair are the Coulomb, first-order Breit, high-order Breit and
no-pair energies, respectively, and higher-` contributions are from partial wave extrapo-
lations. RCI results are from [66]. MBPT results are from [41].

Configuration ECoul EBreit EB×B Eno-pair

s1/2p1/2 -10.329953 0.004024 -0.000003 -10.325932
p3/2d3/2 -0.002003 -0.000053 0.000000 -0.002056
d5/2f5/2 -0.000151 -0.000006 0.000000 -0.000157
f7/2g7/2 -0.000026 -0.000002 0.000000 -0.000028
g9/2h9/2 -0.000007 -0.000001 0.000000 -0.000008
higher-` -0.000004 -0.000001 0.000000 -0.000005

Total -10.332143 0.003962 -0.000004 -10.328185

MBPT -10.332144 0.003962 -0.000005 -10.328187

Eq. (113). For frequency-dependent Breit interaction, these Breit matrix elements are
modified according to the recipe shown in Section 3.4. Furthermore, off-diagonal matrix
elements are calculated with the frequency-symmetrized Breit operator shown in Eq. (87).

For He-like ions, the CI expansion for an atomic state Ψ(JM) includes CSFs from two-
electron excitations (n`n′`′) with the same total angular momentum (J,M) and parity
π. Our basis sets typically consist of 40 positive-energy B-spline functions for each of the
angular momentum states s1/2, p1/2, p3/2, . . . We include orbitals up to `, `′ = 5 or 6
and use the first 20 to 25 basis functions of each angular symmetry in our calculations.
Contributions from the remaining higher-energy basis functions are insignificant and can
be neglected. Those from higher-` states are also small and can be obtained by partial
wave extrapolations. The number of configurations used here ranges from 2000 to 10 000.
Resulting RCI matrices are dense and the first few eigenstates are solved by the Davidson
method as mentioned in the previous section. Mass polarization corrections discussed in
Section 3.12 are then calculated as expectation values of the operator P = 1

M

∑

i>j pi ·pj
using eigenvectors from the RCI calculations.

A typical convergent pattern as a function of the angular symmetry for the ionization
energy of the 1s2p 3P0 state of He-like neon is shown in Table 8. Coulomb energies ECoul

listed in the second column are eigenenergies of the Hamiltonian matrices with Coulomb
interaction only. First-order Breit energies EBreit listed in the third column are calculated
as expectation values of the Breit operator with corresponding Coulomb eigenvectors.
No-pair energies Eno-pair listed in the last column are eigenvalues of the full no-pair Hamil-
tonian including both Coulomb and Breit interactions. Differences between Eno-pair and
ECoul+EBreit give higher-order Breit corrections EB×B listed in the fourth column. In the
first row of this table, results are calculated with basis set expansions including ns and
np orbitals only. In the second to fifth rows, increments to the Coulomb, first-order Breit,
higher-order Breit and no-pair energies are shown by successively adding configurations
with basis functions of increasing angular momenta. Extrapolations of these partial-wave
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Figure 15. Correlation energies (a.u.) of the 1s2p 3P0 − 1s2s 3S1 transition in He-like ions
relative to the RCI values [66] are scaled by (Zα)4 and plotted as functions of the atomic
number Z. Solid circles are results of the unified theory [69]. Solid triangles are results
of MBPT [41].

series to `→∞, assuming that they decrease as 1/(`+1/2)n with n = 6.5 for both ECoul

and Eno-pair and n = 4.5 for EBreit, lead to the higher-` corrections listed in the sixth row.
Final RCI results, shown in the seventh row, are in excellent agreement with the all-order
MBPT results of Plante et al. [41].

Drake [69] updated and extended the benchmark work of Accad et al. [70] on the
term values of the n = 1 and 2 states of He-like ions with Z = 2 − 100 by combining
variational methods and the relativistic 1/Z expansion approach. Drake’s unified theory
accounts for electron correlation energies precisely at low Z and includes the dominant
relativistic, QED and recoil corrections. Systematic comparisons have been made between
the correlation energy results of the unified theory and those of RCI [66–68] and all-order
MBPT [41]. While RCI and MBPT are found to be in excellent agreement with each
other, both of them disagree slightly with the unified theory and these differences are
due mainly to relativistic correlation corrections of orders (Zα)4 and higher which are
not included in the unified theory. An example of these comparisons on the correlation
energies of the 1s2p 3P0 − 1s2s 3S1 transition in He-like ions is displayed in Fig. 15. It is
evident that the results of RCI and MBPT are in very good agreement while those of the
unified theory are off by about 0.5 (Zα)4 a.u..

