Oscillator strengths, transition rates, and lifetimes for n = 3 states in Al-like ions

U.I. Safronova^{1,2}, M. Sataka¹, W.R. Johnson², and M.S.Safronova²

¹Department of Materials Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

> ²Department of Physics, University of Notre Dame, Notre Dame, IN 46556-5670, USA

> > June 16, 2001

Abstract

Transition rates, oscillator strengths, and line strengths are calculated for the 3220 possible electric-dipole (E1) transitions between the 73 even-parity $3s_3p^2$, $3s^23d$, $3p^23d$, $3d^23s$ and $3d^3$ states and the 75 odd-parity $3s^23p$, $3p^3$, $3s_3p_3d$, and $3d^23p$ states in Al-like ions with the nuclear charges ranging from Z = 15 to 100. Relativistic many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a $1s^22s^22p^6$ Dirac-Fock potential. First-order MBPT is used to obtain intermediate coupling coefficients and second-order MBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second-order E1 matrix elements to ensure gauge-independence of transition amplitudes. The transition energies used in the calculation of oscillator strengths are compared with critically evaluated experimental values and with results from other recent calculations. As a result, we present data for the selected transition, that includes transitions between the 10 even-parity $3s^23p^2$, $3s^23d$ states and the 29 odd-parity $3s^23p$, $3p^3$, and $3s^3p^3d$ states in Al-like ions. Trends of the transition rates as functions of Z are illustrated graphically for the 220 transitions. Lifetimes of the 10 possible even-parity lower levels and the 27 possible odd-parity upper levels are given for Z = 15-100.

Contents

1	Introduction	4
2	Method	4
3	Comparison and Discussion	7
4	Results	12
5	Conclusion	14
6	Acknowledgments	14

List of Tables

1	Comparison of the jj - and LS -coupling schemes for three-particle states in the $n=3$ complex	4
2	Line strengths in length L and velocity V forms in Fe^{13+} (a.u.).	5
3	Wavelengths λ in Å transition probabilities A in s ⁻¹ , oscillator strengths f, and line strengths	
	S in a.u. for Al-like Fe, $Z=26$: (a) - present, (b)- MCDF data Ref. [1], (c)- NIST data Ref. [28].	
	Numbers in brackets represent powers of 10.	8
4	Wavelengths λ in (nm) and transition probabilities A in s ⁻¹ for LS-allowed transitions in Ti ⁹⁺ , Fe ¹³⁺ , and Ni ¹⁵⁺ : (a) - present, (b)-measurement data from Ref. [18]. Numbers in brackets	
	represent powers of 10	9
5	Wavelengths λ in (nm) and transition probabilities, A in s ⁻¹ for LS-allowed transitions in Ti ⁹⁺ , Fe ¹³⁺ , and Ni ¹⁵⁺ : (a) - present. (b)-measurement data from Ref. [19]. Numbers in brackets	
	represent powers of 10.	10
6	Lifetimes, τ of the low-lying levels in Ti ⁹⁺ , Fe ¹³⁺ , and Ni ¹⁵⁺ : (a) - present, measurement data	
-	from Refs. $[18] - (b)$ and $[19] - (c)$.	10
7	Lifetimes, τ in (ns) of the low-lying levels in $P^{2+} - Ar^{5+}$: (a) - present, (b) - measurement data	
	presented in Ref. [10].	11
8	Wavelengths λ in (nm) and transition probabilities A in s ⁻¹ , and lifetimes results τ in (ns) for	
	low-lying levels in Br^{22+} and Au^{66+} : (a) - present, measurement data from Refs. [20] – (b) and	
	[22] - (c). Numbers in brackets represent powers of 10	11
9	Branching ratios: $A({}^{2}P_{3/2} - {}^{2}S_{1/2})/A({}^{2}P_{1/2} - {}^{2}S_{1/2})$ for transitions $3s^{2}3p {}^{2}P_{J} - 3s^{2}p^{2}S_{1/2}$ and	
	$A({}^{2}P_{3/2} - {}^{2}P_{1/2})/A({}^{2}P_{1/2} - {}^{2}P_{1/2})$ transitions $3s^{2}3p \; {}^{2}P_{J} - 3s3p^{2} \; {}^{2}P_{1/2}$. The experimental ratios	
	are from Ref. [15]	14
10	Wavelengths (λ in Å), transition rates (A in s ⁻¹), oscillator strengths (f), and line strengths	
	(S in a.u.) for Al-like ions with nuclear charge $Z=15-100$. Numbers in brackets represent powers	
	of 10	16
11	Lifetime data (10^{-9} sec) for excited levels in Al-like ions, Z=15-100. Numbers in brackets repre-	
	sent powers of 10	55

List of Figures

1	Z-dependence of the ratio $(S_L - S_V)/S_L$ in %, where line strengths S are calculated in length	
	S(L) and velocity $S(V)$ forms.	6
2	Channel contribution to the $3p^{3-4}S_{3/2}$ lifetime as functions of Z	12
3	Channel contribution to the $3p^{3} {}^{2}P_{1/2}$ lifetime as functions of Z	13
4	Transition rates $A[3s^23p(LSJ) - 3p^23s(L'S'J')]$ as function of Z.	39
5	Transition rates $A[3p^23s({}^4P_J) - 3p^3({}^4S_{J'})], A[3p^23s({}^4P_J) - 3s^3p({}^3P)3d({}^4D_{J'})]$ as function of Z.	40
6	Transition rates $A[3p^23s({}^4P_J) - 3s3p({}^3P)3d({}^4P_{J'})], A[3p^23s({}^4P_J) - 3s3p({}^3P)3d({}^4F_{J'})]$ as function	
	of Z	41
7	Transition rates $A[3p^23s(^4P_J) - 3p^3(^2P_{J'}), A[3p^23s(^4P_J) - 3s3p(^{1,3}P)3d(^2L_{J'})$ as function of Z.	42
8	Transition rates $A[3p^23s(^4P_J) - 3p^3(^2D_{J'})], A[3p^23s(^4P_J) - 3s3p(^{1,3}P)3d(^2L_{J'})]$ as function of Z.	43
9	Transition rates $A[3p^23s(^2D_J) - 3p^3(^2P_{J'})]$, $A[3p^23s(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$, and $A[3p^23s(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$	
	$3s3p(^{1}P)3d(^{2}F_{J'})]$ as function of Z	44
10	Transition rates $A[3p^23s(^2D_J) - 3p^3(^2D_{J'})]$, $A[3p^23s(^2D_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3p^23s(^2D_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$	_
	$3s3p(^{3}P)3d(^{2}F_{J'})]$ as function of Z	45
11	Transition rates $A[3p^23s(^2D_J) - 3p^3(^4S_{J'})], A[3p^23s(^2D_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.	46

12	Transition rates $A[3p^23s(^2S_J) - 3p^3(^2D_{J'}, {}^2P_{J'})]$ and $A[3p^23s(^2S_J) - 3s3p(^{1,3}P)3d(^2D_{J'}, {}^2P_{J'})]$	
	as function of Z	47
13	Transition rates $A[3p^23s(^2S_J) - 3p^3(^4S_{J'})], A[3p^23s(^2S_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.	48
14	Transition rates $A[3p^23s(^2P_J) - 3p^3(^2P_{J'})], A[3p^23s(^2P_J) - 3s3p(^{1,3}P)3d(^2P_{J'})], \text{ and } A[3p^23s(^2P_J) - 3p^3(^2P_{J'})]$	
	$3s3p(^{1}P)3d(^{2}F_{J'})$] as function of Z	49
15	Transition rates $A[3p^23s(^2P_J) - 3p^3(^2D_{J'})]$, $A[3p^23s(^2P_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3p^23s(^2P_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$	
	$3s_3p(^3P)3d(^2F_{J'})$] as function of Z	50
16	Transition rates $A[3p^23s({}^2P_J) - 3p^3({}^4S_{J'})], A[3p^23s({}^2P_J) - 3s3p({}^3P)3d({}^4L_{J'})]$ as function of Z.	51
17	Transition rates $A[3s^23d(^2D_J) - 3p^3(^2P_{J'})]$, $A[3s^23d(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$, and $A[3s^23d(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$	
	$3s_3p({}^1P)3d({}^2F_{J'})$] as function of Z	52
18	Transition rates $A[3s^23d(^2D_J) - 3p^3(^2D_{J'})]$, $A[3s^23d(^2D_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3s^23d(^2D_J) - 3s^3p(^{1,3}P)3d(^2D_{J'})]$	-
	$3s_3p(^3P)3d(^2F_{J'})]$ as function of Z	53
19	Transition rates $A[3s^23d(^2D_J) - 3p^3(^4S_{J'})], A[3s^23d(^2D_J) - 3s^3p(^3P)3d(^4L_{J'})]$ as function of Z.	54
20	Lifetime data $(10^{-9}s)$ for $3p^23s^{2S+1}L_J$ levels as function of Z in Al-like ions	62
21	Lifetime data $(10^{-9}s)$ for $3p^3$ $^4S_{3/2}$ and $3s3p(^3P)3d$ 4L_J levels as function of Z in Al-like ions .	63
	'	

1 Introduction

Many theoretical studies of transitions in Al-like ions have been made during the past 30-40 years, especially for electric-dipole (E1) transitions within the n = 3 complex of states. Transition rates and oscillator strengths for Al-like ions have been calculated using multi-configuration Dirac-Fock (MCDF) [1], multi-configuration Hartree-Fock (MCHF) [2, 3, 4, 5, 6], R-matrix [7], model potential [8, 9, 10], and configuration interaction (CI) [11, 12, 13] methods. A correspondingly large number of experimental studies of the lifetimes of n = 3 states have been made using beam foil techniques. Most of these investigations concerned low-Z ions: Si¹⁺[14, 15], P²⁺ and S³⁺, [15], Cl⁴⁺ and Ar⁵⁺[14], K⁶⁺ [15], Ti⁹⁺[14, 16, 17, 18, 19], Fe¹³⁺ and Ni¹⁴⁺[14, 15, 16, 18, 19], and Cu¹⁵⁺ [16]. Lifetime measurements for the high-Z ions, Br²²⁺ [20], Xe⁴¹⁺ [21] and Au⁶⁶⁺ [21, 22] have also been reported. A critical data compilation based on available theoretical and experimental sources was given in [23, 24, 25, 26, 27, 28, 29].

In the present paper, relativistic many-body perturbation theory (MBPT) is used to determine matrix elements, oscillator strengths, and transition rates for all allowed and forbidden electric-dipole transitions within the n = 3 complex of states in Al-like ions with nuclear charges ranging from Z = 15 to 100. Retarded E1 matrix elements are evaluated in both length and velocity forms. These calculations start from a $1s^22s^22p^6$ Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients and second-order MBPT is used to determine transition matrix elements. Contributions from negative-energy states are included in the second-order E1 matrix elements to ensure agreement between length-form and velocity-form amplitudes. The transition energies used in the calculation of oscillator strengths and transition rates are obtained from second-order MBPT.

Table 1: Comparison of the jj- and LS-coupling schemes for three-particle states in the n=3 complex.

jj scheme	LS scheme	J	jj scheme	LS scheme	J
$3p_{1/2}3p_{1/2}[0]3s_{1/2}$	$3p^{2}[^{3}P]3s \ ^{4}P$	1/2	$3s_{1/2}3s_{1/2}[0]3p_{1/2}$	$3s^2[{}^1S]3p \; {}^2P$	1/2
$3p_{1/2}3p_{3/2}[1]3s_{1/2}$	$3p^2[^1S]3s\ ^2P$	1/2	$3p_{3/2}3p_{3/2}[0]3p_{1/2}$	$3p^2[{}^3P]3p \; {}^2P$	1/2
$3p_{3/2}3p_{3/2}[0]3s_{1/2}$	$3p^{2}[^{3}P]3s^{-2}P$	1/2	$3s_{1/2}3p_{1/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d \ ^{4}P$	1/2
, , ,			$3s_{1/2}3p_{3/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d \ ^{4}D$	1/2
$3p_{1/2}3p_{3/2}[1]3s_{1/2}$	$3p^{2}[^{3}P]3s \ ^{4}P$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{3/2}$	$3s3p[^{3}P]3d^{-2}P$	1/2
$3p_{1/2}3p_{3/2}[2]3s_{1/2}$	$3p^{2}[^{1}D]3s \ ^{2}D$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{5/2}$	$3s3p[^{1}P]3d \ ^{2}P$	1/2
$3p_{3/2}3p_{3/2}[2]3s_{1/2}$	$3p^2[^3P]3s\ ^2P$	3/2	, , ,		
$3s_{1/2}3s_{1/2}[0]3d_{3/2}$	$3s^{2}[^{1}S]3d\ ^{2}D$	3/2	$3p_{3/2}3p_{3/2}[2]3p_{1/2}$	$3p^{2}[^{3}P]3p \ ^{2}D$	5/2
, , , ,			$3s_{1/2}3p_{1/2}[0]3d_{5/2}$	$3s3p[^{3}P]3d \ ^{4}F$	5/2
$3p_{1/2}3p_{3/2}[2]3s_{1/2}$	$3p^{2}[^{3}P]3s \ ^{4}P$	5/2	$3s_{1/2}3p_{1/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d \ ^{4}P$	5/2
$3p_{3/2}3p_{3/2}[2]3s_{1/2}$	$3p^2[^1D]3s\ ^2D$	5/2	$3s_{1/2}3p_{1/2}[1]3d_{5/2}$	$3s3p[^{3}P]3d \ ^{4}D$	5/2
$3s_{1/2}3s_{1/2}[0]3d_{5/2}$	$3s^2[^1S]3d\ ^2D$	5/2	$3s_{1/2}3p_{3/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d^{-2}D$	5/2
, , , ,			$3s_{1/2}3p_{3/2}[1]3d_{5/2}$	$3s3p[^{3}P]3d\ ^{2}F$	5/2
$3s_{1/2}3s_{1/2}[0]3p_{3/2}$	$3s^{2}[^{1}S]3p \ ^{2}P$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{3/2}$	$3s3p[^1P]3d\ ^2F$	5/2
$3p_{1/2}3p_{1/2}[0]3p_{3/2}$	$3p^{2}[^{3}P]3p \ ^{4}S$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{5/2}$	$3s3p[^1P]3d\ ^2D$	5/2
$3p_{3/2}3p_{3/2}[2]3p_{1/2}$	$3p^{2}[^{3}P]3p \ ^{2}D$	3/2			
$3p_{3/2}3p_{3/2}[0]3p_{3/2}$	$3s3p[^{3}P]3d \ ^{4}F$	3/2	$3s_{1/2}3p_{1/2}[1]3d_{5/2}$	$3s3p[^{3}P]3d\ ^{4}F$	7/2
$3s_{1/2}3p_{1/2}[0]3d_{3/2}$	$3p^{2}[^{3}P]3p \ ^{2}P$	3/2	$3s_{1/2}3p_{3/2}[1]3d_{5/2}$	$3s3p[^{3}P]3d \ ^{4}D$	7/2
$3s_{1/2}3p_{1/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d \ ^{4}P$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{3/2}$	$3s3p[^{3}P]3d\ ^{2}F$	7/2
$3s_{1/2}3p_{1/2}[1]3d_{5/2}$	$3s3p[^{3}P]3d \ ^{4}D$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{5/2}$	$3s3p[^{1}P]3d\ ^{2}F$	7/2
$3s_{1/2}3p_{3/2}[1]3d_{3/2}$	$3s3p[^{3}P]3d^{-2}D$	3/2			
$3s_{1/2}3p_{3/2}[1]3d_{5/2}$	$3s3p[^3P]3d\ ^2P$	3/2	$3s_{1/2}3p_{3/2}[2]3d_{5/2}$	$3s3p[^3P]3d\ ^4F$	9/2
$3s_{1/2}3p_{3/2}[2]3d_{3/2}$	$3s3p[^1P]3d\ ^2P$	3/2	. ,		
$3s_{1/2}3p_{3/2}[2]3d_{5/2}$	$3s3p[^1P]3d\ ^2D$	3/2			

2 Method

The evaluation of the first- and second-order reduced dipole matrix elements $Z^{(1)}$ and $Z^{(2)}$ for Al-like ions follows the pattern of the corresponding calculation for boronlike ions given in Ref. [30]. We use the second-order oneand two-particle matrix elements for Mg-like ions calculated in [31], but recoupled, to obtain the contributions from first- and second-order perturbation theory; the reader is referred to [31] for a discussion of the how the basic one- and two-particle matrix elements were evaluated. It should be noted that the uncoupled one- and

LS desi	ME	РT	First order		
Low level	Upper level	L	V	L	V
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	1.86[-3]	1.86[-3]	1.77[-3]	1.91[-3]
$3s^2(^1S)3p\ ^2P_{1/2}$	$3p^2({}^1S)3s\;{}^2S_{1/2}$	3.43[-1]	3.43[-1]	3.31[-1]	3.40[-1]
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^2P_{1/2}$	2.27[-1]	2.28[-1]	2.24[-1]	2.32[-1]
$3p^2({}^3P)3s \; {}^4P_{1/2}$	$3p^2({}^3P)3p \; {}^2P_1'_{/2}$	1.94[-4]	1.94[-4]	2.05[-4]	1.89[-4]
$3p^2({}^1S)3s \; {}^2S_1{}_{/2}$	$3p^2({}^3P)3p \; {}^2P_1{}^{\prime}{}_2$	5.32[-3]	5.32[-3]	6.00[-3]	6.31[-3]
$3p^2({}^3P)3s\;{}^2P_{1/2}$	$3p^2({}^3P)3p \; {}^2P_1{}^{\prime}{}_2$	1.90[-1]	1.90[-1]	1.89[-1]	1.89[-1]
$3p^{2}(^{3}P)3s \ ^{4}P_{1/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	3.70[-1]	3.73[-1]	3.54[-1]	3.88[-1]
$3p^2({}^1S)3s \; {}^2S_1{}^{\prime}{}_2$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	5.08[-4]	5.11[-4]	4.84[-4]	5.67[-4]
$3p^2({}^3P)3s\;{}^2P_{1/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	4.64[-6]	4.85[-6]	4.56[-6]	8.04[-6]
$3p^{2}(^{3}P)3s \ ^{4}P_{1/2}$	$3s3p(^{3}P)3d~^{4}D_{1/2}$	5.79[-4]	5.89[-4]	5.86[-4]	6.69[-4]
$3p^2(^1S)3s\ ^2S_{1/2}$	$3s3p(^{3}P)3d\ ^{4}D_{1/2}$	3.45[-6]	3.49[-6]	3.57[-6]	4.35[-6]
$3p^2({}^3P)3s\;{}^2P_{1/2}$	$3s3p(^{3}P)3d\ ^{4}D_{1/2}$	4.23[-6]	4.19[-6]	4.14[-6]	4.22[-6]
$3p^2({}^3P)3s \; {}^4P_{1/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	6.39[-4]	6.41[-4]	6.01[-4]	6.00[-4]
$3p^2({}^1S)3s \; {}^2S_1{}^{\prime}{}_2$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	1.38[-1]	1.39[-1]	1.32[-1]	1.44[-1]
$3p^2({}^3P)3s\;{}^2P_{1/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	3.49[-1]	3.51[-1]	3.32[-1]	3.54[-1]
$3p^{2}(^{3}P)3s \ ^{4}P_{1/2}$	$3s3p(^{1}P)3d\ ^{2}P_{1/2}$	1.85[-6]	1.86[-6]	1.17[-6]	2.00[-6]
$3p^2(^1S)3s\ ^2S_{1/2}$	$3s3p(^{1}P)3d \ ^{2}P_{1/2}$	1.56[-1]	1.56[-1]	1.48[-1]	1.61[-1]
$3p^2({}^3P)3s \; {}^2P_{1/2}$	$3s3p(^{1}P)3d \ ^{2}P_{1/2}$	7.62[-2]	7.66[-2]	7.34[-2]	7.76[-2]
$3s^2(^1S)3p\ ^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{3/2}$	6.34[-5]	6.33[-5]	6.66[-5]	6.54[-5]
$3s^2(^1S)3p\ ^2P_{1/2}$	$3p^2(^1D)3s\ ^2D_{3/2}$	1.56[-1]	1.56[-1]	1.58[-1]	1.56[-1]
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s\;{}^2P_{3/2}$	2.35[-1]	2.36[-1]	2.30[-1]	2.38[-1]
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3s^2({}^1S)3d \; {}^2D_{3/2}$	6.43[-1]	6.46[-1]	6.15[-1]	6.64[-1]
$3p^{2}(^{3}P)3s \ ^{4}P_{3/2}$	$3p^2({}^3P)3p \; {}^2P_{1/2}$	3.04[-4]	3.05[-4]	2.96[-4]	3.02[-4]
$3p^{2}(^{1}D)3s \ ^{2}D_{3/2}$	$3p^2({}^3P)3p \; {}^2P_1{}^{\prime}{}_2$	2.96[-1]	2.97[-1]	2.89[-1]	2.96[-1]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3p^2({}^3P)3p \; {}^2P_1{}^{\prime}{}_2$	4.58[-2]	4.59[-2]	4.52[-2]	4.45[-2]
$3s^2(^1S)3d\ ^2D_{3/2}$	$3p^2({}^3P)3p \; {}^2P_{1/2}$	3.46[-4]	3.41[-4]	1.15[-4]	1.03[-4]
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	5.89[-3]	5.95[-3]	5.72[-3]	6.37[-3]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	1.37[-7]	1.27[-7]	8.38[-8]	1.92[-8]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	9.81[-6]	9.93[-6]	9.79[-6]	1.27[-5]
$3s^2(^1S)3d\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{4}P_{1/2}$	1.28[-3]	1.29[-3]	1.40[-3]	1.53[-3]
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{3}P)3d~^{4}D_{1/2}$	2.59[-1]	2.60[-1]	2.46[-1]	2.68[-1]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{4}D_{1/2}$	5.07[-4]	5.10[-4]	4.83[-4]	5.38[-4]
$3p^2({}^3P)3s\;{}^2P_{3/2}$	$3s3p(^{3}P)3d\ ^{4}D_{1/2}$	1.52[-4]	1.52[-4]	1.43[-4]	1.66[-4]
$3s^2(^1S)3d\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{4}D_{1/2}$	1.84[-5]	1.83[-5]	1.80[-5]	2.09[-5]
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	6.43[-5]	6.48[-5]	6.50[-5]	6.78[-5]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	1.10[-3]	1.09[-3]	7.83[-4]	6.64[-4]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	6.47[-2]	6.51[-2]	6.14[-2]	6.48[-2]
$3s^2({}^1S)3d \; {}^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{2}P_{1/2}$	1.01[-3]	1.02[-3]	1.52[-3]	1.74[-3]
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{1}P)3d\ ^{2}P_{1/2}$	1.62[-6]	1.61[-6]	1.32[-6]	1.34[-6]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{1}P)3d\ ^{2}P_{1/2}$	8.20[-4]	8.28[-4]	8.89[-4]	9.02[-4]
$3p^2({}^3P)3s\;{}^2P_{3/2}$	$3s3p(^{1}P)3d\ ^{2}P_{1/2}$	1.06[-1]	1.07[-1]	1.03[-1]	1.10[-1]
$3s^2(^1S)3d\ ^2D_{3/2}$	$3s3p(^{1}P)3d\ ^{2}P_{1/2}$	5.43[-1]	5.45[-1]	5.69[-1]	5.90[-1]

Table 2: Line strengths in length L and velocity V forms in Fe^{13+} (a.u.).

Figure 1: Z-dependence of the ratio $(S_L - S_V)/S_L$ in %, where line strengths S are calculated in length S(L) and velocity S(V) forms.

two-particle matrix elements calculated in [31] are the only data needed in the present second-order MBPT calculation for Al-like ions. This is in contrast to calculations of the second-order energy $E^{(2)}$ for systems with three valence electrons, where additional three-particle diagrams must be evaluated [32, 33].

The model space for n = 3 states of aluminiumlike ions includes 75 odd-parity states consisting of 13 J=1/2 states, 22 J=3/2 states, 19 J=5/2 states, 13 J=7/2 states, 6 J=9/2 states, and two J=11/2 states. Additionally, there are 73 even-parity states consisting of 13 J=1/2 states, 21 J=3/2 states, 20 J=5/2 states, 11 J=7/2 states, 7 J=9/2 states, and one J=11/2 states.

In this paper, we present results for the low-lying states. This set of states includes $3s_{1/2}3s_{1/2}[0]3p_j(J)$, $3s_{1/2}3p_j[J_{12}]3d_{j'}(J)$, $3s_{1/2}3s_{1/2}[0]3d_j(J)$, and $3s_{1/2}3p_j[J_{12}]3p_{j'}(J)$ levels, together 40 levels. The second set of states includes all other 108 states, $3d_j3d_{j'}[J_{12}]3p_{j''}(J)$, $3p_j3p_{j'}[J_{12}]3d_{j''}(J)$, and $3d_j3d_{j'}[J_{12}]3d_{j''}(J)$ levels. The first group of states is studied experimentally, however, it is not any experimental data for the second group of levels. Below, we discuss about the first group of levels only. For these 40 levels, we use not only jj designations but also LS designations. When starting calculations from relativistic Dirac-Fock wavefunctions, it is natural to use jj designations for uncoupled energy matrix elements; however, neither jj nor LS coupling describes the physical states properly, except for the single-configuration state $3d_{5/2}3d_{5/2}(4)3d_{3/2} \equiv 3d^3 \ ^3G_{11/2}$. Both designations are given in Table 1 for 40 levels in Al-like ions.

In Table 2, we present values of line strengths calculated in length L and velocity V forms for the 42 transitions between odd-parity stares with J=1/2 and even-parity states with J=1/2 and 3/2 for the special case of Al-like iron, Z = 26. Although we use an intermediate-coupling scheme, it is nevertheless convenient to label the physical states using the LS scheme for low-Z ions and the jj scheme for high-Z ions. Both designations are given in Table 2 for considered transitions. The last two columns in Table 2 show L and V values of line strengths calculated in the first order. The L - V difference is about 10% (50%) for the LS-allowed (forbidden) transitions with large (small) values of line strengths. Including the second-order contribution (columns headed MBPT in Table 2) decreases the L - V difference to 0.2% (1%) for the LS-allowed (forbidden) transitions with large (small) values of line strengths. This extremely small L - V difference arises because we start our MBPT calculations using a non-local Dirac-Fock (DF) potential. If we were to replace the DF potential by a local potential, the differences would disappear completely. It should be emphasized that we include the negative energy state (NES) contributions to sums over intermediate states (see Ref. [34] for details). Neglecting the NES contributions leads to small changes in the L-form matrix elements but substantial changes in some of the V-form matrix elements with a consequent loss of gauge independence.

In Fig. 1, we illustrate the Z-dependence of the differences between line strengths calculated in length S(L)and velocity S(V) forms. We plot the ratio $(S_L - S_V)/S_L$ in percent. One can see that the ratio $(S_L - S_V)/S_L$ is about 0.2-0.7% for all transitions shown on Fig. 1.

In view of the gauge independence discussed above, our results are presented in L form only. Uncertainties in the recommended values given in [35] were estimated to be less than 10% based on comparisons with experimental results from lifetime and emission measurements. The agreement between theoretical L-form and V-form results were also used in [35] as an indicator of accuracy. Since the present transition data are obtained using a single method for all Z and are expected to improve in accuracy with increasing Z, we expect that our data for high Z will be very reliable.

3 Comparison and Discussion

In Table 3, we compare our results for wavelengths λ , transition probabilities A, oscillator strengths f, and line strengths S for selected transitions for Al-like Fe, Z=26. These transitions are selected among the 3220 transitions because we found data for these transitions in Ref. [28]. In Table 3, we compare our results with theoretical results obtained by Huang in Ref. [1]. The multiconfiguration Dirac-Fock method (MCDF) was used in that paper to calculate energies for 40 low-lying levels and transition probabilities A, oscillator strengths f, and line strengths S for the 87 transitions. The 17 E1 allowed $3s^23p\ ^2P_J - 3p^23s\ ^4P_{J'}$, $\ ^2S_{1/2}$, $\ ^2P_{J'}$, $\ ^2D_{J'}$, $3s^23p\ ^2P_J - 3s^23d\ ^2D_{J'}$ transitions and the 70 E1 allowed $3p^23s\ ^4P_{3/2,5/2}$, $\ ^2P_{3/2}$, $\ ^2D_{3/2,5/2}$, $\ ^2D_{3/2,5/2} - 3p^3\ ^4S_{3/2}$, $\ ^2P_{3/2}$, $\ ^2D_{3/2,5/2}$,

 $3p^{3} {}^{4}S_{3/2}, {}^{2}P_{3/2}, {}^{2}D_{3/2,5/2}, {}^{3}S_{3/2}, {}^{2}P_{3/2}, {}^{2}F_{5/2,7/2}, {}^{3}s_{3}p({}^{3}P)3d {}^{4}P_{3/2,5/2}, {}^{4}D_{3/2,5/2,7/2}, {}^{4}F_{3/2,5/2,7/2}$ transitions presented in Ref. [1]. It can be seen from Table 3, our MBPT data for wavelengths agree better with the recommended values given in [28] than with data from Ref. [1]. The difference in values of transition probabilities A, oscillator strengths f, and line strengths S presented in Table 3 is about 5-10%. This difference between our MBPT results and MCDF results from Ref. [1] could be explained by the second order contribution in the dipole matrix elements. This conclusion is followed from comparison of data given in columns headed 'MBPT' and 'First order'. The last one is almost equivalent to a result of MCDF approximation since we used Dirac-Fock functions to calculate the 'First order' data. We also expect that our values are more accurate than the recommended data from [28] for transitions presented in Table 3, since Coulomb and Breit correlation corrections are included in our calculations as well as retardation.

In Tables 4 and 5, wavelengths and electric dipole transition rates are presented for transitions in Al-like Ti, Fe, and Ni. We limit the table to those transitions given in Refs. [18] and [19]. The doublet - doublet transitions $(3p^23s\ ^2S,\ ^2P,\ ^2D +\ 3s^23d\ ^2D -\ 3p^3\ ^2P,\ ^2D +\ 3s^3p3d\ ^2P,\ ^2D,\ ^2F)$ are listed in Table 4 and transitions from $3s3p3d\ ^4F_J$ levels into $3p^23s\ ^4P_J$ and $3s^23d\ ^2D_J$ levels are listed in Tables 5. It can be seen from Tables 4 and 5, the agreement between our MBPT wavelengths and the experimental values is about 0.04-0.4% for Ti⁹⁺ and decreases with the increase of Z: 0.01-0.03% for Ni¹⁵⁺. We found disagreement between our MBPT results and experimental wavelengths from Ref. [18] for $3p^2(^3P)3s\ ^2P_{3/2} - 3s3p(^1P)3d\ ^2P_{3/2}$ transition in Ti⁹⁺, Fe¹³⁺, and Ni¹⁵⁺ and experimental wavelengths from Ref. [19] for $3p^2(^3P)3s\ ^2D_{3/2,5/2} -\ 3s3p(^3P)3d\ ^4F_{3/2}$ in Ti⁹⁺. This disagreement could be caused by the difference in identification of levels. For this point, we included in Tables 4 and 5 not only wavelengths but also transition rates. It is very common, that the relative intensities of observed spectral lines are in a reasonable agreement with calculated A-values. The ratio of intensities is proportional to the ratio of transition rates and transitions with large A-values are more reasonably be observed than transitions with small A-values.

A limited subset of our lifetime calculations is presented below to compare with available experimental data. Our lifetime data are compared with experimental measurements from Refs. [18] and [19] for Al-like Ti, Fe, and Ni in Table 6. The intensity decay curves were analyzed in Ref. [18] using a variety of techniques. As a result, three different lifetimes values were given for the seven levels presented in that paper. One of those lifetimes results are given in Table 6. We can see from this table that our MBPT lifetimes data are in reasonable agreement with experimental values.

Lifetime data for Al-like ions from P^{2+} through Ar^{5+} are presented in Table 7. The experimental measurements are taken from Ref. [10]. In that paper, the Multiconfiguration Optimized Potential Model (MCOMP) method was used to determine the lifetimes of 14 low-lying excited terms along the sequence. There was no discussion about relativistic effects in Ref. [10] and the lifetime data were presented without term splitting. We average our MBPT lifetimes obtained for each level to perform the comparison with the lifetimes of 11 low-lying excited terms. It should be noted that we did not include in Table 7 the three terms with n=4. As can be seen from Table 7, our theoretical lifetimes agree with measured lifetimes to within one or two times the experimental error limits for many cases.

Results of the present calculations for lifetimes are obtained by summing E1 transitions rates from each upper level to all possible lower levels. The contributions of different channels to the lifetimes of the $3p^3 {}^4S_{3/2}$ and $3p^3 {}^2P_{1/2}$ levels are shown in Figs. 2 and 3, respectively. The curves represent the ratios of individual transition probabilities A to the sum of all transition probabilities $\sum A$ for the level considered. It is seen from Fig. 2, that the largest contribution for the lifetime of the $3p^3 {}^4S_{3/2}$ level is from the $A(3p^23s {}^4P_{5/2} - 3p^3 {}^4S_{3/2})$

Table 3: Wavelengths λ in Å transition probabilities A in s⁻¹, oscillator strengths f, and line strengths S in a.u. for Al-like Fe, Z=26: (a) - present, (b)- MCDF data Ref. [1], (c)- NIST data Ref. [28]. Numbers in brackets represent powers of 10.

Lower level	Upper level		λ	A, s^{-1}	f, a.u.	S, a.u.
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	a	444.076	2.15[07]	6.35[-4]	1.86[-3]
· · · · · · · · · · · · · · · · · · ·	- 、 , -,-	b	447.690	2.48[07]	7.45[-4]	2.20[-3]
		c	444.25			
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{3/2}$	a	429.389	4.05[05]	2.25[-5]	6.34[-5]
	- 、 / -/-	b	432.907	5.14[05]	8.23[-5]	6.34[-5]
$3s^2({}^1S)3p \; {}^2P_{3/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	a	484.600	8.41[06]	1.49[-4]	9.45[-4]
,	,	b	488.927	9.18[06]	1.64[-4]	1.06[-3]
		c	484.60			
$3s^2({}^1S)3p\;{}^2P_{3/2}$	$3p^2({}^3P)3s \; {}^4P_{3/2}$	a	467.163	4.99[06]	1.64[-4]	1.01[-3]
		b	471.347	6.03[06]	2.01[-4]	1.24[-3]
		c	467.40			
$3s^2({}^1S)3p \; {}^2P_{3/2}$	$3p^2({}^3P)3s \; {}^4P_{5/2}$	a	447.187	1.97[07]	8.89[-4]	5.24[-3]
		b	450.925	2.45[07]	1.12[-3]	6.65[-3]
		c	447.36			
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^1S)3s\;{}^2S_{1/2}$	a	274.524	1.68[10]	1.89[-1]	3.43[-1]
		b	269.790	1.86[10]	2.03[-1]	3.60[-1]
2.4 - 2		c	274.203	2.1 [10]	2.4 [-1]	
$3s^2({}^1S)3p \; {}^2P_{3/2}$	$3p^2({}^1S)3s \; {}^2S_{1/2}$	a	289.489	1.39[09]	8.77[-3]	3.35[-2]
		b	284.239	1.23[09]	7.48[-3]	2.80[-2]
		c	289.160	1.1 [09]	6.9 [-3]	a a=[4]
$3s^2({}^1S)3p {}^2P_{1/2}$	$3p^{2}(^{3}P)3s \ ^{2}P_{1/2}$	a	257.694	1.34[10]	1.34[-1]	2.27[-1]
		0	253.094	1.40[10]	1.40[-1]	2.34[-1]
9 - 2 / (1 C) 9 - 2 D	92/3 D) 9 2 D	c	207.092	1.0 [10]	1.0 [-1]	0.95[1]
$3s^{-}(-5)3p^{-}P_{1/2}$	$3p^{-}(^{-}P)3s^{-}P_{3/2}$	a_{h}	202.492 0.47.012	7.38[09]	1.42[-1] 1.47[1]	2.39[-1] 9.40[-1]
		U C	247.913	1.97[09]	1.41/[-1] 9.1 [1]	2.40[-1]
$2a^2(1S)2m^2D$	$(3n^2/(3D)) (2n^2D)$	c a	252.137	1.1 [10] 2 02[10]	2.1 [-1] 1 11[1]	2 07[1]
55 (5)5p = 13/2	$3p(1)3s 1_{1/2}$	h	265 724	2.02[10] 2.24[10]	1.11[-1] 1.10[_1]	J. 97[-1] A 15[-1]
		c	270.524	2.24[10] 2.6 [10]	1.4 [-1]	1.10[1]
$3s^2(^1S)3n^2P_{2/2}$	$3n^2({}^3P)3s {}^2P_{2/2}$	a	265.097	$\frac{2}{3}$ 18[10]	3.34[-1]	1.17[0]
00 (D)0p 1 3/2	$5p(1)5e(1)_{3/2}$	b	260.058	3.57[10]	3.62[-1]	1.24[0]
		c	264.787	4.3 [07]	4.5 [-1]	[-]
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2(^1D)3s\ ^2D_{3/2}$	a	334.557	2.11[09]	7.08[-2]	1.56[-1]
() 1 1/2	1 () 5/2	b	332.557	2.36[09]	7.84[-2]	1.72[-1]
		c	334.171	2.49[09]	7.9 [-2]	
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3s^2({}^1S)3d \; {}^2D_{3/2}$	a	211.739	3.43[10]	4.61[-1]	6.43[-1]
<pre></pre>	()	b	207.154	3.83[10]	4.93[-1]	6.72[-1]
		c	211.316	3.7[10]	5.0[-1]	
$3s^2(^1S)3p\ ^2P_{3/2}$	$3p^2(^1D)3s\ ^2D_{3/2}$	a	357.051	7.32[07]	1.40[-3]	6.60[-3]
,	,	b	354.695	7.60[07]	1.43[-3]	6.70[-3]
		c	356.60	6.3[07]	1.2 [-3]	
$3s^2(^1S)3p\ ^2P_{3/2}$	$3p^2(^1D)3s\ ^2D_{5/2}$	a	354.239	1.72[09]	4.84[-2]	2.26[-1]
		b	351.924	1.91[09]	5.33[-2]	2.47[-1]
		С	353.833	1.9[09]	5.4 [-2]	

Lower level	Upper level		Ti^{9+}			Fe^{13+}	
		λ^a	λ^b	A^a	λ^a	λ^b	A^a
$3p^2({}^1S)3s \; {}^2S_{1/2}$	$3p^2({}^3P)3p \; {}^2P_{1/2}$	50.65	50.60	3.46[08]	36.05		1.15[08]
$3p^2({}^1S)3s\;{}^2S_{1/2}$	$3p^2({}^3P)3p\;{}^2P_{3/2}$	50.12	50.47	9.82[08]	35.59	35.63	1.77[09]
$3p^2({}^1S)3s \; {}^2S_{1/2}$	$3p^2({}^3P)3p \ {}^2D_{3/2}$	67.17		4.27[07]	47.21		3.07[08]
$3p^2({}^3P)3s \; {}^2P_{1/2}$	$3p^2({}^3P)3p \; {}^2P_{1/2}$	55.26	55.20	1.48[09]	39.43	39.39	3.13[09]
$3p^2({}^3P)3s {}^2P_{1/2}$	$3p^2({}^3P)3p \; {}^2D_{3/2}$	75.53	75.57	2.79[08]	53.19		4.45[08]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3p^2({}^3P)3p \; {}^2P_{3/2}$	55.90	56.33	1.41[09]	40.13	40.17	2.57[09]
$3p^2({}^{3}P)3s {}^{2}P_{3/2}$	$3p^2({}^{3}P)3p {}^{2}D_{3/2}$	77.98	78.02	3.12[07]	55.55 54.20	5 4 49	2.69[07] 5.06[09]
$3p(P)3sP_{3/2}$	$p(P) p D_{5/2}$	10.02	11.42	3.00[08]	04.09 00.17	04.40 00.15	0.90[08]
$3p^{2}(^{1}D)3s \ ^{2}D_{3/2}$ $3p^{2}(^{1}D)3s \ ^{2}D$	$3p^{2}(^{\circ}P)3p^{-2}P_{1/2}$ $3p^{2}(^{\circ}P)3p^{-2}P_{1/2}$	40.03 20.60	39.983	7.39[09]	29.17	29.15	1.21[10] 1.13[00]
$3p^{2}(D)3s^{2}D_{3/2}$ $3n^{2}(^{1}D)3s^{2}D_{3/2}$	$3p^{2}(^{3}P)3p^{-2}D_{a/a}$	39.09 49.68	39.912 49.67	1.19[08] 1.33[09]	26.67		2.01[09]
$3p^2(^1D)3s \ ^2D_{3/2}$	$3p^2({}^3P)3p {}^2D_{5/2}$	49.45	10.01	1.33[08]	35.59	35.59	2.73[08]
$3p^2(^1D)3s^{-2}D_{5/2}$	$3p^2({}^3P)3p {}^2P_{2/2}$	39.78	39.985	6.39[09]	29.06	29.07	9.67[09]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3p^2({}^3P)3p \; {}^2D_{3/2}$	49.82	49.801	3.20[08]	36.37		8.10[08]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3p^2(^3P)3p\ ^2D_{5/2}$	49.58	49.57	1.57[09]	35.87	35.88	2.74[09]
$3p^2({}^1S)3s \; {}^2S_{1/2}$	$3s3p(^{3}P)3d^{-2}P_{1/2}$	30.50	30.42	1.44[10]	22.23		1.27[10]
$3p^2({}^1S)3s\;{}^2S_{1/2}$	$3s3p(^{3}P)3d\ ^{2}P_{3/2}$	30.75	30.676	2.33[10]	22.63	22.60	3.78[10]
$3p^2({}^3P)3s\;{}^2P_{3/2}$	$3s3p(^{3}P)3d\ ^{2}P_{3/2}$	32.83		8.60[09]	24.39	24.36	1.06[10]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d^{-2}D_{3/2}$	32.61	32.573	2.08[10]	23.94	23.93	3.04[10]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d^{-2}D_{5/2}$	32.61		1.89[09]	23.91		3.56[09]
$3p^2({}^1D)3s \; {}^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{2}F_{5/2}$	30.30	30.205	8.93[09]	22.48	22.44	1.25[10]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3s3p(^{3}P)3d \ ^{2}D_{3/2}$	32.67		2.03[09]	24.07		2.64[09]
$3p^2({}^1D)3s {}^2D_{5/2}$	$3s3p(^{\circ}P)3d^{-2}D_{5/2}$	32.66	32.626	2.10[10]	24.04	24.016	2.93[10]
$3p^{2}(^{1}D)3s^{-}D_{5/2}$	$3s_{3}p(^{-}P)_{3}d^{-}P_{5/2}$	30.33 29.81	20 72	1.01[09] 1.02[10]	22.39 21.86	21.82	2.51[09] 1.55[10]
$3p^{2}(1S)3e^{2}S$	$3s3p(1)3d^{-1}7/2$ $3s3n(1P)3d^{-2}P$	29.01	29.12	1.02[10] 8.08[00]	21.00	21.02 21.07	1.67[10]
$3p^{2}(1S)3s^{-2}S_{1/2}$ $3n^{2}(1S)3s^{-2}S_{1/2}$	$3s3p(1)3d^{-1}1/2$ $3s3n(1P)3d^{-2}P_{2/2}$	28.85 28.81	$\frac{20.12}{28.66}$	1 45[09]	21.12 21.06	21.07 20.87	7.35[08]
$3p^2({}^1S)3s {}^2S_{1/2}$	$3s3p(^{1}P)3d^{-2}D_{3/2}$	28.50	20.00	3.76[09]	20.92	20.01	6.24[09]
$3p^2({}^3P)3s {}^2P_{1/2}$	$3s3p(^{1}P)3d^{-2}P_{3/2}$	30.24	30.129	2.44[10]	22.17	21.97	4.62[10]
$3p^2({}^3P)3s {}^2P_{1/2}$	$3s3p(^{1}P)3d \ ^{2}D_{3/2}$	29.90	29.83	9.72[09]	22.01	22.11	6.32[07]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3s3p(^{1}P)3d^{-2}P_{1/2}$	30.68		5.49[09]	22.64	22.58	9.23[09]
$3p^2(^3P)3s\ ^2P_{3/2}$	$3s3p(^{1}P)3d \ ^{2}P_{3/2}$	30.63	30.488	7.42[08]	22.57	22.36	3.99[09]
$3p^2({}^3P)3s \; {}^2P_{3/2}$	$3s3p(^1P)3d\ ^2D_{5/2}$	30.19	30.129	3.96[10]	22.36	22.32	5.60[10]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^1P)3d\ ^2F_{5/2}$	26.11	26.01	1.81[10]	19.23	19.18	2.43[10]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3s3p(^1P)3d\ ^2F_{7/2}$	26.25	26.15	1.94[10]	19.42	19.37	2.53[10]
$3s^2({}^1S)3d \; {}^2D_{3/2}$	$3s3p(^{1}P)3d^{-2}P_{1/2}$	37.56	37.40	1.70[10]	27.36	27.30	2.68[10]
$3s^2({}^1S)3d \; {}^2D_{3/2}$	$3s3p(^{1}P)3d \ ^{2}P_{3/2}$	37.48	37.33	8.51[08]	27.26	26.99	9.79[09]
$3s^2({}^1S)3d {}^2D_{3/2}$	$3s3p(^{1}P)3d ^{2}D_{3/2}$	36.96	36.90	1.19[10]	27.03	27.21	1.04[10]
$3s^2(^{1}S)3d^2D_{3/2}$	$3s3p(^{+}P)3d^{-2}F_{5/2}$	39.97	39.818	1.33[10]	28.85	28.78	2.23[10]
$3s^2({}^1S)3d {}^2D_{5/2}$	$3s3p(^{1}P)3d ^{2}D_{3/2}$	37.03	90.05	2.70[09]	27.18	27.35	1.74[10]
$3s^{2}(^{+}S)3d^{-2}D_{5/2}$	$3s3p(^{+}P)3d^{-2}D_{5/2}$	36.91 40.29	30.85 40.124	1.14[10] 1.25[10]	27.10	27.08	1.83[10] 2.20[10]
$3s$ (5) $3u$ $D_{5/2}$	$ssp(r)su r_{7/2}$	40.20	40.134	1.59[10]	29.21	⊿ອ.ວ∪	2.20[10]

Table 4: Wavelengths λ in (nm) and transition probabilities A in s⁻¹ for LS-allowed transitions in Ti⁹⁺, Fe¹³⁺, and Ni¹⁵⁺: (a) - present, (b)-measurement data from Ref. [18]. Numbers in brackets represent powers of 10.