RCI calculations have provided very accurate no-pair energies for the low-lying states
of He-like ions [66–68]. Resulting eigenenergies and eigenvectors have also been used in
high-precision radiative transition [71], atomic polarizability [72], and hyperfine structure
[73] calculations. As we have mentioned before, negative-energy states are important for
restoring the potential independence of the no-pair energies. It is interesting to note that
they are also responsible for the gauge invariance of the radiative transitions [71, 74, 75].
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4.4. Many-Electron Systems
For atomic systems with more than two electrons, CI expansions in terms of CSFs can

be prohibitively large and steps have to be taken to keep the computation manageable.
We begin by choosing a reference state to represent an atomic system. Leading correla-
tion effects are then calculated from CSFs that arise from single and double excitations
from this reference state, and residual corrections can be obtained from the dominant
triple and quadruple excitations. Single and double excitations can be further classified
by valence-valence, core-valence and core-core correlations, depending on whether one or
two electrons are excited from the valence or core states of the atomic system. These
breakdowns not only provide a systematic way of improving correlation energies but also
permit different parts of the calculation to be carried out with varying degree of sophisti-
cation, depending on the importance of their contributions. Thus, dominant correlation
energies from valence-valence and core-valence excitations are typically calculated with
as complete a CI expansion as possible, while smaller corrections from core-core, triple
and quadruple excitations can be evaluated with smaller basis set expansions for more
tractable calculations.

The reference state is usually chosen to be consisted of the dominant configurations of
the atomic state in question. Using the 4-electron Be-like ion as an example, the reference
state for the 2s2 1S0 ground state is taken to be (1s22s2 + 1s22p2)J=0 and the CSFs for
the valence-valence, core-valence and core-core correlations are then given by 1s2n`n′`′,
1s2sn`n′`′ + 1s2pn`n′`′, and 2s2n`n′`′ + 2p2n`n′`′, respectively. As for the 2s2p 3P0,

3P1,
3P2, and

1P1 excited states, the reference states are (1s22s2p)J=0,1,2 and CSFs from single
and double excitations are 1s2n`n′`′, 1s2sn`n′`′ + 1s2pn`n′`′, and 2s2pn`n′`′. Since the
same configuration can come from different excitations, for example 1s2s2p3d can come
from both 1s2sn`n′`′ and 1s2pn`n′`′, care must be taken to ensure that no configura-
tion is doubly counted. We note that individual contributions to the correlation energy
(valence-valence, core-valence, etc.) depend on the choice of the reference state. Should
the reference state of the 2s2 1S0 ground state be represented by the single (1s22s2)J=0
configuration, for example, the CSFs for core-valence and core-core correlations would
consist only of the 1s2sn`n′`′ and 2s2n`n′`′ configurations, and a substantial amount of
correlation energy from the 1s2pn`n′`′ and 2p2n`n′`′ configurations will be missing from
single- and double-excitation calculations. These configurations can still be included in
the calculation, but only as triple and quadruple excitations.

RCI calculations have been carried out for three-electron Li-like [76, 77], four-electron
Be-like [78] and twelve-electron Mg-like [79] ions, and for Li-like to F-like [80] and Na-like
to Si-like [81] uranium ions. In these calculations, B-spline basis functions are generated
in Dirac-Kohn-Sham (DKS) potentials to better account for screening effects. Typically,
30 positive-energy B-spline orbitals are generated for each orbital angular momentum up
to ` = 5 or 6 and the first 20 - 24 orbitals are used as basis functions. The construction
of the N -electron CSF φ(γJM) and the reduction of the Hamiltonian matrix elements
Hij = 〈φi|H|φj〉 into terms involving one-electron integrals Iab and two-electron Coulomb
and Breit integrals XL(abcd), ML(abcd), NL(abcd) and OL(abcd) can, in principle, be
carried out analytically as in the case of He-like ions, but with the availability of general-
purpose, angular-recoupling code packages [82–84], these tedious tasks are best left to be
tackled numerically. Here, we use the angular package in GRASP [83] for this purpose.
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Table 9
No-pair energies (eV) of the 2s − 2p3/2 transition in Li-like uranium. B0 and Bω are
first-order frequency-independent and frequency-dependent Breit energies, respectively.
B0 ×B0 and Bω ×Bω are corresponding higher-order Breit energies, respectively.