Table 5: Wavelengths λ in (nm) and transition probabilities, A in s⁻¹ for LS-allowed transitions in Ti⁹⁺, Fe¹³⁺, and Ni¹⁵⁺: (a) - present, (b)-measurement data from Ref. [19]. Numbers in brackets represent powers of 10.

Lower level	Upper level		Ti^{9+}			Fe^{13+}	
		λ^a	λ^b	A^a	λ^a	λ^b	A^a
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{3}P)3d\ ^{4}F_{5/2}$	33.14	33.06	2.68[07]	24.25	24.20	1.37[08]
$3p^2({}^3P)3s \; {}^4P_{5/2}$	$3s3p(^{3}P)3d \ ^{4}F_{7/2}$	33.33	33.26	4.41[07]	24.46	24.41	2.44[08]
$3p^2({}^3P)3s \; {}^4P_{3/2}$	$3s3p(^{3}P)3d \ ^{4}F_{3/2}$	33.48		1.20[07]	24.49		7.52[07]
$3p^2({}^3P)3s \; {}^4P_{5/2}$	$3s3p(^{3}P)3d\ ^{4}F_{5/2}$	33.59	33.51	1.25[07]	24.82	24.78	7.10[07]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3s3p(^{3}P)3d\ ^{4}F_{5/2}$	39.54	39.50	1.33[07]	29.05	29.04	6.82[07]
$3p^2(^1D)3s\ ^2D_{3/2}$	$3s3p(^{3}P)3d\ ^{4}F_{3/2}$	39.94	39.63	1.64[07]	29.21	29.16	8.87[07]
$3p^2(^1D)3s\ ^2D_{5/2}$	$3s3p(^{3}P)3d\ ^{4}F_{3/2}$	40.02	39.79	1.84[07]	29.40	29.35	9.30[07]

Table 6: Lifetimes, τ of the low-lying levels in Ti⁹⁺, Fe¹³⁺, and Ni¹⁵⁺: (a) - present, , measurement data from Refs. [18] – (b) and [19] – (c).

Level	Γ	Ti^{9+}		Fe^{13+}		Vi^{15+}
	$ au^a, \mathrm{ps}$	$ au^b,\!\mathrm{ps}$	$ au^a, \mathrm{ps}$	$ au^{b}, \mathrm{ps}$	$ au^a, \mathrm{ps}$	$ au^b, \mathrm{ps}$
$3p^2({}^1S)3s \; {}^2S_{1/2}$	108	109 ± 10	55.0	61 ± 6	40.3	38 ± 4
$3p^2({}^3P)3s \; {}^2P_{1/2}$	42.2	43 ± 5	29.8	35 ± 7	26.5	24 ± 6
$3p^2({}^3P)3s \; {}^2P_{3/2}$	40.2	34 ± 5	25.5	34 ± 7	21.0	21 ± 2
$3p^2(^1D)3s\ ^2D_{3/2}$	921	850 ± 60	458	$340{\pm}60$	340	290 ± 20
$3p^2(^1D)3s\ ^2D_{5/2}$	1050	$950{\pm}50$	581	$530{\pm}40$	472	400 ± 30
$3s^2(^1S)3d\ ^2D_{3/2}$	35.2	37 ± 5	23.9	32 ± 6	20.2	25 ± 3
$3s^2(^1S)3d\ ^2D_{5/2}$	37.2	44 ± 6	26.3	32 ± 6	22.8	30 ± 5
	$ au^a,ns$	$ au^c, ns$	$ au^a, ns$	$ au^c, ns$	$ au^a, ns$	$ au^c, ns$
$3s3p(^{3}P)3d \ ^{4}F_{3/2}$	17.7	16 ± 1.5	3.32	$1.5 {\pm} 0.2$	1.84	1.8 ± 0.2
$3s3p(^{3}P)3d\ ^{4}F_{5/2}$	18.8	13 ± 1.5	3.55	$1.9 {\pm} 0.1$	1.81	$1.98 {\pm} 0.2$
$3s3p(^{3}P)3d \ ^{4}F_{7/2}$	22.0	18.5 ± 2	4.00	$2.8{\pm}0.2$	1.98	$2.2 {\pm} 0.2$

channel for low-Z ions and $A(3p^23s \ ^4P_{1/2} - 3p^3 \ ^4S_{3/2})$ channel for high-Z ions. We can see from Fig. 3, that the largest contribution for the lifetime of the $3p^3 \ ^2P_{1/2}$ level is from the $A(3p^23s \ ^2D_{3/2} - 3p^3 \ ^2P_{1/2})$ channel for low-Z ions and $A(3p^23s \ ^4P_{1/2} - 3p^3 \ ^2P_{1/2})$ channel for high-Z ions. Our lifetime data are compared with experimental measurements from Refs. [20] and [22] for high-Z ions,

Our lifetime data are compared with experimental measurements from Refs. [20] and [22] for high-Z ions, Br²²⁺ and Au⁶⁶⁺, in Table 8. Our theoretical lifetimes agree with measured lifetimes to within one or two times the experimental error limits. We also compare in this table wavelengths data. We obtain excellent agreement between our MBPT theoretical results and measurements by Träbert *et al.* [20] for Br²²⁺. We include additional column in Table 8 with transition rates data. It can be seen from these data that the lifetimes values of $3p^23s \ ^4P_{1/2}$ and $3p^23s \ ^4P_{3/2}$ levels are completed by two transitions each. The contribution of additional transitions, $3s^23p \ ^2P_{3/2} - 3p^23s \ ^4P_{1/2}$ and $3s^23p \ ^2P_{1/2} - 3p^23s \ ^4P_{3/2}$ to the lifetimes of $3p^23s \ ^4P_{1/2}$ and $3p^23s \ ^4P_{3/2}$ levels, respectively, is about 10%. It happened that for Au⁶⁶⁺, there is no similar contribution for the lifetime of $3p^23s \ ^4P_{1/2}$ level since this level moves under the $3s^23p \ ^2P_{3/2}$ level. This reverting of $3p^23s \ ^4P_{1/2}$ and $3s^23p \ ^2P_{3/2}$, levels becomes for ions with $Z \ge 57$. The change of the lower level to the upper level occurs for the $3p^23s \ ^2P_{1/2}$, $3p^23s \ ^2D_{5/2}$, and $3s^23d \ ^2D_{3/2,5/2}$ levels.

Let us remind that among the 40 levels considered in our paper, the lowest levels are the odd-parity levels $3s^23p\ ^2P_J$ and between other 28 odd-parity levels there are the 10 even-parity levels. We found that the four even-parity levels become lower levels relative the nine odd-parity levels for high-Z ions. Let us list the values of nuclear charge Z, when such a revert occurs.

	1 odd	2odd	3odd	4odd	5 odd	6 odd	7 odd	8 odd	9odd
1 even	58	58	60	62	68	67	63	65	66
2 even	63	63	64	66	72	71	67	69	70
3 even	59	59	60	63	68	68	63	65	67
4 even	88	88	90	95			97		

Level	\mathbf{P}^{2+}			S^{3+}		K^{4+}
	$ au^a$	$ au^b$	$ au^a$	$ au^b$	$ au^a$	$ au^b$
$3p^2({}^3P)3p \; {}^4S$	0.189		0.134	0.15 ± 0.02	0.104	$0.11 {\pm} 0.01$
$3s3p(^{3}P)3d\ ^{4}P$	0.262		0.172	$0.19\ {\pm}0.01$	0.129	$0.10 {\pm} 0.01$
$3s3p(^{3}P)3d\ ^{4}D$	0.151	$0.16 {\pm} 0.02$	0.100	$0.099 {\pm} 0.006$	0.0758	
$3p^2(^1D)3s\ ^2D$	106	18 ± 2	10.2	6.95 ± 0.36	4.55	4.0 ± 0.1
$3p^2({}^1S)3s\;{}^2S$	0.551	$0.45 {\pm} 0.07$	0.329	$0.428 {\pm} 0.08$	0.262	$0.33 {\pm} 0.02$
$3p^2({}^3P)3s \; {}^2P$	0.180	$0.21 {\pm} 0.02$	0.125	0.15 ± 0.04	0.0957	$0.11 {\pm} 0.01$
$3s^2(^1S)3d\ ^2D$	0.171	$0.19 {\pm} 0.02$	0.108	0.12 ± 0.02	0.0794	
$3p^2({}^3P)3p \; {}^2D$	12.1	10 ± 1	4.32	3.8 ± 0.2	2.19	
$3p^2({}^3P)3p \; {}^2P$	0.643		0.363	0.83 ± 0.1	0.264	
$3s3p(^{3}P)3d\ ^{2}D$	0.178		0.120	0.12 ± 0.02	0.0918	
$3s3p(^{3}P)3d^{-2}P$	0.160		0.0988		0.0700	

Table 7: Lifetimes, τ in (ns) of the low-lying levels in $P^{2+} - Ar^{5+}$: (a) - present, (b) - measurement data presented in Ref. [10].

Table 8: Wavelengths λ in (nm) and transition probabilities A in s⁻¹, and lifetimes results τ in (ns) for low-lying levels in Br^{22+} and Au^{66+} : (a) - present, measurement data from Refs. [20] - (b) and [22] - (c). Numbers in brackets represent powers of 10.

		В	r^{22+}			
Lower level	Upper level	λ^a	λ^b	A^a	$ au^a$	$ au^b$
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	25.51	$25.56 {\pm} 0.03$	4.74[08]	1.88	1.9 ± 0.2
$3s^{2}(^{1}S)3p\ ^{2}P_{3/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	32.54		5.69[07]		
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{3/2}$	22.92		8.74[06]		
$3s^2(^1S)3p\ ^2P_{3/2}$	$3p^{2}(^{3}P)3s \ ^{4}P_{3/2}$	28.45	$28.74 {\pm} 0.15$	6.24[07]	14.1	12 ± 5
$3s^2({}^1S)3p\;{}^2P_{3/2}$	$3p^2({}^3P)3s\; {}^4P_{5/2}$	26.01	$26.01 {\pm} 0.03$	4.27[08]	2.34	2.05 ± 0.10
$3s^2(^1S)3p\ ^2P_{3/2}$	$3p^2(^1D)3s\ ^2D_{5/2}$	20.53	$20.58{\pm}0.03$	3.45[09]	0.290	$0.235 {\pm} 0.02$
		А	u^{66+}			
Lower level	Upper level	λ^a	λ^c	A^a	$ au^a$	$ au^c$
$3s^2({}^1S)3p \; {}^2P_{1/2}$	$3p^2({}^3P)3s \; {}^4P_{1/2}$	6.65	6.60 ± 0.02	4.58[10]	0.0218	0.022 ± 0.004
$3p^2({}^3P)3s \; {}^4P_{1/2}$	$3s^2({}^1S)3p \; {}^2P_{3/2}$	3.99		7.45[08]		
$3s^2(^1S)3p\ ^2P_{3/2}$	$3p^{2}(^{3}P)3s \ ^{4}P_{5/2}$	7.18	$7.27{\pm}0.01$	1.66[10]	0.0602	$0.0505 {\pm} 0.002$

Here, we use the following labels for the levels:

1even= $3s^2({}^1S)3d {}^2D_{3/2}$, 2even= $3s^2({}^1S)3d {}^2D_{3/2}$,

 $3even=3p^{2}({}^{3}P)3s {}^{2}P_{1/2}, 4even=3p^{2}({}^{1}D)3s {}^{2}D_{5/2},$

 $10dd=3p^{2}({}^{3}P)3p {}^{4}S_{3/2}, 20dd=3p^{2}({}^{3}P)3p {}^{2}D_{3/2}, 30dd=3p^{2}({}^{3}P)3p {}^{2}D_{5/2},$

 $\begin{array}{l} 4 \text{odd} = 3p^2({}^3P) 3p \; {}^2P_{1/2}, \; 5 \text{odd} = 3p^2({}^3P) 3p \; {}^2P_{3/2}, \; 6 \text{odd} = 3s 3p({}^3P) 3d \; {}^4P_{5/2}, \\ 7 \text{odd} = 3s 3p({}^3P) 3d \; {}^4F_{3/2}, \; 8 \text{odd} = 3s 3p({}^3P) 3d \; {}^4F_{5/2}, \; 9 \text{odd} = 3s 3p({}^3P) 3d \; {}^4F_{7/2}. \end{array}$ We take into account this change of the levels position when we sum transitions rate to calculate the lifetime of levels.

It is of some interest to consider theoretical rates A_J for $3s^2 3p \ ^2P_J - 3s 3p^2 \ ^2S_{1/2}$ and $3s^2 3p \ ^2P_J - 3s 3p^2 \ ^2P_{1/2}$ transitions for J=1/2 and 3/2. The branching ratio $A_{3/2}/A_{1/2}$ for the former transition is equal to 2 in the LS-coupling limit, as is the ratio $A_{1/2}/A_{3/2}$ for the later one. Deviation of either ratio from 2 indicates the presence of relativistic (spin-orbit) effects. The model space for even-parity states with J=1/2 includes three states without including 3d electrons: $3p_{1/2}3p_{1/2}[0]3s_{1/2}$, $3p_{1/2}3p_{3/2}[1]3s_{1/2}$, and $3p_{3/2}3p_{3/2}[0]3s_{1/2}$. The largest contribution to the eigenvector of $3s_3p^2 \, {}^2S_{1/2}$ level gives the $3p_{1/2}3p_{3/2}[1]3s_{1/2}$ state for small Z values up to Z=23 and the $3p_{3/2}3p_{3/2}[0]3s_{1/2}$ state for ions with Z>35. Completely reversed situation takes place for the $3s3p^2 \ ^2P_{1/2}$ level. The $3p_{1/2}3p_{1/2}[0]3s_{1/2}$ state contributes to the eigenvector of this level about 20-30% in the range of $15 \le Z \le 45$. The change of these three contribution of states with Z originates rather complicated Zdependence of transition rates with including $3s^3p^2 \, {}^2S_{1/2}$ and $3s^3p^2 \, {}^2P_{1/2}$ levels. The branching ratio $A_{3/2}/A_{1/2}$ with including $3s^23p \, {}^2P_J - 3s^3p^2 \, {}^2S_{1/2}$ and $3s^23p \, {}^2P_{J-2}$ transitions for J=1/2 and 3/2 are presented in Table 9 for for Al-like ions from P²⁺ through Ni¹⁵⁺. We limit the table to those ions given in Ref. [15]. It should be noted that measurements of intensity ratios presented in Ref. [15] were compilation of the laboratory and

Figure 2: Channel contribution to the $3p^{3-4}S_{3/2}$ lifetime as functions of Z

solar observations. Probably, this is an explanation that for some ions we obtain excellent agreement between our calculations and experimental data (Cl^{4+}) but for some ions disagreement is about 30% (P^{2+} and Fe^{13+}). It is more strange situation when the theoretical and experimental values for one branching ratio are almost coincide but for the other one differ in 20-40% (S^{3+} , Ar^{5+} , and Ti^{9+}). It should be noted that the trend of the experiments follows the theoretical calculations fairly well.

4 Results

In Table 10, we present our results for wavelengths λ , transition probabilities A, oscillator strengths f, and line strengths S for selected transitions in Al-like from Z=15 up to Z=100. These transitions are selected among the 3220 transitions by consideration transitions between low-lying excited states. That gives us the 220 transitions instead of the 3220 ones. The second selection was done by listing only transitions with larger values of rates A. The A minimum changes with Z to keep the equal number of transitions for each of ion. The set of transitions changes with Z from LS allowed transitions for low-Z ions to the doublet-quartet transitions for high-Z ions.

The general trends of the Z-dependence of transition rates are presented for the 220 transitions in Figs. 4 - 19. The $3s^23p\ ^2P_J-3p^23s\ ^2D_{J'},\ ^2P_{J'},\ ^2S_{1/2},\ ^4P_{J'}$ transitions are presented in Fig. 4. Next figures are organized from the transitions between the 27 $3p^3$, $3s3p(^{1,3}P)3d$ upper levels and the 10 $3s3p^2$, $3s^23d$ lower levels. We fix lower level and consider all transitions from all upper levels. Among the 27 upper levels, there are the 5, 10, 8, and 4 levels with J=1/2, 3/2, 5/2, and 7/2, respectively. There are no transitions from $3s3p(^3P)3d\ ^4F_{9/2}$ level. The set with J=1/2 includes $3p^3\ ^2P$, $3s3p(^3P)3d\ ^2P$, $3s3p(^1P)3d\ ^2P$, $3s3p(^3P)3d\ ^4P$, and $3s3p(^3P)3d\ ^4D$ levels; the set with J=3/2 includes the five levels included in the set with J=1/2 and additionally $3p^3\ ^4S$, $3p^3\ ^2D$, $3s3p(^3P)3d\ ^2D$, $3s3p(^1P)3d\ ^2D$, and $3s3p(^3P)3d\ ^4F$ levels; the set with J=5/2 includes the three 2D levels from set with J=3/2, the three quartet levels with L=1-3 and $3s3p(^3P)3d\ ^2F$, $3s3p(^1P)3d\ ^2F$ levels; the set with J=7/2 includes the two quartet levels with L=2, 3 and two 2F levels from set with J=5/2. In Figs. 5 - 8, we present the Z-dependence of transition rates for the 60 transitions between the 27 upper levels and $3p^23s\ ^4P_J$ levels. The 24 quartet-quartet transitions are shown in Figs. 5 and 6; the 36 intercombination transitions are given in Figs. 7 and 8. The $45\ 3p^23s\ ^2D_{J'}\ -3p^3\ ^{2S+1}L_J$, $3s3p(^{1,3}P)3d\ ^{2S+1}L_J$, $3s3p(^{1$

We can see from all these figures, that smooth Z-dependence is happened more seldom than the sharp feature. Those singularity could be explained by the deviation from LS coupling scheme for small Z-ions and by the

Figure 3: Channel contribution to the $3p^{3-2}P_{1/2}$ lifetime as functions of Z

deviation from jj coupling scheme for high Z-ions. The most sharp feature is happened for the $3s^23d\ {}^2D_{J'}-3p^{3}\ {}^{2S+1}L_J$, $3s3p({}^{1,3}P)3d\ {}^{2S+1}L_J$ transitions (see Figs. 17 - 19). We already mentioned that the $3s^23d\ {}^2D_{J'}$ levels becomes upper levels relative to the nine odd-parity levels for high-Z ions. When it happens, the energy difference between those levels becomes small that causes the rapid decrease of the transition rates. We can see very sharp minima in Figs. 17 - 19. The smooth Z-dependence takes place for the 34 transitions: the nine $3s^23p\ {}^2P_{1/2}-3p^23s\ {}^4P_{1/2,3/2},\ {}^2D_{3/2},\ {}^2S_{1/2},\ {}^2P_{1/2,3/2},\ {}_{3s}^{23}p\ {}^2P_{3/2}-3p^23s\ {}^4P_{3/2,5/2},\ {}^2P_{1/2}$ transitions in Fig. 4; the $3p^23s\ {}^4P_{5/2}-3s3p({}^3P)\ {}^4D_{7/2}$ and $3p^23s\ {}^4P_{3/2}-3s3p({}^3P)\ {}^4P_{5/2}$ transitions in Fig. 5 and 6, respectively; the four quartet-doublet transitions in Fig. 8; the $3p^23s\ {}^2D_{J-3}-3s3p({}^1P)\ {}^2P_{3/2}$ transition in Fig. 9, the three $3p^23s\ {}^2D_{J-3s}3p({}^3P)\ {}^4D_{J'}$ transitions in Fig. 11, the 3 doublet-doublet transitions in Fig. 12; the $3p^23s\ {}^2S_{1/2}-3s3p({}^1P)\ {}^4P_{1/2}$ transition in Fig. 13; the ${}^2P_{3/2}-3p^3\ {}^2D_{5/2},\ {}^3s3p({}^1P)3d\ {}^2D_{5/2}$ transitions in Fig. 15, and the two the ${}^2P_{1/2,3/2}-3s3p({}^3P)3d\ {}^4D_{1/2}$ transitions in Fig. 16. It can be seen from the list of transitions with smooth Z-dependence, that all kind of transitions are included in this list: doublet-doublet, quartet-quartet and doublet-quartet. There are transitions with small J and large J. Only one conclusion we can derived from this list: the smooth Z-dependence is happened more frequently for transition with including the two ground state levels (9 among 17) than from transitions between excited states (25 among 203).

In Table 11, we present our lifetime calculations for the 37 excited levels in Al-like ions from Z=15 up to Z=100. The difference in the lifetimes of the individual multiplet levels is about 10% up to Z=20.

The general trends of the Z-dependence of lifetime data for the $3p^23s^{2S+1}L_J$, $3p^3 \, {}^4S_{3/2}$, and $3s3p({}^3P)3d \, {}^4L_J$ levels in Al-like ions are presented in Figs. 20 and 21. We did not include lifetimes data for $3s^23p \, {}^2P_{3/2}$ since we did not consider magnetic-dipole transitions. The non-zero lifetime data for this levels jumps up by electric dipole (E1) transition for high-Z ions, $Z \ge 57$, when the $3s^23p \, {}^2P_{3/2}$ level becomes above the $3p^23s \, {}^4P_{1/2}$ level . There is no E1 transition from the odd-parity $3s3p({}^3P)3d \, {}^3F_{9/2}$ level into any even-parity levels. It can be seen from Figs. 20 and 21, that the Z-dependence of lifetime data looks more smooth than Z-dependence of transitions rates presented in Figs. 4 - 19. The sharp maximum in the curve of the $3p^23s \, {}^2D_{5/2}$ lifetime is arisen by strong mixing the $3p_{3/2}3p_{3/2}[2]3s_{1/2}$ and $3s_{1/2}3s_{1/2}[0]3d_{5/2}$ states with J=5/2. The largest contribution of these states into the eigenvectors of $3p^23s \, {}^2D_{5/2}$ and $3s_{1/2}3s_{1/2}[0]3d_{5/2}$ states at the Z=50. The $3s^23p \, {}^2P_{3/2} - 3p^23s \, {}^2D_{5/2}$ transition rate in factor 100 is smaller than the $3s^23p \, {}^2P_{3/2} - 3s^23d \, {}^2D_{5/2}$ transition rate. This is why, this strong mixing of $3p_{3/2}3p_{3/2}[2]3s_{1/2}$ and $3s_{1/2}3s_{1/2}[0]3d_{5/2}$ states affects only the first transition with small value of transition rate. The $3s^23p \, {}^2P_{3/2} - 3p^23s \, {}^2D_{5/2}$ transition rate. The $3s^23p \, {}^2P_{3/2} - 3p^23s \, {}^2D_{5/2}$ level in the region of Z=50. We can see the sharp feature in the curves describing the Z-dependence of lifetimes data for $3s^23d \, {}^2D_{3/2}$ and $3s^23d \, {}^2D_{5/2}$ levels in the region of Z=50. We can see the sharp feature in the curves describing the Z-dependence of lifetimes data for $3s^23d \, {}^2D_{3/2}$ and $3s^23d \, {}^2D_{5/2}$ levels in the region of Z=74-75 and Z=83-84, respectively. This sharp change of transition rates can also be explained by str

Table 9: Branching ratios: $A({}^{2}P_{3/2} - {}^{2}S_{1/2})/A({}^{2}P_{1/2} - {}^{2}S_{1/2})$ for transitions $3s^{2}3p {}^{2}P_{J}-3s3p^{2} {}^{2}S_{1/2}$ and $A({}^{2}P_{3/2} - {}^{2}P_{1/2})/A({}^{2}P_{1/2} - {}^{2}P_{1/2})$ transitions $3s^{2}3p {}^{2}P_{J}-3s3p^{2} {}^{2}P_{1/2}$. The experimental ratios are from Ref. [15].

Ion	$^{2}P_{J}$	$-{}^{2}S_{1/2}$	$^{2}P_{J}$ ·	$-{}^{2}P_{1/2}$		
	MBPT	Expt.	MBPT	Expt.		
P^{2+}	1.65	$1.40 {\pm} 0.08$	0.545	$0.60 {\pm} 0.10$		
S^{3+}	1.47	1.12 ± 0.1	0.559	$0.52 {\pm} 0.02$		
Cl^{4+}	1.29	$1.29 {\pm} 0.13$	0.584	$0.58 {\pm} 0.02$		
Ar^{5+}	1.12	$0.87 {\pm} 0.05$	0.620	$0.61 {\pm} 0.03$		
K^{6+}	0.944	0.75 ± 0.10	0.664			
Ca^{7+}	0.918		0.791			
Sc^{8+}	0.563	$0.46 {\pm} 0.04$	0.770			
Ti^{9+}	0.430	$0.43 {\pm} 0.08$	0.852	$0.75 {\pm} 0.15$		
Fe^{13+}	0.0827	$0.060 {\pm} 0.01$	1.51	1.2 ± 0.4		
Ni ¹⁵⁺	0.0223		2.12	$1.6\ \pm 0.4$		

the eigenvector of the $3s^23d\ ^2D_{5/2}$ level gives the $3s_{1/2}3s_{1/2}[0]3d_{5/2}$ state in the interval of Z=15-50 and the $3p_{3/2}3p_{3/2}[2]3s_{1/2}$ state for Z >50. The contribution of the third state, $3p_{1/2}3p_{1/2}[0]3d_{5/2}$, becomes the largest one for the eigenvector of the $3s^23d\ ^2D_{5/2}$ level for Z >84. The inclusion of the $3p_{1/2}3p_{1/2}[0]3d_{5/2}$ state brings so sharp change in the curve for lifetime data of the $3s^23d\ ^2D_{5/2}$ level shown in Fig. 20.

5 Conclusion

We have presented a systematic second-order relativistic MBPT study of reduced matrix elements, oscillator strengths, and transition rates for 3s-3p and 3p-3d electric dipole transitions in aluminiumlike ions with the nuclear charges Z ranging from 15 to 100. Our retarded E_1 matrix elements included correlation corrections from Coulomb and Breit interactions; contributions from negative energy states were also included to insure gauge independence. Both length and velocity forms of the matrix elements were evaluated and small differences, caused by the non locality of the starting HF potential, were found between the two forms. Second-order MBPT transition energies were used in our evaluation of oscillator strengths and transition rates. These calculations were compared with other calculations and with available experimental data. For $Z \ge 20$, we believe that the present theoretical data is more accurate than other theoretical or experimental data for transitions between n= 3 states in Al-like ions. We hope that these results will be useful in analyzing older experiments and planning new ones. Additionally, these calculations provide basic theoretical input amplitudes for calculations of reduced matrix elements, oscillator strengths, and transition rates in four-valence atomic systems.

6 Acknowledgments

The work of WRJ and MSS was supported in part by National Science Foundation Grant No. PHY-95-13179. UIS acknowledges partial support by Grant No. B336454 from LLNL and the JAERI Foreign Researcher Inviting Program.

References

- [1] K.-N. Huang, At. Data Nucl. Data Tables 34, 1 (1986).
- [2] C. Froese Fisher, Phys. Rev. 22, 551 (1980).
- [3] C. Froese Fisher, Physica Scripta 23, 38 (1981).
- [4] B. C. Fawcett, At. Data Nucl. Data Tables 28, 557 (1983).
- [5] C. Froese Fisher and B. Liu, At. Data Nucl. Data Tables 34, 261 (1986).
- [6] L. Ozdemir and H. Karal, J. Quant. Spectrosc. Radiat. Transfer, 62, 655 (1999).
- [7] C. Mendoza, W. Eissner, M. Le Dourneuf, and C. J. Zeippen, J. Phys. B 28, 3485 (1995).

- [8] M. Farrag, E. Luc-Koenig, and J. Sincelle, J. Phys. B 14, 3325 (1981).
- [9] K. Aashamar, T. M. Luke, and J. D. Talman, Physica Scripta 30, 121 (1984).
- [10] M. Hjorth-Jensen and K. Aashamar, Physica Scripta 42, 309 (1990).
- [11] A. K. Bhatia and S. O. Kastner, J. Quant. Spectrosc. Radiat. Transfer 49, 609 (1993).
- [12] R. Marcinek and J. Migdalek, J. Phys. B 26, 1391 (1993).
- [13] C. Lavin, A. B. Alvarez, and I. Martin, J. Quant. Spectrosc. Radiat. Transfer 57, 831 (1997).
- [14] L. Engström, N. Reistad, C. Jupén, and M. Westerlind, Physica Scripta 39, 66 (1989).
- [15] L. Engström, M. Kirm, P. Bengtsson, S. T. Maniak, L. J. Curtis, E. Träbert, J. Doerfert, and J. Granzow, Physica Scripta 52, 516 (1995).
- [16] E. Träbert, R. Hutton, and I. Martinson, Z. Phys. D 5, 125 (1987).
- [17] E. H. Pinnington, W. Ansbacher, E. Träbert, P. H. Heckmann, H. M. Hellmann, and G. Möller, Z. Phys. D 6, 241 (1987).
- [18] E. H. Pinnington, W. Ansbacher, A. Tauheed, E. Träbert, P. H. Heckmann, G. Möller, and J. H. Blanke, Z. Phys. D 17, 5 (1990).
- [19] E. Träbert, C. Wagner, P. H. Heckmann, G. Möller, and T. Brage, Physica Scripta 48, 593 (1993).
- [20] E. Träbert, J. Suleiman, S. Cheng, H. G. Berry, R. W. Dunford, E. P. Kanter, C. Kurtz, A. E. Livingston, K. W. Kukla, F. G. Serpa, and L. J. Curtis, Phys. Rev. A 47, 3805 (1993).
- [21] E. Träbert, J. Doerfert, J. Granzow, R. Bütner, U. Staude, K.-H. Schartner, R. Rymuza, L. Engström, and R. Hutton, Z. Phys. D 32, 295 (1995).
- [22] E. Träbert, U. Staude, P. Bosselmann, K. H. Schartner, P. H. Mokler, and X. Tordoir, Eur. Phys. J. D 2, 117 (1998).
- [23] G. A. Martin, J. R. Fuhr and W. L. Wiese, J. Phys. Chem. Ref. Data, 17, Suppl. 3 (1988).
- [24] K. Mori, W. L. Wiese, T. Shirai, Y. Nakai, K. Ozawa, and T. Kato, At. Data Nucl. Data Tables 34, 79 (1986).
- [25] T. Shirai, T. Nakagaki, J. Sugar and W. L. Wiese, J. Phys. Chem. Ref. Data 21, 273 (1992).
- [26] T. Shirai, Y. Nakai, T. Nakagaki, J. Sugar and W. L. Wiese, J. Phys. Chem. Ref. Data 22, 1279 (1993).
- [27] T. Shirai, T. Nakagaki, K. Okazaki, J. Sugar and W. L. Wiese, J. Phys. Chem. Ref. Data 23, 179 (1994).
- [28] T. Shirai, Y. Funatake, K. Mori, J. Sugar, W.L. Wiese and Y. Nakai, J. Phys. Chem. Ref. Data 19, 127 (1990).
- [29] T. Shirai, A. Mengoni, Y. Nakai, K. Mori, J. Sugar, W. L. Wiese, K. Mori and N. Sakai, J. Phys. Chem. Ref. Data 21, 23 (1992).
- [30] U. I. Safronova, W. R. Johnson, and A. E. Livingston, Phys. Rev. A 60, 996 (1999).
- [31] U. I. Safronova, W. R. Johnson, and H. G. Berry, Phys. Rev. A 61, 052503 (1999).
- [32] M. S. Safronova, W. R. Johnson, and U. I. Safronova, Phys. Rev. A 54, 2850 (1996).
- [33] U.I Safronova, W.R Johnson, and M.S. Safronova, At. Data Nucl. Data Tables 69, 183 (1998).
- [34] U. I. Safronova, W. R. Johnson, M. S. Safronova, and A. Derevianko, Phys. Scr. 59, 286 (1999).
- [35] W. L. Wiese, J. R. Fuhr, and T. M. Deters, J. Phys. Chem. Ref. Data, Monograph No. 7 (1996).

Table 10: Wavelengths (λ in Å), transition rates (A in s⁻¹), oscillator strengths (f), and line strengths (S in a.u.) for Al-like ions with nuclear charge Z=15-100. Numbers in brackets represent powers of 10.

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z =	15			Z=	=16	
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	1144.737	1.74[09]	4.56[-1]	1.03[1]	901.173	3.46[09]	5.63[-1]	1.00[1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^1P)d\ ^2F_{5/2}$	1143.095	1.63[09]	4.78[-1]	7.23[0]	899.337	3.26[09]	5.96[-1]	7.04[0]
$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	1108.233	1.27[09]	1.55[-1]	3.41[0]	842.376	2.16[09]	1.53[-1]	2.55[0]
$p^2(^1D)s^{-2}D_{3/2}$	$p^{2}(^{3}P)p \ ^{2}P_{1/2}$	1108.060	1.40[09]	1.29[-1]	1.89[0]	842.241	2.41[09]	1.29[-1]	1.43[0]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	1063.192	5.54[08]	4.72[-2]	6.60[-1]	761.875	1.10[09]	4.78[-2]	4.80[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	1063.026	1.40[09]	2.37[-1]	3.33[0]	761.985	2.75[09]	2.39[-1]	2.40[0]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	1059.560	1.13[09]	9.47[-2]	1.32[0]	794.524	1.81[09]	8.58[-2]	8.98[-1]
$p^{2}(^{3}P)s^{-2}P_{1/2}^{'}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	1059.384	1.24[09]	2.09[-1]	1.46[0]	758.384	2.58[09]	2.22[-1]	1.11[0]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	1053.270	6.84[08]	1.14[-1]	7.92[-1]	788.571	1.23[09]	1.15[-1]	5.96[-1]
$p^{2}(^{3}P)s^{-4}P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	989.096	2.63[09]	2.58[-1]	5.03[0]	799.699	3.69[09]	2.36[-1]	3.73[0]
$p^2({}^3P)s {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	985.980	1.78[09]	2.59[-1]	3.36[0]	796.346	2.50[09]	2.37[-1]	2.49[0]
$p^2({}^3P)s {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	984.054	8.94[08]	2.60[-1]	1.68[0]	794.252	1.26[09]	2.38[-1]	1.24[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	957.431	3.31[08]	4.55[-2]	5.74[-1]	790.479	4.30[08]	4.04[-2]	4.20[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	957.074	3.38[09]	3.10[-1]	5.85[0]	790.458	4.75[09]	2.96[-1]	4.62[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	955.837	3.66[09]	2.51[-1]	3.15[0]	789.310	5.13[09]	2.40[-1]	2.49[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	933.498	2.16[09]	2.82[-1]	3.47[0]	764.657	3.40[09]	2.98[-1]	3.00[0]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	932.553	2.18[09]	2.85[-1]	5.25[0]	763.860	3.40[09]	2.97[-1]	4.49[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	909.232	2.51[09]	3.11[-1]	3.73[0]	696.949	3.82[09]	2.79[-1]	2.56[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	907.795	1.11[09]	6.84[-2]	8.18[-1]	696.040	1.74[09]	6.33[-2]	5.79[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	906.446	6.84[08]	1.69[-1]	1.01[0]	694.026	1.21[09]	1.73[-1]	7.93[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	905.018	2.09[09]	2.58[-1]	1.54[0]	693.125	3.20[09]	2.30[-1]	1.05[0]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	903.971	1.95[09]	1.19[-1]	1.42[0]	751.821	2.85[09]	1.21[-1]	1.20[0]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	903.843	4.20[09]	5.14[-1]	3.06 0	719.382	6.30[09]	4.90[-1]	2.32[0]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	903.723	4.45[09]	1.09[0]	6.48[0]	719.480	6.86[09]	1.06[0]	5.02[0]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$p^2({}^3P)s {}^2P_{3/2}$	901.217	4.59[09]	5.58[-1]	6.64[0]	748.421	6.63[09]	5.59[-1]	5.49[0]
$s^2({}^1S)p {}^2P_{1/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	899.389	3.58[09]	4.34[-1]	2.57[0]	746.489	5.10[09]	4.27[-1]	2.10[0]
$s^2({}^1S)p {}^2P_{1/2}$	$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	896.662	9.56[08]	2.31[-1]	1.36[0]	743.137	1.38[09]	2.28[-1]	1.12[0]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	892.498	5.47[08]	4.35[-2]	7.66[-1]	713.846	7.93[08]	4.03[-2]	5.69[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	892.471	5.23[09]	6.25[-1]	1.10[1]	713.947	7.67[09]	5.87[-1]	8.26 0
$p^2(^1D)s^{-2}D_{3/2}^{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	892.275	5.04[09]	6.06[-1]	7.10[0]	713.656	7.45[09]	5.71[-1]	5.35[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	887.621	1.48[09]	1.75[-1]	2.05[0]	676.797	2.57[09]	1.77[-1]	1.58[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	887.073	7.96[09]	1.41[0]	1.64[1]	676.189	1.32[10]	1.36[0]	1.21[1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	884.965	6.49[09]	1.52[0]	8.86[0]	674.041	1.06[10]	1.45[0]	6.41[0]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	879.340	1.87[09]	3.25[-1]	3.77[0]	683.711	2.89[09]	3.03[-1]	2.73[0]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	875.977	2.01[09]	3.09[-1]	5.37[0]	680.265	3.12[09]	2.88[-1]	3.87[0]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{5/2}$	858.672	5.83[09]	9.63[-1]	1.10[1]	664.063	9.20[09]	9.14[-1]	7.99 0
$s^2({}^1S)p {}^2P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	858.385	9.99[08]	1.11[-1]	1.25[0]	664.047	1.58[09]	1.05[-1]	9.14[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	855.610	2.35[09]	2.58[-1]	4.37[0]	670.209	3.36[09]	2.26[-1]	2.99[0]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	854.268	1.61[09]	1.18[-1]	1.98[0]	668.883	2.36[09]	1.06[-1]	1.39[0]
$s^{2}(^{1}S)p^{2}P_{1/2}$	$s^{2}(^{1}S)d^{2}D_{3/2}$	854.253	4.91[09]	1.08[0]	6.04[0]	659.884	7.73[09]	1.01[0]	4.40 0
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	853.277	1.44[09]	2.37[-1]	2.66[0]	667.853	2.41[09]	2.43[-1]	2.13[0]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	851.078	3.05[09]	1.66[-1]	1.86[0]	665.642	4.51[09]	1.50[-1]	1.32[0]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	850.504	1.86[09]	4.02[-1]	2.25[0]	665.068	3.02[09]	4.00[-1]	1.75[0]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	849.642	7.79[08]	8.45[-2]	4.72[-1]	664.179	1.31[09]	8.69[-2]	3.80[-1]
$p^2[^3P)s \ ^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	841.946	4.27[08]	3.02[-2]	5.02[-1]	659.233	7.2408	3.14-2	4.09[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	841.512	2.28[09]	2.42[-1]	4.02[0]	658.784	3.64[09]	2.37[-1]	3.08 0
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	841.151	6.61[09]	9.38[-1]	1.55[1]	658.441	9.96[09]	8.60[-1]	1.12[1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	840.039	1.24[09]	6.57[-2]	7.28-1	657.340	1.99[09]	6.48[-2]	5.60[-1]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	839.688	3.69[09]	3.90[-1]	4.32[0]	656.953	5.67[09]	3.67[-1]	3.17[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^3P)d \; {}^4D_{5/2}^{5/2}$	839.256	4.33[09]	6.85[-1]	7.60[0]	656.507	6.30[09]	6.11[-1]	5.28[0]
'	/								

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=17			Z=	=18	
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp({}^1P)d \; {}^2F_{7/2}$	738.759	5.06[09]	5.50[-1]	8.06[0]	636.428	6.53[09]	5.28[-1]	6.64[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	736.811	4.80[09]	5.85[-1]	5.68[0]	634.254	6.21[09]	5.64[-1]	4.70[0]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	716.930	2.80[09]	1.44[-1]	2.04[0]	620.929	3.52[09]	1.36[-1]	1.66[0]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	716.354	3.14[09]	1.21[-1]	1.14[0]	620.439	3.98[09]	1.15[-1]	9.39[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	686.474	2.15[09]	7.60[-2]	6.88[-1]	596.643	2.56[09]	6.81[-2]	5.37[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	683.868	4.72[09]	2.22[-1]	2.99[0]	595.150	5.86[09]	2.08[-1]	2.44[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	679.963	3.22[09]	2.23[-1]	2.00[0]	590.822	4.00[09]	2.09[-1]	1.63[0]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	679.509	1.67[09]	1.16[-1]	5.18[-1]	588.883	2.29[09]	1.19[-1]	4.62[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	677.494	1.63[09]	2.24[-1]	1.00[0]	588.050	2.03[09]	2.11[-1]	8.15[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^1P)d\ ^2P_{3/2}$	673.314	6.17[09]	2.81[-1]	3.73[0]	581.182	8.08[09]	2.73[-1]	3.13[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	673.127	6.64[09]	2.26[-1]	2.00[0]	580.699	8.63[09]	2.18[-1]	1.66[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	649.587	4.59[09]	2.92[-1]	2.50[0]	564.487	5.95[09]	2.84[-1]	2.11[0]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	648.779	4.55[09]	2.88[-1]	3.69[0]	563.672	5.76[09]	2.75[-1]	3.06[0]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	639.709	3.84[09]	1.18[-1]	9.93[-1]	556.395	4.92[09]	1.14[-1]	8.36[-1]
$s^{2}(^{1}S)p \ ^{2}P_{3/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	635.827	8.66[09]	5.27[-1]	4.41[0]	552.132	1.08[10]	4.91[-1]	3.57[0]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	633.657	6.57[09]	3.95[-1]	1.65[0]	549.640	7.94[09]	3.60[-1]	1.30[0]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	629.848	1.81[09]	2.16[-1]	8.97[-1]	545.480	2.26[09]	2.02[-1]	7.25[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	617.557	4.11[09]	2.36[-1]	1.92[0]	519.099	5.22[09]	2.12[-1]	1.44[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	616.283	1.66[09]	4.73[-2]	3.85[-1]	517.823	2.13[09]	4.28[-2]	2.92[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	613.939	7.79[08]	8.78[-2]	3.55[-1]	515.386	9.57[08]	7.64[-2]	2.59[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	612.680	4.09[09]	2.30[-1]	9.29[-1]	514.128	5.56[09]	2.21[-1]	7.46[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	597.842	9.93[09]	5.30[-1]	6.26[0]	508.492	1.21[10]	4.70[-1]	4.72[0]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	597.734	1.02[09]	3.62[-2]	4.29[-1]	508.379	1.23[09]	3.18[-2]	3.20[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	597.611	7.51[08]	6.05[-2]	4.74[-1]	508.226	9.35[08]	5.45[-2]	3.64[-1]
$p^{2}(^{1}D)s^{-2}D_{3/2}^{-3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	597.504	9.67[09]	5.14[-1]	4.06[0]	508.113	1.19[10]	4.57[-1]	3.06[0]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	576.264	9.43[09]	9.40[-1]	3.57[0]	485.076	1.20[10]	8.43[-1]	2.69[0]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	575.154	8.36[09]	4.16[-1]	1.58[0]	483.961	1.01[10]	3.56[-1]	1.13[0]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	574.803	4.95[09]	2.46[-1]	1.86[0]	483.633	5.29[09]	1.86[-1]	1.18 0
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	574.708	2.36[09]	5.85[-2]	4.42[-1]	483.416	2.75[09]	4.82[-2]	3.07[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	571.667	1.86[09]	1.81[-1]	6.84[-1]	480.409	2.69[09]	1.85[-1]	5.88[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	571.573	4.22[09]	2.07[-1]	7.78[-1]	480.195	4.66[09]	1.61[-1]	5.10[-1]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	562.832	3.97[09]	2.82[-1]	2.09[0]	473.279	4.89[09]	2.47[-1]	1.54[0]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	559.264	4.31[09]	2.69[-1]	2.97[0]	469.602	5.35[09]	2.36[-1]	2.19[0]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	557.461	3.80[09]	1.77[-1]	1.30[0]	472.128	5.11[09]	1.70[-1]	1.06 0
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	556.826	1.81[10]	1.27[0]	9.27[0]	471.446	2.22[10]	1.12[0]	6.92[0]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	554.511	1.43[10]	1.32[0]	4.82[0]	469.055	1.71[10]	1.13[0]	3.48[0]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	549.961	4.07[09]	1.85[-1]	2.01[0]	468.713	4.48[09]	1.48[-1]	1.37[0]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	548.618	2.95[09]	8.89[-2]	9.64[-1]	467.337	3.36[09]	7.36[-2]	6.78[-1]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	547.433	3.61[09]	2.44[-1]	1.75[0]	466.024	5.16[09]	2.52[-1]	1.54[0]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$s^{2}(^{1}S)d^{2}D_{3/2}^{3/2}$	547.297	2.16[09]	9.65[-2]	6.98[-1]	463.454	2.67[09]	8.57[-2]	5.24[-1]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	547.259	1.25[10]	8.41[-1]	6.07[0]	463.346	1.53[10]	7.40[-1]	4.52[0]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	545.151	5.74[09]	1.28[-1]	9.19[-1]	463.619	6.61[09]	1.07[-1]	6.51[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	544.509	4,41[09]	3.93[-1]	1.41[0]	462.948	6.21[09]	4.00[-1]	1.22[0]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	543.563	2.03[09]	9.01[-2]	3.23[-1]	461.910	3.17[09]	1.01[-1]	3.09[-1]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	542.861	1.06[10]	9.39[-1]	3.35 0	458.758	1.30[10]	8.24[-1]	2.49[0]
$p^{2}[{}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	541.297	1.12[09]	3.31[-2]	3.53[-1]	461.639	1.71[09]	3.62[-2]	3.31[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	540.823	5.22[09]	2.29[-1]	2.44[0]	461.136	7.03[09]	2.24[-1]	2.04[0]
$p^2({}^3P)s {}^4P_{\rm E/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	540.504	1.32[10]	7.69[-1]	8.22 0	460.855	1.63[10]	6.93[-1]	6.31[0]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	539.297	2.92[09]	6.38[-2]	4.52[-1]	459.576	4.17[09]	6.63[-2]	4.01[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{1}P)d {}^{2}P_{2/2}$	538.862	2.18[09]	1.90[-1]	6.73[-1]	453.967	3,09[09]	1.90[-1]	5.70[-1]
$p^2({}^3P)s^{-4}P_{2/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	538.848	7,70[09]	3.36[-1]	2.39[0]	459.030	9,90[09]	3,11[-1]	1.88[0]
· · · · · · · · · · · · · · · · · · ·	r ()- 23/2		[00]	[+]	L ~]		[00]	[+]	- L - J