Contribution RCI MBPT
Coulomb 4514.79 4514.81

Breit B0 -9.17 -9.16
Bω -6.91 -7.06
B0 ×B0 0.16
Bω ×Bω 0.05
Sum -15.88 -16.22

Mass Polarization -0.04 -0.04

Eno-pair 4498.87 4498.56

The sizes of our CI expansions range from 10 000 to 300 000 configurations. Resulting
Hamiltonian matrices are sparse and diagonally dominated. As in the case of He-like ions,
the first few eigenstates are obtained using the Davidson’s method, and corresponding
eigenvectors are used to evaluate the mass polarization corrections.

Three-Electron Li-like Ions

In Table 9, no-pair energies of the 2s − 2p3/2 transition in Li-like uranium (Z = 92)
are compared between RCI [77] and MBPT [85]. Here, Breit energies are broken down
into first-order (B) and higher-order (B × B) contributions, both of which are further
divided into frequency-independent (B0) and frequency-dependent (Bω) corrections. As
mentioned in Section 4.3, first-order RCI Breit energies are calculated as expectation
values of the Breit operator with Coulomb eigenvectors, while higher-order RCI Breit
energies are additional contributions from diagonalizing the Coulomb + Breit matrices.
From the perturbation theory point of view, first-order RCI Breit energies are equivalent
to the sums of all terms with the exchange of exactly one transverse (Breit) photon along
with the possible exchanges of one or more longitudinal (Coulomb) photons (B, B × C,
B×C ×C, etc.), while higher-order RCI Breit corrections are from the sums of all terms
involving the exchanges of more than one transverse photons (B × B, B × B × C, etc.).
It can be seen that the discrepancy on the order of 0.34 eV in Breit energy is due partly
to differences in the frequency-dependent terms and partly to higher-order contributions
which are included in RCI but not in MBPT. Thus, these normally small corrections
can no longer be ignored at high Z, as they can easily change the deduced empirical
QED corrections for this transition from -39.19±0.21 eV shown in Table 5 to a new value
of -39.50±0.21 eV, which is more consistent with the systematic trend of these QED
corrections as discussed in Ref. [77].

In Table 10, RCI [76] and MBPT [85] energies on the 2s−2p1/2 and 2s−2p3/2 transitions
in Li-like ions are compared with experiment. For these low- to mid-Z ions, higher-order
Breit corrections are quite negligible and RCI and MBPT are in very good agreement
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Table 10
Theoretical and experimental energies (eV) for the 2s − 2p1/2 and 2s − 2p3/2 transitions
in Li-like ions. References to these results can be found in [76].

2s− 2p1/2 2s− 2p3/2
Z

RCI MBPT Experiment RCI MBPT Experiment
10 15.8888 15.8885 15.8887(2) 16.0933 16.0931 16.0932(2)
15 25.813 25.812 25.814(3) 27.205 27.205 27.206(3)
20 35.963 35.964 35.962(2) 41.028 41.028 41.029(2)
26 48.600 48.602 48.599(1) 64.567 64.568 64.566(2)
32 61.907 61.911 61.902(4) 101.051 101.055 101.043(12)
42 86.11 86.12 86.10(1) 211.99 211.99 211.94(7)
54 119.82 119.84 119.97(10) 492.21 492.22 492.34(62)

with each other and with experiment. Experimental data exist for some higher-Z ions
(Z = 83, 90 and 92), but QED corrections must also be included when comparing theory
with experiment. In some cases, differences from higher-order Breit corrections mentioned
in the previous paragraph are partially canceled out by those from QED energies, resulting
in smaller apparent differences between RCI and MBPT. We shall present some of these
high-Z comparisons in the next subsection when we discuss QED corrections in many-
electron systems. More detailed comparison between theory and experiment along the
lithium isoelectronic sequence can be found in [76, 77].

Four-Electron Be-like Ions

The strength of the RCI method is that it is intrinsically an all-order method as long as
the CI expansion is saturated with enough configurations. This is further demonstrated
in Fig. 16 which shows another comparison with MBPT on the energies of the 2s2 1S0 −
2s2p 1P1 transition in Be-like ions. In the nonrelativistic Z-expansion theory, the transition
energy between levels of the same principal quantum numbers (∆n = 0) are given by a
1/Z expansion series

E = a1Z + a0 + a−1/Z + a−2/Z
2 + . . . , (208)

where the leading Z2 term cancels between the initial and final states. While RCI results
[78] should be accurate to all orders in 1/Z, second-order MBPT results [86] are exact only
up to the a0 term. At low Z, differences between RCI and MBPT clearly show an 1/Z
trend. At high Z, they are dominated by relativistic correlation corrections of the order
of (1/Z)(Zα)4 and the change in the systematic trend to a Z3 behavior is quite obvious at
around Z = 40. Also shown in this figure are the nonrelativistic full-core-plus-correlation
(FCPC) results by Zhu and Chung [87] which are in very good agreement with RCI at
low Z. But as relativistic corrections are included as first-order perturbations only, FCPC
calculations were not extended to high-Z ions.

In Fig. 17, comparisons are made between theory and experiment on the energies of the
same 2s2 1S0 − 2s2p 1P1 transition in Be-like ions. Results from RCI [78] are consistently
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Figure 18. Typical higher-order radiative diagrams for the screening corrections to the
self-energy and vacuum polarization.

in good agreement with experiment along the isoelectronic sequence, while second-order
MBPT [86] deviates considerably from experiment at low Z due to an inadequate treat-
ment of electron correlation. At high Z, QED corrections are important and account for
some of the discrepancies between RCI and MBPT.

4.5. QED Corrections in Many-Electron System
QED corrections are important for high-Z, few-electron ions. They are dominated by

the one-loop self-energy and vacuum polarization diagrams shown in Fig. 1. At present,
self-energies can be calculated nonperturbatively to all orders in Zα with numerical
bound-state Green’s functions in a non-Coulomb model potential using the method of
Cheng et al. [88, 89]. Leading vacuum polarization corrections can also be obtained from
the expectation values of the Uehling potential using screened wavefunctions from the
same model potential. As for the Wichmann-Kroll corrections, while they can be esti-
mated from existing hydrogenic n = 1 and 2 results [90–92] by assuming an 1/n3 scaling
and by choosing reasonable effective nuclear charges Zeff to account for the screening ef-
fects, their accuracies are hard to gauge even though high precision is not required for
these small corrections. Instead, they can now be calculated directly in the same way as
the self-energies using numerical bound-state Green’s functions [93]. Total QED correc-
tions to many-electron ions are then given by the sum of one-electron QED contributions,
weighted by the fractional occupation number of each valence orbital as obtained from
the eigenvectors of RCI calculations.

In the calculation of one-loop radiative diagrams, model potentials are commonly used
to account for screening corrections which can be quite significant, and results are potential
dependent unless higher-order correlation diagrams such as those shown in Fig. 18 are
also evaluated. Blundell made the first attempt to evaluate these screening diagrams for
the ns−np transitions in alkali-like ions [47]. To date, the most complete, screened QED
calculations are available for the 1s2 ground state of He-like ions by Persson et al. [94]
and Yerokhin et al. [95], for the 2s − 2p1/2 transition in Li-like ions by Yerokhin et al.
[50] and for both the 2s − 2p1/2 and 2s − 2p3/2 transitions in Li-like bismuth (Z = 83)
by Sapirstein and Cheng [96]. These calculations are extremely complicated and are not
yet available for other many-electron systems. In most cases, a suitable choice of model
potential in calculating the 1-loop diagrams remains the best way to get good estimates
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Table 11
Energies (eV) of the 3s− 3p3/2 transitions in Na-like to Al-like uranium [81]. Na-1 is the
3s − 3p3/2 line. Mg-1 is the (3s2)J=0 − (3s3p3/2)J=1 line. Al-1 is the (3s23p1/2)J=1/2 −
(3s3p1/23p3/2)J=1/2 line. VV, CV and CC are valence-valence, core-valence and core-core
contributions to the Coulomb energies, respectively. B0 and Bω are frequency-independent
and frequency-dependent contributions to the Breit energies, respectively.

Contributions Na-1 Mg-1 Al-1
RCI VV 1318.12 1329.58 1332.55

CV 0.09 -0.06 -0.20
CC -0.07 -0.04 -0.10

Coulomb 1318.14 1329.48 1332.25
B0 -1.05 -1.03 -0.62
Bω -1.74 -1.72 -1.67

Breit -2.79 -2.75 -2.29
Mass polarization -0.01 -0.01 -0.01
Sum 1315.34(2) 1326.72(2) 1329.95(2)

QED Self-energy -14.21 -13.99 -13.98
Uehling 4.10 4.04 4.03
Wichmann-Kroll -0.20 -0.20 -0.20
Core relaxation 0.08 0.08 0.08
Sum -10.23(7) -10.07(7) -10.07(7)