Lower level	Upper level	λ	A	f	S	λ	A	f	S
	11		Z=	=19			Z=	=20	
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}F_{7/2}$	554.799	8.19[09]	5.06[-1]	5.53[0]	484.034	1.02[10]	4.76[-1]	4.54[0]
$s^2({}^1S)d {}^2D_{3/2}^{3/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	552.418	7.84[09]	5.37[-1]	3.92[0]	481.935	9.79[09]	5.11[-1]	3.24[0]
$p^2(^1D)s^{-2}D_{5/2}$	$p^{2}({}^{3}P)p {}^{2}P_{3/2}$	547.040	4.28[09]	1.28[-1]	1.38[0]	485.907	6.49[09]	1.53[-1]	1.47[0]
$p^2(^1D)s^{-2}D_{3/2}$	$p^{2}(^{3}P)p^{2}P_{1/2}$	546.661	4.88[09]	1.10[-1]	7.87[-1]	492.263	7.1809	1.30[-1]	8.46[-1]
$s^2({}^1S)p {}^2P_{3/2}$	$p^2({}^1S)s {}^2S_{1/2}$	526.655	2.92[09]	6.07[-2]	4.21[-1]	461.961	5.09[09]	8.17[-2]	4.96[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	526.564	7.02[09]	1.95[-1]	2.03[0]	472.055	8.23[09]	1.84[-1]	1.72[0]
$p^2({}^3P)s {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	521.810	4.81[09]	1.97[-1]	1.35[0]	466.867	5.69[09]	1.86[-1]	1.14[0]
$p^2({}^3P)s {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	518.720	2.46[09]	1.99[-1]	6.78[-1]	463.434	2.92[09]	1.88[-1]	5.73[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	518.102	3.09[09]	1.24[-1]	4.25[-1]	452.774	5.54[09]	1.71[-1]	5.09[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	511.811	1.00[10]	2.63[-1]	2.66[0]	449.142	1.22[10]	2.45[-1]	2.17[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	511.588	1.05[10]	2.06[-1]	1.39[0]	449.330	1.25[10]	1.89[-1]	1.12[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	498.770	7.48[09]	2.79[-1]	1.83[0]	440.195	9.37[09]	2.72[-1]	1.57[0]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	497.963	7.06[09]	2.63[-1]	2.58[0]	439.083	8.49[09]	2.46[-1]	2.13[0]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s {}^2P_{1/2}$	492.047	6.18[09]	1.12[-1]	7.27[-1]	431.702	7.99[09]	1.12[-1]	6.35[-1]
$s^2({}^1S)p {}^2P_{3/2}$	$p^2({}^3P)s {}^2P_{3/2}$	487.432	1.30[10]	4.62[-1]	2.97[0]	426.944	1.53[10]	4.17[-1]	2.35[0]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^3P)s {}^2P_{1/2}$	484.574	9.32[09]	3.28[-1]	1.04[0]	423.669	1.01[10]	2.74[-1]	7.65[-1]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^3P)s {}^2P_{3/2}$	480.097	2.76[09]	1.91[-1]	6.02[-1]	419.086	3.27[09]	1.72[-1]	4.75[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	451.282	6.42[09]	1.96[-1]	1.17[0]	400.118	9.40[09]	2.26[-1]	1.19[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	449.576	2.64[09]	4.01[-2]	2.37[-1]	397.863	3.85[09]	4.57[-2]	2.39[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	447.396	1.14[09]	6.82[-2]	2.01[-1]	396.027	1.64[09]	7.74[-2]	2.02[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	446.187	1.43[10]	4.29[-1]	3.78[0]	396.731	1.65[10]	3.89[-1]	3.06[0]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	446.116	1.45[09]	2.87[-2]	2.53[-1]	396.704	1.64[09]	2.58[-2]	2.02[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	445.867	1.14[09]	5.13[-2]	3.00[-1]	396.395	1.36[09]	4.80[-2]	2.51[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	445.796	1.40[10]	4.18[-1]	2.46[0]	396.368	1.63[10]	3.83[-1]	2.00[0]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	445.720	7.38[09]	2.20[-1]	6.46[-1]	393.819	1.12[10]	2.59[-1]	6.71[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	422.172	1.45[10]	7.78[-1]	2.16[0]	373.580	1.65[10]	6.92[-1]	1.70[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	421.868	3.37[09]	4.51[-2]	2.50[-1]	374.239	3.69[09]	3.88[-2]	1.91[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	421.822	5.71[09]	1.52[-1]	8.47[-1]	374.083	4.80[09]	1.01[-1]	4.95[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	420.679	1.16[10]	3.08[-1]	8.53[-1]	371.614	1.17[10]	2.43[-1]	5.93[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	418.470	5.44[09]	1.43[-1]	3.94[-1]	370.658	5.60[09]	1.15[-1]	2.82[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	418.425	4.25[09]	2.23[-1]	6.16[-1]	370.505	6.90[09]	2.85[-1]	6.94[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	413.973	5.93[09]	2.29[-1]	1.25[0]	367.735	6.89[09]	2.10[-1]	1.01[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	413.113	6.96[09]	1.79[-1]	9.70[-1]	367.880	9.64[09]	1.96[-1]	9.48[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	412.371	2.68[10]	1.02[0]	5.57[0]	367.079	3.10[10]	9.42[-1]	4.56[0]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{7/2}$	410.027	6.53[09]	2.19[-1]	1.78[0]	363.462	7.63[09]	2.02[-1]	1.45[0]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	409.855	1.95[10]	9.74[-1]	2.64[0]	364.420	2.02[10]	8.02[-1]	1.93[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	409.583	4.58[09]	1.15[-1]	9.31[-1]	364.480	4.37[09]	8.68[-2]	6.25[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	408.178	3.49[09]	5.79[-2]	4.68[-1]	363.072	3.25[09]	4.27[-2]	3.07[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	406.701	7.07[09]	2.64[-1]	1.41[0]	361.379	9.43[09]	2.76[-1]	1.31[0]
$s^2(^1S)p\ ^2P_{3/2}$	$s^2(^1S)d\ ^2D_{3/2}$	405.304	3.22[09]	7.94[-2]	4.23[-1]	358.580	3.76[09]	7.27[-2]	3.43[-1]
$s^2(^1S)p\ ^2P_{3/2}$	$s^2(^1S)d\ ^2D_{5/2}$	405.122	1.84[10]	6.80[-1]	3.62[0]	358.557	2.12[10]	6.17[-1]	2.90[0]
$p^2({}^3P)s\;{}^4P_{3/2}$	$sp({}^3P)d\; {}^4P_{1/2}$	404.159	6.74[09]	8.27[-2]	4.40[-1]	358.771	5.48[09]	5.31[-2]	2.50[-1]
$p^2[^3P)s\ ^4P_{5/2}$	$sp({}^{3}P)d \;{}^{4}D_{3/2}$	403.526	2.55[09]	4.15[-2]	3.31[-1]	358.982	3.72[09]	4.79[-2]	3.39[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	403.449	8.53[09]	4.17[-1]	1.11[0]	357.951	1.14[10]	4.38[-1]	1.03[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	403.013	9.10[09]	2.23[-1]	1.77[0]	358.496	1.15[10]	2.21[-1]	1.57[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{7/2}$	402.791	1.93[10]	6.26[-1]	4.99[0]	358.355	2.22[10]	5.71[-1]	4.04[0]
$p^2({}^3P)s\;{}^4P_{1/2}$	$sp({}^{3}P)d\;{}^{4}P_{1/2}$	402.303	5.23[09]	1.27[-1]	3.37[-1]	356.740	9.27[09]	1.78[-1]	4.17[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{1/2}$	401.380	6.14[09]	7.44[-2]	3.92[-1]	356.689	9.50[09]	9.06[-2]	4.25[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	400.728	1.19[10]	2.88[-1]	1.52[0]	355.974	1.39[10]	2.64[-1]	1.24[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp(^{3}P)d^{-4}D_{5/2}$	400.223	9.91[09]	3.56[-1]	1.88[0]	355.496	1.01[10]	2.88[-1]	1.35[0]
$s^2({}^1S)p \; {}^2P_{1/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	400.220	1.57[10]	7.56[-1]	1.99[0]	353.020	1.84[10]	6.86[-1]	1.59[0]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=21			Z=	=22	
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2D_{5/2}$	546.636	1.31[09]	5.85[-2]	6.32[-1]	495.805	1.57[09]	5.82[-2]	5.69[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}F_{7/2}$	443.824	1.17[10]	4.63[-1]	4.05[0]	402.848	1.35[10]	4.40[-1]	3.51[0]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	440.932	1.14[10]	5.00[-1]	2.89[0]	399.692	1.33[10]	4.78[-1]	2.52[0]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	439.392	6.30[09]	9.14[-2]	5.28[-1]	400.277	7.39[09]	8.90[-2]	4.68[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	437.749	5.49[09]	1.05[-1]	9.10[-1]	397.807	6.39[09]	1.01[-1]	7.95[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	427.531	2.76[09]	3.78[-2]	2.13[-1]	390.142	2.80[09]	3.20[-2]	1.64[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	427.512	9.50[09]	1.74[-1]	1.47[0]	390.535	1.08[10]	1.64[-1]	1.27[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	421.885	6.59[09]	1.76[-1]	9.79[-1]	384.467	7.53[09]	1.67[-1]	8.47[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	418.099	3.40[09]	1.78[-1]	4.91[-1]	380.298	3.91[09]	1.69[-1]	4.25[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	417.264	4.90[09]	1.28[-1]	3.51[-1]	379.003	6.50[09]	1.40[-1]	3.50[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	413.010	1.41[10]	2.40[-1]	1.96[0]	375.583	1.40[10]	1.96[-1]	1.46[0]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	412.940	1.48[10]	1.89[-1]	1.03[0]	375.570	1.70[10]	1.80[-1]	8.90[-1]
$s^2({}^1S)d {}^2D_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	405.213	1.11[10]	2.73[-1]	1.46[0]	369.597	1.19[10]	2.44[-1]	1.18[0]
$s^2({}^1S)d {}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	404.547	9.87[09]	2.42[-1]	1.93[0]	369.064	1.14[10]	2.31[-1]	1.69[0]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	401.366	9.16[09]	1.10[-1]	5.83[-1]	366.566	1.09[10]	1.11[-1]	5.33[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s {}^2P_{3/2}$	396.105	1.79[10]	4.22[-1]	2.20[0]	361.066	2.04[10]	3.99[-1]	1.90 0
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^3P)s {}^2P_{1/2}$	392.305	1.19[10]	2.75[-1]	7.10-1	356.715	1.28[10]	2.44[-1]	5.72[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	387.277	3.87[09]	1.74[-1]	4.44[-1]	351.504	4.46[09]	1.65[-1]	3.82[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	360.460	7.73[09]	1.51[-1]	7.16-1	328.285	8.60[09]	1.40[-1]	6.02[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	358.668	1.85[09]	2.37[-2]	1.68[-1]	326.724	2.03[09]	2.16[-2]	1.40[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	358.646	1.88[10]	3.63[-1]	2.57[0]	326.646	2.10[10]	3.34[-1]	2.17[0]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	358.194	1.86[10]	3.57[-1]	1.69[0]	326.144	2.08[10]	3.32[-1]	1.43[0]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	358.172	1.61[09]	4.66[-2]	2.20[-1]	326.066	1.89[09]	4.52[-2]	1.94[-1]
$p^{2}(^{3}P)s^{-2}P_{2/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	358.077	3.25[09]	3.13[-2]	1.48[-1]	325,499	3.68[09]	2.92[-2]	1.25[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	353.883	1.10[10]	2.07[-1]	4.81[-1]	321.155	1.36[10]	2.11[-1]	4.47[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	337.860	2.03[10]	6.95[-1]	1.55[0]	307.452	2.33[10]	6.60[-1]	1.34[0]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	337.180	4.78[09]	4.08[-2]	1.81[-1]	306.777	5.49[09]	3.88[-2]	1.57[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	335.766	1.40[10]	2.37[-1]	5.25[-1]	305.007	1.44[10]	2.02[-1]	4.05[-1]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	333.459	6.70[09]	1.12[-1]	2.45[-1]	302.915	7.03[09]	9.71[-2]	1.93[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp(^{1}P)d^{2}P_{2/2}^{1/2}$	333.127	1.36[10]	4.52[-1]	9.92[-1]	302.441	2.44[10]	6.69[-1]	1.33 0
$p^2({}^1D)s^2D_2/2$	$sp({}^{3}P)d {}^{2}F_{5/2}$	332.357	7.97[09]	1.98[-1]	8.68[-1]	302.981	8.93[09]	1.85[-1]	7.39[-1]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{1}P)d {}^{2}D_{2/2}$	332.011	1.40[10]	2.30[-1]	1.01[0]	302.780	1.92[10]	2.63[-1]	1.05[0]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	331.190	3.52[10]	8.70[-1]	3.80[0]	301.941	3.96[10]	8.11[-1]	3.22[0]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	328.867	3.98[09]	6.45[-2]	4.18[-1]	299.981	3.53[09]	4.78[-2]	2.83[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{2/2}$	328.403	1.73[10]	5.59[-1]	1.21[0]	299.018	9.72[09]	2.61[-1]	5.13[-1]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	327.789	8.92[09]	1.92[-1]	1.25 0	298.080	1.02[10]	1.82[-1]	1.07[0]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	327.491	2.76[09]	2.96[-2]	1.91[-1]	298.655	2.19[09]	1.95[-2]	1.15[-1]
$s^{2}(^{1}S)p^{2}P_{2/2}$	$s^{2}(^{1}S)d^{2}D_{2/2}$	325.871	4.34[09]	6.92[-2]	2.96[-1]	297.031	4.89[09]	6.52[-2]	2.54[-1]
$p^2({}^3P)s {}^4P_{2/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	325.527	1.20[10]	2.86[-1]	1.22[0]	296.388	1.46[10]	2.89[-1]	1.13[0]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$s^{2}(^{1}S)d^{2}D_{5/2}$	325.510	2.41[10]	5.78[-1]	2.47[0]	296.567	2.69[10]	5.32[-1]	2.08[0]
$n^{2}[{}^{3}P)s {}^{4}P_{5/2}$	$sn({}^{3}P)d {}^{4}D_{2/2}$	323.576	5.11[09]	5.39[-2]	3.43[-1]	294.643	6.62[09]	5.72[-2]	3.34[-1]
$p^{2}(^{3}P)s^{4}P_{5/2}$	$s_{P}({}^{3}P)d {}^{4}D_{5/2}$	323.155	1.39[10]	2.19[-1]	1.40[0]	294.313	1.64[10]	2.13[-1]	1.24[0]
$p^{2}({}^{3}P)s^{4}P_{r/2}$	$sp(^{3}P)d^{-4}D_{7/2}$	$323\ 110$	2.51[10]	5 22[-1]	3.34[0]	294 370	2.78[10]	4.82[-1]	2.80[0]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	321.939	1.45[10]	4.51[-1]	9.57[-1]	292.631	1.76[10]	4.50[-1]	8.67[-1]
$p^2({}^3P)s {}^4P_{2/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	321.011	1.43[10]	1.11[-1]	4.68[-1]	291.719	1.86[10]	1.18[-1]	4.55[-1]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	320.773	1.62[10]	2.51[-1]	5.30[-1]	291.585	2.33[10]	2.98[-1]	5.72[-1]
$p^2({}^3P)s {}^4P_{2/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	320.343	1.54[10]	2.37[-1]	1.00[0]	291.176	1.66[10]	2.10[-1]	8.04[-1]
$n^2({}^3P)s {}^4P_{2/2}$	$sn({}^{3}P)d {}^{4}D_{r/2}$	319 930	1.01[10]	2.32[-1]	9.78[-1]	290.854	9.87[09]	1.88[-1]	7.18[-1]
$s^{2}(^{1}S)n^{2}P_{1/2}$	$s^{2}({}^{1}S)d {}^{2}D_{2}/s$	319 873	2.09[10]	6.42[-1]	1.35[0]	290.530	2.35[10]	5.95[-1]	1.14[0]
$n^2({}^3P)s {}^4P_{1/2}$	$sn({}^{3}P)d {}^{4}D_{1/2}$	318 814	7 86[00]	1 20[-1]	2.52[-1]	289 312	357[00]	$4 \ 48[-9]$	8 52[-2]
$P(1)^{3}P(1/2)$ $n^{2}(^{3}P)s^{4}P_{1/2}$	$sp(1)a D_{1/2}$ $sn(^{3}P)d ^{4}D_{2/2}$	318 155	2 49[09]	755[-2]	1.52[-1] 1.58[-1]	288.778	1 46[00]	$\frac{1}{3} \frac{10}{65} \frac{2}{2}$	6.94[-2]
r (1) ⁵ 1/2	$P(1)^{\alpha} D_3/2$	910.100	2.10[00]	1.00[4]	[]	200,110	1,10[00]	0.00[2]	5.5 <u>1</u> <u>2</u>]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=23			Z=	=24	
$p^2({}^3P)s {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	503.096	1.85[09]	7.04[-2]	2.33[-1]	461.162	2.25[09]	7.19[-2]	2.18[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p\;{}^2D_{5/2}$	453.257	1.85[09]	5.71[-2]	5.12[-1]	417.063	2.15[09]	5.61[-2]	4.61[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^1P)d^{-2}F_{7/2}$	368.677	1.55[10]	4.22[-1]	3.07[0]	339.623	1.76[10]	4.04[-1]	2.72[0]
$p^2(^1D)s^{-2}D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	367.013	8.46[09]	8.52[-2]	4.13[-1]	338.429	9.56[09]	8.24[-2]	3.67[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	365.254	1.53[10]	4.60[-1]	2.22[0]	335.934	1.75[10]	4.45[-1]	1.97[0]
$p^2(^1D)s^{-2}D_{5/2}$	$p^{2}({}^{3}P)p {}^{2}P_{3/2}$	364.920	7.20[09]	9.57[-2]	6.90[-1]	337.284	7.96[09]	9.03[-2]	6.03[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$p^2({}^3P)p {}^4S_{3/2}$	359.269	1.21[10]	1.56[-1]	1.11[0]	332.451	1.34[10]	1.48[-1]	9.72[-1]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$p^2({}^1S)s {}^2S_{1/2}$	358.848	2.62[09]	2.54[-2]	1.20[-1]	332.240	2.29[09]	1.90[-2]	8.32[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$p^{2}({}^{3}P)p {}^{4}S_{3/2}$	352.762	8.53 09	1.60[-1]	7.40[-1]	325.513	9.5309	1.52[-1]	6.50[-1]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$p^{2}({}^{3}P)p {}^{4}S_{3/2}$	348.185	4.44[09]	1.62[-1]	3.71[-1]	320.503	5.01[09]	1.54[-1]	3.26[-1]
$s^{2}(^{1}S)p^{2}P_{1/2}^{1/2}$	$p^2({}^1S)s^2S_{1/2}$	346.799	8.42[09]	1.52[-1]	3.47[-1]	319.250	1.07[10]	1.65[-1]	3.46[-1]
$s^{2}({}^{1}S)d {}^{2}D_{z/2}$	$sn({}^{1}P)d {}^{2}P_{2/2}$	344.192	1.18[10]	1.39[-1]	9.47[-1]	317.406	1.00[10]	1.01[-1]	6.36[-1]
$s^{2}({}^{1}S)d {}^{2}D_{2/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	344 169	1.94[10]	1 71[-1]	7 79[-1]	317 312	2.17[10]	1.64[-1]	6 86[-1]
$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	$sp(1P)d^{-2}P_{n/2}$ $sn(1P)d^{-2}P_{n/2}$	343 279	3 42[09]	6.04[-2]	2.73[-1]	316 315	6 01[09]	9.04[-2]	3.77[-1]
$s^{2}({}^{1}S)d^{2}D_{r/2}$	$sp(1P)d^{-2}D_{2}/2$	340 200	7 20[00]	8.45[_2]	5.60[-1]	314 412	1.15[10]	1 13[-1]	7.02[-1]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp(1)d \ D_{3/2}$ $sp(1P)d \ ^2D_{3/2}$	340.200	7.20[00]	8.45[_2]	5.60[_1]	314.412	1.15[10] 1.15[10]	1.10[1] 1.13[1]	7.02[1] 7.02[-1]
$s^{2}(^{1}S)d^{2}D_{-}$	$sp(1)a D_{3/2}$ $sp(1P)d^2D_{-}$	330 406	1 10[10]	1 90[-2]	8 47[_1]	313 3/1	1 01[10]	1.10[-1] 1.50[-1]	6.17[-1]
$s^{2}(1S)d^{2}D$	$s_P(1) u D_{3/2}$ $s_P(1P) d^2 D$	330 066	1 20[10]		1 /0[0]	313 967	1 46[10]	2.00[-1] 2.15[1]	1 33[0]
$s (D)a D_{5/2}$ $a^2({}^1S)n {}^2D$	$p(1)a D_{5/2}$ $p^2(^{3}D)a^{2}D$	337 381	1.29[10] 1.20[10]	2.20[-1] 1 11[1]	1.49[0]	219 192	1.50[10]	2.10[-1] 1 11[1]	1.55[0]
$s(S)p_{13/2}$ $s^2(1S)p^2D$	$p(1)s I_{1/2}$ $r^{2}(^{3}D) s^{2}D$	007.201 991 609	1.30[10] 2.21[10]	1.11[-1] 9.01[1]	4.92[-1] 1.66[0]	206 241	1.52[10] 2.50[10]	1.11[-1] 2.64[1]	4.57[-1] 1.47[0]
$s(S)p_{3/2}$	$p(\Gamma)s\Gamma_{3/2}$	001.000 006.616	2.31[10] 1.24[10]	0.01[-1] 0.14[-1]	1.00[0] 4.61[1]	200.241	2.39[10] 1.97[10]	3.04[-1] 1.96[1]	1.47[0]
$s(S)p_{1/2}$	$p(P)s P_{1/2}$	020.010 201.000	1.34[10] 5.00[00]	2.14[-1] 1 EQ[1]	4.01[-1]	000.002 005.064	1.37[10]	1.00[-1]	3.00[-1] 3.05[-1]
$s^{-}(^{-}S)p^{-}P_{1/2}$	$p^{-}(^{-}P)s^{-}P_{3/2}$	321.288	0.09[09]	1.08[-1]	3.34[-1]	290.204	0.00[09]	1.02[-1]	2.95[-1]
$p^{2}({}^{\circ}P)s {}^{2}P_{3/2}$	$sp(^{\circ}P)a \ ^{\circ}P_{3/2}$	301.727	9.29[09]	1.28[-1]	5.04[-1]	279.395	9.83[09]	1.10[-1]	4.24[-1]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	300.028	2.20[09]	1.98[-2]	1.17[-1]	277.336	2.36[09]	1.82[-2]	9.95[-2]
$p^{2}({}^{1}D)s {}^{2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	299.887	2.31[10]	3.12[-1]	1.85[0]	277.126	2.52[10]	2.91[-1]	1.59[0]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	299.317	2.32[10]	3.11[-1]	1.23[0]	276.467	2.55[10]	2.92[-1]	1.07[0]
$p^{2}({}^{1}D)s {}^{2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	299.178	2.21[09]	4.45[-2]	1.75[-1]	276.259	2.57[09]	4.43[-2]	1.61[-1]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	298.527	4.02[09]	2.69[-2]	1.06[-1]	275.755	4.32[09]	2.47[-2]	8.95[-2]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	294.070	1.66[10]	2.16[-1]	4.16[-1]	271.232	1.99[10]	2.19[-1]	3.91[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	282.230	2.65[10]	6.34[-1]	1.18[0]	260.850	3.00[10]	6.13[-1]	1.05[0]
$p^2({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	281.596	6.29[09]	3.75[-2]	1.39[-1]	260.356	7.17[09]	3.65[-2]	1.25[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	279.428	1.45[10]	1.70[-1]	3.13[-1]	257.675	1.43[10]	1.42[-1]	2.41[-1]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	278.585	9.92[09]	1.73[-1]	6.36[-1]	257.948	1.08[10]	1.62[-1]	5.52[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	278.585	9.92[09]	1.73[-1]	6.36[-1]	257.948	1.08[10]	1.62[-1]	5.52[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	278.400	2.22[10]	2.58[-1]	9.45[-1]	257.676	2.35[10]	2.33[-1]	7.93[-1]
$p^2({}^3P)s\;{}^2P_{1/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	277.627	7.23[09]	8.36[-2]	1.53[-1]	256.320	7.28[09]	7.17[-2]	1.21[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	277.575	4.36[10]	7.56[-1]	2.76[0]	256.906	4.78[10]	7.10[-1]	2.40[0]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	277.048	3.42[10]	7.88[-1]	1.44[0]	255.669	3.99[10]	7.84[-1]	1.32[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^3P)d\;{}^4P_{5/2}$	276.043	3.15[09]	3.60[-2]	1.97[-1]	255.854	2.88[09]	2.82[-2]	1.43[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d\;{}^{2}F_{7/2}$	273.347	1.15[10]	1.72[-1]	9.25[-1]	252.376	1.27[10]	1.62[-1]	8.11[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2(^1S)d\ ^2D_{3/2}$	273.127	5.52[09]	6.16[-2]	2.22[-1]	252.923	6.15[09]	5.88[-2]	1.97[-1]
$s^{2}(^{1}S)p \ ^{2}P_{3/2}$	$s^2(^1S)d\ ^2D_{5/2}$	272.552	2.97[10]	4.96[-1]	1.78[0]	252.230	3.24[10]	4.65[-1]	1.54[0]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	272.186	1.73[10]	2.88[-1]	1.03 0	251.725	1.97[10]	2.82[-1]	9.33[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	270.947	2.22[09]	2.44[-2]	8.69-2	250.534	3.35[09]	3.16[-2]	1.04[-1]
$p^2[^3P)s \ ^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	270.487	8.00 09	5.83[-2]	3.12[-1]	249.969	9.21[09]	5.78[-2]	2.85[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	270.413	3.06[10]	4.47[-1]	2.39[0]	250.079	3.33[10]	4.16[-1]	2.05[0]
$p^2({}^3P)s {}^4P_{\rm E/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	270.257	1.89[10]	2.07[-1]	1.11[0]	249.836	2.13[10]	1.99[-1]	9.83[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	268.239	2.03[10]	4.36[-1]	7.70[-1]	247.556	2.26[10]	4.15[-1]	6.77[-1]
$n^2({}^3P)s {}^4P_{1/2}$	$sn({}^{3}P)d {}^{4}P_{1/2}$	267 316	2.83[10]	3.04[-1]	5.35[-1]	246 733	321[10]	2.93[-1]	4.76[-1]
$n^2({}^3P)s {}^4P_{2/2}$	$s_P(1)^{a} = 1/2$ $s_P(3P) d^{-4} D_{1/2}$	267 198	$\frac{2}{2} \frac{10}{10}$	1 1 4 [_1]	4 00[-1]	246 338	2.33[10]	1.05[-1]	3 44[-1]
$P(1) = \frac{1}{3} \frac{3}{2}$ $n^2(3P) = \frac{4}{2} P_{2}$	$s_{P}(1)u D_{1/2}$ $s_{P}(^{3}P)d ^{4}D_{2}$	266 789	$\frac{2.12[10]}{1.73[10]}$	1 85[_1]	6.48[-1]	240.000 246 026	1 81[10]	1.64[-1]	5 30[-1]
P(1)313/2	$p(1)a D_3/2$	200.102	1.10[10]	T'00[-T]	0.10[1]	210.020	1.01[10]	1.01[-1]	0.00[-1]

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lower level	Upper level	λ	A	f	S	λ	A	f	S
$ \begin{array}{c} p^{*}(P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 433.643 & 225 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*}(P) & 452.76 & 266 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 358.871 & 2.48 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 358.871 & 2.48 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 358.871 & 2.48 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{1}(s) & 358.871 & 2.48 [00] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{1}(s) & 314.357 & 1.08 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{1}(s) & 314.357 & 1.08 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{1}(s) & 314.357 & 1.08 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{1}(s) & 314.357 & 1.08 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 30.666 & 1.98 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.653 & 1.56 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.653 & 1.56 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.56 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.653 & 1.55 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.653 & 1.55 [10] \\ eqref (P) s^{*} P_{3}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & p^{*}(P) p^{*} P_{3}(s) & 20.530 & 1.55 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) & 20.540 & 1.58 [10] \\ eqref (P) s^{*} P_{1}(s) &$				Z=	25			Z=	=26	
$ p_{1}^{P}(P) s_{1}^{P}P_{1} p_{2}^{P}(P) p_{2}^{P}P_{1} p_{2}^{P}(P) s_{2}^{P}P_{2}^{P} p_{2}^{P}P_{2}^{P} p_{2}^{P} p_{2}^$	$p^2({}^3P)s {}^2P_{3/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	433.643	2.25[09]	6.33[-2]	3.62[-1]	401.297	2.57[09]	6.18[-2]	3.27[-1]
$ \begin{split} p_1^{A}(D) & 2D_{3/2} & p_1^{A}(D) p_2^{A}(D) p_2^{A}(D) p_3^{A}(D) p_3^$	$p^2({}^3P)s {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	425.276	2.68[09]	7.29[-2]	2.04[-1]	394.261	3.13[09]	7.30[-2]	1.90[-1]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p \; {}^2D_{5/2}$	385.871	2.43[09]	5.43[-2]	4.15[-1]	358.699	2.74[09]	5.27[-2]	3.74[-1]
$ s^{4}(5) t^{2} P_{0/2} = p_{1}(2) t^{2} P_{1/2} = 314.554 + 1.97(10) = 3.89(-1) = 24.2(0) = 22.657 - 2.20(10) = 3.77(-1) = 2.48(-1) = p^{2}(1) t^{2} P_{0/2} = 20 p_{1/2} = 313.572 + 1.08(10) = 7.66(-2) = 3.28(-1) = 29.1(-2) = 1.21(-1) = 7.67(-2) = 2.96(-1) = p^{2}(1) t^{2} P_{0/2} = 20 p_{1/2} = 20 p$	$s^2({}^1S)p {}^2P_{1/2}$	$p^2(^1D)s^{-2}D_{3/2}$	362.171	1.78[09]	6.99[-2]	1.67[-1]	334.557	2.11[09]	7.08[-2]	1.56[-1]
$ p^2(10) s^2 D_{5/2} p^2(2p) p^2 P_{5/2} p^2 a 313.572 1.08[10] 7.96[-2] 3.28[-1] 291.721 1.21[10] 7.67[-2] 2.96[-1] p^2(10) s^2 D_{5/2} p^2(2p) p^2(3p) p^2 P_{5/2} 313.572 1.08[10] 7.96[-2] 3.28[-1] 290.599 9.67[09] 8.67[09] 8.16[-2] 4.68[-1] s^2(15) p^2(2p) s^4 P_{5/2} p^2(2p) p^4 S_{5/2} 301.066 1.48[10] 4.31]-1 1.76[0] 288.461 2.23[10] 4.18[+1] 1.58[0] p^2(2p) s^4 P_{5/2} p^2(2p) p^4 S_{5/2} 301.066 1.48[10] 4.31]-1 1.76[0] 288.461 2.23[10] 4.18[+1] 1.58[-1] p^2(2p) s^4 P_{5/2} p^2(2p) p^4 S_{5/2} 301.06 1.06[10] 1.44[-1] 5.75[-1] 280.303 1.16[10] 1.38[-1] 7.56[-1] p^2(2p) s^4 P_{5/2} p^2(2p) s^4 S_{5/2} 206.332 5.58[09] 1.47[-1] 2.87[-1] 274.084 6.16[09] 1.48[+1] 2.54[-1] s^4(15) d^2 D_{5/2} sp(1P) d^2 P_{5/2} 294.260 9.33[09] 8.07[-2] 4.70[-1] 274.025 9.23[09] 6.03[-2] 3.74[-1] s^4(15) d^2 D_{5/2} sp(1P) d^2 P_{5/2} 291.573 1.35[10] 1.78[-1] 6.09[-1] 273.028 2.68[10] 1.51[-1] 5.43[-1] s^4(15) d^2 D_{5/2} sp(1P) d^2 P_{5/2} 291.572 1.46[10] 1.24[-1] 7.20[-1] 271.503 9.73[09] 1.09[-1] 0.39[-1] s^4(15) d^2 D_{5/2} sp(1P) d^2 P_{5/2} 291.572 1.46[10] 1.24[-1] 7.20[-1] 271.503 9.73[09] 1.09[-1] 0.39[-1] s^4(15) d^2 D_{5/2} sp(1P) d^2 P_{5/2} 290.517 9.99[09] 1.26[-1] 4.84[-1] 270.309 1.04[10] 1.13[-1] 4.26[-1] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 290.517 9.99[09] 1.26[-1] 4.84[-1] 270.309 1.04[10] 1.13[-1] 4.26[-1] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 290.317 9.99[09] 1.26[-1] 4.84[-1] 270.309 1.04[10] 1.13[-1] 4.26[-1] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 290.317 9.99[09] 1.26[-1] 4.84[-1] 270.309 1.04[10] 1.13[-1] 4.05[-1] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 290.317 9.99[09] 1.26[-1] 4.84[-1] 270.309 1.04[10] 1.13[-1] 4.05[-1] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 20.334 1.03[10] 1.04[-1] 2.56[-1] 250.497 3.18[10] 3.34[-1] 1.17[10] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 20.334 1.03[10] 1.04[-1] 250.497 3.18[10] 3.34[-1] 1.17[10] s^4(15) d^2 P_{5/2} sp(1P) d^2 P_{5/2} 20.374 1.65[0] 1.26[-1] 4.84[-1] 220.412 1.256[-1] 1.26[-1] 2.26[-1] 1.26[-1] 2.26[-1] 1.26[-1] 2.26[-1] 1.26[-1] 2.26[-1] 1.26[-1]$	$s^2({}^1S)d {}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	314.554	1.97[10]	3.89[-1]	2.42[0]	292.657	2.20[10]	3.77[-1]	2.18[0]
$ \begin{array}{c} p^2(10)_{x} ^2 D_{x/2}^{-} p^2(1P)_{x} ^2 P_{x/2}^{-} 312.602 \\ style = 1 \\ s^3(15)^2 D_{x/2}^{-} p^2(2P)_{x} ^2 P_{x/2}^{-} 310.606 \\ 1.88[10] \\ style = 1 \\ style = 1 \\ p^2(P) style = 1 \\ style = $	$p^2(^1D)s^{-2}D_{3/2}$	$p^{2}({}^{3}P)p {}^{2}P_{1/2}$	313.572	1.08[10]	7.96[-2]	3.28[-1]	291.721	1.21[10]	7.67[-2]	2.96[-1]
$ \begin{array}{c} s^2(8)d^2 D_{3/2} & sp(1P)d^2 P_{6/2} & 310.606 & 1.98[10] & 4.31[-1] & 1.76[0] & 288.401 & 2.33[10] & 4.18[-1] & 1.59[0] \\ p^2(P)s^4 P_{6/2} & p^2(P)p^4 S_{5/2} & 309.156 & 1.47[10] & 1.40[-1] & 8.57[-1] & 288.600 & 1.59[10] & 1.33[-1] & 7.56[-1] \\ p^2(P)s^4 P_{6/2} & p^2(P)p^4 S_{5/2} & 206.332 & 5.86[0] & 1.47[-1] & 2.87[-1] & 274.984 & 6.16[0] & 1.44[-1] & 2.54[-1] \\ p^2(P)s^4 P_{6/2} & p^2(P)p^4 S_{5/2} & 296.332 & 5.86[0] & 1.47[-1] & 2.87[-1] & 274.984 & 6.16[0] & 1.48[-1] & 5.254[-1] \\ s^2(S)d^2 D_{5/2} & sp(1P)d^2 P_{6/2} & 292.838 & 5.09[0] & 1.07[-1] & 2.45[-1] & 274.025 & 9.23[00] & 6.93[-2] & 3.74[-1] \\ s^2(S)d^2 D_{5/2} & sp(1P)d^2 P_{6/2} & 292.838 & 8.09[0] & 1.04[-1] & 0.34[-1] & 275.60 & 9.79[0] & 1.09[-1] & 3.92[-1] \\ s^2(S)d^2 D_{5/2} & sp(1P)d^2 D_{5/2} & 290.786 & 1.64[10] & 2.07[-1] & 1.16[0] & 270.898 & 1.83[10] & 2.26[-1] \\ s^2(S)d^2 D_{5/2} & sp(1P)d^2 D_{5/2} & 290.517 & 9.99[00] & 1.26[-1] & 4.84[-1] & 270.309 & 1.04[10] & 1.13[-1] & 5.64[-1] \\ s^2(S)d^2 D_{5/2} & p^2(P)d^2 D_{5/2} & 290.517 & 9.99[00] & 1.26[-1] & 4.84[-1] & 270.309 & 1.04[10] & 1.13[-1] & 4.05[-1] \\ s^2(S)d^2 D_{5/2} & p^2(P)d^2 D_{5/2} & 207.782 & 1.88[10] & 3.48[-1] & 1.31[0] & 260.897 & 202[-1] & 1.11[-1] & 3.97[-1] \\ s^2(S)d^2 D_{5/2} & p^2(P)d^2 P_{5/2} & 27.782 & 1.38[10] & 1.58[-1] & 2.91[-1] & 2.57.694 & 1.34[10] & 1.44[-1] & 2.27[-1] \\ s^2(S)d^2 P_{5/2} & p^2(P)d^2 P_{5/2} & 2.77.78 & 2.51[00] & 1.06[-1] & 2.40[-2] & 2.224 & 7.38[00] & 1.44[-1] & 2.27[-1] \\ p^2(P)s^2 P_{5/2} & sp(P)d^2 P_{5/2} & 2.57.274 & 6.57[00] & 1.06[-1] & 2.34.54 & 2.93[10] & 2.54[-1] & 2.39.444 & 3.04[0] & 3.64[-1] & 1.11[-1] & 3.97[-1] \\ p^2(P)s^2 P_{5/2} & sp(P)d^2 P_{5/2} & 2.57.274 & 6.57[00] & 1.06[-1] & 2.54[-1] & 2.39.464 & 2.98[10] & 2.44[-1] & 2.27[-1] \\ p^2(P)s^2 P_{5/2} & sp(P)d^2 P_{5/2} & 2.57.274 & 6.57[00] & 1.06[-1] & 2.54[-1] & 2.34.66 & 1.06[10] & 9.49[-2] & 3.04[-1] \\ p^2(P)s^2 P_{5/2} & sp(P)d^2 P_{5/2} & 2.57.274 & 6.57[00] & 1.06[-1] & 2.54[-1] & 2.39.544 & 3.08[0] & 3.57[-2] & 7.61[-2] \\ p^2(P)s^2 P_{5$	$p^{2}(^{1}D)s^{-2}D_{5/2}$	$p^{2}({}^{3}P)p^{2}P_{3/2}$	312.692	8.75[09]	8.58[-2]	5.29[-1]	290.599	9.67[09]	8.16[-2]	4.68[-1]
$ \begin{array}{c} p^2(P)s \ T_{D_{12}} \ p^2(P)s \ T_{D_{12}} \ p^2(P)p \ T_{D$	$s^{2}(^{1}S)d^{2}D_{3/2}$	$sp({}^{1}P)d {}^{2}F_{5/2}$	310.606	1.98[10]	4.31[-1]	1.76[0]	288.461	2.23[10]	4.18[-1]	1.59[0]
$ \begin{array}{c} p^{2}(3p)_{8} + p^{2}_{1/2} & p^{2}(2p)_{p} + 5_{3/2} & 301.800 & 1.06[10] & 1.44[-1] & 5.75[-1] & 280.935 & 1.16[10] & 1.38[-1] & 5.10[+1] \\ p^{2}(3p)_{8} + t_{P_{1/2}} & p^{2}(3p)_{8} + 5_{3/2} & 206.332 & 5.58[09] & 1.47[-1] & 2.47[-2] & 2.47$	$p^2({}^3P)s {}^4P_{5/2}$	$p^2({}^3P)p {}^4S_{2/2}$	309.156	1.47[10]	1.40[-1]	8.57[-1]	288.690	1.59[10]	1.33[-1]	7.56[-1]
$ \begin{array}{c} p^{2}(^{2}P)s + T_{1/2} & p^{2}(^{2}P)p + S_{3/2} & 296.332 & 5.58 [09] & 1.47 [-1] & 2.87 [-1] & 274.984 & 6.16 [09] & 1.41 [-1] & 2.54 [-1] \\ s^{2}(^{2}S)p + T_{1/2} & p^{2}(^{2}S)s + S_{1/2} & 295.395 & 1.35 [10] & 1.77 [-1] & 3.45 [-1] & 274.984 & 6.16 [09] & 1.41 [-1] & 2.54 [-1] \\ s^{2}(^{2}S)d + D_{2/2} & sp(^{2}P)d + T_{2/2} & 294.206 & 9.33 [09] & 807 [-2] & 4.70 [-1] & 274.055 & 9.23 [09] & 6.93 [-2] & 3.74 [-1] \\ s^{2}(^{2}S)d + D_{2/2} & sp(^{2}P)d + T_{3/2} & 292.983 & 8.09 [09] & 1.04 [-1] & 4.03 [-1] & 272.560 & 9.79 [09] & 1.09 [-1] & 3.92 [-1] \\ s^{2}(^{2}S)d + D_{2/2} & sp(^{2}P)d + T_{3/2} & 292.983 & 8.09 [09] & 1.04 [-1] & 4.03 [-1] & 272.560 & 9.79 [09] & 1.09 [-1] & 3.92 [-1] \\ s^{2}(^{2}S)d + D_{2/2} & sp(^{2}P)d + T_{3/2} & 290.772 & 1.46 [10] & 2.07 [-1] & 1.19 [0] & 270.980 & 1.83 [10] & 2.02 [-1] & 1.05 [0] \\ s^{2}(^{2}S)d + T_{2/2} & sp(^{2}P)d + T_{2/2} & 290.172 & 1.46 [10] & 2.07 [-1] & 1.48 [-1] & 270.560 & 9.79 [09] & 1.09 [-1] & 3.92 [-1] \\ s^{2}(^{2}S)p + T_{3/2} & sp(^{2}P)d + T_{2/2} & 290.172 & 1.48 [10] & 2.07 [-1] & 1.48 [-1] & 2.07 (-300 & 1.04 [10] & 1.13 [-1] & 4.05 [-1] \\ s^{2}(^{2}S)p + T_{3/2} & p^{2}(^{2}P)s + T_{2/2} & 290.102 & 1.771 [0] & 1.11 [-1] & 4.86 [-1] & 2.07 (-300 & 1.04 [1] & 1.31 [-1] & 3.97 [-1] \\ s^{2}(^{2}S)p + T_{3/2} & p^{2}(^{2}P)s + T_{3/2} & 2.78778 & 2.31 [00] & 1.66 [-1] & 2.05 [-1] & 5.26 (-307 & 3.31 [10] & 3.34 [-1] & 1.17 [-0] \\ s^{2}(^{2}S)p + T_{3/2} & p^{2}(^{2}P)s + T_{3/2} & 2.57.778 & 2.51 [00] & 1.66 [-1] & 2.05 [-1] & 5.26 (-307 & 3.31 [10] & 3.34 [-1] & 1.27 [-1] \\ s^{2}(^{2}D)s + T_{3/2} & sp(^{2}P)d + T_{3/2} & 2.57.778 & 2.51 [00] & 1.66 [-1] & 2.02 [-1] & 3.26 [-1] & 3.40 [1] & 3.45 [-1] & 2.35 [-1] \\ p^{2}(^{2}D)s + T_{3/2} & sp(^{2}P)d + T_{3/2} & 2.57.778 & 2.51 [00] & 1.66 [-2] & 8.49 [-2] & 240.755 & 2.64 (09] & 1.33 [-2] & 7.28 [-2] \\ p^{2}(^{2}D)s + T_{3/2} & sp(^{2}P)d + T_{3/2} & 2.57.778 & 2.51 [00] & 2.76 [-1] & 3.404 (-1] & 2.36 [-1] & 3.40 [-1] & 2.26 [-1] & 3.40 [-1] \\ p^{2}(^{2}D)s + T_{3/2} & sp(^{2}$	$p^{2}({}^{3}P)s {}^{4}P_{2/2}$	$p^2({}^3P)p {}^4S_{2/2}$	301.800	1.06[10]	1.44[-1]	5.75[-1]	280.935	1.16[10]	1.38[-1]	5.10[-1]
$ \begin{array}{c} s^{2}(5)p^{2}P_{1/2} & p^{2}(5)s^{2}P_{3/2} & p^{2}(5)s^{2}P_{3/2} & 293.995 & 1.35[10] & 1.77[-1] & 3.45[-1] & 274.524 & 1.68[10] & 1.88[-1] & 3.45[-1] \\ s^{2}(5)d^{2}D_{1/2} & sp(P)d^{2}P_{3/2} & 292.983 & 80[09] & 1.04[-1] & 24.025 & 92.30[09] & 6.03[-2] & 3.74[-1] \\ s^{2}(5)d^{2}D_{3/2} & sp(P)d^{2}P_{3/2} & 292.983 & 80[09] & 1.04[-1] & 4.03[-1] & 272.560 & 9.70[09] & 1.09[-1] & 3.92[-1] \\ s^{2}(5)d^{2}D_{3/2} & sp(P)d^{2}D_{3/2} & 290.786 & 1.64[10] & 1.24[-1] & 7.20[-1] & 271.751 & 1.74[10] & 1.28[-1] & 6.89[-1] \\ s^{2}(5)d^{2}D_{3/2} & sp(P)d^{2}D_{3/2} & 290.786 & 1.64[10] & 1.24[-1] & 7.20[-1] & 271.751 & 1.74[10] & 1.28[-1] & 6.89[-1] \\ s^{2}(5)d^{2}D_{3/2} & sp(P)d^{2}D_{3/2} & 290.517 & 9.99[09] & 1.26[-1] & 4.84[-1] & 270.390 & 1.84[10] & 2.02[-1] & 1.08[0] \\ s^{2}(5)d^{2}D_{3/2} & p^{2}(P)d^{2}P_{3/2} & 290.517 & 9.99[09] & 1.26[-1] & 4.84[-1] & 270.837 & 2.02[10] & 1.11[-1] & 3.97[-1] \\ s^{2}(5)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 277.872 & 1.38[10] & 1.36[-1] & 2.91[-1] & 257.604 & 1.34[10] & 1.34[-1] & 2.27[-1] \\ s^{2}(5)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 260.334 & 1.03[10] & 1.04[-1] & 3.58[-1] & 243.866 & 1.06[10] & 9.49[-2] & 3.04[-1] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 257.778 & 2.51[09] & 1.66[-2] & 8.49[-2] & 20.752 & 2.64(09] & 1.53[-2] & 7.28[-2] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 256.714 & 2.51[09] & 1.66[-2] & 8.49[-2] & 20.752 & 2.64(09] & 1.53[-2] & 7.28[-2] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 256.714 & 2.53[10] & 2.76[-1] & 3.44[-1] & 239.046 & 3.04[10] & 2.26[-1] & 8.25[-1] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 256.714 & 2.53[10] & 2.76[-1] & 3.44[-1] & 239.046 & 3.04[10] & 2.26[-1] & 8.25[-1] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 256.714 & 2.50[10] & 2.76[-1] & 3.44[-1] & 239.046 & 3.04[0] & 2.26[-1] & 8.25[-1] \\ p^{2}(P)b^{2}D_{3/2} & sp(PdP)d^{2}D_{3/2} & 256.714 & 2.50[10] & 2.76[-1] & 3.44[-1] & 239.046 & 3.04[0] & 2.26[-1] & 8.25[-1] \\ p^{2}(P)b^{2}P_{3/2} & sp(PdP)d^{2}P_{3/2} & 256.24 & 4.58[0] & 2.56[-1] & $	$p^{2}({}^{3}P)s^{4}P_{1/2}$	$n^{2}({}^{3}P)n {}^{4}S_{2/2}$	296 332	558[09]	1 47[-1]	2.87[-1]	274 984	6 16[09]	1 41[-1]	2.54[-1]
$ \begin{array}{c} s^{2}(1 Sd^{2} D_{3/2} \\ sp(^{2} P)^{2} P_{3/2} \\ sp(^{2} P)$	$s^{2}({}^{1}S)n^{2}P_{1/2}$	$p^{2}({}^{1}S)s^{2}S_{1/2}$	295 395	1.35[10]	1.77[-1]	3.45[-1]	274 524	1.68[10]	1 89[-1]	3 43[-1]
$ \begin{array}{c} 3^{2}(S)d^{2}D_{3/2} & sp(1)d^{2}D_{1/2} & 294.034 \\ 2^{4}S(10) & 1.56[-1] & 1.77.028 \\ 2^{4}S(1d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 294.034 \\ 2^{4}S(10) & 1.56[-1] & 1.77.028 \\ 2^{4}S(1d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 294.034 \\ 2^{4}S(1d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 294.034 \\ 2^{4}S(1d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 291.078 \\ 2^{4}S(1d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 290.786 \\ 1.641(10) & 2.07[-1] & 1.10[0) & 270.980 \\ 1.83(10) & 2.02[-1] & 1.08[0] \\ 3^{4}(S)d^{2}D_{3/2} & sp(1)d^{2}D_{3/2} & 290.786 \\ 1.641(10) & 2.07[-1] & 1.10[0) & 270.980 \\ 1.83(10) & 2.02[-1] & 1.08[0] \\ 3^{4}(S)d^{2}D_{3/2} & p^{2}(P)d^{2}P_{3/2} & 290.786 \\ 1.641(10) & 2.07[-1] & 1.11[1] & 270.337 \\ 2.02(10) & 1.11[-1] & 3.97[-1] \\ 3^{4}(S)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 20.787 \\ 2^{4}(S)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 20.787 \\ 2^{4}(S)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 277.547 \\ 2^{5}(S)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 277.547 \\ 2^{5}(S)p^{2}P_{3/2} & p^{2}(P)d^{2}P_{3/2} & 277.547 \\ 2^{5}(S)p^{2}P_{3/2} & sp(^{2}P)d^{2}P_{3/2} & 257.778 \\ 2^{5}(10) & 2.05_{1/2} & sp(^{2}P)d^{2}P_{3/2} & 257.778 \\ 2^{5}(10) & 2.76[-1] & 3.36[-1] & 2.30.466 \\ 2^{5}(10) & 2^{5}D_{3/2} & sp(^{2}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(2) & 2^{5}P_{3/2} & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(10) & 2.76[-1] & 9.34[-1] & 230.448 \\ 3.56(10) & 2.64[-1] & 3.26[-1] \\ 2^{4}(P)s^{2}P_{3/2} & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(2) & 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(2) & 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 256.24 \\ 2^{5}(10) & 2.23[-1] & 1.38[0] & 2.04.364 \\ 2^{5}(2) & 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(2) & 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(10) & 2.30[0] & 4.77[-2] & 230.968 \\ 3.56[0] & 4.57[-2] & 1.44[-1] \\ 2^{6}(P)s^{2}P_{3/2} & sp(^{3}P)d^{2}P_{3/2} & 256.221 \\ 2^{5}(10) & 2.25[-2] & 7.61[-2] & 230.925 \\ 4^{5}(2) & 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 236.781 \\ 2^{5}(2) & sp(^{3}P)d^{2}P_{3/2} & 236.781 \\ 2^{5}(2) s^{2}P_{3/2} & sp(^{3}P)d^{2}P_{3/2} & 236.781 \\ 2^{5}(2) s^{2}(P)s^$	$s^{2}({}^{1}S)d^{2}D_{r/2}$	$p^{(1)}(D) = \frac{D_{1/2}}{2}$ sn(1P) d 2P _{2/2}	200.000	0 33[00]	8.07[_2]	4 70[-1]	274 025	0.23[00]	6.03[_2]	3.10[1] 3.74[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$s^{2}({}^{1}S)d {}^{2}D_{2}/2$	$sp(1)d^{-1}3/2$ $sp(1P)d^{-2}P_{1/2}$	204.200	2.00[00] 2.43[10]	1.58[-1]	6 00[_1]	273 628	2.20[00] 2.68[10]	1.50[2]	5.74[1] 5.43[-1]
$ \begin{array}{c} x_{1}(s_{1}) x_{2}(s_{2}) x_{2}(s_{1}) x_{1}(s_{1}) x_{2}(s_{2}) x_{2}(s_{2$	$s^{2}(^{1}S)d^{2}D$	$sp(1)a 1_{1/2}$ $sp(1P)d^2P$	207.004	2.40[10] 8.00[00]	1.00[-1]	1 03[1]	270.020	0 70[00]	$1 \cap 0 [1]$	3 09[-1]
	$s_{(D)u} D_{3/2}$ $s^2(1C) J^2 D$	$sp(1)u \Gamma_{3/2}$ $sp(1)d^2D$	292,900 201 779	0.09[09] 1 /6[10]	1.04[-1] 1.94[-1]	ユ.UJ[-1] フ の[1]	272.000 971 751	3.79[09] 1.74[10]	1 09[-1] 1 09[1]	0.94[-1] 6.80[1]
$ \begin{array}{c} s_{1} (1, s_{1}) (1, s_{1$	$s (S) u D_{5/2}$ $s^2(1S) d^2 D$	$sp(\Gamma)a D_{3/2}$ sp(1D)d 2D	291.112	1.40[10] 1.64[10]	1.24[-1] 2.07[1]	1.20[-1]	211.101	1 89[10]	1.20[-1] 2.02[1]	0.09[-1] 1.08[0]
	$s (S) u D_{5/2}$ $s^2(1S) J^2 D$	$sp(\Gamma)u^{-}D_{5/2}$	290.700 200 ⊭17	0.00[00]	4.07[-1] 1.9€[1]	1.19[U] 4.94[1]	210.900 970.900	1.00[10] 1.04[10]	4.04[-1] 1 19[1]	1.00[0] 4.05[1]
	$s (S) u^{-} D_{3/2}$ $s^{2} (1S) r^{2} D$	$sp(\Gamma)u^{-}D_{3/2}$	290.017 200.102	9.99[09] 1.77[10]	1.20[-1] 1.11[-1]	4.04[-1]	210.309	1.04[10]	1.10[-1] 1.11[-1]	4.00[-1] 2.07[1]
	$s (S) p^{-} r_{3/2}$	$p(\Gamma)s^{-}r_{1/2}$	290.192	1.(1[10])	1.11[-1] 9.40[-1]	4.20[-1]	210.001 265 007	2.02[10]	1.11[-1] 9.94[-1]	ə.97[-1] 1.17[-0]
$ s^{-}(5) p^{-} r_{1/2} = p^{-}(-r) s^{-} r_{1/2} = 2rr.84r^{-} (-8710) = 1.39[-1] = 2.51.094 = 1.34[10] = 1.34[-1] = 2.27[-1] = 2^{+}(-1) p^{-}(-1) p^{-}$	$s^{2}(^{1}S)p^{2}P_{3/2}$	$p^{2}(^{\circ}P)s^{-2}P_{3/2}$	284.389	2.87[10]	3.48[-1]	1.31[0]	205.097	3.18[10]	3.34[-1]	1.17[0]
$ s^{-}(\cdot S) p^{-} P_{1/2} p^{+}(-P) s^{-} r_{3/2} 2/2 s^{-} 4/ s^{-} (-5.7) (0) 1.40[-1] 2.52[-1] 2.52[-3.2] $	$s^{2}(^{1}S)p^{2}P_{1/2}$	$p^{2}({}^{o}P)s {}^{2}P_{1/2}$	277.872	1.38[10]	1.59[-1]	2.91[-1]	257.694	1.34[10]	1.34[-1]	2.27[-1]
$ p^{+}(^{+}p)s^{+}F_{3/2} = sp(^{+}p)d^{+}P_{3/2} = 200.334 + 1.03101 + 1.04[-1] - 3.38[-1] = 243.866 + 1.06[10] - 9.49[-2] - 3.04[-1] - 9.24[-2] - 240.725 - 2.64[09] - 1.53[-2] - 7.28[-2] - 2[-1] - 2.52[-1]$	$s^{2}(^{1}S)p^{2}P_{1/2}$	$p^{2}({}^{(3}P)s {}^{2}P_{3/2}$	272.547	6.57[09]	1.46[-1]	2.62[-1]	252.492	7.38[09]	1.42[-1]	2.35[-1]
$ p^{c}(1D) s^{2} D_{5/2} = sp(^{2}P) d^{2} D_{3/2} = 257.778 = 2.51[09] = 1.66[-2] = 8.49[-2] = 240.725 = 2.64[09] = 1.53[-2] = 7.28[-2] \\ p^{2}(1D) s^{2} D_{3/2} = sp(^{3}P) d^{2} D_{3/2} = 257.778 = 2.51[09] = 2.72[-1] = 1.38[0] = 240.364 = 2.93[10] = 2.54[-1] = 1.21[0] \\ p^{2}(1D) s^{2} D_{3/2} = sp(^{3}P) d^{2} D_{3/2} = 256.721 = 2.80[10] = 2.76[-1] = 9.34[-1] = 239.444 = 3.04[10] = 2.62[-1] = 8.25[-1] \\ p^{2}(1D) s^{2} D_{3/2} = sp(^{3}P) d^{2} D_{3/2} = 256.721 = 2.80[10] = 2.76[-1] = 239.424 = 4.78[09] = 2.05[-2] = 6.47[-2] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{3}P) d^{2} P_{1/2} = 256.224 = 4.58[09] = 2.25[-2] = 7.61[-2] = 239.254 = 4.78[09] = 2.05[-2] = 6.47[-2] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{3}P) d^{2} P_{3/2} = 242.423 = 3.38[10] = 2.23[-1] = 3.70[-1] = 236.324 = 3.78[10] = 2.66[-1] = 8.65[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{3}P) d^{2} P_{3/2} = 242.423 = 3.38[10] = 2.35[-1] = 9.51[-1] = 226.324 = 3.78[10] = 2.66[-1] = 8.65[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{1}P) d^{2} P_{3/2} = 241.457 = 2.67[09] = 2.33[-2] = 7.42[-2] = 225.673 = 3.99[09] = 3.57[-2] = 1.06[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{1}P) d^{2} P_{3/2} = 241.17[10] = 1.53[-1] = 4.82[-1] = 224.805 = 1.25[10] = 4.34[-1] = 4.23[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{1}P) d^{2} P_{3/2} = 239.779 = 2.46[10] = 2.13[-1] = 6.71[-1] = 224.805 = 1.25[10] = 4.34[-1] = 4.28[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{1}P) d^{2} P_{1/2} = 238.565 = 1.37[10] = 1.71[-1] = 1.86[-1] = 224.805 = 1.55[10] = 4.34[-1] = 5.80[-1] \\ p^{2}(^{3}P) s^{2} P_{3/2} = sp(^{1}P) d^{2} P_{1/2} = 238.575 = 2.71[09] = 2.31[-2] = 1.09[-1] = 223.600 = 2.65[-9] = 1.99[-2] = 8.78[-2] \\ p^{2}(^{3}P) s^{2} P_{1/2} = sp(^{1}P) d^{2} P_{3/2} = 237.426 = 4.36[10] = 7.37[-1] = 1.15[0] = 21.673 = 4.62[10] = 6.84[-1] = 9.98[-1] \\ s^{2}(^{3}P) s^{2} P_{3/2} = s^{2}(^{3}P) d^{4} P_{3/2} = 233.5589 = 6.83[09] = 5.71[-2] = 1.77[-1] = 20.532 = 7.60[10] = 5.21[-2] = 7.62[-2] \\ p^{2}(^{3}P) s^{4} P_{3/2} = sp(^{3}P) d^{4} P_{3/2} = 233.155 = 4.63[09] = 7.71[-1] = 21.673 = 4.62[$	$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	260.334	1.03[10]	1.04[-1]	3.58[-1]	243.866	1.06[10]	9.49[-2]	3.04[-1]
$ \begin{array}{c} p^2(1D) s \ 2D_{5/2} & sp(^3P) d \ 2D_{5/2} & 257.494 & 2.73[10] & 2.76[-1] & 1.38[0] & 240.364 & 2.93[10] & 2.54[-1] & 1.21[0] \\ p^2(1D) s \ 2D_{3/2} & sp(^3P) d \ 2D_{3/2} & 256.221 & 2.80[10] & 2.76[-1] & 9.34[-1] & 239.444 & 3.04[10] & 2.62[-1] & 8.25[-1] \\ p^2(^3P) s \ 2D_{3/2} & sp(^3P) d \ 2D_{5/2} & 256.439 & 3.02[09] & 4.47[-2] & 1.51[-1] & 239.086 & 3.56[09] & 4.57[-2] & 1.44[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^3P) d \ 2P_{1/2} & 256.224 & 4.58[09] & 2.25[-2] & 7.61[-2] & 239.254 & 4.78[09] & 2.26[-1] & 3.49[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^3P) d \ 2P_{3/2} & 242.423 & 3.38[10] & 5.59[-1] & 9.51[-1] & 226.244 & 3.78[10] & 5.81[-1] & 8.65[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 242.423 & 3.38[10] & 5.59[-1] & 9.51[-1] & 226.244 & 3.78[10] & 5.81[-1] & 8.65[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 242.423 & 3.38[10] & 5.59[-1] & 9.51[-1] & 226.244 & 3.78[10] & 5.81[-1] & 8.65[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 242.423 & 3.38[10] & 5.59[-1] & 9.51[-1] & 226.404 & 9.32[09] & 3.55[-2] & 9.04[-2] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 239.179 & 2.46[10] & 2.13[-1] & 6.71[-1] & 224.805 & 1.25[10] & 1.43[-1] & 4.23[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 239.179 & 2.46[10] & 2.13[-1] & 6.71[-1] & 224.128 & 2.61[10] & 1.96[-1] & 5.80[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^1P) d \ 2P_{3/2} & 239.179 & 2.46[10] & 2.13[-1] & 6.71[-1] & 224.128 & 2.65[09] & 1.99[-2] & 8.85[-1] \\ p^2(^3P) s \ 2P_{3/2} & sp(^3P) d \ 4P_{5/2} & 238.157 & 2.71[09] & 2.31[-2] & 1.09[-1] & 223.603 & 5.60[10] & 6.31[-1] & 1.86[0] \\ p^2(^3P) s \ 2P_{1/2} & sp(^3P) d \ 4P_{5/2} & 238.157 & 2.71[09] & 2.31[-2] & 1.09[-1] & 223.600 & 2.65[09] & 1.99[-2] & 8.78[-2] \\ p^2(^3P) s \ 2P_{1/2} & sp(^3P) d \ 4P_{5/2} & 238.157 & 2.71[09] & 2.31[-2] & 1.09[-1] & 223.600 & 2.65[09] & 1.99[-2] & 8.78[-2] \\ p^2(^3P) s \ 2P_{1/2} & sp(^3P) d \ 4P_{5/2} & 238.157 & 2.71[09] & 2.31[-2] & 1.09[-1] & 223.600 & 2.65[09] & 1.99[-2] & 8.78[-2] \\ p^2(^3P) s \ 2P_{1/2} & sp(^3P) d \ 4P_{5/2} & 2$	$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{\circ}P)d {}^{2}D_{3/2}$	257.778	2.51[09]	1.66[-2]	8.49[-2]	240.725	2.64[09]	1.53[-2]	7.28[-2]
$ p^{2}(1D) s^{2} D_{3/2} sp(^{3}P)d^{2} D_{3/2} 256.721 2.80[10] 2.76[-1] 9.34[-1] 239.444 3.04[10] 2.62[-1] 8.25[-1] p^{2}(1D) s^{2} D_{3/2} sp(^{3}P)d^{2} D_{5/2} 256.439 3.02[09] 4.47[-2] 1.51[-1] 239.086 3.56[09] 4.57[-2] 1.44[-1] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{3}P)d^{2} P_{1/2} 256.224 4.58[09] 2.25[-2] 7.61[-2] 239.254 4.78[09] 2.05[-2] 6.47[-2] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{3}P)d^{2} P_{1/2} 251.689 2.35[10] 2.23[-1] 3.70[-1] 234.763 2.73[10] 2.26[-1] 3.49[-1] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P)d^{2} P_{3/2} 242.423 3.38[10] 5.95[-1] 9.51[-1] 226.324 3.78[10] 5.81[-1] 8.65[-1] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P)d^{2} P_{3/2} 241.457 2.67[09] 2.33[-2] 7.42[-2] 225.673 3.99[09] 3.05[-2] 9.04[-2] p^{2}(^{1}D) s^{2} D_{3/2} sp(^{1}P)d^{2} P_{3/2} 241.457 2.67[09] 2.33[-1] 4.82[-1] 224.805 1.25[10] 1.43[-1] 4.32[-1] 2.41.85 2.51[10] 1.43[-1] 4.32[-1] 2.41.85 2.51[10] 1.43[-1] 5.80[-1] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P)d^{2} P_{3/2} 239.779 2.46[10] 2.13[-1] 6.71[-1] 224.128 2.61[10] 1.43[-1] 5.80[-1] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P)d^{2} P_{3/2} 239.113 5.18[10] 6.68[-1] 2.10[0] 223.603 5.60[10] 6.31[-1] 1.86[0] p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P)d^{2} P_{3/2} 238.575 2.71[09] 2.31[-2] 1.09[-1] 223.600 2.65[09] 1.99[-2] 8.78[-2] p^{2}(^{3}P) s^{2} P_{1/2} sp(^{3}P)d^{4} P_{3/2} 238.575 2.71[09] 2.31[-2] 1.09[-1] 223.600 2.65[09] 1.99[-2] 8.78[-2] p^{2}(^{3}P) s^{2} P_{1/2} sp(^{1}P)d^{2} P_{3/2} 235.589 6.83[09] 5.71[-2] 1.77[-1] 220.532 7.60[09] 5.52[-2] 1.61[-1] s^{2}(^{1}S) p^{2} P_{3/2} s^{2}(^{1}S) d^{2} D_{3/2} 235.589 6.83[09] 5.71[-2] 1.77[-1] 220.532 7.60[09] 5.52[-2] 1.61[-1] s^{2}(^{1}S) p^{2} P_{3/2} sp(^{3}P) d^{4} P_{3/2} 233.155 4.43[09] 3.61[-2] 1.15[0] 1.48[-1] 4.98[-1] 1.49[-1] 6.40[-1] $	$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	257.494	2.73[10]	2.72[-1]	1.38[0]	240.364	2.93[10]	2.54[-1]	1.21[0]
$ p^{2}(1D) s^{2} D_{3/2} sp(^{3}P) d^{2} D_{5/2} 256.439 3.02(09) 4.47(-2) 1.51(-1) 239.086 3.56(09) 4.57(-2) 1.44(-1) \\ p^{2}(^{3}P) s^{2} P_{1/2} sp(^{3}P) d^{2} P_{1/2} 256.224 4.58(09) 2.25(-2) 7.61(-2) 239.254 4.78(09) 2.05(-2) 6.47(-2) \\ p^{2}(^{3}P) s^{2} P_{1/2} sp(^{3}P) d^{2} P_{1/2} 251.689 2.35(10) 2.23(-1) 3.70(-1) 234.763 2.73(10) 2.26(-1) 3.49(-1) \\ p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P) d^{2} P_{3/2} 242.423 3.38(10) 5.95(-1) 9.51(-1) 226.324 3.78(10) 5.81(-1) 8.65(-1) \\ p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P) d^{2} P_{3/2} 241.457 2.67(09) 2.33(-2) 7.42(-2) 225.673 3.99(09) 3.05(-2) 9.04(-2) \\ p^{2}(^{1}D) s^{2} P_{3/2} sp(^{1}P) d^{2} P_{3/2} 241.457 2.67(09) 2.33(-2) 7.42(-2) 224.805 1.25(10) 1.43(-1) 4.23(-1) \\ p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P) d^{2} P_{3/2} 240.224 1.17(10) 1.53(-1) 4.82(-1) 224.805 1.25(10) 1.43(-1) 4.23(-1) \\ p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P) d^{2} D_{3/2} 239.179 2.46(10) 2.13(-1) 6.71(-1) 224.128 2.61(10) 1.06(-1) \\ p^{2}(^{3}P) s^{2} P_{3/2} sp(^{1}P) d^{2} P_{1/2} 238.566 1.37(10) 1.17(-1) 1.83(-1) 222.463 5.60(10) 6.31(-1) 1.86(0) \\ p^{2}(^{1}S) s^{2} S_{1/2} sp(^{3}P) d^{2} P_{1/2} 238.575 2.71(10) 2.31(-2) 1.09(-1) 223.603 5.60(10) 6.31(-1) 1.86(1) \\ p^{2}(^{3}P) s^{4} P_{5/2} sp(^{3}P) d^{4} P_{5/2} 238.575 2.71(10) 2.31(-2) 1.09(-1) 223.603 5.60(10) 6.34(-1) 9.86(-1) \\ p^{2}(^{3}P) s^{2} P_{1/2} sp(^{1}P) d^{2} P_{3/2} 235.589 6.83(09) 5.71(-2) 1.77(-1) 220.532 7.60(09) 5.21(-2) 7.62(-2) \\ p^{2}(^{3}P) s^{4} P_{5/2} sp(^{3}P) d^{4} P_{5/2} 234.771 3.53(10) 4.37(-1) 1.35(0) 219.582 3.80(10) 4.13(-1) 1.96(-1) \\ p^{2}(^{3}P) s^{4} P_{3/2} sp(^{3}P) d^{4} P_{3/2} 233.015 4.43(09) 3.61(-2) 1.17(-1) 220.532 7.60(09) 5.52(-2) 1.61(-1) \\ p^{2}(^{3}P) s^{4} P_{3/2} sp(^{3}P) d^{4} P_{3/2} 233.015 4.43(09) 3.61(-2) $	$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	256.721	2.80[10]	2.76[-1]	9.34[-1]	239.444	3.04[10]	2.62[-1]	8.25[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d \ {}^{2}D_{5/2}$	256.439	3.02[09]	4.47[-2]	1.51[-1]	239.086	3.56[09]	4.57[-2]	1.44[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	256.224	4.58[09]	2.25[-2]	7.61[-2]	239.254	4.78[09]	2.05[-2]	6.47[-2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	251.689	2.35[10]	2.23[-1]	3.70[-1]	234.763	2.73[10]	2.26[-1]	3.49[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	242.423	3.38[10]	5.95[-1]	9.51[-1]	226.324	3.78[10]	5.81[-1]	8.65[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	242.170	8.16[09]	3.59[-2]	1.14[-1]	226.404	9.23[09]	3.57[-2]	1.06[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	241.457	2.67[09]	2.33[-2]	7.42[-2]	225.673	3.99[09]	3.05[-2]	9.04[-2]
$ \begin{array}{c} p^2(^3P)s\ ^2P_{3/2} & sp(^1P)d\ ^2D_{3/2} & 239.779 & 2.46[10] & 2.13[-1] & 6.71[-1] & 224.128 & 2.61[10] & 1.96[-1] & 5.80[-1] \\ p^2(^3P)s\ ^2P_{3/2} & sp(^1P)d\ ^2D_{5/2} & 239.113 & 5.18[10] & 6.68[-1] & 2.10[0] & 223.603 & 5.60[10] & 6.31[-1] & 1.86[0] \\ p^2(^1S)s\ ^2S_{1/2} & sp(^3P)d\ ^2P_{1/2} & 238.856 & 1.37[10] & 1.17[-1] & 1.83[-1] & 222.345 & 1.27[10] & 9.46[-2] & 1.38[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{5/2} & 238.575 & 2.71[09] & 2.31[-2] & 1.09[-1] & 223.600 & 2.65[09] & 1.99[-2] & 8.78[-2] \\ p^2(^3P)s\ ^2P_{1/2} & sp(^1P)d\ ^2P_{3/2} & 237.426 & 4.36[10] & 7.37[-1] & 1.15[0] & 221.673 & 4.62[10] & 6.84[-1] & 9.98[-1] \\ s^2(^1S)p\ ^2P_{3/2} & s^2(^1S)d\ ^2D_{3/2} & 235.589 & 6.83[09] & 5.71[-2] & 1.77[-1] & 220.532 & 7.60[09] & 5.52[-2] & 1.61[-1] \\ s^2(^1S)p\ ^2P_{3/2} & s^2(^1S)d\ ^2D_{5/2} & 234.771 & 3.53[10] & 4.37[-1] & 1.35[0] & 219.582 & 3.80[10] & 4.13[-1] & 1.19[0] \\ p^2(^1D)s\ ^2D_{5/2} & sp(^3P)d\ ^4P_{5/2} & 234.170 & 2.20[10] & 2.72[-1] & 8.39[-1] & 218.608 & 1.55[10] & 1.49[-1] & 6.40[-1] \\ p^2(^3P)s\ ^4P_{3/2} & sp(^3P)d\ ^4P_{3/2} & 233.015 & 4.43[09] & 3.61[-2] & 1.11[-1] & 217.788 & 5.41[09] & 3.85[-2] & 1.10[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^2(^3P)s\ ^4P_{5/2} & sp(^3P)d\ ^4P_{5/2} & 232.244 & 2.35[10] & 1.90[-1] & 8.74[-1] & 216.897 & 2.58[10] & 1.82[-1] & 7.78[-1] \\ p^2(^3P)s\ ^4P_{3/2} & sp(^3P)d\ ^4P_{3/2} & 229.742 & 2.48[10] & 3.93[-1] &$	$p^2(^1D)s^{-2}D_{3/2}^{'}$	$sp(^{3}P)d^{-2}F_{5/2}$	240.224	1.17[10]	1.53[-1]	4.82[-1]	224.805	1.25[10]	1.43[-1]	4.23[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	239.779	2.46[10]	2.13[-1]	6.71[-1]	224.128	2.61[10]	1.96[-1]	5.80[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	239.113	5.18[10]	6.68[-1]	2.10[0]	223.603	5.60[10]	6.31[-1]	1.86[0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	238.856	1.37[10]	1.17[-1]	1.83[-1]	222.345	1.27[10]	9.46[-2]	1.38[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	238.575	2.71[09]	2.31[-2]	1.09[-1]	223.600	2.65[09]	1.99[-2]	8.78[-2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	238.115	7.19[09]	6.12[-2]	9.59[-2]	222.379	7.0209	5.21[-2]	7.62[-2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	237.426	4.36[10]	7.37[-1]	1.15[0]	221.673	4.62[10]	6.84[-1]	9.98[-1]
$ s^{2}(1S)p^{2}P_{3/2} = s^{2}(1S)d^{2}D_{5/2} = 234.771 3.53[10] 4.37[-1] 1.35[0] = 219.582 3.80[10] 4.13[-1] 1.19[0] \\ p^{2}(1D)s^{2}D_{5/2} = sp(^{3}P)d^{2}F_{7/2} = 234.330 1.41[10] 1.55[-1] 7.18[-1] = 218.608 1.55[10] 1.49[-1] 6.40[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}P_{5/2} = 234.170 2.20[10] 2.72[-1] 8.39[-1] 218.919 2.42[10] 2.61[-1] 7.52[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}P_{3/2} = 233.015 4.43[09] 3.61[-2] 1.11[-1] 217.788 5.41[09] 3.85[-2] 1.10[-1] \\ p^{2}(^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{7/2} = 232.556 3.60[10] 3.87[-1] 1.78[0] 217.261 3.85[10] 3.65[-1] 1.56[0] \\ p^{2}[^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{3/2} = 232.244 2.35[10] 1.90[-1] 8.74[-1] 216.897 2.58[10] 1.82[-1] 7.78[-1] \\ p^{2}(^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{5/2} = 232.244 2.35[10] 1.90[-1] 8.74[-1] 216.897 2.58[10] 1.82[-1] 7.78[-1] \\ p^{2}(^{3}P)s^{4}P_{1/2} = sp(^{3}P)d^{4}D_{3/2} = 229.742 2.48[10] 3.93[-1] 5.94[-1] 214.195 2.70[10] 3.71[-1] 5.23[-1] \\ p^{2}(^{3}P)s^{4}P_{1/2} = sp(^{3}P)d^{4}P_{1/2} = 228.995 3.53[10] 2.78[-1] 4.19[-1] 213.506 3.85[10] 2.64[-1] 3.70[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{1/2} = 228.343 2.53[10] 9.87[-2] 2.97[-1] 212.627 2.73[10] 9.25[-2] 2.59[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] $	$s^{2}(^{1}S)p^{2}P_{3/2}^{1/2}$	$s^{2}(^{1}S)d^{2}D_{3/2}^{3/2}$	235.589	6.83 09	5.71[-2]	1.77[-1]	220.532	7.60[09]	5.52[-2]	1.61[-1]
$ p^{2}(^{1}D)s^{2}D_{5/2} = sp(^{3}P)d^{2}F_{7/2} = 234.330 = 1.41[10] = 1.55[-1] = 7.18[-1] = 218.608 = 1.55[10] = 1.49[-1] = 6.40[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}P_{5/2} = 234.170 = 2.20[10] = 2.72[-1] = 8.39[-1] = 218.608 = 1.55[10] = 1.49[-1] = 6.40[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}P_{3/2} = 233.015 = 4.43[09] = 3.61[-2] = 1.11[-1] = 217.788 = 5.41[09] = 3.85[-2] = 1.10[-1] \\ p^{2}(^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{7/2} = 232.556 = 3.60[10] = 3.87[-1] = 1.78[0] = 217.261 = 3.85[10] = 3.65[-1] = 1.56[0] \\ p^{2}[^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{3/2} = 232.287 = 1.03[10] = 5.59[-2] = 2.56[-1] = 216.859 = 1.14[10] = 5.35[-2] = 2.29[-1] \\ p^{2}(^{3}P)s^{4}P_{5/2} = sp(^{3}P)d^{4}D_{5/2} = 232.244 = 2.35[10] = 1.90[-1] = 8.74[-1] = 216.897 = 2.58[10] = 1.82[-1] = 7.78[-1] \\ p^{2}(^{3}P)s^{4}P_{1/2} = sp(^{3}P)d^{4}D_{5/2} = 229.742 = 2.48[10] = 3.93[-1] = 5.94[-1] = 214.195 = 2.70[10] = 3.71[-1] = 5.23[-1] \\ p^{2}(^{3}P)s^{4}P_{1/2} = sp(^{3}P)d^{4}P_{1/2} = 228.995 = 3.53[10] = 2.78[-1] = 4.19[-1] = 213.506 = 3.85[10] = 2.64[-1] = 3.70[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{1/2} = 228.343 = 2.53[10] = 9.87[-2] = 2.97[-1] = 212.627 = 2.73[10] = 9.25[-2] = 2.59[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 4.42[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3/2} = 228.109 = 1.89[10] = 1.47[-1] = 212.453 = 1.98[10] = 1.35[-1] = 3.76[-1] \\ p^{2}(^{3}P)s^{4}P_{3/2} = sp(^{3}P)d^{4}D_{3$	$s^2({}^1S)p {}^2P_{3/2}$	$s^2({}^1S)d {}^2D_{5/2}$	234.771	3.53[10]	4.37[-1]	1.35[0]	219.582	3.80[10]	4.13[-1]	1.19[0]
$ \begin{array}{c} p^{2}(^{3}P)s \ ^{4}P_{3/2} & sp(^{3}P)d \ ^{4}P_{5/2} & 234.170 & 2.20[10] & 2.72[-1] & 8.39[-1] & 218.010 & 2.42[10] & 2.61[-1] & 7.52[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{3/2} & sp(^{3}P)d \ ^{4}P_{3/2} & 233.015 & 4.43[09] & 3.61[-2] & 1.11[-1] & 217.788 & 5.41[09] & 3.85[-2] & 1.10[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{5/2} & sp(^{3}P)d \ ^{4}D_{7/2} & 232.556 & 3.60[10] & 3.87[-1] & 1.78[0] & 217.261 & 3.85[10] & 3.65[-1] & 1.56[0] \\ p^{2}[^{3}P)s \ ^{4}P_{5/2} & sp(^{3}P)d \ ^{4}D_{3/2} & 232.287 & 1.03[10] & 5.59[-2] & 2.56[-1] & 216.859 & 1.14[10] & 5.35[-2] & 2.29[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{5/2} & sp(^{3}P)d \ ^{4}D_{5/2} & 232.244 & 2.35[10] & 1.90[-1] & 8.74[-1] & 216.897 & 2.58[10] & 1.82[-1] & 7.78[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{1/2} & sp(^{3}P)d \ ^{4}D_{3/2} & 229.742 & 2.48[10] & 3.93[-1] & 5.94[-1] & 214.195 & 2.70[10] & 3.71[-1] & 5.23[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{1/2} & sp(^{3}P)d \ ^{4}P_{1/2} & 228.995 & 3.53[10] & 2.78[-1] & 4.19[-1] & 213.506 & 3.85[10] & 2.64[-1] & 3.70[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{3/2} & sp(^{3}P)d \ ^{4}D_{1/2} & 228.343 & 2.53[10] & 9.87[-2] & 2.97[-1] & 212.627 & 2.73[10] & 9.25[-2] & 2.59[-1] \\ p^{2}(^{3}P)s \ ^{4}P_{3/2} & sp(^{3}P)d \ ^{4}D_{3/2} & 228.109 & 1.89[10] & 1.47[-1] & 4.42[-1] & 212.453 & 1.98[10] & 1.35[-1] & 3.76[-1] \\ \end{array}$	$p^2({}^1D)s^2D_{r/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	234.330	1.41[10]	1.55[-1]	7.18[-1]	218.608	1.55[10]	1.49[-1]	6.40[-1]
$ \begin{array}{c} p^{-}(^{1})^{5} & ^{4}D_{3/2} & ^{5}p^{-}(^{1})^{3} & ^{4}D_{3/2} & ^{2}Dini & ^$	$n^2({}^3P)s {}^4P_{2/2}$	$sn({}^{3}P)d {}^{4}P_{\pi/2}$	$234\ 170$	2.20[10]	2.72[-1]	8.39[-1]	218 919	2.42[10]	2.61[-1]	7.52[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$n^2({}^3P)s {}^4P_{2/2}$	$sn({}^{3}P)d {}^{4}P_{2/2}$	$233\ 015$	4.43[09]	3.61[-2]	1.11[-1]	217 788	5.41[09]	3.85[-2]	1.10[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$n^2({}^3P)s {}^4P_{r/s}$	$sn({}^{3}P)d {}^{4}D_{7/2}$	232556	3.60[10]	3.87[-1]	1.78[0]	$217\ 261$	3.85[10]	3.65[-1]	1.56[0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$n^{2}[^{3}P)s^{4}P_{-}$	$s_P(^{1}P)d^{-4}D_{7/2}$	232.000	1 03[10]	5.59[-1] 5.59[-2]	2.56[-1]	216 859	1 14[10]	5.05[-1] 5.35[-2]	2.29[-1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$P [1] = \frac{1}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{1}{2} \frac{5}{2} \frac{1}{2} \frac{5}{2} \frac{1}{2} \frac{1}$	$sp(1)a D_{3/2}$ $sp(^{3}P)d ^{4}D_{-}$	232 244	2.35[10]	1 00[-1]	8 74[_1]	216 807	258[10]	1.89[-2]	7 78[_1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$P(1) = \frac{1}{5} \frac{1}{5/2}$ $n^2(3P) = 4D$	$s_P(1)u D_{5/2}$ $s_P(^3P)d ^4D$	202.244	2.00[10] 2.48[10]	3 0 3 [1]	5 04[1]	210.097 214 105	2.00[10] 2 70[10]	1.04[⁻¹] 3.71[1]	1.10[-1] ち 92[1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$P (I) s \Gamma_{1/2}$ $p^2 (^3D) c ^4D$	$sp(1)u r_{3/2}$ sp(3D)d 4D	229.142 228.005	2.40[10] 2.52[10]	ວ.ອວ[−⊥] ງອ⊽[1]	J.34[-1] 4 10[1]	214.19J 913 KOR	2.70[10] 2.85[10]	ວ.71[-1] ວ.67[1]	J.∠J[-1] 2.70[1]
$ p (r)s r_{3/2} sp(r)a D_{1/2} 226.545 2.55[10] 9.67[-2] 2.97[-1] 212.627 2.73[10] 9.25[-2] 2.59[-1] p^2(^3P)s ^4P_{3/2} sp(^3P)d ^4D_{3/2} 228.109 1.89[10] 1.47[-1] 4.42[-1] 212.453 1.98[10] 1.35[-1] 3.76[-1] $	$p (\Gamma) s \Gamma_{1/2}$ $p^2(3D) s 4D$	$sp(r)a r_{1/2}$ $am(^{3}D) d ^{4}D$	⊿⊿0,990 ๅๅ 0 ๅ4ๅ	0.00[10] 0.50[10]	2.10[-1] 0.07[0]	4.19[-1] 2.07[1]	410.000 010 607	ວ.ວວ[10] ວ. 7 2[10]	2.04[-1] 0.9⊭[_9]	0.70[-1] 0.50[1]
p (r) s $r_{3/2}$ sp (r) u $D_{3/2}$ 220.109 1.69[10] 1.47[-1] 4.42[-1] 212.493 1.98[10] 1.39[-1] 3.70[-1]	$p(\Gamma)s^{-}P_{3/2}$	$sp(\Gamma)a^{-}D_{1/2}$	220.343 220.100	2.03[10] 1.90[10]	9.07[-2] 1.77[-1]	4.97[-1] 4.49[-1]	212.027 919 459	2.73[10] 1.09[10]	9.20[-2] 1.9¤[-1]	2.09[-1] 2.76[1]
	$p(\Gamma)s \Gamma_{3/2}$	$sp(r)u D_{3/2}$	440.109	1.09[10]	1.41[-1]	4.44[-1]	212.400	1.90[10]	1.99[-1]	0.70[-1]