Total theory 1305.11(7) 1316.65(7) 1319.88(7)

Experiment 1305.12(2) 1316.64(1) 1319.86(2)

of QED corrections.
For consistency with RCI calculations, we also use DKS potentials for screened QED

calculations. DKS potentials have been shown in Ref. [77] to give very good QED results
for high-Z Li-like and Be-like ions and they appear to work just as well for Na-like to
Si-like uranium [81]. Typically, QED corrections to transition energies are carried out in a
frozen-core approximation where contributions from the valence electrons are considered
but not those from the core electrons which cancel exactly between the initial and final
states. In [77] and [81], however, it was found that core-relaxation effects are important
and that they can be accounted for by summing the differences in QED energies of the
core electrons as calculated with two different DKS potentials specific to the electronic
configurations of the initial and final states of the transition.

An example of these QED calculations is shown in Table 11 where comparisons are
made between theory and experiment for the 3s − 3p3/2 transition energies in Na-like
to Al-like uranium. In this table, RCI Coulomb energies are broken down into valence-
valence (VV), core-valence (CV) and core-core (CC) contributions, with the reference
states taken to be consisted of the dominant n = 3 configurations of the atomic states.
While CV results do not appear to be any larger than the CC results, that is largely
due to cancellations between the initial and final states and CV contributions have to
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Figure 19. Typical two-loop Lamb shift diagrams.

be calculated very accurately to avoid errors from incomplete cancellations. The Breit
energies shown here include higher-order effects. For simplicity, they are not separated
into VV, CV and CC results. Instead, they are separated into frequency-independent (B0)
and frequency-dependent (Bω) contributions. The main uncertainties in the resulting RCI
energies are from the missing triple and quadruple excitations which are estimated to be
no more than 0.02 eV. As for the QED corrections, they are consistently given by about
-10 eV here and is dominated by the electron self-energies as expected. It is interesting
to note that at -0.20 eV, Wichmann-Kroll corrections are about 10 times larger than
experimental uncertainties and are very significant. Even core-relaxation corrections to
the QED energies, though small at 0.08 eV, are important in bringing theory into good
agreement with experiment. Uncertainties in QED corrections, of the order of 0.07 eV,
are due mainly to the use of DKS potentials to account for screening corrections, and
as we shall discuss in the following paragraphs, to higher-order 2-loop Lamb shifts and
negative-energy state contributions to the correlation energies. Theoretical results as
given by the sums of RCI and QED energies are seen to be in excellent agreement with
the high-precision EBIT measurements carried out at the Lawrence Livermore National
Laboratory. All data shown in Table 11 are from Ref. [81]. More detailed discussions of
these results can also be found there.

Besides the one-loop radiative corrections, there are other small contributions to the
QED energies. One of them is the high-order QED corrections from 2-loop Lamb shifts
which have been studied indirectly in [96]. In that work, the 2s− 2p3/2 transition energy
for Li-like bismuth is calculated from pure QED theory in the S-matrix formalism by
evaluating a complete set of correlation and radiative diagrams involving the exchange of
one and two virtual photons, with the exception of the 2-loop Lamb shift diagrams such
as those shown in Fig. 19. The screened self-energy and vacuum polarization corrections
are calculated to be -34.333 eV and 7.985 eV, respectively, for a total 1-loop QED value of
-26.348 eV. Along with the correlation energy which is calculated to be 2814.312 eV, the
transition energy is given by 2787.964 eV. Comparing this result with the high-precision
EBIT measurement of 2788.139±0.039 eV [97], a difference of 0.175 eV is found which can
be attributed to the uncalculated 2-loop Lamb shifts. By taking the usual scaling rules
into account, the size of this correction is consistent with the value of 1.57(31) eV for the 1s
state of hydrogen-like uranium from direct 2-loop Lamb shift calculations by Mallampalli
and Sapirstein [98] and Yerokhin and Shabaev [99]. The search for two-loop Lamb shifts
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in hydrogen-like uranium is currently limited by the uncertainty of the measured 1s Lamb
shift of 468±13 eV [100]. With advances in atomic structure and screened 1-loop QED
calculations, it may actually be better to search for 2-loop Lamb shifts in high-Z, few-
electron ions. Another QED correction which is usually ignored is the contribution from
negative-energy states to the correlation energies. As we have mentioned before, S-matrix
calculations of the correlation energies include contributions from the negative-energy
states correctly and are not affected by the continuum dissolution problem. Comparing
the 2814.312 eV correlation energy shown in Ref. [96] with the RCI no-pair energy of
2814.47 eV shown in Ref. [77], a difference of -0.16 eV is found which should be due
mainly to contributions from negative-energy states. We thus see that both the 2-loop
Lamb shift and negative-energy state contributions are very sizable (about four times
the experimental uncertainties) but almost completely cancel each other. As a result,
summing the RCI no-pair energy of 2814.47 eV [77] and the screened 1-loop QED energy
of -26.348 eV [96] gives a transition energy of 2788.12 eV which is in excellent agreement
with the measured value of 2788.139±0.039 eV [97]. Indeed, the good agreement between
theory and experiment shown in Table 11 may also be due in part to cancellations of
errors, even though the 2-loop lamb shifts and negative-energy state contributions for the
n = 3 states should be a lot smaller at about 0.05 eV in magnitude based on an 1/n3