Lower level	Upper level	λ	A	f	S	λ	A	f	<u>S</u>
	11		Z=	=27			Z=	=28	
$p^2({}^3P)s \; {}^2P_{3/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	372.591	2.89[09]	6.03[-2]	2.96[-1]	346.919	3.24[09]	5.83[-2]	2.67[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	367.218	3.59[09]	7.26[-2]	1.75[-1]	343.450	4.04[09]	7.15[-2]	1.62[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p \; {}^2D_{5/2}$	334.813	3.03[09]	5.10[-2]	3.37[-1]	313.656	3.31[09]	4.89[-2]	3.04[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	273.329	2.44[10]	3.65[-1]	1.97[0]	256.111	2.70[10]	3.52[-1]	1.79[0]
$p^2({}^1D)s {}^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	272.329	1.34[10]	7.49[-2]	2.68[-1]	254.971	1.49[10]	7.25[-2]	2.44[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	270.913	1.06[10]	7.77[-2]	4.16[-1]	253.251	1.16[10]	7.43[-2]	3.72[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	270.521	1.71[10]	1.25[-1]	6.67[-1]	254.239	1.80[10]	1.16[-1]	5.86[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^1P)d\ ^2F_{5/2}$	268.899	2.50[10]	4.06[-1]	1.44[0]	251.468	2.78[10]	3.95[-1]	1.31[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	262.394	1.27[10]	1.32[-1]	4.53[-1]	245.775	1.38[10]	1.25[-1]	4.03[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	256.133	9.47[09]	6.20[-2]	3.14[-1]	240.139	1.01[10]	5.76[-2]	2.74[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	256.098	2.03[10]	2.00[-1]	3.38[-1]	239.695	2.43[10]	2.09[-1]	3.31[-1]
$p^{2}(^{3}P)s^{-4}P_{1/2}^{'}$	$p^2({}^3P)p \; {}^4S_{3/2}$	255.939	6.79[09]	1.33[-1]	2.24[-1]	238.792	7.33[09]	1.25[-1]	1.98[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	255.564	2.94[10]	1.44[-1]	4.86[-1]	239.433	3.21[10]	1.38[-1]	4.36[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	254.475	1.12[10]	1.10[-1]	3.66[-1]	238.290	1.25[10]	1.07[-1]	3.34[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	253.900	1.99[10]	1.28[-1]	6.42[-1]	237.880	2.21[10]	1.26[-1]	5.89[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	253.577	2.29[10]	1.11[-1]	3.69[-1]	238.046	2.56[10]	1.09[-1]	3.41[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}^{'}$	253.364	2.03[10]	1.95[-1]	9.79[-1]	237.563	2.25[10]	1.91[-1]	8.94[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	252.271	1.11[10]	1.06[-1]	3.53[-1]	236.065	1.23[10]	1.02[-1]	3.18[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	247.980	3.49[10]	3.22[-1]	1.05[0]	232.663	3.82[10]	3.10[-1]	9.50[-1]
$s^{2}(^{1}S)p^{-2}P_{1/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	239.624	1.29[10]	1.11[-1]	1.75[-1]	223.305	1.21[10]	9.10[-2]	1.34[-1]
$s^{2}(^{1}S)p^{-2}P_{1/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	234.620	8.33[09]	1.37[-1]	2.13[-1]	218.562	9.43[09]	1.34[-1]	1.93[-1]
$p^{2}(^{3}P)s^{-2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	229.494	1.09[10]	8.58[-2]	2.60[-1]	216.843	1.11[10]	7.81[-2]	2.23[-1]
$p^{2}(^{1}D)s^{-2}D_{5/2}^{'}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	225.710	2.76[09]	1.41[-2]	6.27[-2]	212.380	2.86[09]	1.30[-2]	5.42[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	225.272	3.12[10]	2.37[-1]	1.06[0]	211.871	3.29[10]	2.21[-1]	9.26[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{3}P)d^{-2}P_{1/2}$	224.346	4.93[09]	1.86[-2]	5.50[-2]	211.128	5.01[09]	1.68[-2]	4.66[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d\;{}^{2}D_{3/2}$	224.165	3.30[10]	2.49[-1]	7.34[-1]	210.526	3.56[10]	2.37[-1]	6.57[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{5/2}$	223.732	4.19[09]	4.74[-2]	1.40[-1]	210.027	5.03[09]	5.01[-2]	1.38[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	219.954	3.13[10]	2.27[-1]	3.29[-1]	206.882	3.53[10]	2.27[-1]	3.09[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	212.610	2.91[09]	1.97[-2]	8.29[-2]	200.837	3.71[09]	2.26[-2]	8.96[-2]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	212.589	1.06[10]	3.57[-2]	9.99[-2]	200.370	1.20[10]	3.61[-2]	9.51[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	212.096	4.20[10]	5.68[-1]	7.92[-1]	199.401	4.65[10]	5.55[-1]	7.29[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	211.836	5.16[09]	3.46[-2]	9.66[-2]	199.569	6.15[09]	3.67[-2]	9.65[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	211.238	1.33[10]	1.34[-1]	3.72[-1]	199.179	1.40[10]	1.25[-1]	3.26[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	210.481	2.69[09]	1.79[-2]	7.43[-2]	198.879	2.81[09]	1.67[-2]	6.57[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	210.306	2.78[10]	1.84[-1]	5.10[-1]	198.006	2.97[10]	1.75[-1]	4.55[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	209.938	6.00[10]	5.98[-1]	1.65[0]	197.787	6.44[10]	5.65[-1]	1.48[0]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	208.641	6.80[09]	4.45[-2]	6.10[-2]	196.542	6.62[09]	3.83[-2]	4.97[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	207.915	4.88[10]	6.33[-1]	8.66[-1]	195.772	5.10[10]	5.87[-1]	7.57[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	207.691	1.17[10]	7.58[-2]	1.04[-1]	194.558	1.06[10]	6.06[-2]	7.76[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	207.315	8.41[09]	5.44[-2]	1.49[-1]	195.607	9.37[09]	5.40[-2]	1.39[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d\;{}^2D_{5/2}$	206.228	4.10[10]	3.92[-1]	1.06[0]	194.378	4.39[10]	3.73[-1]	9.54[-1]
$p^2({}^3P)s\; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	205.529	2.61[10]	2.48[-1]	6.73[-1]	193.662	2.80[10]	2.36[-1]	6.02[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{7/2}$	204.769	1.69[10]	1.42[-1]	5.75[-1]	192.479	1.84[10]	1.36[-1]	5.19[-1]
$p^2({}^3P)s\;{}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	204.411	6.27[09]	3.94[-2]	1.06[-1]	192.552	7.09[09]	3.95[-2]	1.00[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{7/2}$	203.757	4.12[10]	3.43[-1]	1.38[0]	191.717	4.38[10]	3.21[-1]	1.22[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	203.361	2.79[10]	1.73[-1]	6.96[-1]	191.307	3.00[10]	1.65[-1]	6.24[-1]
$p^2[{}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	203.250	1.24[10]	5.12[-2]	2.05[-1]	191.130	1.33[10]	4.87[-2]	1.83[-1]
$p^2({}^3P)s\; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	200.472	2.91[10]	3.51[-1]	4.63[-1]	188.239	3.13[10]	3.32[-1]	4.11[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	199.831	4.17[10]	2.50[-1]	3.29[-1]	187.638	4.50[10]	2.38[-1]	2.94[-1]
$p^2({}^3P)s\; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{1/2}$	198.755	2.93[10]	8.67[-2]	2.28[-1]	186.396	3.15[10]	8.24[-2]	2.02[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	198.734	1.03[10]	9.20[-2]	2.40[-1]	186.475	1.09[10]	8.58[-2]	2.11[-1]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=29			Z=	=30	
$p^2({}^3P)s \; {}^2P_{3/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	323.790	3.58[09]	5.63[-2]	2.40[-1]	302.819	3.92[09]	5.38[-2]	2.15[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	322.408	4.48[09]	6.98[-2]	1.48[-1]	303.652	4.91[09]	6.79[-2]	1.36[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$p^2({}^3P)p\;{}^2D_{5/2}$	294.795	3.61[09]	4.72[-2]	2.74[-1]	277.894	3.87[09]	4.49[-2]	2.47[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	268.809	3.38[09]	7.33[-2]	1.30[-1]	251.129	3.93[09]	7.42[-2]	1.23[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	240.649	2.97[10]	3.43[-1]	1.63[0]	226.662	3.26[10]	3.34[-1]	1.50[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	239.523	1.89[10]	1.09[-1]	5.14[-1]	226.121	1.97[10]	9.99[-2]	4.48[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	239.318	1.65[10]	7.11[-2]	2.23[-1]	225.106	1.82[10]	6.92[-2]	2.06[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	237.305	1.27[10]	7.14[-2]	3.34[-1]	222.828	1.38[10]	6.85[-2]	3.02[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	235.814	3.07[10]	3.86[-1]	1.20[0]	221.662	3.39[10]	3.76[-1]	1.10[0]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	230.764	1.47[10]	1.18[-1]	3.58[-1]	217.116	1.58[10]	1.12[-1]	3.19[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	225.710	1.08[10]	5.51[-2]	2.46[-1]	212.589	1.19[10]	5.38[-2]	2.26[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	224.980	2.85[10]	2.16[-1]	3.21[-1]	211.685	3.30[10]	2.22[-1]	3.09[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	224.917	3.49[10]	1.33[-1]	3.92[-1]	211.763	3.75[10]	1.26[-1]	3.52[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	223.966	2.84[10]	1.07[-1]	3.15[-1]	211.116	3.12[10]	1.04[-1]	2.90[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	223.671	1.36[10]	1.01[-1]	3.00[-1]	210.366	1.45[10]	9.60[-2]	2.67[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	223.415	2.44[10]	1.21[-1]	5.37[-1]	210.277	2.64[10]	1.17[-1]	4.86[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	223.288	2.48[10]	1.86[-1]	8.19[-1]	210.304	2.73[10]	1.81[-1]	7.53[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	223.234	7.93[09]	1.19[-1]	1.74[-1]	209.022	8.48[09]	1.11[-1]	1.53[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	221.417	1.37[10]	1.01[-1]	2.94[-1]	208.102	1.56[10]	1.01[-1]	2.78[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	218.855	4.16[10]	2.99[-1]	8.61[-1]	206.324	4.51[10]	2.87[-1]	7.82[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	208.464	1.13[10]	7.42[-2]	1.02[-1]	194.889	1.05[10]	6.02[-2]	7.72[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	205.624	1.12[10]	7.09[-2]	1.92[-1]	195.608	1.14[10]	6.51[-2]	1.67[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	204.030	1.06[10]	1.32[-1]	1.77[-1]	190.798	1.19[10]	1.31[-1]	1.64[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d\;{}^{2}D_{5/2}$	199.899	3.42[10]	2.05[-1]	8.10[-1]	189.159	3.51[10]	1.89[-1]	7.05[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	199.313	5.01[09]	1.50[-2]	3.92[-2]	188.677	4.90[09]	1.31[-2]	3.25[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d\;{}^{2}D_{3/2}$	198.253	3.84[10]	2.26[-1]	5.90[-1]	187.127	4.11[10]	2.16[-1]	5.33[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d\;{}^{2}D_{5/2}$	197.703	6.12[09]	5.36[-2]	1.40[-1]	186.560	7.56[09]	5.91[-2]	1.46[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	195.255	3.93[10]	2.25[-1]	2.89[-1]	184.840	4.31[10]	2.21[-1]	2.69[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	190.348	4.88[09]	2.65[-2]	9.98[-2]	180.928	6.57[09]	3.22[-2]	1.15[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	189.473	1.36[10]	3.68[-2]	9.17[-2]	179.683	1.56[10]	3.79[-2]	8.95[-2]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	188.588	6.97[09]	3.72[-2]	9.24[-2]	178.676	7.56[09]	3.63[-2]	8.54[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \;{}^{4}P_{5/2}$	188.531	3.04[09]	1.62[-2]	6.03[-2]	179.228	3.33[09]	1.62[-2]	5.71[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	188.356	1.43[10]	1.14[-1]	2.84[-1]	178.549	1.45[10]	1.04[-1]	2.43[-1]
$p^2({}^1S)s\;{}^2S_{1/2}$	$sp({}^{3}P)d \ {}^{2}P_{3/2}$	187.982	5.10[10]	5.43[-1]	6.72[-1]	177.639	5.59[10]	5.32[-1]	6.22[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	186.983	3.19[10]	1.67[-1]	4.12[-1]	177.040	3.43[10]	1.61[-1]	3.76[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^1P)d \; {}^2D_{5/2}$	186.894	6.86[10]	5.41[-1]	1.33[0]	177.059	7.29[10]	5.13[-1]	1.20[0]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	185.802	6.53[09]	3.38[-2]	4.14[-2]	176.200	6.58[09]	3.07[-2]	3.56[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	185.153	1.05[10]	5.40[-2]	1.31[-1]	175.752	1.18[10]	5.46[-2]	1.26[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^1P)d \; {}^2P_{3/2}$	184.951	5.30[10]	5.46[-1]	6.66[-1]	175.232	5.56[10]	5.12[-1]	5.91[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2(^1S)d\ ^2D_{5/2}$	183.779	4.69[10]	3.56[-1]	8.61[-1]	174.230	4.99[10]	3.40[-1]	7.81[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	183.062	2.98[10]	2.24[-1]	5.40[-1]	173.524	3.13[10]	2.12[-1]	4.86[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	182.693	9.66[09]	4.86[-2]	5.84[-2]	171.904	8.88[09]	3.94[-2]	4.46[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	181.952	7.86[09]	3.90[-2]	9.34[-2]	172.411	8.59[09]	3.83[-2]	8.68[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^3P)d\;{}^2F_{7/2}$	181.484	2.00[10]	1.32[-1]	4.71[-1]	171.583	2.15[10]	1.27[-1]	4.29[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{7/2}$	180.884	4.63[10]	3.03[-1]	1.08[0]	171.058	4.88[10]	2.86[-1]	9.67[-1]
$p^2({}^3P)s\;{}^4P_{5/2}$	$sp({}^3P)d\;{}^4D_{5/2}$	180.478	3.21[10]	1.58[-1]	5.62[-1]	170.674	3.44[10]	1.50[-1]	5.07[-1]
$p^2[{}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \ {}^{4}D_{3/2}$	180.241	1.43[10]	4.61[-2]	1.64[-1]	170.380	1.51[10]	4.39[-2]	1.48[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \ {}^{4}P_{3/2}$	177.238	3.35[10]	3.15[-1]	3.67[-1]	167.268	3.57[10]	2.99[-1]	3.29[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	176.676	4.84[10]	2.27[-1]	2.64[-1]	166.745	5.20[10]	2.17[-1]	2.38[-1]
$p^2({}^3P)s\;{}^4P_{3/2}$	$sp({}^3P)d \; {}^4D_{5/2}$	175.460	1.18[10]	8.14[-2]	1.88[-1]	165.493	1.27[10]	7.86[-2]	1.71[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	175.295	3.39[10]	7.81[-2]	1.80[-1]	165.251	3.64[10]	7.47[-2]	1.62[-1]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=31			Z=	=32	
$p^2({}^3P)s \; {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	286.829	5.33[09]	6.58[-2]	1.24[-1]	271.656	5.73[09]	6.35[-2]	1.14[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	283.712	4.24[09]	5.12[-2]	1.91[-1]	266.250	4.51[09]	4.79[-2]	1.68[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2D_{5/2}$	262.681	4.13[09]	4.29[-2]	2.22[-1]	248.942	4.35[09]	4.06[-2]	1.99[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	235.057	4.54[09]	7.52[-2]	1.16[-1]	220.377	5.26[09]	7.63[-2]	1.11[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	213.926	3.56[10]	3.25[-1]	1.38[0]	202.261	3.90[10]	3.19[-1]	1.28[0]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	213.835	2.02[10]	9.25[-2]	3.90[-1]	202.508	2.07[10]	8.51[-2]	3.40[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	212.122	2.02[10]	6.77[-2]	1.90[-1]	200.196	2.22[10]	6.68[-2]	1.76[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	209.631	1.51[10]	6.59[-2]	2.73[-1]	197.573	1.62[10]	6.33[-2]	2.47[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	208.793	3.74[10]	3.67[-1]	1.01[0]	197.030	4.10[10]	3.56[-1]	9.27[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	204.638	1.68[10]	1.05[-1]	2.84[-1]	193.178	1.78[10]	1.00[-1]	2.53[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	200.579	1.34[10]	5.39[-2]	2.13[-1]	189.526	1.52[10]	5.46[-2]	2.05[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	199.769	4.01[10]	1.20[-1]	3.16[-1]	188.773	4.26[10]	1.14[-1]	2.83[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	199.592	3.75[10]	2.25[-1]	2.95[-1]	188.524	4.24[10]	2.26[-1]	2.80[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	199.323	3.40[10]	1.01[-1]	2.66[-1]	188.447	3.70[10]	9.87[-2]	2.45[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	198.427	3.00[10]	1.77[-1]	6.94[-1]	187.505	3.29[10]	1.73[-1]	6.42[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	198.274	2.84[10]	1.12[-1]	4.37[-1]	187.251	3.01[10]	1.06[-1]	3.91[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	198.182	1.52[10]	8.98[-2]	2.34[-1]	186.968	1.57[10]	8.21[-2]	2.03[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	195.967	9.03[09]	1.04[-1]	1.34[-1]	183.918	9.63[09]	9.74[-2]	1.18[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	195.932	1.81[10]	1.04[-1]	2.68[-1]	184.754	2.12[10]	1.08[-1]	2.63[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	194.886	4.87[10]	2.77[-1]	7.12[-1]	184.390	5.21[10]	2.67[-1]	6.48[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	186.613	1.15[10]	5.98[-2]	1.47[-1]	178.487	1.17[10]	5.59[-2]	1.31[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	182.409	9.75[09]	4.88[-2]	5.86[-2]	170.892	9.06[09]	3.97[-2]	4.47[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}D_{5/2}$	179.504	3.52[10]	1.70[-1]	6.04[-1]	170.835	3.39[10]	1.49[-1]	5.03[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	179.043	4.68[09]	1.13[-2]	2.65[-2]	170.268	4.31[09]	9.38[-3]	2.10[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	178.686	1.36[10]	1.30[-1]	1.53[-1]	167.549	1.55[10]	1.30[-1]	1.44[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \ {}^{2}D_{3/2}$	176.978	4.41[10]	2.07[-1]	4.83[-1]	167.669	4.71[10]	1.99[-1]	4.38[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \ {}^{2}D_{5/2}$	176.446	9.55[09]	6.70[-2]	1.55[-1]	167.258	1.22[10]	7.73[-2]	1.70[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \ {}^{2}P_{1/2}$	175.455	4.66[10]	2.16[-1]	2.49[-1]	166.949	4.99[10]	2.09[-1]	2.29[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \ {}^{2}F_{5/2}$	172.394	9.08[09]	4.04[-2]	1.38[-1]	164.581	1.29[10]	5.26[-2]	1.70[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	170.827	1.80[10]	3.93[-2]	8.84[-2]	162.765	2.07[10]	4.12[-2]	8.84[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	169.665	7.91[09]	3.42[-2]	7.63[-2]	161.422	7.89[09]	3.09[-2]	6.56[-2]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	169.572	1.41[10]	9.10[-2]	2.03[-1]	161.259	1.29[10]	7.60[-2]	1.61[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	168.212	6.13[10]	5.21[-1]	5.77[-1]	159.573	6.67[10]	5.10[-1]	5.35[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	168.122	7.69[10]	4.89[-1]	1.08[0]	159.953	8.12[10]	4.67[-1]	9.84[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	168.013	3.70[10]	1.57[-1]	3.47[-1]	159.769	3.99[10]	1.53[-1]	3.21[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	167.557	6.82[09]	2.87[-2]	3.17[-2]	159.730	7.30[09]	2.79[-2]	2.94[-2]
$s^2({}^1S)p {}^2P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	167.243	1.33[10]	5.56[-2]	1.22[-1]	159.497	1.50[10]	5.71[-2]	1.20[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	166.439	5.81[10]	4.82[-1]	5.29[-1]	158.436	6.06[10]	4.58[-1]	4.77[-1]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	165.573	5.28[10]	3.27[-1]	7.12[-1]	157.681	5.61[10]	3.15[-1]	6.52[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	164.887	3.28[10]	2.01[-1]	4.38[-1]	157.022	3.44[10]	1.92[-1]	3.96[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	163.766	9.37[09]	3.76[-2]	8.11[-2]	155.880	1.03[10]	3.75[-2]	7.69[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	162.618	2.31[10]	1.22[-1]	3.92[-1]	154.462	2.47[10]	1.18[-1]	3.60[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	162.079	5.13[10]	2.70[-1]	8.65[-1]	153.819	5.39[10]	2.55[-1]	7.75[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	162.037	8.28[09]	3.26[-2]	3.48[-2]	152.972	7.90[09]	2.77[-2]	2.79[-2]
$p^2({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	161.732	3.67[10]	1.44[-1]	4.60[-1]	153.524	3.90[10]	1.38[-1]	4.19[-1]
$p_{2}^{2}[^{3}P)s_{4}^{4}P_{5/2}$	$sp({}^{\circ}P)d {}^{4}D_{3/2}$	161.385	1.60[10]	4.16[-2]	1.33[-1]	153.127	1.68[10]	3.94[-2]	1.19[-1]
$p^{2}({}^{\circ}P)s {}^{4}P_{1/2}$	$sp({}^{\circ}P)d {}^{4}P_{3/2}$	158.165	3.78[10]	2.83[-1]	2.95[-1]	149.795	3.97[10]	2.68[-1]	2.64[-1]
$p^2({}^{3}P)s {}^{4}P_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	157.689	5.58[10]	2.08[-1]	2.16[-1]	149.381	5.98[10]	2.01[-1]	1.97[-1]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{\circ}P)d {}^{4}D_{5/2}$	156.415	1.39[10]	7.62[-2]	1.57[-1]	148.101	1.50[10]	7.43[-2]	1.45[-1]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	156.105	3.90[10]	7.13[-2]	1.47[-1]	147.728	4.19[10]	6.84[-2]	1.33[-1]
$p^2({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	156.091	2.73[10]	1.00[-1]	2.05[-1]	147.731	2.92[10]	9.55[-2]	1.86[-1]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=35			Z=	=36	
$p^2({}^3P)s \; {}^2P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	233.911	6.91[09]	5.68[-2]	8.74[-2]	223.614	7.27[09]	5.46[-2]	8.04[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	189.404	8.72[09]	3.13[-2]	1.17[-1]	182.195	1.00[10]	3.34[-2]	1.20[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	183.061	7.94[09]	7.97[-2]	9.61[-2]	172.577	9.05[09]	8.09[-2]	9.19[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	173.146	2.20[10]	6.60[-2]	2.25[-1]	164.766	2.23[10]	6.04[-2]	1.97[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	172.338	5.09[10]	3.02[-1]	1.03[0]	163.833	5.54[10]	2.98[-1]	9.64[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	169.487	2.96[10]	6.35[-2]	1.42[-1]	160.739	3.23[10]	6.25[-2]	1.33[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	168.441	7.98[09]	2.27[-2]	7.54[-2]	162.350	2.57[09]	6.74[-3]	2.17[-2]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^1P)d\ ^2F_{5/2}$	167.084	5.17[10]	3.25[-1]	7.15[-1]	158.673	5.48[10]	3.11[-1]	6.49[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^3P)d \; {}^4P_{3/2}$	165.146	1.33[10]	3.62[-2]	1.18[-1]	157.222	2.04[10]	5.03[-2]	1.56[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	163.776	2.08[10]	8.37[-2]	1.80[-1]	155.478	2.14[10]	7.73[-2]	1.59[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	160.974	2.48[10]	6.43[-2]	2.05[-1]	152.825	2.99[10]	6.98[-2]	2.10[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^1P)d\ ^2P_{1/2}$	160.558	4.72[10]	9.14[-2]	1.93[-1]	152.557	4.69[10]	8.17[-2]	1.65[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	160.257	4.66[10]	9.01[-2]	1.90[-1]	152.184	5.02[10]	8.72[-2]	1.75[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	160.155	5.81[10]	2.23[-1]	2.36[-1]	152.096	6.38[10]	2.21[-1]	2.22[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	159.340	4.29[10]	1.64[-1]	5.14[-1]	151.313	4.67[10]	1.60[-1]	4.78[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	158.833	3.29[10]	8.30[-2]	2.60[-1]	150.715	3.25[10]	7.40[-2]	2.20[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	158.123	1.32[10]	4.91[-2]	1.02[-1]	152.376	1.41[10]	4.91[-2]	9.88[-2]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^1P)d\ ^2P_{3/2}$	158.062	1.49[10]	5.58[-2]	1.16[-1]	149.847	1.36[10]	4.55[-2]	8.97[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	157.462	6.28[10]	2.33[-1]	4.83[-1]	149.846	6.52[10]	2.20[-1]	4.33[-1]
$s^{2}(^{1}S)d^{-2}D_{3/2}^{'}$	$sp(^{1}P)d^{-2}D_{3/2}$	155.997	3.70[10]	1.35[-1]	2.77[-1]	147.819	4.54[10]	1.49[-1]	2.90[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	152.725	1.17[10]	8.20[-2]	8.25[-2]	143.809	1.26[10]	7.82[-2]	7.40[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp(^{3}P)d^{-2}D_{5/2}$	150.034	1.99[10]	6.70[-2]	1.99[-1]	144.541	1.41[10]	4.42[-2]	1.26[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	147.369	8.53[09]	4.16[-2]	8.08[-2]	141.269	1.17[10]	5.24[-2]	9.77[-2]
$p^2({}^3P)s\;{}^2P_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	145.624	5.74[10]	1.83[-1]	1.75[-1]	139.653	5.88[10]	1.72[-1]	1.58[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{5/2}$	144.478	2.47[10]	1.16[-1]	2.21[-1]	138.168	2.80[10]	1.20[-1]	2.19[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	144.149	3.55[10]	1.11[-1]	3.15[-1]	138.111	4.42[10]	1.27[-1]	3.46[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d\;{}^{2}D_{3/2}$	143.775	5.67[10]	1.76[-1]	3.33[-1]	136.939	6.01[10]	1.69[-1]	3.04[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	143.578	6.43[09]	1.99[-2]	5.64[-2]	137.977	7.39[09]	2.12[-2]	5.76[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	142.268	3.32[10]	5.04[-2]	9.45[-2]	136.400	3.94[10]	5.48[-2]	9.87[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	141.089	7.34[09]	2.19[-2]	2.04[-2]	132.559	6.90[09]	1.82[-2]	1.59[-2]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	140.061	1.08[10]	3.19[-2]	2.94[-2]	134.519	1.30[10]	3.53[-2]	3.13[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	139.832	2.36[10]	6.95[-2]	1.28[-1]	134.229	2.84[10]	7.69[-2]	1.36[-1]
$p^{2}(^{3}P)s^{-2}P_{3/2}$	$sp(^1P)d\ ^2D_{5/2}$	139.062	9.25[10]	4.03[-1]	7.38[-1]	133.063	9.55[10]	3.81[-1]	6.68[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	138.918	2.44[10]	1.41[-1]	1.29[-1]	130.782	2.92[10]	1.49[-1]	1.29[-1]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	138.676	4.92[10]	1.41[-1]	2.58[-1]	132.600	5.12[10]	1.36[-1]	2.37[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	138.158	6.99[10]	4.00[-1]	3.65[-1]	132.408	7.29[10]	3.84[-1]	3.34[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_5/{}^2$	137.629	6.66[10]	2.83[-1]	5.14[-1]	131.927	7.05[10]	2.76[-1]	4.79[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	137.387	8.39[10]	4.74[-1]	4.29[-1]	130.989	8.94[10]	4.61[-1]	3.98[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	137.076	3.91[10]	1.65[-1]	2.98[-1]	131.404	4.04[10]	1.58[-1]	2.72[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	134.917	1.49[10]	4.07[-2]	7.23[-2]	127.662	1.36[10]	3.33[-2]	5.59[-2]
$p^2(^1D)s^{-2}D_{5/2}^{'}$	$sp(^{3}P)d^{-2}F_{7/2}$	133.884	3.00[10]	1.07[-1]	2.83[-1]	128.089	3.16[10]	1.04[-1]	2.63[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{7/2}$	132.402	6.14[10]	2.15[-1]	5.62[-1]	126.154	6.39[10]	2.04[-1]	5.06[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	132.372	4.63[10]	1.22[-1]	3.19[-1]	126.298	4.82[10]	1.15[-1]	2.88[-1]
$p^2[^3P)s \ ^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	131.789	1.92[10]	3.33[-2]	8.67[-2]	125.584	1.99[10]	3.13[-2]	7.78[-2]
$p^2(^1S)s\ ^2S_1^{'}{}_{/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	129.689	8.54[09]	2.16[-2]	1.84[-2]	123.007	9.51[09]	2.16[-2]	1.75[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	129.277	3.74[10]	1.87[-1]	1.59[-1]	122.637	5.24[10]	2.37[-1]	1.91[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	128.006	7.38[10]	1.81[-1]	1.53[-1]	121.830	7.90[10]	1.76[-1]	1.41[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	127.327	1.43[10]	6.93[-2]	5.81[-2]	119.688	3.15[09]	1.35[-2]	1.07[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	126.825	1.94[10]	7.05[-2]	1.17[-1]	120.768	2.07[10]	6.80[-2]	1.08[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	126.289	3.55[10]	8.48[-2]	1.41[-1]	120.115	3.75[10]	8.09[-2]	1.28[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	126.258	5.16[10]	6.17[-2]	1.03[-1]	120.084	5.54[10]	5.97[-2]	9.47[-2]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	-39			Z=	=40	
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	163.081	1.39[10]	3.70[-2]	1.19[-1]	157.512	1.52[10]	3.76[-2]	1.17[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	144.980	1.34[10]	8.46[-2]	8.08[-2]	136.980	1.53[10]	8.58[-2]	7.74[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	143.170	1.62[10]	3.33[-2]	9.40[-2]	137.730	1.09[10]	2.08[-2]	5.66[-2]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	141.009	7.26[10]	2.90[-1]	8.05[-1]	134.252	7.96[10]	2.88[-1]	7.62[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	137.444	2.08[10]	2.94[-2]	5.33[-2]	131.808	2.42[09]	3.15[-3]	5.47[-3]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	136.771	2.06[10]	5.76[-2]	1.04[-1]	131.832	2.45[10]	6.36[-2]	1.11[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	136.723	5.87[10]	2.46[-1]	4.44[-1]	130.533	5.57[10]	2.13[-1]	3.67[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	136.523	1.61[10]	2.25[-2]	4.04[-2]	130.165	1.94[10]	2.46[-2]	4.22[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	136.205	2.28[10]	3.18[-2]	5.70[-2]	130.072	4.53[10]	5.72[-2]	9.84[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \;{}^{4}P_{3/2}$	135.228	2.57[10]	4.71[-2]	1.25[-1]	129.068	2.44[10]	4.05[-2]	1.03[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	134.339	1.13[10]	3.04[-2]	5.37[-2]	129.006	5.01[09]	1.25[-2]	2.13[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	131.383	3.51[10]	4.54[-2]	7.85[-2]	125.310	2.67[10]	3.14[-2]	5.19[-2]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	131.014	5.13[10]	8.85[-2]	2.29[-1]	124.596	6.04[10]	9.39[-2]	2.31[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	130.846	1.16[10]	5.92[-2]	5.10[-2]	124.339	1.44[10]	6.67[-2]	5.46[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	130.730	1.97[10]	5.08[-2]	8.71[-2]	124.967	2.85[10]	6.66[-2]	1.10[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^1S)s \; {}^2S_{1/2}$	130.458	8.36[10]	2.14[-1]	1.83[-1]	124.052	9.12[10]	2.11[-1]	1.72[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{1/2}$	130.438	6.29[10]	8.05[-2]	1.38[-1]	123.991	6.80[10]	7.86[-2]	1.28[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	129.792	6.02[10]	1.52[-1]	3.90[-1]	123.445	6.53[10]	1.50[-1]	3.65[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	129.780	6.47[10]	1.64[-1]	2.79[-1]	124.073	5.91[10]	1.37[-1]	2.23[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	128.769	2.74[10]	4.54[-2]	1.15[-1]	122.216	2.49[10]	3.73[-2]	8.97[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	127.097	1.51[10]	5.51[-2]	9.21[-2]	121.031	2.43[10]	8.02[-2]	1.28[-1]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	126.115	8.84[10]	2.11[-1]	3.50[-1]	119.849	1.10[11]	2.36[-1]	3.72[-1]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}F_{5/2}$	125.049	3.12[10]	1.10[-1]	1.81[-1]	120.112	4.36[10]	1.40[-1]	2.23[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	124.279	5.84[10]	1.36[-1]	1.11[-1]	119.877	5.65[10]	1.22[-1]	9.62[-2]
$p^2({}^3P)s\;{}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	123.096	1.13[10]	2.57[-2]	6.24[-2]	118.658	1.30[10]	2.75[-2]	6.44[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \;{}^{4}D_{5/2}$	122.909	3.66[10]	1.25[-1]	2.02[-1]	118.167	4.58[10]	1.44[-1]	2.24[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	121.937	6.34[10]	1.41[-1]	3.41[-1]	117.163	6.83[10]	1.40[-1]	3.25[-1]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_{3/2}$	120.785	1.22[10]	5.31[-2]	4.22[-2]	114.677	9.37[09]	3.69[-2]	2.79[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^1P)d \; {}^2P_{1/2}$	120.567	6.70[10]	7.31[-2]	1.16[-1]	115.676	7.92[10]	7.96[-2]	1.21[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	120.005	2.44[10]	5.28[-2]	4.17[-2]	115.747	3.02[10]	6.07[-2]	4.62[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	119.216	5.52[10]	1.17[-1]	1.84[-1]	114.621	7.09[10]	1.39[-1]	2.10[-1]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	118.900	6.93[10]	1.47[-1]	2.30[-1]	113.594	7.23[10]	1.40[-1]	2.10[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^1P)d {}^2P_{3/2}$	117.402	7.84[10]	3.25[-1]	2.51[-1]	113.035	7.90[10]	3.02[-1]	2.25[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	116.949	9.69[10]	2.99[-1]	4.61[-1]	112.020	9.30[10]	2.63[-1]	3.88[-1]
$s^2({}^1S)p {}^2P_{3/2}$	$s^2({}^1S)d {}^2D_{5/2}$	116.939	8.28[10]	2.55[-1]	3.93[-1]	112.537	8.77[10]	2.50[-1]	3.70[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	116.510	4.51[10]	1.38[-1]	2.11[-1]	112.126	4.64[10]	1.31[-1]	1.94[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	116.117	4.73[10]	9.57[-2]	1.46[-1]	111.007	4.00[10]	7.41[-2]	1.08[-1]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{\circ}P)d {}^{2}P_{3/2}$	113.856	1.07[11]	4.16[-1]	3.12[-1]	108.695	1.13[11]	3.98[-1]	2.85[-1]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{\circ}P)d {}^{2}F_{7/2}$	113.057	3.79[10]	9.73[-2]	2.17[-1]	108.704	4.06[10]	9.56[-2]	2.06[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	111.213	1.79[10]	3.31[-2]	7.29[-2]	107.055	6.99[09]	1.20[-2]	2.54[-2]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^3P)s {}^2P_{3/2}$	109.447	5.59[10]	2.01[-1]	1.45[-1]	103.351	7.13[10]	2.29[-1]	1.56[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	109.408	7.21[10]	1.72[-1]	3.73[-1]	104.393	7.54[10]	1.64[-1]	3.39[-1]
$p^2({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	109.213	4.34[10]	7.81[-2]	1.68[-1]	104.344	5.94[10]	9.70[-2]	2.00[-1]
$p^{2}[{}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	108.902	2.12[10]	2.51[-2]	5.40[-2]	103.820	2.08[10]	2.24[-2]	4.59[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	107.644	2.40[10]	4.17[-2]	5.92[-2]	101.911	3.36[10]	5.23[-2]	7.01[-2]
$p^{2}({}^{\circ}P)s {}^{4}P_{1/2}$	$p^{2}({}^{\circ}P)p {}^{2}P_{1/2}$	106.092	4.38[10]	7.39[-2]	5.17[-2]	100.759	9.58[10]	1.46[-1]	9.68[-2]
$p^{2}({}^{\circ}P)s {}^{4}P_{1/2}$	$p^{2}({}^{\circ}P)p {}^{2}P_{3/2}$	105.937	6.97[10]	2.34[-1]	1.63[-1]	101.026	7.56[10]	2.32[-1]	1.54[-1]
$p_{2(25)}^{2(1S)s} s_{1/2}^{2S_{1/2}}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	105.496	1.62[10]	2.71[-2]	1.88[-2]	100.384	2.02[10]	3.06[-2]	2.02[-2]
$p^{2}({}^{\circ}P)s {}^{4}P_{1/2}$	$sp({}^{\circ}P)d {}^{4}P_{1/2}$	105.352	5.33[10]	8.88[-2]	6.16[-2]	99.741	9.06[09]	1.35[-2]	8.88[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{1}P)d {}^{2}F_{7/2}$	104.198	3.00[10]	6.51[-2]	1.34[-1]	100.453	2.88[10]	5.83[-2]	1.15[-1]
$p^2({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	103.998	1.90[10]	4.62[-2]	6.33[-2]	99.259	2.68[10]	5.93[-2]	7.76[-2]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=41			Z=	=42	
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	152.276	1.65[10]	3.80[-2]	1.15[-1]	147.340	1.77[10]	3.83[-2]	1.12[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	129.491	1.73[10]	8.71[-2]	7.42[-2]	122.471	1.97[10]	8.83[-2]	7.12[-2]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	127.857	8.77[10]	2.86[-1]	7.23[-1]	121.795	9.61[10]	2.85[-1]	6.87[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	127.091	1.81[10]	2.91[-2]	7.30[-2]	121.181	2.05[10]	3.00[-2]	7.18[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d\;{}^{2}P_{3/2}$	126.862	2.93[10]	7.05[-2]	1.18[-1]	121.790	3.49[10]	7.75[-2]	1.25[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^1P)d\ ^2F_{5/2}$	124.901	4.97[10]	1.74[-1]	2.87[-1]	119.824	4.16[10]	1.35[-1]	2.12[-1]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	124.400	2.14[10]	2.49[-2]	4.08[-2]	119.216	2.15[10]	2.29[-2]	3.59[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	123.629	2.04[10]	3.11[-2]	7.60[-2]	118.996	1.50[10]	2.13[-2]	5.01[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	123.607	5.16[10]	5.92[-2]	9.63[-2]	117.424	5.73[10]	5.92[-2]	9.17[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	121.834	1.03[10]	4.57[-2]	3.67[-2]	115.919	1.17[10]	4.72[-2]	3.60[-2]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	119.729	1.73[10]	1.87[-2]	2.94[-2]	114.638	8.89[09]	8.77[-3]	1.32[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d\;{}^{4}D_{3/2}$	119.389	2.24[10]	3.18[-2]	7.50[-2]	115.476	1.06[10]	1.41[-2]	3.22[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	119.178	3.43[10]	7.30[-2]	1.15[-1]	113.565	3.86[10]	7.45[-2]	1.12[-1]
$s^2(^1S)p\ ^2P_{3/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	118.859	5.07[10]	1.08[-1]	1.68[-1]	114.137	4.02[10]	7.86[-2]	1.18[-1]
$s^2(^1S)d\ ^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	118.547	6.95[10]	9.79[-2]	2.29[-1]	112.838	7.86[10]	1.00[-1]	2.24[-1]
$p^2(^1S)s\ ^2S_{1/2}$	$sp({}^{3}P)d\;{}^{2}D_{3/2}$	118.065	1.58[10]	6.58[-2]	5.12[-2]	111.385	4.51[09]	1.68[-2]	1.23[-2]
$s^{2}(^{1}S)p \ ^{2}P_{1/2}$	$p^2(^1S)s\ ^2S_{1/2}$	117.989	9.96[10]	2.08[-1]	1.62[-1]	112.241	1.08[11]	2.05[-1]	1.52[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$p^2({}^3P)s\;{}^2P_{1/2}$	117.891	7.34[10]	7.67[-2]	1.19[-1]	112.112	7.95[10]	7.47[-2]	1.11[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^1P)d\ ^2D_{5/2}$	117.456	7.12[10]	1.47[-1]	3.42[-1]	111.798	7.76[10]	1.46[-1]	3.21[-1]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	115.985	2.27[10]	3.05[-2]	6.98[-2]	110.049	2.08[10]	2.52[-2]	5.48[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{3}P)d^{-2}P_{1/2}$	115.780	5.36[10]	1.08[-1]	8.22[-2]	111.959	4.99[10]	9.40[-2]	6.93[-2]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d^{-2}D_{5/2}^{'}$	115.477	3.70[10]	1.11[-1]	1.69[-1]	110.426	5.29[10]	1.45[-1]	2.11[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	115.289	5.95[10]	1.78[-1]	2.71[-1]	110.527	7.91[10]	2.17[-1]	3.16[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	114.428	1.50[10]	2.94[-2]	6.66[-2]	110.379	1.74[10]	3.17[-2]	6.92[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^1P)d\ ^2D_{3/2}$	114.054	1.33[11]	2.61[-1]	3.91[-1]	108.719	1.58[11]	2.80[-1]	4.01[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	113.721	5.06[10]	1.47[-1]	2.21[-1]	109.510	5.47[10]	1.48[-1]	2.13[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	112.660	7.29[10]	1.38[-1]	3.08[-1]	108.406	7.71[10]	1.36[-1]	2.91[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	111.724	3.70[10]	6.92[-2]	5.09[-2]	107.912	4.46[10]	7.79[-2]	5.53[-2]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	110.868	9.10[10]	8.41[-2]	1.23[-1]	106.100	1.01[11]	8.51[-2]	1.19[-1]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{3/2}$	110.122	9.03[10]	1.65[-1]	2.39[-1]	105.671	1.14[11]	1.90[-1]	2.64[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	108.934	7.91[10]	2.81[-1]	2.02[-1]	105.074	7.88[10]	2.61[-1]	1.81[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	108.667	2.38[10]	4.21[-2]	6.02[-2]	103.797	3.06[10]	4.95[-2]	6.76[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	108.427	7.55[10]	1.34[-1]	1.90[-1]	102.859	3.81[10]	6.05[-2]	8.20[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{5/2}$	108.381	9.26[10]	2.45[-1]	3.49[-1]	104.444	9.82[10]	2.40[-1]	3.31[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{5/2}$	107.974	4.78[10]	1.25[-1]	1.78[-1]	104.024	4.88[10]	1.18[-1]	1.62[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	107.213	8.54[10]	2.21[-1]	3.12[-1]	102.482	7.47[10]	1.76[-1]	2.38[-1]
$p^2({}^3P)s {}^2P_{1/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	106.767	1.50[10]	5.13[-2]	3.60[-2]	102.651	2.04[10]	6.45[-2]	4.36[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	105.985	3.01[10]	5.06[-2]	7.07[-2]	101.010	1.95[10]	2.99[-2]	3.97[-2]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	104.623	4.32[10]	9.47[-2]	1.96[-1]	100.785	4.64[10]	9.41[-2]	1.88[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	103.749	1.17[11]	3.79[-1]	2.59[-1]	98.991	1.21[11]	3.58[-1]	2.33[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	99.679	6.80[10]	1.01[-1]	2.00[-1]	95.223	7.50[10]	1.02[-1]	1.92[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	99.622	7.89[10]	1.57[-1]	3.09[-1]	95.079	8.30[10]	1.50[-1]	2.82[-1]
$p^2[{}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	98.969	1.99[10]	1.95[-2]	3.82[-2]	94.697	1.29[10]	1.16[-2]	2.16[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s {}^2P_{3/2}$	97.738	9.07[10]	2.60[-1]	1.67[-1]	92.589	1.13[11]	2.90[-1]	1.77[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	96.926	2.73[10]	5.15[-2]	9.85[-2]	93.593	2.55[10]	4.47[-2]	8.28[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	96.718	4.63[10]	6.52[-2]	8.28[-2]	92.104	5.77[10]	7.31[-2]	8.88[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	96.376	8.20[10]	2.29[-1]	1.45[-1]	91.965	8.94[10]	2.27[-1]	1.38[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	96.233	1.60[10]	2.23[-2]	2.82[-2]	92.199	2.25[10]	2.86[-2]	3.47[-2]
$p^2({}^3P)s {}^4P_{1/2}$	$p^2({}^3P)p {}^2P_{1/2}$	96.111	1.09[11]	1.50[-1]	9.52[-2]	91.740	1.18[11]	1.50[-1]	9.04[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	95.582	2.54[10]	3.48[-2]	2.19[-2]	91.065	3.18[10]	3.95[-2]	2.37[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	94.746	3.12[10]	6.28[-2]	7.85[-2]	90.456	3.46[10]	6.38[-2]	7.61[-2]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=47			Z=	-48	
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	126.330	2.34[10]	3.73[-2]	9.31[-2]	122.735	2.44[10]	3.66[-2]	8.93[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	96.141	2.95[10]	4.09[-2]	2.59[-2]	93.496	2.61[10]	3.43[-2]	2.11[-2]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	95.784	1.58[11]	2.89[-1]	5.47[-1]	91.358	1.73[11]	2.90[-1]	5.23[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	95.554	2.80[10]	2.55[-2]	4.82[-2]	91.890	1.88[09]	1.58[-3]	2.88[-3]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	95.440	6.56[10]	8.96[-2]	1.13[-1]	90.339	7.15[10]	8.72[-2]	1.04[-1]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	94.627	7.40[07]	6.62[-5]	1.24[-4]	91.264	2.73[10]	2.28[-2]	4.10[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^3P)d\; {}^4F_{7/2}$	94.330	1.95[10]	3.47[-2]	6.48[-2]	91.070	2.18[10]	3.60[-2]	6.50[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	93.201	3.60[10]	9.39[-2]	5.76[-2]	88.323	4.06[10]	9.50[-2]	5.52[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	92.324	5.51[10]	4.68[-2]	8.56[-2]	88.664	5.66[10]	4.45[-2]	7.79[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \;{}^{4}P_{5/2}$	91.958	3.50[10]	4.43[-2]	8.04[-2]	88.553	3.82[10]	4.49[-2]	7.86[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp(^{3}P)d \ ^{4}F_{5/2}$	91.833	2.79[10]	5.30[-2]	6.41[-2]	88.433	3.53[10]	6.24[-2]	7.28[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \;{}^{4}P_{3/2}$	91.807	8.09[10]	2.04[-1]	1.24[-1]	87.981	9.58[10]	2.23[-1]	1.29[-1]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp({}^1P)d \; {}^2P_{1/2}$	91.435	8.67[10]	1.09[-1]	6.55[-2]	88.569	9.49[10]	1.12[-1]	6.51[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^1P)d \; {}^2D_{5/2}$	91.069	1.27[11]	2.37[-1]	2.85[-1]	87.987	1.38[11]	2.40[-1]	2.78[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	90.875	9.46[10]	5.88[-2]	7.02[-2]	86.335	1.05[11]	5.88[-2]	6.66[-2]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	90.702	8.10[10]	1.50[-1]	1.80[-1]	87.187	8.76[10]	1.50[-1]	1.72[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	90.392	2.18[10]	5.33[-2]	3.17[-2]	85.987	2.45[10]	5.42[-2]	3.07[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	90.054	1.01[11]	1.24[-1]	2.19[-1]	86.816	1.07[11]	1.21[-1]	2.08[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}F_{3/2}$	89.549	5.99[10]	7.21[-2]	8.51[-2]	86.110	1.51[10]	1.68[-2]	1.90[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$p^2({}^3P)p {}^2P_{3/2}$	88.734	5.10[09]	6.02[-3]	7.04[-3]	85.561	5.31[10]	5.83[-2]	6.58[-2]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	88.653	8.13[10]	1.92[-1]	1.12[-1]	85.832	8.28[10]	1.83[-1]	1.04[-1]
$s^2({}^1S)d {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	88.643	1.26[11]	9.95[-2]	1.74[-1]	84.573	1.35[11]	9.66[-2]	1.61[-1]
$s^2({}^1S)d {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	87.800	1.17[11]	1.35[-1]	2.34[-1]	83.766	1.26[11]	1.32[-1]	2.18[-1]
$p^2({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}F_{5/2}$	87.774	1.88[11]	3.27[-1]	3.77[-1]	83.620	2.11[11]	3.34[-1]	3.67[-1]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2({}^1S)s {}^2S_{1/2}$	87.501	1.68[11]	1.93[-1]	1.11[-1]	83.244	1.84[11]	1.91[-1]	1.05[-1]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$s^2({}^1S)d {}^2D_{5/2}$	87.306	1.31[11]	2.26[-1]	2.60[-1]	84.252	1.40[11]	2.24[-1]	2.48[-1]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	87.296	1.21[11]	6.90[-2]	7.93[-2]	83.040	1.31[11]	6.80[-2]	7.45[-2]
$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	87.146	2.64[11]	3.00[-1]	3.44[-1]	83.454	2.85[11]	2.98[-1]	3.28[-1]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	87.106	1.14[11]	6.51[-2]	7.46[-2]	82.955	1.38[11]	7.10[-2]	7.77[-2]
$p^{2}({}^{0}P)s {}^{1}P_{3/2}$	$sp({}^{s}P)d {}^{-1}P_{5/2}$	80.383	4.06[10]	0.82[-2]	7.76[-2]	83.174	3.58[10]	5.59[-2]	6.11[-2]
$p^{2}({}^{1}D)s {}^{2}D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	86.271	7.23[10]	8.08[-2]	9.17[-2]	82.940	7.60[10]	7.83[-2]	8.57[-2]
$p^{2}(^{1}D)s ^{2}D_{5/2}$	$sp({}^{\circ}P)d {}^{2}F_{7/2}$	84.302	0.78[10]	9.65[-2]	1.01[-1]	81.478	7.31[10]	9.72[-2]	1.56[-1]
$s^{-}(^{+}S)p^{-}P_{3/2}$	$s^{-}(^{+}S)a^{-}D_{3/2}$	84.297	2.32[11] 5.90[10]	2.47[-1]	2.74[-1]	80.374	2.37[11] 5.09[10]	2.48[-1]	2.03[-1] c 19[9]
$p^{2}({}^{\circ}P)s {}^{2}P_{1/2}$	$sp(^{+}P)a^{-}D_{3/2}$	84.130	0.20[10]	1.11[-1] 1.20[-2]	0.14[-2] 0.21[0]	80.702 70.647	0.92[10] 0.10[10]	1.10[-1] 1.25[-0]	0.18[-2]
$s^{-}(^{-}S)a^{-}D_{5/2}$ $m^{2}(^{3}D)a^{-}2D$	$sp(P)a - D_{3/2}$ sp(1 P)d - 2P	04.147 02.005	1.90[10] 1.00[11]	1.59[-2] ട റഉ[-2]	2.31[-2] 5.71[-3]	79.047	2.12[10]	1.59[-2]	2.12[-2]
$p(\Gamma)s\Gamma_{3/2}$ $p^2(^3D)s^2D$	$sp(r)a r_{1/2}$ $sp(1D)d^2D$	00.220 00.911	1.00[11]	0.20[-2] 4.22[-0]	0.71[-2] 457[0]	79.004	9.04[10] 9.58[10]	4.00[-2] 2.27[-0]	4.71[-2]
$p(\Gamma)s\Gamma_{3/2}$ $p^2({}^1S)e^2S$	$sp(r)a D_{5/2}$ $sp(^3P)d^2P$	77544	2.99[10] 1.37[11]	4.55[-2] 2.48[-1]	4.07[-2] 1.97[1]	70.190	2.36[10] 1 40[11]	-0.07[-2] -0.08[-1]	3.30[-2] 1.10[-1]
$p(S)s S_{1/2}$ $p^2(^3D)s ^4D$	$sp(r)a r_{3/2}$ $sp(^{3}D)d^{2}D$	75 744	1.37[11]	2.40[-1]	1.27[-1] 1.47[-1]	70.000	1.40[11] 1.95[11]	2.20[-1] 0.77[-0]	1.10[-1] 1.40[1]
$p(r)s r_{5/2}$ $p^{2}[^{3}D) a ^{4}D$	$sp(r)a D_{5/2}$ $sp(^{3}D)d^{4}D$	75.669	1.14[11] 2.70[10]	9.00[-2] 1.55[-2]	1.47[-1]	72.040	1.20[11] 2.06[10]	9.77[-2] 1.55[-9]	1.40[-1]
$p [r]s r_{5/2}$ $p^2(^3D)a ^4D$	$sp(\Gamma)u D_{3/2}$ $sp(^3P)d ^4D$	75.002	2.70[10] 1.13[11]	1.00[-2] 1.08[1]	2.31[-2] 1.01[1]	72.294	2.90[10] 1.90[11]	1.00[-2] 1.96[1]	2.21[-2] 1.70[1]
p(1)s 15/2 $p^2(^3D)s ^4D$	$sp(T)u D_{7/2}$ $sp(^{3}D)d ^{4}D$	73.320	1.13[11]	2.44[-1]	2 20[2]	71.090	1.22[11]	1.20[-1] 3.20[.2]	1.79[-1] 2.04[2]
$p(1)s 1_{3/2}$ $p^2(1D)s^2D$	$sp(1)a \ 1_{3/2}$ $sp(1)d \ 2D$	74.920 74.152	$\frac{4.00[10]}{2.21[10]}$	1.96[.9]	3.39[-2] 1.86[-2]	72.100	$\frac{4.11[10]}{2.07[10]}$	3.20[-2] 1.53[2]	3.04[-2] 2.16[.2]
$p(D)s D_{5/2}$ $p^2(1D)s^2D$	$sp(1)u = 1_{3/2}$ $sp(^{3}P)d = 2P$	73 558	2.31[10] 8.03[10]	1.20[-2] 6.53[-2]	6 31[2]	71.075	2.97[10] 0.40[10]	1.00[-2] 6.08[-2]	2.10[-2] 6 42[2]
$P(D) = \frac{D}{3/2}$ $n^2(^3P) = \frac{4P}{2}$	sp(1)u 13/2 $sp(3P)d 4F_{-1}$	73 469	2.05[10] 2.16[10]	3 50[-2]	1 60[_2]	69.615	1.35[11]	1 07[_1]	9.12[-2]
$P(1) = \frac{1}{2} \frac{1}{$	$n^{2}({}^{3}P)n^{2}P_{-}$	72 030 72 030	$\frac{2.10[10]}{1.77[11]}$	1 41[_1]	6.77[-2]	69.619	1.00[11]	1 40[-1]	6 40[-2]
$P(1) = \frac{1}{2} \frac{1}{$	$P(1)P^{-1}1/2$ $n^2(^3P)n^2P_{-1}$	72.900	153[11]	2 43[-1]	1 17[_1]	60.256	5.04[10]	8 55[_9]	3 90[-2]
$P(1)^{3} + \frac{1}{2}$ $n^{2}(^{3}P)s^{4}P_{1}$	$P(1)P^{-1}3/2$ $n^2(^3P)n^{-2}P_{2}/2$	72 013	1.53[11]	2.43[-1]	1 17[_1]	69.256	5.94[10] 5.94[10]	8 55[-2]	3.90[-2]
$s^{2}({}^{1}S)n^{2}P_{1/2}$	$n^{2}({}^{3}P)s^{2}P_{2/2}$	72.210 72.221	2.26[11]	352[-1]	1.68[-1]	68 896	2.49[11]	354[-1]	$1 \ 61[-1]$
$n^2({}^1S)s {}^2S_{1/2}$	$sn({}^{3}P)d {}^{2}P_{1/2}$	71 951	8.15[10]	6.34[-2]	3.00[-2]	68 698	9.51[10]	6.73[-2]	3.04[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	71.920	5.36[10]	6.25[-2]	5.92[-2]	68.715	5.86[10]	6.20[-2]	5.62[-2]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=53			Z=	=54	
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}F_{7/2}$	76.904	3.57[10]	4.20[-2]	6.40[-2]	74.434	3.89[10]	4.30[-2]	6.35[-2]
$p^2({}^3P)s\;{}^2P_{1/2}$	$sp({}^1P)d \; {}^2P_{1/2}$	75.900	1.33[11]	1.16[-1]	5.76[-2]	73.649	1.41[11]	1.15[-1]	5.56[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{5/2}$	74.811	1.86[11]	2.33[-1]	2.30[-1]	72.523	1.95[11]	2.31[-1]	2.20[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}F_{5/2}$	74.593	7.15[10]	8.92[-2]	8.79[-2]	72.263	7.77[10]	9.12[-2]	8.69[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{5/2}$	73.810	4.21[10]	3.44[-2]	5.02[-2]	71.357	4.15[10]	3.18[-2]	4.49[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	73.787	3.12[10]	1.70[-2]	2.48[-2]	71.026	3.07[10]	1.55[-2]	2.18[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	73.425	9.53[10]	1.54[-1]	7.45[-2]	71.230	9.93[10]	1.50[-1]	7.04[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d\;{}^{2}D_{3/2}$	73.011	4.61[10]	2.45[-2]	3.54[-2]	70.117	4.24[10]	2.09[-2]	2.89[-2]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	72.977	2.55[11]	2.71[-1]	3.90[-1]	70.071	2.61[11]	2.56[-1]	3.55[-1]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	71.865	3.77[10]	2.92[-2]	2.77[-2]	67.900	5.09[10]	3.51[-2]	3.13[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d\;{}^{2}F_{5/2}$	71.568	1.34[11]	1.03[-1]	1.45[-1]	68.564	1.37[11]	9.63[-2]	1.31[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	70.700	1.72[11]	2.57[-1]	1.20[-1]	67.477	1.87[11]	2.55[-1]	1.13[-1]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	69.997	1.19[11]	1.32[-1]	1.21[-1]	66.705	1.26[11]	1.27[-1]	1.11[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	69.872	2.55[10]	1.87[-2]	8.59[-3]	66.203	2.91[10]	1.92[-2]	8.36[-3]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$s^2({}^1S)d \; {}^2D_{5/2}$	69.766	1.85[11]	2.02[-1]	1.86[-1]	66.893	1.92[11]	1.94[-1]	1.70[-1]
$p^{2}(^{3}P)s^{-4}P_{3/2}$	$p^2({}^3P)p \; {}^2P_{3/2}$	69.335	6.52[10]	4.70[-2]	4.29[-2]	66.769	6.37[10]	4.25[-2]	3.74[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	68.694	3.33[10]	1.58[-2]	2.13[-2]	65.789	3.81[10]	1.65[-2]	2.14[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	67.869	9.61[10]	8.85[-2]	1.19[-1]	65.168	9.72[10]	8.22[-2]	1.06[-1]
$s^2({}^1S)d {}^2D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	67.769	1.47[11]	6.74[-2]	9.03[-2]	65.117	1.38[11]	5.83[-2]	7.51[-2]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2(^1D)s^{-2}D_{3/2}$	67.703	7.21[10]	9.91[-2]	4.43[-2]	64.228	8.08[10]	1.00[-1]	4.24[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	67.678	8.61 10	5.91[-2]	5.27[-2]	63.833	8.72[10]	5.31[-2]	4.48[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	67.544	8.53[10]	5.87[-2]	5.21[-2]	64.610	8.69[10]	5.47[-2]	4.64[-2]
$s^{2}(^{1}S)d^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	67.127	1.48[11]	9.97[-2]	1.33[-1]	64.505	1.42[11]	8.92[-2]	1.14[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p^{2}D_{2/2}$	66.865	4.26[10]	5.72[-2]	2.52[-2]	63.566	4.74[10]	5.74[-2]	2.40[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}^{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	66.788	1.76[11]	5.88[-2]	5.18[-2]	63.441	1.95[11]	5.93[-2]	4.94[-2]
$s^{2}({}^{1}S)d {}^{2}D_{2/2}$	$sp({}^{1}P)d {}^{2}D_{2/2}$	66.638	4.34[11]	2.89[-1]	2.54[-1]	63.572	4.74[11]	2.87[-1]	2.40[-1]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}F_{5/2}$	65.334	3.68[11]	3.53[-1]	3.04[-1]	62.156	4.11[11]	3.56[-1]	2.92[-1]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	64.936	1.04[11]	1.30[-1]	5.59[-2]	62.011	1.14[11]	1.32[-1]	5.39[-2]
$s^{2}(^{1}S)p^{2}P_{1/2}^{1/2}$	$p^2({}^1S)s {}^2S_{1/2}$	64.804	2.93[11]	1.85[-1]	7.88[-2]	61.626	3.23[11]	1.84[-1]	7.47[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	64.742	2.83[11]	8.94[-2]	7.60[-2]	61.583	3.21[11]	9.14[-2]	7.41[-2]
$s^{2}(^{1}S)p^{2}P_{2/2}$	$p^{2}({}^{3}P)s^{2}P_{1/2}$	64.640	2.10[11]	6.57[-2]	5.59[-2]	61.474	2.31[11]	6.57[-2]	5.30[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	64.504	2.83[10]	1.77[-2]	2.26[-2]	61.595	3.52[10]	2.00[-2]	2.43[-2]
$s^{2}(^{1}S)p^{2}P_{2/2}$	$s^{2}(^{1}S)d^{2}D_{2/2}$	63.037	4.18[11]	2.49[-1]	2.07[-1]	60.013	4.63[11]	2.50[-1]	1.97[-1]
$n^2({}^3P)s^2P_{2/2}$	$sn({}^{1}P)d {}^{2}P_{1/2}$	60.815	8.40[10]	2.34[-2]	1.87[-2]	57.674	8.29[10]	2.07[-2]	1.57[-2]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{2/2}$	60.472	4.63[10]	1.69[-2]	2.02[-2]	57.326	5.62[10]	1.86[-2]	2.10[-2]
$p^2({}^1D)s^2D_{\epsilon/2}$	$sn({}^{1}P)d {}^{2}P_{2/2}$	59.993	1.22[11]	4.39[-2]	5.19[-2]	57.690	1.59[11]	5.28[-2]	6.02[-2]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{2/2}$	59.585	5.75[10]	6.14[-2]	2.41[-2]	56.622	7.29[10]	7.01[-2]	2.61[-2]
$p^{2}(1D)s^{-2}Dr/s$	$sp(^{1}P)d^{-2}D_{r/2}$	59 489	7.27[10]	3.86[-2]	454[-2]	57208	1.02[11]	4.98[-2]	5.63[-2]
$p^{2}(^{3}P)s^{4}P_{2/2}$	$sp(1)a = D_{5/2}$ $sn(^{3}P)d = ^{4}P_{3/2}$	59 200	8.20[10]	4 33[-2]	3.37[-2]	56 758	9.83[10]	4.76[-2]	3.55[-2]
$p^{2}[^{3}P)s^{4}P_{5/2}$	$sp(1)a^{-1}a_{3/2}$ $sn(^{3}P)d^{-4}D_{3/2}$	57.200	$4\ 24[10]$	1.00[2] 1 40[-2]	1.59[-2]	54 919	4.55[10]	1.70[2] 1.37[-2]	1 49[-2]
p [1] b 15/2 $n^2(^3P) s ^4 P_{5/2}$	$sp({}^{1}p)d {}^{2}D_{3/2}$ $sn({}^{3}P)d {}^{2}D_{5/2}$	57.000 57.446	1.21[10] 1.99[11]	0.82[-2]	1.00[2] 1.12[1]	54 843	2.20[11]	0.88[_2]	1.10[2] 1.07[-1]
$p^{2}(1D)s^{2}D_{2}/2$	$sp(1)a D_{5/2}$ $sn(^{3}P)d^{2}D_{3/2}$	57 327	5.28[10]	2.60[-2]	1.12[1] 1.96[-2]	54 590	$\frac{2.20[11]}{7.50[10]}$	3 35[-2]	2 40[-2]
$p (2) = D^{3/2}$ $n^2 ({}^{3}P) = {}^{4}P_{r/2}$	$s_{P}(^{1}P)d^{4}D_{\pi/2}$	56 943	1 86[11]	1 20[-1]	1.36[-2]	54 345	2.04[11]	1 20[-1]	1 30[-1]
$p (1S) s^{2} S_{15/2}$	$sp(1)a D_{7/2}$ $sn(^{3}P)d ^{2}P_{2/2}$	56 678	1.38[11]	1.20[-1] 1.33[-1]	4 93[-1]	53 766	$\frac{2.04[11]}{1.37[11]}$	1 18[-1]	$4 \ 18[-2]$
$p (3P) s 4P_{1}$	$n^{2}({}^{3}P)n^{2}P$	55.070 55.477	2.92[11]	1.35[-1]	4 94[-2]	53 001	320[11]	1.35[-1]	4 70[-2]
$P(1) = \frac{1}{2} \frac{1}{$	$P(1)P^{-1}1/2$ sn(³ P)d ⁴ F ₋	55 949	$\frac{2.52[11]}{2.60[11]}$	2.47[-1]	-1.5-1[-2] 8.07[_9]	52 744	3 03[11]	253[-1]	8 77[_9]
$P(1) = \frac{1}{2} \frac{1}{$	$sp(1)a^{-1}3/2$ $sp(^{3}P)d^{-4}D_{-1}$	54.765	$1 \ 01 \ 111$	2.±+[[−] ±] 8.65[_9]	6.29[_2]	52 228	2 13[11]	8 75[-1]	6 03[-2]
$P(1) = \frac{1}{3} \frac{3}{2}$ $n^2(^3P) = \frac{4}{2} P_{-1}$	$s_{P}(1)u D_{3/2}$ $s_{P}(^{3}P)d^{2}D_{-}$	54 711	8 08[10]	6.06[-2]	4.36[-2]	52 960	0.80[10]	6 06[_2]	4 16[-2]
$P(1) = \frac{1}{3} \frac{3}{2}$ $e^{2}(1S) = \frac{2}{2} \frac{1}{2} \frac{3}{2}$	$p(1)u D_{5/2}$ $p^{2}(^{3}P)e^{2}D_{-}$	54 649		3 50[1]	1.00[-2]	52.209	4 49[11]	3.61[1]	1.10[-2]
$p^{2}(1D)e^{2}D_{-}$	$P(1) \delta 13/2$ $en(^{3}P) d^{2}P_{-}$	54 621	$\frac{1}{1} \frac{35[11]}{35[11]}$	5.59[-1] 6.01[-2]	⊥.⊿ <i>ə</i> [-1] / 33[-1]	51 020	±.±∠[±±] 1 37[11]	5.01[-1] 5.51[-9]	1.44[-1] 3.78[-9]
$P(D) \delta D_{3/2}$	$_{3P(1)u}$ $_{13/2}$	01.001	1.00[11]	0.01[-2]	т.00[-2]	01.390	T.01[TT]	0.01[-4]	0.10[-4]

Lower level	Upper level	λ	A	f	S	λ	A	f	S
			Z=	=55			Z=	=56	
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}F_{7/2}$	72.066	4.26[10]	4.44[-2]	6.29[-2]	69.795	4.63[10]	4.50[-2]	6.23[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	71.480	1.48[11]	1.14[-1]	5.36[-2]	69.387	1.56[11]	1.13[-1]	5.16[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^1P)d \; {}^2D_{5/2}$	70.327	2.04[11]	2.29[-1]	2.11[-1]	68.218	2.15[11]	2.26[-1]	2.02[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^3P)d\;{}^4F_{5/2}$	70.038	8.39[10]	9.27[-2]	8.53[-2]	67.905	8.98[10]	9.32[-2]	8.35[-2]
$p^2({}^3P)s \; {}^2P_{1/2}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	69.115	1.02[11]	1.46[-1]	6.67[-2]	67.076	1.06[11]	1.43[-1]	6.33[-2]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	67.408	2.61[11]	2.38[-1]	3.18[-1]	64.967	2.60[11]	2.19[-1]	2.81[-1]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	67.238	3.89[10]	1.76[-2]	2.33[-2]	64.379	3.55[10]	1.47[-2]	1.87[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	65.557	1.39[11]	8.94[-2]	1.16[-1]	62.566	1.39[11]	8.19[-2]	1.01[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$p^2({}^3P)p \ {}^2P_{3/2}$	64.391	6.13[10]	3.82[-2]	3.24[-2]	62.180	5.89[10]	3.42[-2]	2.80[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	64.325	2.01[11]	2.51[-1]	1.06[-1]	61.255	2.17[11]	2.45[-1]	9.87[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	64.187	6.52[10]	4.04[-2]	3.42[-2]	60.704	8.19[10]	4.53[-2]	3.62[-2]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	64.013	1.97[11]	1.81[-1]	1.53[-1]	61.141	2.01[11]	1.69[-1]	1.36[-1]
$p^{2}({}^{1}D)s {}^{2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	63.503	1.34[11]	1.21[-1]	1.02[-1]	60.407	1.42[11]	1.17[-1]	9.31[-2]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp(^{1}P)d^{-2}P_{3/2}$	62.687	1.25[11]	4.94[-2]	6.10[-2]	60.457	1.12[11]	4.08[-2]	4.87[-2]
$p^{2}({}^{1}D)s {}^{2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	62.455	9.57[10]	7.48[-2]	9.22[-2]	59.742	9.31[10]	6.65[-2]	7.86[-2]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	62.101	1.34[11]	7.77[-2]	9.52[-2]	59.897	1.23[11]	6.64[-2]	7.86[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp({}^{\circ}P)d {}^{\bullet}P_{3/2}$	61.724	8.84[10]	5.08[-2]	4.12[-2]	58.897	9.05[10]	4.71[-2]	3.65[-2]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$p^{2}(^{1}D)s^{2}D_{3/2}$	00.939	9.00[10]	1.01[-1]	4.05[-2]	57.820 F7.740		1.02[-1]	3.87[-2]
$s^{2}(^{1}S)a^{2}D_{3/2}$	$sp(^{+}P)a^{-2}D_{3/2}$	00.007 60.494	5.17[11]	2.80[-1] E 75[-0]	2.28[-1]	57.740 57.494	5.00[11]	2.84[-1] 5.74[-0]	2.10[-1] 0.17[0]
$p^{-}({}^{-}P)s {}^{-}P_{1/2}$	$p^{-}(^{-}P)p^{-}D_{3/2}$	00.424	0.20[10] 0.10[11]	0.70[-2] 5.04[-0]	2.29[-2] 4.71[-0]	07.434 57.929	0.79[10] 0.49[11]	0.74[-2] 5.04[-0]	2.17[-2]
$p^{-}(^{-}D)s^{-}D_{3/2}$	$sp(P)a P_{1/2}$	00.200 60.917	2.18[11]	0.94[-2]	4.(1[-2])	07.238 EC 999	2.42[11]	0.94[-2]	4.49[-2]
$p^{-}(^{-}P)s^{-}P_{3/2}$ $m^{2}(^{3}P)s^{-}^{2}P$	$sp(P)a P_{3/2}$	00.217 50.172	$\frac{8.82[10]}{1.96[11]}$	4.80[-2] 1.20[1]	3.80[-2] 5.17[-2]	00.822 E6.420	8.88[10] 1.40[11]	4.31[-2] 1.22[1]	3.22[-2] 4.06[-2]
$p^{-}(^{-}P)s^{-}P_{1/2}$ $m^{2}(^{3}P)s^{-}^{2}P$	$sp(P)a D_{3/2}$	09.173 50.194	1.20[11]	1.32[-1] 2 50[1]	0.17[-2]	00.429 56.025	1.40[11] 5.11[11]	1.33[-1]	4.90[-2]
$p(P)s P_{3/2}$ $p^2(^1D)s ^2D$	$sp(P)a P_{5/2}$ $sp(^1P)d^2F$	50.025	4.00[11] 5.99[10]	0.09[-1] 2.71[-0]	2.00[-1] 4.24[-0]	00.200 56 502	0.11[11] 8 60[10]	5.05[-1] 5.40[-2]	2.09[-1] 6.14[-9]
$p(D)s D_{5/2}$ $p^2(^3P)e^4P$	$sp(\Gamma)u \Gamma_{7/2}$ $sp(^{3}P)d ^{4}D$	59.055 58.763	0.00[10] 4.94[10]	3.71[-2] 3.10[.9]	9.54[-2]	56 010	0.00[10] 4.08[10]	0.49[-2] 0.35[-0]	0.14[-2] 2.60[2]
$p(1)s 1_{5/2}$ $s^2(1S)n^2P$	$sp(1)u D_{5/2}$ $p^2(1S)e^2S$	58 600	4.24[10] 3.56[11]	2.19[-2] 1.84[1]	$\frac{2.94[-2]}{7.00[.9]}$	55.019	$\frac{4.96[10]}{3.04[11]}$	2.55[-2] 1.84[1]	2.00[-2] 6.73[-2]
$s(D)p I_{1/2}$ $n^2(^3P)s^2P_{-1/2}$	$p(3P)d^{2}P_{1/2}$	58 572	3.60[11]	0.34[-1]	7.09[-2] 7.10[-2]	55 704	3.94[11] 4.07[11]	0.40[-1]	6.06[_2]
$p(1)s 1_{3/2}$ $s^2(1S)n ^2P_{-1}$	$p(1)a = 1_{1/2}$ $p^2(^3P) e^{-2P_{1/2}}$	58 461	2.54[11]	5.54[-2] 6.52[-2]	5 03[-2]	55 503	2.80[11]	6 52[-2]	0.30[-2]
$n^2({}^3P)s {}^4P_{r/2}$	$p(1) = \frac{1}{2} \frac{1}{2}$ sn(3P) d 4P ₂ /2	57 236	1.54[11] 1.58[10]	5.02[2] 5.20[-3]	5.86[-3]	50.000 54 717	2.02[11] 2.08[10]	6.02[2] 6.22[-3]	6 71 [-3]
$p^{2}(1)s^{2}P_{2/2}$ $s^{2}(1S)n^{2}P_{2/2}$	$s_{1}^{2}(1S)d^{2}D_{2}d^{2}$	57.200 57.125	5.00[10]	2.51[-1]	1.88[-1]	54.711 54.371	5.67[11]	2.51[-1]	1.80[-1]
$n^2({}^3P)s {}^4P_{1/2}$	$n^2({}^3P)n {}^4S_{2/2}$	56 581	2.16[10]	2.01[1] 2.07[-2]	7.72[-3]	53 946	2.48[10]	2.01[1] 2.16[-2]	7.69[-3]
$p^{2}(^{1}D)s^{2}D_{2}/s$	$sn({}^{3}P)d{}^{2}D_{r/s}$	56 083	$\frac{2.10[10]}{1.50[10]}$	1.07[-2]	7.86[-3]	53 435	1.80[10]	1.16[-2]	8 13[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	55.974	1.27[10]	2.99[-3]	2.21[-3]	53.350	1.51[10]	3.22[-3]	2.26[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	55.381	2.03[11]	6.20[-2]	6.79[-2]	53.078	2.51[11]	7.09[-2]	7.41[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	54.924	1.37[11]	6.20[-2]	6.71[-2]	52.646	1.77[11]	7.35[-2]	7.65[-2]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	54.690	8.22[10]	1.85[-2]	1.33[-2]	51.856	8.18[10]	1.65[-2]	1.13[-2]
$s^{2}(^{1}S)d^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	54.397	6.83[10]	2.02[-2]	2.18[-2]	51.670	8.22[10]	2.20[-2]	2.25[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	54.358	1.18[11]	5.17[-2]	3.72[-2]	52.006	1.39[11]	5.62[-2]	3.84[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	53.833	8.93[10]	7.78[-2]	2.76[-2]	51.202	1.08[11]	8.49[-2]	2.86[-2]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	52.444	4.89[10]	1.34[-2]	1.39[-2]	50.077	5.24[10]	1.31[-2]	1.30[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	52.353	2.42[11]	9.95[-2]	1.03[-1]	49.972	2.68[11]	1.01[-1]	9.93[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	52.000	1.01[11]	4.07[-2]	2.79[-2]	49.544	1.29[11]	4.76[-2]	3.10[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	51.865	2.24[11]	1.20[-1]	1.24[-1]	49.498	2.47[11]	1.22[-1]	1.18[-1]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^3P)d\;{}^2P_{3/2}$	51.013	1.36[11]	1.06[-1]	3.56[-2]	48.412	1.36[11]	9.53[-2]	3.04[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	50.633	3.50[11]	1.34[-1]	4.49[-2]	48.369	3.83[11]	1.34[-1]	4.28[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	50.357	3.41[11]	2.59[-1]	8.58[-2]	48.077	3.83[11]	2.66[-1]	8.40[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	50.017	2.37[11]	8.90[-2]	5.85[-2]	47.796	2.63[11]	9.00[-2]	5.67[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{5/2}$	49.934	1.07[11]	6.01[-2]	3.96[-2]	47.701	1.18[11]	6.01[-2]	3.78[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s \; {}^2P_{3/2}$	49.848	4.87[11]	3.63[-1]	1.19[-1]	47.610	5.37[11]	3.65[-1]	1.15[-1]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{1/2}$	49.848	2.42[11]	4.51[-2]	2.96[-2]	47.633	2.64[11]	4.49[-2]	2.81[-2]
$p^2(^1S)s\ ^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	49.827	2.39[11]	8.92[-2]	2.93[-2]	47.598	2.71[11]	9.20[-2]	2.88[-2]

Lower lovel	Upper level	1		f	C	1		f	<u> </u>
Lower level	opper level	Λ	<u></u> 	$\frac{J}{=59}$	S	Λ	<u></u> 	J =60	3
$s^{2}({}^{1}S)d {}^{2}D_{r/s}$	$sp(^{3}P)d^{2}F_{r/2}$	65 556	$\frac{2}{5.81[10]}$	3.75[-2]	4.84[-2]	63 544	$\frac{2}{6.67[10]}$	4.04[-2]	5.07[-2]
$s^2({}^1S)p {}^2P_{2/2}$	$p^{2}(^{1}D)s^{2}D_{r/2}$	63.923	6.98[10]	6.40[-2]	5.40[-2]	61.809	8.33[10]	7.15[-2]	5.82[-2]
$p^2({}^3P)s^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{1/2}$	63.523	1.81[11]	1.10[-1]	4.58[-2]	61.323	1.93[11]	1.09[-1]	4.40[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}F_{7/2}$	63.503	5.95[10]	4.80[-2]	6.01[-2]	61.420	6.49[10]	4.88[-2]	5.93[-2]
$s^{2}(^{1}S)d^{2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	62.486	7.50[10]	5.85[-2]	7.23[-2]	60.690	8.75[10]	6.43[-2]	7.72[-2]
$s^2({}^1S)d {}^2D_{3/2}^{3/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	62.349	2.48[11]	2.16[-1]	1.78[-1]	60.249	2.63[11]	2.15[-1]	1.70[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}F_{5/2}$	61.989	1.09[11]	9.43[-2]	7.70[-2]	60.168	1.16[11]	9.43[-2]	7.48[-2]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	61.371	1.20[11]	1.36[-1]	5.48[-2]	59.586	1.25[11]	1.34[-1]	5.23[-2]
$s^2({}^1S)d {}^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	58.678	2.37[11]	1.63[-1]	1.89[-1]	57.054	2.28[11]	1.48[-1]	1.67[-1]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	54.707	7.47[10]	2.24[-2]	2.42[-2]	53.159	6.55[10]	1.85[-2]	1.95[-2]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	54.216	9.21[10]	4.05[-2]	4.35[-2]	52.546	8.38[10]	3.49[-2]	3.61[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	53.924	1.43[11]	6.25[-2]	6.66[-2]	51.163	1.47[11]	5.76[-2]	5.83[-2]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d \; {}^2D_{5/2}$	52.814	2.15[11]	1.36[-1]	9.43[-2]	50.032	2.27[11]	1.28[-1]	8.40[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	52.641	2.72[11]	2.26[-1]	7.84[-2]	49.839	2.97[11]	2.22[-1]	7.27[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}^{'}$	$sp({}^{3}P)d \; {}^{4}D_{5/2}$	51.833	1.78[11]	1.07[-1]	7.31[-2]	49.239	1.92[11]	1.04[-1]	6.79[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d \; {}^{2}F_{7/2}$	51.830	8.41[10]	4.52[-2]	4.63[-2]	49.296	8.21[10]	3.99[-2]	3.89[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp({}^{3}P)d\;{}^{2}P_{3/2}$	51.813	5.65[10]	1.52[-2]	1.56[-2]	49.383	6.05[10]	1.48[-2]	1.44[-2]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	51.465	1.44[11]	5.72[-2]	3.88[-2]	48.951	1.68[11]	6.04[-2]	3.88[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	50.886	9.94[10]	3.85[-2]	2.58[-2]	48.090	1.05[11]	3.66[-2]	2.32[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	50.683	5.53[10]	2.13[-2]	7.11[-3]	48.256	6.17[10]	2.16[-2]	6.86[-3]
$s^2({}^1S)d\;{}^2D_{3/2}$	$sp(^{1}P)d\ ^{2}D_{3/2}$	49.809	7.56[11]	2.81[-1]	1.84[-1]	47.083	8.50[11]	2.82[-1]	1.75[-1]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1D)s\ ^2D_{3/2}$	49.447	1.41[11]	1.04[-1]	3.37[-2]	47.137	1.56[11]	1.04[-1]	3.22[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2D_{3/2}$	49.309	7.71[10]	5.63[-2]	1.83[-2]	47.109	8.31[10]	5.54[-2]	1.72[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp(^1P)d\ ^2F_{7/2}$	49.182	2.20[11]	1.07[-1]	1.04[-1]	46.870	2.74[11]	1.21[-1]	1.12[-1]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	49.053	3.35[11]	6.04[-2]	3.91[-2]	46.615	3.73[11]	6.08[-2]	3.73[-2]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	48.786	1.89[11]	1.34[-1]	4.33[-2]	46.204	2.12[11]	1.36[-1]	4.13[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	48.384	7.60[10]	2.67[-2]	2.55[-2]	46.204	8.49[10]	2.72[-2]	2.48[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{1}P)d {}^{2}F_{5/2}$	48.362	7.08[11]	3.73[-1]	2.37[-1]	46.059	7.79[11]	3.73[-1]	2.26[-1]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	47.900	5.77[11]	9.99[-2]	6.27[-2]	45.668	6.43[11]	1.01[-1]	6.05[-2]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$p^2(^1S)s^2S_{1/2}$	47.895	5.35[11]	1.84[-1]	5.80[-2]	45.569	5.93[11]	1.85[-1]	5.54[-2]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	47.831	9.08[10]	3.13[-2]	1.97[-2]	45.483	9.01[10]	2.80[-2]	1.67[-2]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$p^{2}({}^{5}P)s {}^{2}P_{1/2}$	47.802	3.83[11]	6.57[-2]	4.13[-2]	45.421	4.26[11]	6.58[-2]	3.94[-2]
$s^{2}(^{+}S)p^{-2}P_{3/2}$	$s^{2}(^{+}S)d^{-2}D_{3/2}$	40.859	7.70[11]	2.55[-1]	1.57[-1]	44.603	8.57[11]	2.50[-1]	1.50[-1]
$p^{*}(^{*}D)s \ ^{*}D_{5/2}$	$sp(P)d P_{3/2}$	40.301	4.20[11]	9.00[-2]	8.20[-2] 0.20[-2]	44.209	4.80[11]	9.4/[-2]	8.20[-2] 0.47[-0]
$p^{-}(^{-}D)s \ ^{-}D_{5/2}$	$sp(-r)a - D_{5/2}$ sp(3 p) - 4 p	40.008 45.206	ა.23[11] ე.16[11]	1.05[-1] 6.66[-0]	9.29[-2] 2.07[-0]	43.184 19.106	ა.ბს[11] ეკდ[11]	1.10[-1] 6.09[-9]	9.47[-2] 2.04[-2]
$p^{-}(^{-}\Gamma)s^{-}P_{3/2}$	$sp(-r)a + P_{3/2}$ sp(1p)d + 2p	40.320	2.10[11] 1.26[11]	0.00[-2] 2.68[-2]	১.৬7[-2] ১.২≍[-১]	40.180 40.044	2.40[11] 1.59[11]	0.92[-2] 0.80[-0]	0.94[-2] 0.35[-0]
$s (S) u^{-} D_{5/2}$ $p^{2} (^{3} D) a^{-2} D$	$sp(\Gamma)a^{-}D_{3/2}$ $sp(^{1}D)d^{2}D$	44.479	1.00[11] & 00[10]	⊿.∪0[-⊿] 1.99[-9]	⊿.əə[-∠] 7 07[9]	42.244 41.874	1.JO[11] & /1[10]	4.04[-4] 1.11[-9]	ム. シン[-ム] 6 10[2]
$p(\Gamma)s\Gamma_{3/2}$ $n^2({}^1S)e^2S$	$sp(r)u r_{1/2}$ $sp(^{3}P)d^{2}D$	44.200	0.29[10] 1 76[11]	1.44[-4] 1.03[1]	1.07[-3] 2.00[-9]	41.074	0.41[10] 2.05[11]	1.11[-2] 1.08[1]	0.10[-0] 9.00[-0]
$p(D)s D_{1/2}$ $p^{2}[^{3}D)e^{4}D$	$sp(r)u D_{3/2}$ $sp(^{3}P)d ^{4}D$	44.100 43 576	1.70[11] 6.58[10]	1.00[-1] 1.95[-9]	4.99[-4] 1.07[-9]	41,900 41 595	⊿.00[11] 7.11[10]	1.00[-1] 1.92[-9]	⊿.99[-2] 1_01[_9]
$p [1]s \Gamma_{5/2}$ $p^2(^{3}P)e^{4}P_{-}$	$sp(1)u D_{3/2}$ $sp(^{3}P)d^{2}D_{-}$	43.370	0.00[10] 3.68[11]	1.49[-4]	1.07[-2] 8.04[-2]	41.020	7.11[10] 7.15[11]	1.20[-2] 1.06[1]	1.01[-2] 8.66[-2]
$P(1) = \frac{1}{5} \frac{5}{2}$ $n^2(^3P) = \frac{4}{7} P_{2}$	$sp(1)a D_{5/2}$ $sp(^{3}P)d ^{4}D_{-}$	43 099	3 31 [11]	1.00[-1] 1.23[-1]	1.05[-1]	41.040	3 71 [11]	1.00[-1]	1 00[-2]
p(1)s 15/2 $n^2(1D)s 2D_{2}$	$sp(1)a D_{7/2}$ $sp(^{3}P)d^{2}D_{2}$	40.022	2.31[11] 2.30[11]	657[-1]	3 79[-1]	40.900	2.71[11] 2.87[11]	1.24[-1] 7.14[-9]	3 83[-2]
$p(D)s D_{3/2}$ $n^2(^3P)s ^4P_{1/2}$	$n^2({}^3P)n {}^2P_{-1}$	42.055 42.153	5.06[11]	1.35[-1]	3.74[-2]	40 251	5.56[11]	1.35[-1]	3.50[-2]
$p^{2}({}^{3}P)s^{4}P_{1/2}$	$r (1)P^{-1}1/2$ $sn(^{3}P)d^{-4}F_{a/a}$	41 834	5.00[11] 5.47[11]	2.88[-1]	7.92[-2]	39 906	6 18[11]	2.96[-1]	77[-2]
$p^{2}({}^{3}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}P_{2}({}^{3}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}P_{2}({}^{3}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}P_{2}({}^{3}P)s^{4}P)s^{4}Ps$	$s_{P}({}^{1}P)d {}^{4}D_{a/a}$	41 695	3.62[11]	9.45[-2]	5.18[-2]	39.826	$4\ 04[11]$	9.61[-2]	5.03[-2]
$p^{2}({}^{3}P)s^{4}P_{2}({}^{3$	$sp(1)a D_{3/2}$ $sn(^{3}P)d^{2}D_{r/2}$	41.555	1.54[11]	6 02[-2]	328[-2]	39 662	1.70[11]	6.02[-2]	3.00[-2] 3.14[-2]
$p^{2}({}^{3}P)s {}^{4}P_{2}s$	$sp(^{3}P)d^{4}D_{1/2}$	41 551	3.43[11]	4.45[-2]	2.43[-2]	39 686	3.76[11]	4.44[-2]	2.32[-2]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp(^{3}P)d^{2}P_{1/2}$	41 486	3.87[11]	1.00[-1]	2.73[-2]	39 549	4.39[11]	1.03[-1]	2.68[-2]
$s^{2}({}^{1}S)n^{2}P_{1/2}$	$p^{2}({}^{3}P)s^{2}P_{2/2}$	41.482	7.29[11]	3.76[-1]	1.03[-1]	39.475	8.17[11]	3.82[-1]	9.93[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	41.434	1.38[11]	7.08[-2]	1.93[-2]	39.410	1.39[11]	6.44[-2]	1.67[-2]