scaling.
In conclusion, relativistic atomic structure calculations based on the MBPT and RCI

methods are now accurate enough to make precision tests of QED theory in many-electron
systems. Tests of parity non-conserving effects in heavy, neutral atoms have also been
carried out and this topic is covered in another chapter of this book series.

Acknowledgments

The work of WRJ was supported in part by NSF Grant No. PHY-0139928. The work
of KTC and MHC were performed under the auspices of the U.S. Department of Energy
by the University of California, Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48.



63

Appendix

Equation (147) for the third-order valence energy of an atom with a single valence
electron reduces to the following form after decomposing in an angular momentum basis
and summing over magnetic quantum numbers.

E(3)
v =

∑

mnabc

∑

kk′

δjbjc
(−1)ja+jm+jn+jv+k′

[k][jb][jv]

Xk(nmba)Zk(acmn)Zk′(vbcv)

(εab − εmn)(εac − εmn)

−
∑

mnrab

∑

kk′

δjmjr

(−1)ja+jb+jn+jv+k′

[k][jr][jv]

Xk(nmba)Zk(abrn)Zk′(vrmv)

(εab − εmn)(εba − εnr)

+2
∑

mracd

∑

kk′

δjmja

(−1)jc+jd+jr+jv+k′

[k][ja][jv]

Zk(dcrm)Xk(radc)Zk′(mvva)

(εcd − εmr)(εa − εm)

−2
∑

acmrs

∑

kk′

δjajm
(−1)jc+jr+js+jv+k′

[k][ja][jv]

Zk(casr)Xk(rsmc)Zk′(mvva)

(εac − εrs)(εa − εm)

−2
∑

acmnr

∑

k

(−1)jc+jr+k
[k]2[jv]

Zk(carm)Zk(vrnc)Zk(vanm)

(εac − εmr)(εav − εmn)

−
∑

acmnr

∑

k

(−1)jc+jr+k
[k]2 [jv]

Zk(vamn)Zk(arnc)Zk(cvrm)

(εva − εmn) (εvc − εmr)

+2
∑

abcnr

∑

k

(−1)jc+jr+k
[k]2[jv]

Zk(acnr)Zk(rbcv)Zk(abnv)

(εac − εnr)(εab − εnv)

+
∑

mrabc

∑

k

(−1)jc+jr+k
[k]2 [jv]

Zk(bamv)Zk(rbcm)Zk(carv)

(εab − εmv) (εac − εvr)

+2
∑

mnacd

∑

kk′k′′

1

[jv]

{

k k′ k′′

ja jc jm

}{

k k′ k′′

jv jd jn

}

Zk(cdmn)Xk′(nmva)Xk′′(vadc)

(εcd − εmn)(εva − εmn)

−2
∑

abmrs

∑

kk′k′′

1

[jv]

{

k k′ k′′

jv jb js

}{

k k′ k′′

jm ja jr

}

Zk(basr)Xk′(rsmv)Xk′′(vmba)

(εab − εrs)(εba − εvm)

−
∑

nabcd

∑

kk′k′′

1

[jv]

{

k k′ k′′

jn ja jc

}{

k k′ k′′

jv jb jd

}

Xk(badc)Zk′(dcvn)Xk′′(vnba)

(εab − εnv) (εcd − εnv)

+
∑

amnrs

∑

kk′k′′

1

[jv]

{

k k′ k′′

jm js ja

}{

k k′ k′′

jn jr jv

}

Zk(avsr)Xk′(nmva)Xk′′(rsnm)

(εva − εmn) (εva − εrs)
.

(209)
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