Lower level	Upper level	λ	Δ	f	S	λ	Δ	f	<u> </u>
Dowei level	Opper level	Λ	Z=		5	Λ	Z		5
$n^2({}^1S)s^2S_{1/2}$	$n^2({}^3P)n {}^2P_{a/a}$	56 063	9 71 [10]	9.14[-2]	3.37[-2]	54 349	$\frac{2}{1.07[11]}$	9.43[-2]	3 37[-2]
$s^{2}({}^{1}S)d {}^{2}D_{r/2}$	$sn({}^{1}P)d {}^{2}F_{r/2}$	53 953	1.02[11]	4 47[-2]	$4\ 76[-2]$	52 329	1.01[11] 1.19[11]	4.87[-2]	5.02[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	53 366	2.39[11]	1.02[-1]	359[-2]	51 846	2.51[11]	1 01[-1]	3 45[-2]
$p^{2}({}^{3}P)s^{4}P_{r/2}$	$sp({}^{3}P)d {}^{4}F_{7/2}$	52.904	9.42[10]	5.26[-2]	5.50[-2]	51.330	1.02[11]	5.36[-2]	5.42[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$p^{2}(^{1}D)s^{2}D_{r/2}$	52.833	1.48[11]	9.28[-2]	6.46[-2]	51.252	1.60[11]	9.53[-2]	6.42[-2]
$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	52.280	3.28[11]	2.02[-1]	1.39[-1]	50.786	3.44[11]	2.00[-1]	1.34[-1]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}F_{5/2}$	51.891	1.56[11]	9.43[-2]	6.44[-2]	50.389	1.64[11]	9.43[-2]	6.25[-2]
$s^{2}(^{1}S)d^{2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	51.876	1.54[11]	8.32[-2]	8.51[-2]	50.374	1.68[11]	8.52[-2]	8.48[-2]
$p^2({}^3P)s {}^2P_{1/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	51.520	1.57[11]	1.25[-1]	4.24[-2]	50.050	1.64[11]	1.24[-1]	4.07[-2]
$s^{2}(^{1}S)d^{2}D_{5/2}^{1/2}$	$sp({}^{1}P)d {}^{2}F_{7/2}$	48.764	2.14[11]	1.01[-1]	9.78-2	47.355	2.14[11]	9.55[-2]	8.94[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	39.311	1.59[11]	3.70[-2]	2.86[-2]	37.285	1.85[11]	3.87[-2]	2.84[-2]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	38.713	3.03[11]	1.02[-1]	5.20[-2]	36.735	3.28[11]	9.91[-2]	4.81[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	38.484	4.60[11]	2.04[-1]	5.17[-2]	36.514	5.08[11]	2.02[-1]	4.87[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	38.059	9.52[10]	1.38[-2]	1.04[-2]	36.133	1.05[11]	1.38[-2]	9.79-3
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	37.944	3.01[11]	9.77[-2]	4.87[-2]	36.017	3.32[11]	9.67[-2]	4.58[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	37.492	1.40[11]	2.96[-2]	1.46[-2]	35.608	1.51[11]	2.88[-2]	1.35[-2]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	37.286	3.48[11]	7.25[-2]	3.57[-2]	35.367	3.97[11]	7.45[-2]	3.47[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	36.975	1.13[11]	2.30[-2]	5.61[-3]	35.101	1.25[11]	2.32[-2]	5.36[-3]
$s^{2}({}^{1}S)d {}^{2}D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	36.791	1.40[12]	2.83[-1]	1.37[-1]	34.965	1.55[12]	2.85[-1]	1.31[-1]
$p^2(^1D)s^{-2}D_{5/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	36.483	6.41[11]	1.71[-1]	1.23[-1]	34.689	7.41[11]	1.78[-1]	1.22[-1]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p {}^{2}D_{3/2}$	36.347	1.24[11]	4.93[-2]	1.18[-2]	34.550	1.32[11]	4.74[-2]	1.08[-2]
$s^2({}^1S)p {}^2P_{1/2}$	$p^2(^1D)s^{-2}D_{3/2}$	36.268	2.69[11]	1.06[-1]	2.53[-2]	34.456	2.99[11]	1.06[-1]	2.41[-2]
$p^2({}^3P)s^{-2}P_{1/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	36.171	3.54[11]	1.39[-1]	3.31[-2]	34.395	3.94[11]	1.40[-1]	3.17[-2]
$p^2(^1D)s \ ^2D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	36.059	6.42[11]	6.29[-2]	2.97[-2]	34.263	7.15[11]	6.29[-2]	2.84[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	35.874	1.48[11]	2.85[-2]	2.02[-2]	34.120	1.62[11]	2.84[-2]	1.91[-2]
$p^2({}^3P)s {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}F_{5/2}$	35.774	1.25[12]	3.60[-1]	1.70[-1]	34.016	1.50[12]	3.91[-1]	1.75[-1]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	35.470	9.64[10]	1.22[-2]	8.52[-3]	33.753	1.11[11]	1.26[-2]	8.40[-3]
$p^2({}^3P)s \; {}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	35.409	1.14[12]	1.08[-1]	5.03[-2]	33.672	1.29[12]	1.10[-1]	4.85[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2(^1S)s\ ^2S_{1/2}$	35.386	1.02[12]	1.90[-1]	4.43[-2]	33.649	1.13[12]	1.92[-1]	4.25[-2]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$p^{2}(^{3}P)s^{-2}P_{1/2}^{'}$	35.346	7.27[11]	6.83[-2]	3.17[-2]	33.615	8.12[11]	6.88[-2]	3.04[-2]
$p^{2}(^{3}P)s^{-2}P_{3/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	35.148	1.79[11]	4.97[-2]	2.30[-2]	33.224	9.97[10]	2.49[-2]	1.09[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^4S_3{}^{\prime}{}_2$	34.958	9.61[10]	3.52[-2]	8.10[-3]	33.302	1.12[11]	3.73[-2]	8.18[-3]
$s^2({}^1S)p \; {}^2P_{3/2}$	$s^2({}^1S)d\; {}^2D_{3/2}$	34.774	1.48[12]	2.68[-1]	1.22[-1]	33.087	1.64[12]	2.71[-1]	1.18[-1]
$p^{2}(^{1}D)s^{-2}D_{5/2}^{'}$	$sp(^{1}P)d\ ^{2}P_{3/2}$	34.754	8.97[11]	1.09[-1]	7.46[-2]	33.093	1.01[12]	1.11[-1]	7.24[-2]
$p^2(^1D)s\ ^2D_{5/2}$	$sp(^1P)d\ ^2D_{5/2}$	34.534	7.45[11]	1.33[-1]	9.10[-2]	32.892	8.46[11]	1.37[-1]	8.91[-2]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp({}^{3}P)d \; {}^{2}P_{3/2}$	34.144	9.40[10]	1.64[-2]	7.38[-3]	32.306	9.45[10]	1.48[-2]	6.28[-3]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{3/2}$	34.018	4.56[11]	7.91[-2]	3.54[-2]	32.406	5.13[11]	8.06[-2]	3.44[-2]
$s^2({}^1S)d\;{}^2D_{5/2}$	$sp(^{1}P)d^{-2}D_{3/2}$	33.215	3.09[11]	3.39[-2]	2.23[-2]	31.644	3.50[11]	3.53[-2]	2.19[-2]
$p^2({}^1S)s\;{}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	32.965	4.04[11]	1.32[-1]	2.86[-2]	31.416	4.60[11]	1.36[-1]	2.82[-2]
$p^2[{}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	32.937	1.06[11]	1.15[-2]	7.47[-3]	31.430	1.15[11]	1.14[-2]	7.05[-3]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^3P)d\;{}^2D_{5/2}$	32.781	7.13[11]	1.15[-1]	7.47[-2]	31.271	8.02[11]	1.17[-1]	7.26[-2]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp({}^{3}P)d \; {}^{4}D_{7/2}$	32.508	6.13[11]	1.30[-1]	8.33[-2]	31.021	6.81[11]	1.32[-1]	8.04[-2]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	32.235	6.07[11]	9.41[-2]	4.00[-2]	30.743	6.95[11]	9.85[-2]	3.98[-2]
$p^2({}^3P)s\;{}^2P_{3/2}$	$sp(^{1}P)d\ ^{2}P_{1/2}$	32.138	9.35[10]	7.25[-3]	3.07[-3]	30.485	9.64[10]	6.70[-3]	2.70[-3]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	31.974	9.07[11]	1.39[-1]	2.93[-2]	30.530	9.98[11]	1.40[-1]	2.82[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{3/2}$	31.681	7.02[11]	1.06[-1]	4.39[-2]	30.259	7.81[11]	1.08[-1]	4.29[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \ {}^{4}F_{3/2}$	31.661	1.14[12]	3.40[-1]	7.09[-2]	30.223	1.27[12]	3.50[-1]	6.96[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}D_{1/2}$	31.575	5.89[11]	4.41[-2]	1.83[-2]	30.158	6.45[11]	4.40[-2]	1.75[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{5/2}$	31.537	2.70[11]	6.07[-2]	2.51[-2]	30.112	2.97[11]	6.07[-2]	2.40[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	31.489	7.86[11]	1.17[-1]	2.42[-2]	30.071	8.84[11]	1.20[-1]	2.38[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	31.471	1.37[12]	4.08[-1]	8.47[-2]	30.052	1.53[12]	4.15[-1]	8.23[-2]

Lower lovel	Upper level	<u> </u>	A	f	<u> </u>			f	<u> </u>
Lower level	Opper level	Λ	A 	J -73	5	Λ	A 	$\frac{J}{-74}$	5
$n^2(^1S)s^2S_{1/2}$	$n^{2}(^{3}P)n^{2}P_{n/2}$	43 932	$\frac{2}{1.82[11]}$	$\frac{-10}{1.05[-1]}$	3.05[-2]	42 632	$\frac{2}{1.95[11]}$	$\frac{1}{106[-1]}$	2 98[-2]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sn({}^{3}P)d {}^{4}P_{r/2}$	43.180	1.40[11]	5.90[-2]	3.34[-2]	41.890	1.50[11]	5.90[-2]	3.26[-2]
$s^{2}({}^{1}S)d {}^{2}D_{z/2}$	$sp(^{1}P)d^{-2}F_{z/2}$	42.399	2.00[11]	5.40[-2]	4.51[-2]	41.157	2.13[11]	5.40[-2]	4.39[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{1/2}$	42.359	3.49[11]	9.39[-2]	2.62[-2]	41.151	3.67[11]	9.31[-2]	2.52[-2]
$p^{2}({}^{3}P)s^{4}P_{r/2}$	$sp({}^{3}P)d {}^{4}F_{7/2}$	41.624	1.69[11]	5.86[-2]	4.83[-2]	40.411	1.82[11]	5.96[-2]	4.75[-2]
$s^{2}({}^{1}S)n^{2}P_{2/2}$	$p^{2}(^{1}D)s^{2}D_{5/2}$	41.606	2.66[11]	1.03[-1]	5.67[-2]	40.398	2.84[11]	1.04[-1]	5.54[-2]
$s^{2}({}^{1}S)d {}^{2}D_{2/2}$	$sp(^{1}P)d^{-2}D_{5/2}$	41.480	4.85[11]	1.89[-1]	1.03[-1]	40.080	4.38[11]	1.58[-1]	8.36[-2]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp(^{3}P)d^{-2}F_{7/2}$	41 169	2.77[11]	9.40[-2]	7.65[-2]	39 994	2.97[11]	9.50[-2]	7.50[-2]
$p^{2}({}^{3}P)s {}^{4}P_{2/2}$	$sp({}^{3}P)d {}^{4}F_{\rm E/2}$	41.067	2.48[11]	9.44[-2]	5.09[-2]	39.889	2.64[11]	9.44[-2]	4.95[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	40.896	2.34[11]	1.17[-1]	3.16[-2]	39.734	2.47[11]	1.17[-1]	3.05[-2]
$s^{2}({}^{1}S)d {}^{2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	38747	2.33[11]	7.00[-2]	5.37[-2]	37 653	2.39[11]	6.81[-2]	5.05[-2]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{r/2}$	25776	$\frac{2}{66}$	3.60[-2]	1.84[-2]	24 464	4.00[11]	3.60[-2]	1.74[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$s^{2}({}^{1}S)d {}^{2}D_{r/2}$	25.481	6.26[11]	9.00[2] 9.17[-2]	3.08[-2]	24 194	6.95[11]	9.00[2] 9.17[-2]	2.92[-2]
$n^2({}^1S)s^2S_{1/2}$	$sn({}^{3}P)d {}^{4}P_{3/2}$	25 332	1.04[12]	1 99[_1]	3.33[-2]	24.055	1.15[12]	2.00[-1]	3.17[-2]
$p^{2}(1D)s^{-2}D_{r/2}$	$sp(^{3}P)d^{-2}F_{7/2}$	25.316	1.01[12] 1.19[11]	1.53[-2]	7.62[-3]	24 048	1.13[12] 1.27[11]	1.47[-2]	6.98[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp(^{3}P)d^{-2}P_{a/a}$	25.010 25.152	2.18[11]	1.38[-2]	6.84[-3]	23 892	2.42[11]	1.39[-2]	6.53[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp(^{3}P)d^{-4}D_{r/2}$	25.162 25.068	6.48[11]	9.18[-2]	3.02[-2]	23.814	7.12[11]	9.08[-2]	2.85[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp(^{3}P)d^{-4}P_{2/2}$	24 834	2.81[11]	2.60[-2]	8 50[-3]	23595	3.09[11]	2.58[-2]	8.03[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{2/2}$	24588	9 11 [11]	8 29[-2]	2.68[-2]	23.364	1 02[12]	8 34[-2]	257[-2]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp(^{3}P)d^{-4}P_{1/2}$	24 496	2.57[11]	2.30[-2]	3.72[-3]	23.284	2.80[11]	2.28[-2]	350[-3]
$s^{2}({}^{1}S)d {}^{2}D_{2/2}$	$sp(^{1}P)d^{-2}D_{2/2}$	24 494	$\frac{2}{3} \frac{36[12]}{36[12]}$	3.02[-1]	9.75[-2]	23213	$\frac{2}{3} \frac{25}{25}$	2.63[-1]	8.04[-2]
$p^{2}(^{1}D)s^{2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	24 379	1.85[12]	2 21[-1]	1.06[-1]	23.182	2 11[12]	2.86[1] 2.26[-1]	1 03[-1]
$p^{2}({}^{3}P)s^{4}P_{1/2}$	$n^2({}^3P)n^2D_2$	24295	1.68[11]	2.96[-2]	4 73[-3]	23 114	1.68[11]	2.68[-2]	4.08[-3]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sn({}^{1}P)d {}^{2}D_{2/2}$	24 181	8 59[11]	1.51[-1]	2 40[-2]	22 999	9.62[11]	1.53[-1]	2.31[-2]
$s^{2}({}^{1}S)n^{2}P_{1/2}$	$p^{2}(^{1}D)s^{2}D_{2/2}$	24.157	5.96[11]	1.04[-1]	1.66[-2]	22.975	6.55[11]	1.03[-1]	1.57[-2]
$p^{2}({}^{3}P)s {}^{4}P_{r/2}$	$sn({}^{3}P)d {}^{4}D_{5/2}$	24.051	2.93[11]	2.54[-2]	1.21[-2]	22.886	3.15[11]	2.47[-2]	1.12[-2]
$p^{2}(^{1}D)s^{2}D_{2/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	24.030	1.44[12]	6.24[-2]	1.98[-2]	22.853	1.58[12]	6.14[-2]	1.85[-2]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	23.971	3.63[12]	4.68[-1]	1.48[-1]	22.808	4.09[12]	4.78[-1]	1.43[-1]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	23.836	2.74[11]	1.56[-2]	7.34[-3]	22.683	3.12[11]	1.60[-2]	7.20[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	23.729	2.88[12]	1.22[-1]	3.80[-2]	22.580	3.23[12]	1.24[-1]	3.68[-2]
$s^{2}(^{1}S)p^{2}P_{1/2}$	$p^{2}(^{1}S)s^{2}S_{1/2}$	23.703	2.45[12]	2.07[-1]	3.23[-2]	22.555	2.75[12]	2.10[-1]	3.12[-2]
$s^{2}({}^{1}S)p {}^{2}P_{2/2}$	$p^2({}^3P)s {}^2P_{1/2}$	23.697	1.78[12]	7.48[-2]	2.33[-2]	22.550	1.98[12]	7.58[-2]	2.25[-2]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p {}^{4}S_{2/2}$	23.696	3.17[11]	5.34[-2]	8.33[-3]	22.571	3.63[11]	5.54[-2]	8.24[-3]
$p^{2}(^{1}D)s^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{2/2}$	23.465	2.26[12]	1.25[-1]	5.76[-2]	22.342	2.53[12]	1.27[-1]	5.57[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	23.450	3.70[11]	1.54[-2]	4.72[-3]	22.344	4.63[11]	1.74[-2]	5.11[-3]
$s^2({}^1S)p {}^2P_{3/2}$	$s^{2}(^{1}S)d^{2}D_{3/2}$	23.404	3.57[12]	2.94[-1]	9.05[-2]	22.348	3.37[12]	2.53[-1]	7.43[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	23.364	1.96[12]	1.60-1	7.41-2	22.251	2.21[12]	1.64[-1]	7.21[-2]
$p^2(^1D)s^{-2}D_{3/2}^{-3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	23.357	2.98[11]	3.66[-2]	1.13[-2]	22.250	3.48[11]	3.89[-2]	1.14[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	23.049	1.09[12]	8.66-2	2.63[-2]	21.955	1.20[12]	8.71-2	2.52[-2]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	22.629	2.04[11]	1.05[-2]	4.67[-3]	21.590	2.21[11]	1.03[-2]	4.40[-3]
$s^2({}^1S)d \; {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	22.569	8.32[11]	4.22[-2]	1.89[-2]	21.509	9.39[11]	4.32[-2]	1.84[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	22.493	1.10[12]	1.68[-1]	2.48[-2]	21.452	1.25[12]	1.73[-1]	2.43[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	22.472	1.81[12]	1.37[-1]	6.09[-2]	21.437	2.03[12]	1.40[-1]	5.94[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	22.354	3.63[11]	1.36[-2]	4.00[-3]	21.311	4.48[11]	1.53[-2]	4.28[-3]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	22.353	1.44[12]	1.44[-1]	6.33[-2]	21.333	1.60[12]	1.46[-1]	6.13[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	22.100	1.72[12]	1.26-1	3.66[-2]	21.086	1.95[12]	1.30[-1]	3.61[-2]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p {}^{2}P_{1/2}$	22.079	2.06[12]	1.51[-1]	2.19[-2]	21.079	2.29[12]	1.53[-1]	2.12[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	21.918	1.78[12]	1.29[-1]	3.71[-2]	20.930	2.02[12]	1.33[-1]	3.65[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	21.852	1.16[12]	4.15[-2]	1.19[-2]	20.868	1.24[12]	4.06-2	1.11[-2]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}F_{3/2}$	21.833	2.98[12]	4.26-1	6.13[-2]	20.843	3.37[12]	4.39[-1]	6.02[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	21.772	2.01[12]	1.43[-1]	2.06[-2]	20.789	2.27[12]	1.47[-1]	2.01[-2]

Lower lovel	Upper level	<u> </u>	A	f	<u> </u>	<u> </u>		f	<u> </u>
Lower level	Opper level	Λ	A 	J -79	5	Λ	A	J -80	<u> </u>
$n^2(^1S) s^2 S_{1/2}$	$n^{2}(^{3}P)n^{2}P_{2}(^{3}P)$	36 705	271[11]	1 09[_1]	2 64[-2]	35 625	$\frac{2}{2.88[11]}$	1.09[_1]	2 57[-2]
$p^{2}(1D)s^{-2}D_{2/2}$	$p^{(1)}p^{-1}3/2$ $sn(^{3}P)d^{-4}P_{r/2}$	35 994	2.07[11]	6.04[-2]	2.84[2] 2.86[-2]	34 918	2.00[11] 2.20[11]	6.04[-2]	2.37[2] 2.78[-2]
$p^{2}(^{3}P)s^{2}P_{1/2}$	$sp(1)a^{-1}b/2$ $sn(1P)d^{-2}P_{1/2}$	35597	4.70[11]	8 94[-2]	2.00[2] 2.10[-2]	34.516 34.576	4.96[11]	8.89[-2]	2.10[2] 2.02[-2]
$s^{2}({}^{1}S)d {}^{2}D_{r/2}$	$sp(1P)d^{-2}F_{r/2}$	35 491	2.88[11]	5.46[-2]	3.83[-2]	$34\ 457$	3.07[11]	5.46[-2]	3.72[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$n^2({}^1D)s {}^2D_{r/s}$	34 883	$\frac{2.00[11]}{3.88[11]}$	1.06[-1]	4.90[-2]	33 876	4 14[11]	1.07[-1]	4.78[-2]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sn({}^{3}P)d {}^{4}F_{7/2}$	34.871	2.59[11]	6.35[-2]	4.37[-2]	33.860	2.79[11]	6.42[-2]	4.29[-2]
$s^{2}({}^{1}S)d {}^{2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	34.606	4.11[11]	9.86[-2]	6.73[-2]	33.618	4.39[11]	9.93[-2]	6.59[-2]
$n^2({}^3P)s {}^4P_{2/2}$	$sp(^{3}P)d^{-4}F_{\rm E/2}$	34 488	355[11]	9.53[-2]	4 32[-2]	33 499	3.79[11]	9.53[-2]	$4\ 21[-2]$
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	34.398	3.24[11]	1.15[-1]	2.60[-2]	33.419	3.42[11]	1.15[-1]	2.52[-2]
$s^{2}({}^{1}S)d {}^{2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	32.644	2.80[11]	5.98[-2]	3.85[-2]	31.727	2.90[11]	5.85[-2]	3.66[-2]
$p^2({}^1D)s^2D_{5/2}$	$sp(^{1}P)d^{-2}F_{r/2}$	18.884	6.64[11]	3.54[-2]	1.33[-2]	17.941	7.35[11]	3.57[-2]	1.26[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$s_{P}^{2}(^{1}S)d^{2}D_{r/2}$	18 711	1 19[12]	9.37[-2]	2.30[-2]	17.782	1.33[12]	9.42[-2]	2 21[-2]
$n^2({}^1D)s^2D_{r/2}$	$sn({}^{3}P)d{}^{2}F_{7/2}$	18 631	1.10[12] 1.82[11]	1.27[-2]	4.66[-3]	17 711	1.97[11]	1 24[-2]	4 32[-3]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp(^{3}P)d^{-4}P_{2/2}$	18.617	1.02[11] 1.97[12]	2.03[-1]	2.50[-2]	17.695	2.18[12]	2.04[-1]	2.38[-2]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp(^{3}P)d^{-2}P_{2/2}$	18.514	4 18[11]	1 43[-2]	5.24[-3]	17602	4.66[11]	1 45[-2]	5.02[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}D_{r/2}$	18.467	1.13[12]	8.64[-2]	2.10[-2]	17.560	1.22[12]	8.49[-2]	1.97[-2]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	18.302	5.10[11]	2.56[-2]	6.18[-3]	17.403	5.63[11]	2.56[-2]	5.88[-3]
$p^{2}(^{3}P)s^{-2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{2/2}$	18.146	1.72[12]	8.49[-2]	2.03[-2]	17.261	1.91[12]	8.54[-2]	1.94[-2]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	18.106	3.92[11]	1.93[-2]	2.30[-3]	17.226	4.04[11]	1.80[-2]	2.04[-3]
$p^{2}({}^{3}P)s^{4}P_{1/2}$	$n^{2}({}^{3}P)n^{2}D_{2/2}$	18.053	1.47[11]	1.44[-2]	1.71[-3]	17.190	1.40[11]	1.24[-2]	1.40[-3]
$p^{2}(^{1}D)s^{2}D_{r/2}$	$sp({}^{1}P)d {}^{2}F_{7/2}$	18.047	3.89[12]	2.54[-1]	9.06[-2]	17.171	4.41[12]	2.60[-1]	8.81[-2]
$s^{2}(^{1}S)n^{2}P_{1/2}$	$n^2({}^1D)s^2D_2$	17 911	1.02[12]	9.79[-2]	1.15[-2]	17.048	1.11[12]	9.62[-2]	1.08[-2]
$p^{2}({}^{3}P)s {}^{4}P_{r/2}$	$sn({}^{3}P)d {}^{4}D_{r/2}$	17.880	4.22[11]	2.03[-2]	7.16[-3]	17.024	4.42[11]	1.93[-2]	6.47[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}F_{\pi/2}$	17.811	7.44[12]	5.30[-1]	1.24[-1]	16.957	8.38[12]	5.40[-1]	1.21[-1]
$p^{2}(^{1}D)s^{2}D_{2/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	17.808	2.08[12]	4.94[-2]	1.16[-2]	16.948	2.08[12]	4.48[-2]	1.00[-2]
$p^{2}({}^{3}P)s {}^{4}P_{F/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	17.725	5.99[11]	1.88[-2]	6.60[-3]	16.877	6.87[11]	1.95[-2]	6.51[-3]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$p^2({}^3P)p {}^4S_{2/2}$	17.706	6.54[11]	6.18[-2]	7.20[-3]	16.869	7.28[11]	6.20[-2]	6.88[-3]
$p^{2}({}^{3}P)s {}^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	17.642	5.76[12]	1.35[-1]	3.13[-2]	16.798	6.48[12]	1.38[-1]	3.03[-2]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	17.622	3.51[12]	8.17[-2]	1.89[-2]	16.780	3.93[12]	8.32[-2]	1.83[-2]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$p^{2}(^{1}S)s^{2}S_{1/2}$	17.620	4.85[12]	2.26[-1]	2.62[-2]	16.776	5.42[12]	2.29[-1]	2.53[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	17.561	1.57[12]	3.63[-2]	8.39[-3]	16.738	2.01[12]	4.23[-2]	9.32[-3]
$p^{2}(^{1}D)s^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{2/2}$	17.497	4.47[12]	1.37[-1]	4.73[-2]	16.667	5.00[12]	1.40[-1]	4.58[-2]
$p^{2}(^{1}D)s^{2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	17.466	7.58[11]	5.22[-2]	1.20[-2]	16.644	8.83[11]	5.52[-2]	1.21[-2]
$p^{2}(^{1}D)s^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	17.442	3.98[12]	1.81[-1]	6.25[-2]	16.617	4.46[12]	1.85[-1]	6.08-2
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	17.379	2.67[11]	1.82[-2]	4.15[-3]	16.562	3.14[11]	1.94[-2]	4.22[-3]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	17.233	1.92[12]	8.52[-2]	1.94[-2]	16.422	2.08[12]	8.42[-2]	1.82[-2]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	17.074	3.21[11]	9.35-3	3.15[-3]	16.293	3.42[11]	9.08[-3]	2.92[-3]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	16.945	2.30[12]	1.98[-1]	2.21[-2]	16.167	2.60[12]	2.03[-1]	2.17[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	16.940	3.65[12]	1.57[-1]	5.27[-2]	16.162	4.12[12]	1.61[-1]	5.15[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	16.895	2.76[12]	1.57[-1]	5.23[-2]	16.126	3.06[12]	1.60[-1]	5.08[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	16.795	1.40[12]	2.95[-2]	6.52[-3]	16.017	1.75[12]	3.39[-2]	7.13[-3]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p {}^{2}P_{1/2}$	16.722	3.91[12]	1.64[-1]	1.80-2	15.966	4.34[12]	1.67[-1]	1.75[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	16.683	3.62[12]	1.50[-1]	3.32[-2]	15.922	4.09[12]	1.55[-1]	3.26[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	16.665	5.80[12]	2.41[-1]	5.31[-2]	15.912	6.45[12]	2.45[-1]	5.15[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	16.618	3.77[12]	1.56[-1]	3.42[-2]	15.869	4.30[12]	1.62[-1]	3.39[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	16.574	1.48[12]	3.06[-2]	6.66[-3]	15.829	1.44[12]	2.72[-2]	5.66[-3]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}F_{3/2}$	16.532	6.18[12]	5.06[-1]	5.51[-2]	15.784	6.97[12]	5.21[-1]	5.41[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	16.505	4.10[12]	1.67[-1]	1.82[-2]	15.761	4.62[12]	1.72[-1]	1.79[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	16.490	1.01[12]	6.12[-2]	1.33[-2]	15.745	1.09[12]	6.12[-2]	1.27[-2]
$s^{2}(^{1}S)p^{2}P_{1/2}$	$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	16.485	6.69[12]	5.47[-1]	5.94[-2]	15.741	7.53[12]	5.60[-1]	5.81[-2]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	16.400	9.22[11]	5.56[-2]	1.20[-2]	15.664	1.00[12]	5.51[-2]	1.14[-2]

Lower lovel	Upper level	<u> </u>	A	f	<u> </u>	<u> </u>		f	<u> </u>
Lower level	opper level	Λ		J =83	J	Λ		J =84	J
$n^2({}^1S) s {}^2S_{t}$	$n^{2}(^{3}P)n^{2}P_{a/a}$	32 5 71	3 40[11]	1 11[_1]	2 38[-2]	31 613	3 71 [11]	1 11[_1]	2 32[-2]
$p^{2}(D)s^{2}D_{1/2}$ $n^{2}(D)s^{2}D_{2/2}$	$p^{(1)}p^{-1}3/2$ $sn(^{3}P)d^{-4}P_{r/2}$	31 880	2.64[11]	6.03[-2]	2.50[2] 2.54[-2]	30.926	2.80[11]	6.03[-2]	2.02[2] 2.46[-2]
$p^{2}(^{3}P)s^{2}P_{1/2}$	$sp(1)a^{-1}b/2$ $sn(1P)d^{-2}P_{1/2}$	31 683	5.80[11]	8.74[-2]	1.82[-2]	30.520 30.772	6.12[11]	8 69[-2]	1.76[-2]
$s^{2}(^{1}S)n^{2}P_{2}(^{1}S)$	$n^2({}^1D)s {}^2D_r$	31.027	4 99[11]	1.08[-1]	4 43[-2]	30 1 33	5.31[11]	1.09[-1]	4 31[-2]
$n^2({}^3P)s {}^4P_{r/2}$	$p^{-}(D) b^{-} D_{5/2}^{-}$ $sn(^{3}P) d^{-4} F_{7/2}^{-}$	31 003	3.47[11]	6.65[-2]	4.08[-2]	30 106	3.71[11]	6.75[-2]	4 01[-2]
$p^{2}({}^{3}P)s^{4}P_{2/2}$	$sp({}^{3}P)d {}^{4}F_{\pi/2}$	30.698	453[11]	9.63[-2]	3.89[-2]	29.818	$4\ 82[11]$	9.68[-2]	3.80[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	30.645	4.06[11]	1 14[-1]	2 31[-2]	29.773	$4 \ 30[11]$	1 14[-1]	2 24[-2]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{r/2}$	15523	1.00[11] 1.71[11]	9.28[-3]	1.90[-3]	14751	2.04[11]	1.00[-2]	1.94[-3]
$p^{2}(^{1}D)s^{2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{r/2}$	15.400	1.01[12]	3.60[-2]	1.09[-2]	14.641	1.12[12]	3.60[-2]	1.05[-2]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	15.227	2.49[11]	1.16[-2]	3.49[-3]	14.483	2.71[11]	1.14[-2]	3.25[-3]
$p^{2}(^{1}S)s^{-2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	15.211	2.97[12]	2.06[-1]	2.06[-2]	14.468	3.28[12]	2.07[-1]	1.96[-2]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp({}^{3}P)d {}^{2}P_{2/2}$	15.137	6.48[11]	1.49[-2]	4.44[-3]	14.399	7.22[11]	1.50[-2]	4.27[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}D_{r}$	15,110	1.58[12]	8.09[-2]	1.61[-2]	14376	1.22[11] 1.71[12]	7.94[-2]	1.21[-3] 1.51[-2]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp(^{3}P)d^{-4}P_{2/2}$	14 974	7.63[11]	2.57[-2]	5.05[-3]	14246	8.36[11]	2.56[-2]	4 79[-3]
$p^{2}({}^{3}P)s {}^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{2/2}$	14.871	2.56[12]	8.49[-2]	1.66[-2]	14.154	2.81[12]	8.44[-2]	1.57[-2]
$n^2({}^1S)s {}^2S_{1/2}$	$sn({}^{3}P)d {}^{4}P_{1/2}$	14.848	4.01[11]	1.32[-2]	1.30[-3]	14,135	3.87[11]	1.16[-2]	1.08[-3]
$p^{2}(^{1}D)s^{2}D_{r/2}$	$sp({}^{1}P)d {}^{2}F_{7/2}$	14.803	6.33[12]	2.77[-1]	8.12[-2]	14.091	7.15[12]	2.83[-1]	7.90[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	14.720	2.55[11]	8.30[-3]	8.05[-4]	14.029	3.20[11]	9.44[-3]	8.72[-4]
$s^{2}(^{1}S)n^{2}P_{1/2}$	$p^{2}(^{1}D)s^{2}D_{2/2}$	14.713	1.39[12]	9.04[-2]	8.75[-3]	14.012	1.50[12]	8.80[-2]	8.12[-3]
$n^2({}^3P)s {}^4P_{r/2}$	$sn({}^{3}P)d {}^{4}D_{r}$	14705	4.92[11]	1.59[-2]	4 63[-3]	14 008	5.02[11]	1.48[-2]	4.09[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp(^{3}P)d^{2}F_{r/2}$	14.643	1.02[11] 1.20[13]	5.80[-1]	1 12[-1]	13.947	1.36[1.3]	5 90[-1]	1.09[-1]
$p^{2}(^{1}D)s^{2}D_{2}(s)$	$sp(^{3}P)d^{-4}P_{1/2}$	14621	1.28[10] 1.73[12]	2.79[-2]	5.37[-3]	13 923	1.53[12]	2 23[-2]	4.08[-3]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$n^2({}^3P)n {}^4S_{2/2}$	14.591	9.48[11]	6.05[-2]	5.82[-3]	13.904	1.02[12]	5.93[-2]	5.44[-3]
$p^{2}({}^{3}P)s^{4}P_{F/2}$	$sn({}^{3}P)d {}^{4}P_{2/2}$	14.577	1.03[12]	2.18[-2]	6.29[-3]	13.885	1.18[12]	2.27[-2]	6.23[-3]
$p^{2}(^{1}D)s^{2}D_{2/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	14.532	2.56[11]	8.12[-3]	1.55[-3]	13.853	3.09[11]	8.91[-3]	1.63[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	14.511	9.17[12]	1.45[-1]	2.77[-2]	13.823	1.03[13]	1.48[-1]	2.69[-2]
$s^{2}({}^{1}S)n^{2}P_{1/2}$	$p^{2}(^{1}S)s^{2}S_{1/2}$	14.491	7.63[12]	2.41[-1]	2.29[-2]	13.804	8.55[12]	2.45[-1]	2.22[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$p^{2}({}^{3}P)s^{2}P_{1/2}$	14.495	5.54[12]	8.72[-2]	1.66[-2]	13.808	6.20[12]	8.87[-2]	1.61[-2]
$p^2({}^1D)s {}^2D_2/2$	$sp({}^{3}P)d {}^{4}D_{1/2}$	14.498	4.04[12]	6.36[-2]	1.22[-2]	13.821	4.94[12]	7.10[-2]	1.29[-2]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	14.411	7.05[12]	1.47[-1]	4.17[-2]	13.732	7.92[12]	1.49[-1]	4.04[-2]
$p^{2}(^{1}D)s^{-2}D_{3/2}^{-3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	14.408	1.39[12]	6.46[-2]	1.23[-2]	13.733	1.61[12]	6.81[-2]	1.23[-2]
$p^{2}(^{1}D)s^{2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	14.374	6.34[12]	1.96[-1]	5.58[-2]	13.698	7.12[12]	2.00[-1]	5.43[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	14.341	5.11[11]	2.37[-2]	4.46[-3]	13.671	5.99[11]	2.52[-2]	4.55[-3]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	14.218	2.58[12]	7.83[-2]	1.46[-2]	13.554	2.74[12]	7.54[-2]	1.34[-2]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	14.158	4.04[11]	8.11[-3]	2.26[-3]	13.511	4.21[11]	7.68-3	2.05[-3]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	14.047	3.75[12]	2.21[-1]	2.05[-2]	13.405	4.24[12]	2.28[-1]	2.02[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	14.040	5.82[12]	1.72[-1]	4.78[-2]	13.397	6.54[12]	1.76-1	4.66[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	14.026	4.27[12]	1.68 -1	4.64[-2]	13.389	4.76[12]	1.71-1	4.51[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	13.900	3.36[12]	4.88[-2]	8.92[-3]	13.261	4.06[12]	5.37[-2]	9.36[-3]
$p^2({}^3P)s {}^4P_{1/2}$	$p^{2}({}^{3}P)p {}^{2}P_{1/2}$	13.898	6.01[12]	1.75[-1]	1.59[-2]	13.271	6.70[12]	1.78[-1]	1.55[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	13.853	8.98[12]	2.58[-1]	4.71[-2]	13.228	1.00[13]	2.63[-1]	4.58[-2]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	13.844	5.91[12]	1.70[-1]	3.09[-2]	13.215	6.65[12]	1.74[-1]	3.04[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	13.819	6.39[12]	1.83[-1]	3.33[-2]	13.197	7.33[12]	1.91[-1]	3.33[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	13.788	1.07 12	1.53 -2	2.78[-3]	13.168	8.94[11]	1.16[-2]	2.02[-3]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}F_{3/2}$	13.740	1.01[13]	5.67[-1]	5.13[-2]	13.120	1.14[13]	5.84[-1]	5.04[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	13.725	6.60[12]	1.86[-1]	1.69[-2]	13.107	7.43[12]	1.91[-1]	1.65[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	13.707	1.07[13]	6.04-1	5.45[-2]	13.090	1.21[13]	6.20-1	5.34[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	13.707	1.42[12]	6.02-2	1.09[-2]	13.089	1.55[12]	5.97[-2]	1.03[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	13.647	1.26[12]	5.27[-2]	9.49[-3]	13.034	1.36[12]	5.22[-2]	8.92[-3]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	13.316	1.02[12]	2.72[-2]	7.15[-3]	12.730	1.20[12]	2.92-2	7.33[-3]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	13.196	1.66[11]	4.32[-3]	7.51[-4]	12.617	1.95[11]	4.64[-3]	7.71 -4

Lower lovel	Upper level	1	4	f	C			f	<u> </u>
Lower level	Upper level	Λ	A 7-	J -80	3	Λ	A	J -00	5
$n^2(1S) e^{2S}$	$n^2(3P) n^2 P_{-1}$	27 230	5.00[11]	1 1 2 1	2 03[-2]	26.430	5 /3[11]	$\frac{-30}{1.14[-1]}$	1.98[_2]
$p^{2}(^{3}P)s^{2}P_{1/2}$	$p(1)p(1)_{3/2}$ $sn(1P)d(2P_{1/2})$	26.587	8.06[11]	8 54[-2]	1.50[-2]	25.400 25.820	8.52[11]	8 53[-2]	1.50[2] 1.45[-2]
$p^{2}(1D)s^{2}D_{2}/s$	sp(1)a + 1/2 $sn(^{3}P)d + P_{r/2}$	26.501 26.573	3.79[11]	5.98[-2]	2.10[-2]	25.820 25.780	4.01[11]	5.97[-2]	2.03[-2]
$p^{2}(D)s^{2}D_{3/2}$ $s^{2}(^{1}S)n^{2}P_{2/2}$	$n^2(^1D)s^2D_{r/2}$	26.010 26.034	7.29[11]	1 11[-1]	$\frac{2.10[2]}{3.80[-2]}$	25.100 25.285	7.74[11]	1 12[-1]	3.71[-2]
$n^2({}^3P)s {}^4P_{r/s}$	$sn({}^{3}P)d {}^{4}F_{7/2}$	26.001 26.002	5.30[11]	7 17[-2]	3.69[-2]	25.260 25.252	5.71[11]	7.27[-2]	3.63[-2]
$p^{2}({}^{3}P)s^{4}P_{2/2}$	$sp({}^{3}P)d {}^{4}F_{5/2}$	25.782	6.61[11]	9.87[-2]	3.35[-2]	25.043	7.03[11]	9.92[-2]	3.27[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	25.766	5.80[11]	1.15[-1]	1.95[-2]	25.032	6.14[11]	1.15[-1]	1.90[-2]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	11.465	4.91[11]	1.46[-2]	2.20[-3]	10.908	5.89[11]	1.58[-2]	2.26[-3]
$p^{2}(^{1}D)s^{2}D_{5/2}$	$sp(^{1}P)d^{-2}F_{5/2}$	11.401	1.92[12]	3.74[-2]	8.45[-3]	10.850	2.14[12]	3.77[-2]	8.11[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	11.301	4.08[11]	1.04[-2]	2.33[-3]	10.759	4.44[11]	1.03[-2]	2.18[-3]
$p^{2}(^{1}S)s^{-2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	11.290	5.25[12]	2.01[-1]	1.50[-2]	10.749	5.74[12]	1.99[-1]	1.41[-2]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp({}^{3}P)d {}^{2}P_{3/2}$	11.242	1.26[12]	1.59[-2]	3.52[-3]	10.703	1.41[12]	1.61[-2]	3.40[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp(^{3}P)d^{-4}D_{r/2}$	11.212 11.235	2.50[12]	710[-2]	1.05[-2]	10.699	2.68[12]	6 90[-2]	9 73[-3]
$p^{2}(^{1}D)s^{-2}D_{3/2}$	$sp(^{3}P)d^{-4}P_{2/2}$	11 131	1.29[12]	2 42[-2]	354[-3]	10.600	1 40[12]	2.36[-2]	3 29[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{2/2}$	11.084	4.41[12]	8.15[-2]	1.19[-2]	10.560	4.82[12]	8.05[-2]	1.12[-2]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	11.088	3.11[11]	5.74[-3]	4.19[-4]	10.569	3.04[11]	5.09[-3]	3.54[-4]
$p^{2}(^{1}S)s^{-2}S_{1/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	11.068	3.51[11]	1.29[-2]	9.38[-4]	10.553	4.79[11]	1.61[-2]	1.11[-3]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	11.038	1.30[13]	3.16[-1]	6.89[-2]	10.516	1.46[13]	3.23[-1]	6.71[-2]
$p^2({}^1S)s^2S_{1/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	11.033	6.57[11]	1.20[-2]	8.72[-4]	10.517	7.17[11]	1.19[-2]	8.24[-4]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	11.006	5.05[11]	9.22[-3]	2.00[-3]	10.491	4.96[11]	8.19[-3]	1.70[-3]
$s^{2}(^{1}S)p^{2}P_{1/2}$	$p^2(^1D)s^2D_{2/2}$	10.997	2.06[12]	7.45[-2]	5.40[-3]	10.481	2.18[12]	7.15[-2]	4.94[-3]
$p^2({}^3P)s {}^2P_{2/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	10.952	2.45[13]	6.60[-1]	9.53[-2]	10.438	2.76[13]	6.75[-1]	9.28[-2]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$p^2({}^3P)p {}^4S_{2/2}$	10.936	1.37[12]	4.94[-2]	3.56[-3]	10.426	1.43[12]	4.68[-2]	3.21[-3]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	10.935	5.64[11]	5.08[-3]	7.29[-4]	10.424	4.36[11]	3.55[-3]	4.88[-4]
$p^{2}(^{1}D)s^{2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	10.915	8.33[11]	1.49[-2]	2.14[-3]	10.409	1.02[12]	1.66[-2]	2.27[-3]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	10.907	2.36[12]	2.80[-2]	6.04[-3]	10.396	2.71[12]	2.93[-2]	6.01[-3]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	10.881	1.08[13]	9.57[-2]	1.38[-2]	10.374	1.23[13]	9.92[-2]	1.35[-2]
$p^{2}(^{3}P)s^{-2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	10.861	1.83[13]	1.63[-1]	2.32[-2]	10.353	2.06[13]	1.66[-1]	2.26[-2]
$s^{2}({}^{1}S)p {}^{2}P_{3/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	10.850	1.09[13]	9.67[-2]	1.38[-2]	10.343	1.23[13]	9.86[-2]	1.34[-2]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$p^2({}^1S)s {}^2S_{1/2}$	10.846	1.51[13]	2.66[-1]	1.90[-2]	10.339	1.68[13]	2.71[-1]	1.84[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	10.818	3.31[12]	8.74[-2]	1.24[-2]	10.316	3.83[12]	9.14[-2]	1.24[-2]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	10.803	1.39[13]	1.63[-1]	3.47[-2]	10.300	1.57[13]	1.66[-1]	3.37[-2]
$p^2(^1D)s^{-2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	10.782	1.27[13]	2.21[-1]	4.72[-2]	10.281	1.42[13]	2.26[-1]	4.59[-2]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	10.779	1.33[12]	3.46[-2]	4.91[-3]	10.282	1.55[12]	3.68[-2]	4.97[-3]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	10.699	4.31[11]	4.91[-3]	1.04[-3]	10.213	4.09[11]	4.26[-3]	8.61[-4]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	10.684	3.08[12]	5.26[-2]	7.42[-3]	10.190	3.00[12]	4.68[-2]	6.27[-3]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	10.619	7.83[12]	2.65[-1]	1.85[-2]	10.137	8.88[12]	2.73[-1]	1.83[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	10.619	8.27[12]	1.87[-1]	3.91[-2]	10.139	9.23[12]	1.90-1	3.80[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	10.606	1.14[13]	1.93[-1]	4.05[-2]	10.123	1.28[13]	1.97[-1]	3.94[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$p^2({}^3P)p \; {}^2P_{1/2}$	10.538	1.16[13]	1.92[-1]	1.34[-2]	10.064	1.29[13]	1.96[-1]	1.30[-2]
$s^2({}^1S)d \; {}^2D_{3/2}$	$sp({}^1P)d \; {}^2D_{3/2}$	10.507	1.74[13]	2.87[-1]	3.97[-2]	10.034	1.94[13]	2.92[-1]	3.86[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d \; {}^{4}P_{1/2}$	10.503	8.46[12]	7.02[-2]	9.68[-3]	10.028	9.55[12]	7.22[-2]	9.52[-3]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	10.485	1.47[13]	2.42[-1]	3.34[-2]	10.014	1.69[13]	2.54[-1]	3.35[-2]
$p^2({}^1D)s \; {}^2D_{3/2}$	$sp({}^{3}P)d \; {}^{2}D_{3/2}$	10.478	1.22[13]	2.02[-1]	2.78[-2]	10.004	1.38[13]	2.07[-1]	2.73[-2]
$p^2({}^3P)s \; {}^4P_{1/2}$	$sp({}^{3}P)d \; {}^{4}F_{3/2}$	10.420	2.06[13]	6.71[-1]	4.60[-2]	9.952	2.32[13]	6.89[-1]	4.52[-2]
$p^2({}^1S)s \; {}^2S_{1/2}$	$sp({}^{3}P)d \; {}^{2}P_{1/2}$	10.414	1.34[13]	2.19[-1]	1.50[-2]	9.947	1.51[13]	2.25[-1]	1.47[-2]
$s^2({}^1S)p \; {}^2P_{1/2}$	$p^2({}^3P)s\;{}^2P_{3/2}$	10.400	2.17[13]	7.03[-1]	4.82[-2]	9.933	2.44[13]	7.22[-1]	4.72[-2]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^3P)d\;{}^2D_{5/2}$	10.395	2.32[12]	5.67[-2]	7.75[-3]	9.928	2.51[12]	5.57[-2]	7.29[-3]
$p^2(^1D)s\ ^2D_{3/2}$	$sp({}^3P)d\;{}^2F_{5/2}$	10.360	1.97[12]	4.77[-2]	6.51[-3]	9.895	2.13[12]	4.69[-2]	6.11[-3]
$p^2({}^3P)s \; {}^4P_{5/2}$	$sp(^{3}P)d^{-2}F_{5/2}$	10.165	2.65[12]	4.11[-2]	8.25[-3]	9.717	3.10[12]	4.38[-2]	8.43[-3]
$p^2({}^3P)s \; {}^4P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	10.081	4.32[11]	6.57[-3]	8.73[-4]	9.639	5.04[11]	7.02[-3]	8.93[-4]

Lower lovel	Upper level		A	f	<u> </u>			f	<u> </u>
Lower level	Upper level	Λ	A 	<u>J</u> -01	3	Λ	A 	J -02	5
$n^2(^1S) s^2 S_{1/2}$	$n^2({}^3P)n {}^2P_{2}$	25 654	5 77[11]	$\frac{-31}{1.14[-1]}$	1 93[-2]	24 900	6 15[11]	$\frac{-32}{1.15[-1]}$	1.88[-2]
$p^{2}(^{3}P)s^{2}P_{1/2}$	$p(1)p(1)_{3/2}$ $sn(1P)d(2P_{1/2})$	25.004 25.075	9.11[11] 9.02[11]	8.51[-2]	1.30[2] 1.41[-2]	24.300	0.15[11] 0.55[11]	8 50[-2]	1.36[-2]
$p^{2}(1)s^{-1}1/2$ $n^{2}(1D)s^{-2}D_{2}/2$	$sp(^{3}P)d^{-4}P_{r/2}$	25.010 25.010	$4\ 23[11]$	5.97[-2]	1.41[2] 1.96[-2]	24.001 24.265	4 49[11]	5.90[2]	1.00[2] 1.90[-2]
$s^{2}(^{1}S)n^{2}P_{2/2}$	$n^2({}^1D)s {}^2D_{r/s}$	20.010 24.558	8.26[11]	1 12[-1]	3.62[-2]	23.851	8 78[11]	1 13[-1]	353[-2]
$n^2({}^3P)s {}^4P_{r/s}$	$sn({}^{3}P)d {}^{4}F_{7/2}$	24524	6.20[11] 6.13[11]	7.37[-2]	357[-2]	23.818	6.56[11]	7 47[-2]	3.50[2]
$p^{2}({}^{3}P)s^{4}P_{2/2}$	$sp({}^{3}P)d {}^{4}F_{5/2}$	24.326	7.48[11]	1.00[-1]	3.20[-2]	23.629	8.00[11]	1.00[-1]	3.12[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}$	$sp(^{1}P)d^{-2}P_{2/2}$	24.319	6.52[11]	1.16[-1]	1.85[-2]	23.626	6.91[11]	1.16[-1]	1.81[-2]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp(^{3}P)d^{-4}P_{2/2}$	10 665	2 25[11]	3.84[-3]	5.39[-4]	10.136	2.64[11]	$4\ 07[-3]$	5 43[-4]
$p^{2}({}^{3}P)s^{2}P_{2/2}$	$sp({}^{3}P)d {}^{2}D_{r/2}$	10.379	7.04[11]	1.71[-2]	2.34[-3]	9.878	$\frac{2}{8}.40[11]$	1.85[-2]	2.40[-3]
$p^{2}(^{1}D)s^{2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{r/2}$	10.327	2.39[12]	3.84[-2]	7.80[-3]	9.831	2.67[12]	3.87[-2]	7.50[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{3}P)d {}^{2}F_{7/2}$	10.243	4.81[11]	1.01[-2]	2.05[-3]	9.755	5.23[11]	9.92[-3]	1.92[-3]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	10.235	6.19[12]	1.95[-1]	1.32[-2]	9.747	6.73[12]	1.92[-1]	1.23[-2]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp({}^{1}P)d {}^{2}P_{2/2}$	10 191	1.57[12]	1.63[-2]	327[-3]	9 706	1.75[12]	1.65[-2]	3 16[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp(^{3}P)d^{-4}D_{r/2}$	10.189	2.86[12]	6 71 [-2]	8 99[-3]	9 706	3.07[12]	6.51[-2]	8.32[-3]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	10.095	1.49[12]	2.28[-2]	3.03[-3]	9.616	1.59[12]	2.20[-2]	2.78[-3]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	10.075	2.97[11]	4.52[-3]	3.00[-4]	9.605	2.96[11]	4.10[-3]	2.59[-4]
$p^{2}(^{3}P)s^{-2}P_{2/2}$	$sp({}^{1}P)d {}^{2}D_{2/2}$	10.061	5.25[12]	7.95[-2]	1.05[-2]	9.587	5.69[12]	7.90[-2]	9.94[-3]
$p^{2}(^{1}S)s^{2}S_{1/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	10.062	6.55[11]	1.99[-2]	1.32[-3]	9.595	8.77[11]	2.42[-2]	1.53[-3]
$p^{2}(^{1}D)s^{-2}D_{r/2}$	$sp(^{1}P)d^{-2}F_{7/2}$	10.020	1.65[13]	3.30[-1]	6.53[-2]	9.548	1.85[13]	3.37[-1]	6.35[-2]
$p^{2}(^{1}S)s^{-2}S_{1/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	10.024	7.71[11]	1.16[-2]	7.67[-4]	9.556	8.22[11]	1.12[-2]	7.09[-4]
$p^{2}({}^{3}P)s^{4}P_{r/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	10.001	4.76[11]	7.17[-3]	1.42[-3]	9.535	4.60[11]	6.27[-3]	1.18[-3]
$s^{2}(^{1}S)n^{2}P_{1/2}$	$p^{2}(^{1}D)s^{2}D_{2/2}$	9.989	2.29[12]	6.83[-2]	4.49[-3]	9.523	2.40[12]	6.53[-2]	4.09[-3]
$n^2({}^3P)s {}^2P_{2/2}$	$sn({}^{3}P)d {}^{2}F_{r/2}$	9.949	3.10[13]	6.90[-1]	9.04[-2]	9.485	3.49[13]	7.05[-1]	8.81[-2]
$p^{2}({}^{3}P)s^{4}P_{1/2}$	$n^2({}^3P)n {}^4S_{2/2}$	9.940	1.48[12]	4.39[-2]	2.87[-3]	9.478	1.53[12]	4.12[-2]	2.57[-3]
$p^{2}(^{1}D)s^{2}D_{2/2}$	$sn({}^{3}P)d {}^{4}P_{1/2}$	9.939	3.20[11]	2.37[-3]	3.10[-4]	9.477	2.33[11]	1.57[-3]	1.96[-4]
$p^{2}(^{1}D)s^{-2}D_{2/2}$	$sp({}^{3}P)d {}^{4}D_{2/2}$	9.927	1.26[12]	1.86[-2]	2.43[-3]	9.467	1.53[12]	2.07[-2]	2.57[-3]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}P_{2/2}$	9.910	3.12[12]	3.06[-2]	5.98[-3]	9.448	3.56[12]	3.18[-2]	5.93[-3]
$p^2({}^1D)s {}^2D_{3/2}$	$sp({}^{3}P)d {}^{4}D_{1/2}$	9.889	1.40[13]	1.02[-1]	1.33[-2]	9.429	1.57[13]	1.04[-1]	1.30[-2]
$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	9.870	2.31[13]	1.69[-1]	2.19[-2]	9.410	2.59[13]	1.72[-1]	2.13[-2]
$s^{2}(^{1}S)p^{2}P_{3/2}$	$p^{2}({}^{3}P)s {}^{2}P_{1/2}$	9.860	1.37[13]	1.00-1	1.30[-2]	9.401	1.54[13]	1.02[-1]	1.26[-2]
$s^{2}({}^{1}S)p {}^{2}P_{1/2}$	$p^2({}^1S)s {}^2S_{1/2}$	9.856	1.89[13]	2.76[-1]	1.79[-2]	9.397	2.11[13]	2.81[-1]	1.73[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	9.838	4.38[12]	9.59[-2]	1.24[-2]	9.383	5.03[12]	1.00-1	1.23[-2]
$p^2({}^1D)s {}^2D_{5/2}$	$sp({}^{1}P)d {}^{2}P_{3/2}$	9.821	1.75[13]	1.69[-1]	3.27[-2]	9.366	1.96[13]	1.71[-1]	3.17[-2]
$p^{2}(^{1}D)s^{-2}D_{5/2}$	$sp({}^{1}P)d {}^{2}D_{5/2}$	9.804	1.60[13]	2.30[-1]	4.46[-2]	9.350	1.79[13]	2.35[-1]	4.34[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{5/2}$	9.808	1.80[12]	3.90[-2]	5.04[-3]	9.357	2.10[12]	4.13[-2]	5.08[-3]
$p^2[{}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	9.748	3.74[11]	3.56[-3]	6.84[-4]	9.305	3.34[11]	2.89[-3]	5.32[-4]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{3/2}$	9.720	2.83[12]	4.01-2	5.12[-3]	9.273	2.61[12]	3.38[-2]	4.12[-3]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{4}D_{7/2}$	9.680	1.03[13]	1.94[-1]	3.70[-2]	9.243	1.15[13]	1.98[-1]	3.60[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	9.677	1.01[13]	2.82[-1]	1.80[-2]	9.239	1.14[13]	2.91[-1]	1.77[-2]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	9.663	1.43[13]	2.00[-1]	3.82[-2]	9.224	1.59[13]	2.03[-1]	3.70[-2]
$p^{2}({}^{3}P)s {}^{4}P_{1/2}$	$p^{2}({}^{3}P)p {}^{2}P_{1/2}$	9.611	1.44[13]	2.00[-1]	1.27[-2]	9.179	1.61[13]	2.03[-1]	1.23[-2]
$s^{2}(^{1}S)d^{2}D_{3/2}$	$sp({}^{1}P)d {}^{2}D_{3/2}$	9.583	2.16[13]	2.97[-1]	3.76[-2]	9.153	2.41[13]	3.03[-1]	3.66[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{4}P_{1/2}$	9.575	1.08[13]	7.38[-2]	9.32[-3]	9.144	1.21[13]	7.58-2	9.11[-3]
$p^2({}^3P)s {}^4P_{3/2}$	$sp({}^{3}P)d {}^{4}D_{3/2}$	9.564	1.95 13	2.67[-1]	3.36[-2]	9.135	2.23[13]	2.79[-1]	3.35[-2]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}D_{3/2}$	9.552	1.56[13]	2.13[-1]	2.68[-2]	9.120	1.75[13]	2.19[-1]	2.63[-2]
$p^2({}^1S)s {}^2S_{1/2}$	$sp({}^{3}P)d {}^{2}P_{1/2}$	9.500	1.71[13]	2.31[-1]	1.44[-2]	9.074	1.91[13]	2.37[-1]	1.42[-2]
$p^2({}^3P)s {}^4P_{1/2}$	$sp({}^{3}P)d {}^{4}F_{3/2}$	9.505	2.62[13]	7.09-1	4.43[-2]	9.078	2.94[13]	7.28[-1]	4.35[-2]
$s^{2}(^{1}S)p^{2}P_{1/2}^{1/2}$	$p^{2}({}^{3}P)s {}^{2}P_{3/2}$	9.487	2.75[13]	7.41 -1	4.63[-2]	9.062	3.08[13]	7.60-1	4.53[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$	$sp({}^{3}P)d {}^{2}D_{5/2}$	9.482	2.71[12]	5.47[-2]	6.85[-3]	9.056	2.92[12]	5.42[-2]	6.44[-3]
$p^2(^1D)s^{-2}D_{3/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	9.451	2.29[12]	4.59[-2]	5.71[-3]	9.028	2.46[12]	4.52-2	5.37[-3]
$p^2({}^3P)s {}^4P_{5/2}$	$sp({}^{3}P)d {}^{2}F_{5/2}$	9.289	3.62[12]	4.71 -2	8.62[-3]	8.880	4.24[12]	5.01[-2]	8.79[-3]

Lower level Upper level λ A f S λ A	f	S
Z=99 Z=1	100	
$p^{2}({}^{1}S)s {}^{2}S_{1/2} = p^{2}({}^{3}P)p {}^{2}P_{3/2} = 20.222 = 9.68[11] = 1.19[-1] = 1.58[-2] = 19.632 = 1.03[12]$	1.19[-1]	1.54[-2]
$p^{2}({}^{3}P)s {}^{2}P_{1/2}'$ $sp({}^{1}P)d {}^{2}P_{1/2}'$ 19.841 1.44[12] 8.49[-2] 1.11[-2] 19.270 1.53[12]	8.51[-2]	1.08[-2]
$p^{2}({}^{1}D)s {}^{2}D_{3/2}' sp({}^{3}P)d {}^{4}P_{5/2}' 19.652 6.61[11] 5.76[-2] 1.49[-2] 19.074 6.99[11]$	5.76[-2]	1.44[-2]
$s^{2}({}^{1}S)p {}^{2}P_{3/2} = p^{2}({}^{1}D)s {}^{2}D_{5/2} = 19.456 = 1.37[12] = 1.17[-1] = 2.99[-2] = 18.900 = 1.46[12]$	1.17[-1]	2.92[-2]
$p^{2}({}^{3}P)s {}^{4}P_{5/2}$ $sp({}^{3}P)d {}^{4}F_{7/2}$ 19.425 1.08[12] 8.15[-2] 3.12[-2] 18.870 1.16[12]	8.25[-2]	3.07[-2]
$p^{2}({}^{3}P)s^{2}P_{1/2}^{7/2}$ $sp({}^{1}P)d^{2}P_{3/2}^{7/2}$ 19.308 $1.07[12]$ $1.20[-1]$ $1.52[-2]$ 18.760 $1.14[12]$	1.20[-1]	1.48[-2]
$p^{2}({}^{3}P)s {}^{4}P_{3/2}$ $sp({}^{3}P)d {}^{4}F_{5/2}$ 19.293 1.25[12] 1.04[-1] 2.66[-2] 18.744 1.33[12]	1.05[-1]	2.60[-2]
$p^{2}({}^{3}P)s^{2}P_{3/2}$ $sp({}^{3}P)d^{4}D_{5/2}$ 7.211 4.51[11] 5.26[-3] 5.02[-4] 6.864 5.17[11]	5.46[-3]	4.94[-4]
$p^{2}({}^{3}P)s^{-2}P_{3/2}^{-3/2} = sp({}^{3}P)d^{-4}P_{3/2}^{-3/2} = 7.143 = 7.19[11] = 5.51[-3] = 5.18[-4] = 6.800 = 8.12[11]$	5.66[-3]	5.05[-4]
$p^{2}({}^{3}P)s^{2}P_{3/2}^{3/2} = sp({}^{3}P)d^{2}D_{5/2}^{5/2} = 7.014 = 2.92[12] = 3.23[-2] = 2.98[-3] = 6.683 = 3.46[12]$	3.48[-2]	3.06[-3]
$p^{2}({}^{1}D)s {}^{2}D_{5/2} = sp({}^{1}P)d {}^{2}F_{5/2} = 6.990 = 5.74[12] = 4.20[-2] = 5.82[-3] = 6.661 = 6.43[12]$	4.27[-2]	5.62[-3]
$p^{2}({}^{1}S)s {}^{2}S_{1/2} = sp({}^{3}P)d {}^{4}P_{3/2} = 6.949 = 1.03[13] = 1.49[-1] = 6.81[-3] = 6.624 = 1.09[13]$	1.43[-1]	6.24[-3]
$p^{2}({}^{1}D)s {}^{2}D_{5/2} = sp({}^{3}P)d {}^{2}F_{7/2} = 6.949 = 9.19[11] = 8.90[-3] = 1.22[-3] = 6.623 = 9.97[11]$	8.73[-3]	1.14[-3]
$p^{2}({}^{1}D)s^{-2}D_{5/2} = sp({}^{3}P)d^{-2}P_{3/2} = 6.920 = 3.78[12] = 1.81[-2] = 2.47[-3] = 6.596 = 4.22[12]$	1.84[-2]	2.39[-3]
$p^{2}({}^{1}D)s {}^{2}D_{3/2} = sp({}^{3}P)d {}^{4}D_{5/2} = 6.927 = 4.81[12] = 5.17[-2] = 4.72[-3] = 6.604 = 5.10[12]$	5.02[-2]	4.37[-3]
$p^{2}({}^{1}S)s {}^{2}S_{1/2}$ $sp({}^{3}P)d {}^{4}D_{3/2}$ 6.886 4.64[12] 6.59[-2] 2.99[-3] 6.567 5.52[12]	7.13[-2]	3.08[-3]
$p^{2}({}^{3}P)s^{2}P_{3/2}$ $sp({}^{3}P)d^{2}D_{3/2}$ 6.860 1.02[13] 7.16[-2] 6.47[-3] 6.541 1.11[13]	7.06[-2]	6.10[-3]
$p^{2}({}^{1}D)s {}^{2}D_{3/2} = sp({}^{3}P)d {}^{4}P_{3/2} = 6.864 = 1.97[12] = 1.39[-2] = 1.25[-3] = 6.545 = 2.01[12]$	1.29[-2]	1.11[-3]
$p^{2}({}^{1}S)s^{2}S_{1/2}$ $sp({}^{3}P)d^{4}D_{1/2}$ 6.847 1.01[12] 7.10[-3] 3.20[-4] 6.530 1.01[12]	6.50[-3]	2.80[-4]
$p^{2}({}^{1}D)s^{-2}D_{5/2} = sp({}^{1}P)d^{-2}F_{7/2} = 6.832 = 4.18[13] = 3.90[-1] = 5.25[-2] = 6.515 = 4.69[13]$	3.97[-1]	5.11[-2]
$s^{2}({}^{1}S)n^{2}P_{1/2}$ $n^{2}({}^{1}D)s^{2}D_{2/2}$ 6.828 3.12[12] 4.35[-2] 1.96[-3] 6.513 3.22[12]	4.11[-2]	1.76[-3]
$p^{2}({}^{3}P)s^{2}P_{2/2} = sn({}^{3}P)d^{2}F_{\pi/2} = 6.802 = 7.83[13] = 8.14[-1] = 7.30[-2] = 6.489 = 8.78[13]$	8.29[-1]	7.10[-2]
$p^{2}({}^{3}P)s {}^{4}P_{1/2} = p^{2}({}^{3}P)n {}^{4}S_{2/2} = 6.805 = 1.52[12] = 2.12[-2] = 9.48[-4] = 6.492 = 1.49[12]$	1.88[-2]	8.05[-4]
$p^{2}(^{1}D)s^{2}D_{2/2} = sn(^{3}P)d^{4}D_{2/2} = 6.803 = 5.68[12] = 3.95[-2] = 3.54[-3] = 6.490 = 6.71[12]$	4.23[-2]	3.61[-3]
$p^{2}({}^{3}P)s {}^{4}P_{5/2} = sp({}^{3}P)d {}^{4}P_{2/2} = 6.780 = 8.52[12] = 3.91[-2] = 5.26[-3] = 6.469 = 9.56[12]$	4.01[-2]	5.11[-3]
$p^{2}({}^{1}D)s^{2}D_{2/2} = sp({}^{3}P)d^{4}D_{1/2} = 6.765 = 3.48[13] = 1.19[-1] = 1.07[-2] = 6.453 = 3.89[13]$	1.21[-1]	1.03[-2]
$p^{2}({}^{3}P)s^{2}P_{2/2} = sp({}^{3}P)d^{2}P_{1/2} = 6.755 = 5.75[13] = 1.98[-1] = 1.75[-2] = 6.444 = 6.44[13]$	2.01[-1]	1.70[-2]
$s^{2}(^{1}S)p^{2}P_{1/2}$ $p^{2}(^{1}S)s^{2}S_{1/2}$ 6.746 4.64[13] 3.17[-1] 1.41[-2] 6.436 5.19[13]	3.23[-1]	1.37[-2]
$s^{2}(^{1}S)p^{2}P_{2/2}$ $p^{2}(^{3}P)s^{2}P_{1/2}$ 6.748 3.40[13] 1.16[-1] 1.03[-2] 6.438 3.80[13]	1.18[-1]	1.00[-2]
$p^{2}(^{1}D)s^{2}D_{2/2} = sn(^{3}P)d^{2}D_{5/2} = 6.746 = 1.28[13] = 1.31[-1] = 1.17[-2] = 6.436 = 1.45[13]$	1.36[-1]	1.15[-2]
$p^{2}({}^{1}D)s^{-2}D_{5/2} = sp({}^{1}P)d^{-2}P_{2/2} = 6.730 + 4.29[13] + 94[-1] + 2.59[-2] = 6.422 + 4.80[13]$	1.98[-1]	2.51[-2]
$p^{2}({}^{3}P)s {}^{4}P_{2/2} = sp({}^{3}P)d {}^{4}D_{5/2} = 6.739 = 5.75[12] = 5.87[-2] = 5.23[-3] = 6.432 = 6.61[12]$	6.17[-2]	5.21[-3]
$p^{2}(^{1}D)s^{-2}D_{5/2} = sp(^{1}P)d^{-2}D_{5/2} = 6.722 = 3.97[13] = 2.69[-1] = 3.57[-2] = 6.414 = 4.46[13]$	2.74[-1]	3.47[-2]
$p^{2}(^{1}S)s^{2}S_{1/2} = sp(^{3}P)d^{2}D_{2/2} = 6.680 = 2.71[13] = 3.64[-1] = 1.60[-2] = 6.378 = 3.07[13]$	3.75[-1]	1.57[-2]
$p^{2}({}^{3}P)s {}^{4}P_{5/2} = sp({}^{3}P)d {}^{4}D_{7/2} = 6.688 = 2.53[13] = 2.26[-1] = 2.99[-2] = 6.386 = 2.83[13]$	2.30[-1]	2.91[-2]
$p^{2}({}^{3}P)s {}^{4}P_{5/2} = sp({}^{3}P)d {}^{2}D_{5/2} = 6.665 = 3.32[13] = 2.21[-1] = 2.91[-2] = 6.363 = 3.68[13]$	2.23[-1]	2.80[-2]
$p^{2}({}^{3}P)s {}^{4}P_{1/2} = p^{2}({}^{3}P)p {}^{2}P_{1/2} = 6.652 = 3.50[13] = 2.32[-1] = 1.02[-2] = 6.352 = 3.92[13]$	2.37[-1]	9.92[-3]
$s^{2}({}^{1}S)d^{2}D_{2/2} = sp({}^{1}P)d^{2}D_{2/2} = 6.635 = 5.26[13] = 3.47[-1] = 3.03[-2] = 6.337 = 5.85[13]$	3.54[-1]	2.95[-2]
$n^{2}({}^{3}P)s {}^{4}P_{2/2} = sn({}^{3}P)d {}^{4}P_{1/2} = 6.626 = 2.62[13] = 8.62[-2] = 7.52[-3] = 6.328 = 2.92[13]$	8.77[-2]	7.31[-3]
$p^{2}(^{3}P)s^{4}P_{2/2} = sp(^{3}P)d^{4}D_{2/2} = 6.622 = 5.41[13] = 3.57[-1] = 3.12[-2] = 6.324 = 6.10[13]$	3 65[-1]	3.04[-2]
$p^{2}(^{1}D)s^{2}D_{2/2} = sp(^{1}P)d^{2}D_{2/2} = 6.602 = 0.022 = 0.01[10] = 0.00[10] = 0.021 = 0.00[10]$	2.68[-1]	2 22[-2]
$p^{2}(1S)s^{2}S_{1/2} = sp(1)a^{2}B_{3/2} = 0.002 = 0.002[10] = 2.02[11] = 2.27[2] = 0.000 = 0.000[10]$ $p^{2}(1S)s^{2}S_{1/2} = sp(3P)d^{2}P_{1/2} = 6.581 = 4.36[13] = 2.83[-1] = 1.23[-2] = 6.286 = 4.89[13]$	2.90[-1]	1 20[-2]
$p^{2}(3P)s^{-4}P_{1/2} = sp(3P)d^{-4}F_{2/2} = 6.582 = 6.70[13] = 8.71[-1] = 3.78[-2] = 6.287 = 7.54[13]$	8 93[-1]	3.69[-2]
$s^{2}(^{1}S)p^{2}P_{1/2} = p^{2}(^{3}P)s^{2}P_{2/2} = 6.573 = 6.94[13] = 9.02[-1] = 3.91[-2] = 6.278 = 7.82[13]$	9.24[-1]	3.82[-2]
$p^{2}(^{3}P)s^{4}P_{2/2} = sn(^{3}P)d^{2}D_{5/2} = 6.568 = 4.82[12] = 4.69[-2] = 4.05[-3] = 6.273 = 5.10[12]$	4.59[-2]	3.79[-3]
$p^{2}(^{1}D)s^{2}D_{2/2} = sp(^{3}P)d^{2}F_{r/2} = 6549 = 4.19[12] = 4.05[2] = 3.50[-3] = 6.256 = 4.58[12]$	4 03[-2]	3 32[-3]
$p^{2}(^{3}P)s^{-4}P_{r/2} = sn(^{3}P)d^{-2}F_{r/2} = 6.473 = 1.22[13] = 7.69[-2] = 9.85[-3] = 6.186 = 1.42[13]$	8.13[-2]	9.94[-3]
$p^{2}(^{3}P)s^{4}P_{2/2} = sn(^{3}P)d^{2}D_{2/2} = 6.432 = 2.06[12] = 1.02[12] = 0.05[12] = 0.100 = 1.42[10]$	1.35[-2]	1.09[-3]
$p^{2}(^{3}P)s^{4}P_{2/2} = sn(^{3}P)d^{2}F_{\pi/2} = 6.381 - 7.26[11] - 6.67[-3] - 5.58[-4] - 6.101 - 8.37[11]$	7.01[-3]	5.65[-4]
$p^{2}(^{1}S)s^{2}S_{1/2} = sp(^{3}P)d^{2}P_{3/2} = 5.818 = 5.53[11] = 5.60[-3] = 2.15[-4] = 5.552 = 5.83[11]$	5.37[-3]	1.97[-4]

Figure 4: Transition rates $A[3s^23p(LSJ) - 3p^23s(L'S'J')]$ as function of Z.

Figure 5: Transition rates $A[3p^23s(^4P_J) - 3p^3(^4S_{J'})], A[3p^23s(^4P_J) - 3s3p(^3P)3d(^4D_{J'})]$ as function of Z.

Figure 6: Transition rates $A[3p^23s(^4P_J) - 3s3p(^3P)3d(^4P_{J'})]$, $A[3p^23s(^4P_J) - 3s3p(^3P)3d(^4F_{J'})]$ as function of Z.

Figure 7: Transition rates $A[3p^23s(^4P_J) - 3p^3(^2P_{J'}), A[3p^23s(^4P_J) - 3s3p(^{1,3}P)3d(^2L_{J'})$ as function of Z.

Figure 8: Transition rates $A[3p^23s(^4P_J) - 3p^3(^2D_{J'})], A[3p^23s(^4P_J) - 3s3p(^{1,3}P)3d(^2L_{J'})]$ as function of Z.

Figure 9: Transition rates $A[3p^23s(^2D_J) - 3p^3(^2P_{J'})]$, $A[3p^23s(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$, and $A[3p^23s(^2D_J) - 3s3p(^{1}P)3d(^2P_{J'})]$ as function of Z.

Figure 10: Transition rates $A[3p^23s(^2D_J) - 3p^3(^2D_{J'})]$, $A[3p^23s(^2D_J) - 3s3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3p^23s(^2D_J) - 3s3p(^3P)3d(^2F_{J'})]$ as function of Z.

Figure 11: Transition rates $A[3p^23s(^2D_J) - 3p^3(^4S_{J'})], A[3p^23s(^2D_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.

Figure 12: Transition rates $A[3p^23s(^2S_J) - 3p^3(^2D_{J'}, \ ^2P_{J'})]$ and $A[3p^23s(^2S_J) - 3s3p(^{1,3}P)3d(^2D_{J'}, \ ^2P_{J'})]$ as function of Z.

Figure 13: Transition rates $A[3p^23s(^2S_J) - 3p^3(^4S_{J'})], A[3p^23s(^2S_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.

Figure 14: Transition rates $A[3p^23s(^2P_J) - 3p^3(^2P_{J'})]$, $A[3p^23s(^2P_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$, and $A[3p^23s(^2P_J) - 3s3p(^{1}P)3d(^2P_{J'})]$ as function of Z.

Figure 15: Transition rates $A[3p^23s(^2P_J) - 3p^3(^2D_{J'})]$, $A[3p^23s(^2P_J) - 3s3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3p^23s(^2P_J) - 3s3p(^3P)3d(^2F_{J'})]$ as function of Z.

Figure 16: Transition rates $A[3p^23s(^2P_J) - 3p^3(^4S_{J'})], A[3p^23s(^2P_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.

Figure 17: Transition rates $A[3s^23d(^2D_J) - 3p^3(^2P_{J'})]$, $A[3s^23d(^2D_J) - 3s3p(^{1,3}P)3d(^2P_{J'})]$, and $A[3s^23d(^2D_J) - 3s3p(^{1}P)3d(^2P_{J'})]$ as function of Z.

Figure 18: Transition rates $A[3s^23d(^2D_J) - 3p^3(^2D_{J'})]$, $A[3s^23d(^2D_J) - 3s3p(^{1,3}P)3d(^2D_{J'})]$, and $A[3s^23d(^2D_J) - 3s3p(^3P)3d(^2F_{J'})]$ as function of Z.

Figure 19: Transition rates $A[3s^23d(^2D_J) - 3p^3(^4S_{J'})], A[3s^23d(^2D_J) - 3s3p(^3P)3d(^4L_{J'})]$ as function of Z.

Z		$3p^2(^3P)3s$		$3p^{2}(1)$	(D)3s	$3p^2(^1S)3s$	$3p^2(^3$	P)3s	$3s^2(^1$	S)3d
	${}^{4}P_{1/2}$	${}^{4}P_{3/2}$	${}^{4}P_{5/2}$	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$	${}^{2}S_{1/2}$	$^{2}P_{1/2}$	$^{2}P_{3/2}$	${}^{2}D_{3/2}$	$^{2}D_{5/2}$
15	6.57[4]	3.06[5]	4.39[5]	1.01[2]	1.09[2]	5.51[-1]	1.81[-1]	1.80[-1]	1.69[-1]	1.72[-1]
16	1.13[4]	8.51[4]	4.61[4]	9.98[0]	1.03[1]	3.29[-1]	1.26[-1]	1.25[-1]	1.07[-1]	1.09[-1]
17	5.60[3]	3.53[4]	1.50[4]	4.42[0]	4.63[0]	2.62[-1]	9.61[-2]	9.55[-2]	7.84[-2]	8.00[-2]
18	2.40[3]	1.54[4]	6.71[3]	3.06[0]	3.26[0]	2.06[-1]	7.78[-2]	7.66[-2]	6.38[-2]	6.54[-2]
19	1.11[3]	6.99[3]	2.85[3]	2.07[0]	2.22[0]	1.66[-1]	6.45[-2]	6.35[-2]	5.29[-2]	5.43[-2]
20	1.98[2]	3.60[3]	1.45[3]	1.68[0]	1.83[0]	9.41[-2]	5.53[-2]	5.39[-2]	4.51[-2]	4.72[-2]
21	3.82[2]	1.88[3]	6.76[2]	1.14[0]	1.27[0]	1.31[-1]	4.75[-2]	4.59[-2]	3.96[-2]	4.15[-2]
22	2.12[2]	1.09[3]	3.75[2]	9.21[-1]	1.05[0]	1.08[-1]	4.22[-2]	4.02[-2]	3.52[-2]	3.72[-2]
23	1.26[2]	6.63[2]	2.16[2]	7.64[-1]	8.85[-1]	9.06[-2]	3.79[-2]	3.55[-2]	3.16[-2]	3.37[-2]
24	7.86[1]	4.19[2]	1.29[2]	6.34[-1]	7.58[-1]	7.70[-2]	3.46[-2]	3.15[-2]	2.86[-2]	3.09[-2]
25	5.07[1]	2.75[2]	8.00[1]	5.37[-1]	6.62[-1]	6.51[-2]	3.17[-2]	2.84[-2]	2.61[-2]	2.83[-2]
26	3.34[1]	1.85[2]	5.08[1]	4.58[-1]	5.81[-1]	5.50[-2]	2.98[-2]	2.55[-2]	2.39[-2]	2.63[-2]
27	2.27[1]	1.29[2]	3.30[1]	3.94[-1]	5.24[-1]	4.71[-2]	2.79[-2]	2.31[-2]	2.19[-2]	2.44[-2]
28	1.57[1]	9.09[1]	2.20[1]	3.40[-1]	4.72[-1]	4.03[-2]	2.65[-2]	2.10[-2]	2.02[-2]	2.28[-2]
29	1.11[1]	6.62[1]	1.51[1]	2.93[-1]	4.29[-1]	3.48[-2]	2.52[-2]	1.92[-2]	1.86[-2]	2.13[-2]
30	7.98[0]	4.91[1]	1.05[1]	2.54[-1]	3.95[-1]	3.02[-2]	2.40[-2]	1.75[-2]	1.72[-2]	2.00[-2]
31	5.81[0]	3.72[1]	7.46[0]	2.20[-1]	3.66[-1]	2.67[-2]	2.29[-2]	1.61[-2]	1.59[-2]	1.89[-2]
32	4.30[0]	2.84[1]	5.41[0]	1.90[-1]	3.41[-1]	2.36[-2]	2.17[-2]	1.48[-2]	1.48[-2]	1.78[-2]
33	3.22[0]	2.22[1]	4.02[0]	1.65[-1]	3.21[-1]	2.10[-2]	2.07[-2]	1.36[-2]	1.36[-2]	1.69[-2]
34	2.45[0]	1.75[1]	3.04[0]	1.44[-1]	3.04[-1]	1.89[-2]	1.96[-2]	1.25[-2]	1.27[-2]	1.59[-2]
35	1.88[0]	1.41[1]	2.34[0]	1.25[-1]	2.90[-1]	1.70[-2]	1.85[-2]	1.15[-2]	1.17[-2]	1.50[-2]
36	1.47[0]	1.14[1]	1.86[0]	1.09[-1]	2.79[-1]	1.54[-2]	1.75[-2]	1.06[-2]	1.09[-2]	1.42[-2]
37	1.16[0]	9.33[0]	1.49[0]	9.51[-2]	2.72[-1]	1.40[-2]	1.65[-2]	9.78[-3]	1.00[-2]	1.34[-2]
38	9.26[-1]	7.74[0]	1.21[0]	8.24[-2]	2.67[-1]	1.28[-2]	1.55[-2]	9.00[-3]	9.29[-3]	1.27[-2]
39	7.51[-1]	6.42[0]	1.01[0]	7.20[-2]	2.64[-1]	1.16[-2]	1.45[-2]	8.29[-3]	8.53[-3]	1.21[-2]
40	6.09[-1]	5.40[0]	8.47[-1]	6.26[-2]	2.64[-1]	1.06[-2]	1.36[-2]	7.67[-3]	7.86[-3]	1.14[-2]
41	5.02[-1]	4.60[0]	7.30[-1]	5.50[-2]	2.66[-1]	9.72[-3]	1.27[-2]	7.07[-3]	7.25[-3]	1.08[-2]
42	4.17[-1]	3.93[0]	6.33[-1]	4.79[-2]	2.75[-1]	8.94[-3]	1.18[-2]	6.53[-3]	6.61[-3]	1.02[-2]
43	3.52[-1]	3.38[0]	5.56[-1]	4.22[-2]	2.88[-1]	8.17[-3]	1.10[-2]	6.01[-3]	6.10[-3]	9.62[-3]
44	2.98[-1]	2.92[0]	4.93[-1]	3.72[-2]	3.14[-1]	7.46[-3]	1.02[-2]	5.57[-3]	5.57[-3]	9.09[-3]
45	2.56[-1]	2.54[0]	4.41[-1]	3.28[-2]	3.57[-1]	6.82[-3]	9.44[-3]	5.10[-3]	5.07[-3]	8.55[-3]
46	2.21[-1]	2.21[0]	3.98[-1]	2.89[-2]	4.35[-1]	6.24[-3]	8.63[-3]	4.71[-3]	4.63[-3]	8.13[-3]
47	1.93[-1]	1.94[0]	3.61[-1]	2.56[-2]	5.92[-1]	5.71[-3]	7.95[-3]	4.31[-3]	4.22[-3]	7.63[-3]
48	1.69[-1]	1.71[0]	3.30[-1]	2.27[-2]	9.80[-1]	5.21[-3]	7.37[-3]	3.95[-3]	3.84[-3]	7.14[-3]
49	1.50[-1]	1.51[0]	3.04[-1]	2.01[-2]	2.60[0]	4.77[-3]	6.73[-3]	3.61[-3]	3.51[-3]	6.71[-3]
50	1.34[-1]	1.34[0]	2.80[-1]	1.79[-2]	8.06[1]	4.34[-3]	6.19[-3]	3.30[-3]	3.19[-3]	6.33[-3]
51	1.20[-1]	1.18[0]	2.60[-1]	1.59[-2]	3.44[0]	3.97[-3]	5.63[-3]	3.01[-3]	2.90[-3]	5.95[-3]
52	1.08[-1]	1.05[0]	2.42[-1]	1.43[-2]	5.56[-1]	3.61[-3]	5.14[-3]	2.74[-3]	2.64[-3]	5.65[-3]
53	9.80[-2]	9.32[-1]	2.25[-1]	1.27[-2]	1.91[-1]	3.28[-3]	4.66[-3]	2.49[-3]	2.39[-3]	5.41[-3]
54 22	8.93[-2]	8.30[-1]	2.11[-1]	1.14[-2]	8.93[-2]	2.98[-3]	4.24[-3]	2.26[-3]	2.16[-3]	5.21[-3]
55 50	8.20[-2]	7.39[-1]	1.96[-1]	1.02[-2]	5.05[-2]	2.71[-3]	3.87[-3]	2.05[-3]	1.96[-3]	5.08[-3]
56	7.58[-2]	6.57[-1]	1.86[-1]	9.13[-3]	3.26[-2]	2.45[-3]	3.49[-3]	1.86[-3]	1.76[-3]	4.98[-3]
57 50	6.99[-2]	5.87[-1]	1.75[-1]	8.11[-3]	2.32[-2]	2.22[-3]	3.16[-3]	1.68[-3]	1.60[-3]	4.88[-3]
58	0.49[-2]	5.21[-1]	1.04[-1]	7.29[-3]	1.77[-2]	2.01[-3]	2.85[-3]	1.53[-3]	1.44[-3]	4.78[-3]
59	6.02[-2]	4.62[-1]	1.55[-1]	0.59[-3]	1.43[-2]	1.81[-3]	2.58[-3]	1.37[-3]	1.30[-3]	4.05[-3]
60	5.59[-2]	4.13[-1]	1.47[-1]	5.97[-3]	1.20[-2]	1.64[-3]	2.32[-3]	1.22[-3]	1.17[-3]	4.41[-3]
61 C2	5.26[-2]	3.68[-1]	1.39[-1]	5.33[-3]	1.04[-2]	1.48[-3]	2.09[-3]	1.12[-3]	1.05[-3]	4.27[-3]
62	4.95[-2]	3.28[-1]	1.32[-1]	4.78[-3]	9.09[-3]	1.33[-3]	1.89[-3]	1.00[-3]	9.43[-4]	4.05[-3]
03 64	4.05[-2]	2.92[-1]	1.20[-1]	4.33[-3]	8.20[-3]	1.20[-3]	1.09[-3] 1.59[-3]	9.01[-4]	8.40[-4]	3.80[-3] 2.56[-3]
04 CF	4.41[-2]	2.39[-1]	1.19[-1]	3.89[-3] 2 51[-2]	(.41[-3]	1.08[-3]	1.52[-3] 1.56[-9]	8.00[-4]	(.)([-4]	3.30[-3] 2.20[-3]
60	4.10[-2]	⊿.30[-1]	1.13[-1]	3.91[-3]	0.70[-3]	9.00[-4]	1.30[-3]	1.30[-4]	0.75[-4]	J. JU[-J]

Table 11: Lifetime data (10^{-9} sec) for excited levels in Al-like ions, Z=15-100. Numbers in brackets represent powers of 10.

Z		$3p^2(^{3}P)3s$		$3p^{2}(^{1}$	D)3s	$3p^{2}(^{1}S)3s$	$3p^{2}(^{3}P)3s$		$3s^2({}^1S)3d$	
	${}^{4}P_{1/2}$	${}^{4}P_{3/2}$	${}^{4}P_{5/2}$	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$	${}^{2}S_{1/2}$	${}^{2}P_{1/2}$	${}^{2}P_{3/2}$	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$
66	3.94[-2]	2.04[-1]	1.08[-1]	3.17[-3]	6.25[-3]	8.67[-4]	1.22[-3]	6.54[-4]	6.09[-4]	3.05[-3]
67	3.73[-2]	1.81[-1]	1.02[-1]	2.87[-3]	5.75[-3]	7.79[-4]	1.10[-3]	5.81[-4]	5.43[-4]	2.80[-3]
68	3.55[-2]	1.61[-1]	9.80[-2]	2.60[-3]	5.32[-3]	7.02[-4]	9.84[-4]	5.21[-4]	4.85[-4]	2.57[-3]
69	3.38[-2]	1.43[-1]	9.35[-2]	2.36[-3]	4.95[-3]	6.27[-4]	8.80[-4]	4.67[-4]	4.34[-4]	2.35[-3]
70	3.22[-2]	1.27[-1]	8.85[-2]	2.14[-3]	4.61[-3]	5.63[-4]	7.90[-4]	4.18[-4]	3.89[-4]	2.14[-3]
71	3.06[-2]	1.12[-1]	8.47[-2]	1.94[-3]	4.29[-3]	5.00[-4]	7.01[-4]	3.75[-4]	3.47[-4]	1.95[-3]
72	2.93[-2]	9.93[-2]	8.13[-2]	1.77[-3]	4.02[-3]	4.51[-4]	6.30[-4]	3.33[-4]	3.10[-4]	1.76-3
73	2.80[-2]	8.80[-2]	7.75[-2]	1.61[-3]	3.76[-3]	4.03[-4]	5.59[-4]	2.98[-4]	2.80[-4]	1.60[-3]
74	2.68[-2]	7.84[-2]	7.46[-2]	1.47[-3]	3.52[-3]	3.60[-4]	5.03[-4]	2.65[-4]	2.95[-4]	1.44[-3]
75	2.57[-2]	6.93[-2]	7.14[-2]	1.34[-3]	3.31[-3]	3.21[-4]	4.49[-4]	2.37[-4]	4.77[-3]	1.29[-3]
76	2.46[-2]	6.09[-2]	6.80[-2]	1.23[-3]	3.11[-3]	2.87[-4]	4.00[-4]	2.11[-4]	6.22[-3]	1.16[-3]
77	2.36[-2]	5.44[-2]	6.54[-2]	1.13[-3]	2.92[-3]	2.57[-4]	3.57[-4]	1.88[-4]	6.37[-3]	1.05[-3]
78	2.27[-2]	4.79[-2]	6.29[-2]	1.04-3	2.74[-3]	2.30[-4]	3.19[-4]	1.68[-4]	6.28[-3]	9.43[-4]
79	2.18[-2]	4.27[-2]	6.02[-2]	9.52[-4]	2.58[-3]	2.05[-4]	2.84[-4]	1.49[-4]	6.18[-3]	8.40[-4]
80	2.10[-2]	3.79[-2]	5.78[-2]	8.76[-4]	2.42[-3]	1.83[-4]	2.54[-4]	1.33[-4]	6.05[-3]	7.51[-4]
81	2.02[-2]	3.37[-2]	5.56[-2]	8.18[-4]	2.27[-3]	1.64[-4]	2.26[-4]	1.18[-4]	5.89[-3]	6.75[-4]
82	1.95[-2]	2.98[-2]	5.35[-2]	7.55[-4]	2 13[-3]	1.46[-4]	2.02[-4]	1.05[-4]	5.73[-3]	6.06[-4]
83	1.88[-2]	2.66[2] 2.65[-2]	5.13[-2]	7.02[-4]	2.10[0]	1.30[-4]	1.80[-4]	9.35[-5]	5.60[-3]	5 46[-4]
84	1.81[-2]	2.36[-2]	4 93[-2]	651[-4]	1.88[-3]	1.00[-4]	1.60[-1]	8 26[-5]	5.00[0]	1 85[-3]
85	1.01[2] 1.75[-2]	2.00[2] 2.10[-2]	4.76[-2]	6.07[-4]	1.60[-3]	1.10[1] 1.04[-4]	1.01[1] 1.44[-4]	7 35[-5]	5.31[-3]	1.77[-3]
86	1.69[-2]	1.86[-2]	4.59[-2]	5.72[-4]	1.66[-3]	9 31 [-5]	1.11[1] 1.28[-4]	6 54[-5]	5.01[0] 5.17[-3]	1.67[-3]
87	1.63[-2]	1.00[2] 1.67[-2]	4.00[2] 4.42[-2]	5.72[-4] 5.35[-4]	1.00[0] 1.56[-3]	8 30[-5]	1.20[-4] 1.15[-4]	5.85[-5]	5.06[-3]	1.57[-9] 1.58[-3]
88	1.00[-2] 1.58[-2]	1.07[-2] 1.48[-2]	4.26[-2]	5.05[-4] 5.05[-4]	1.00[-0] 1.46[-3]	7.44[-5]	1.10[-4] 1.03[-4]	5 18[-5]	0.00[-0] 4.80[_3]	1.00[-3]
89	1.50[-2] 1.53[-2]	1.40[-2] 1.33[-2]	4.20[-2]	4.76[-4]	1.40[-3] 1.37[-3]	6 60[-5]	9.16[-5]	4.61[-5]	4.00[-3]	1.49[-3] 1 41[-3]
90	1.00[2] 1.48[-2]	1.00[2] 1.10[-2]	3.07[_2]	4.70[-4]	1.07[0] 1.20[-3]	5.00[5] 5.93[-5]	8 1 2 [-5]	4.01[0] 4.10[-5]	4.67[-3]	1.33[-3]
01	1.40[-2] 1.43[-2]	1.10[-2] 1.06[-2]	3.83[-2]	4.98[-4]	1.20[-0] 1.01[-3]	5.99[-5] 5.98[-5]	7.2[-5]	3.64[-5]	4.56[-3]	1.35[-3] 1.26[-3]
02	1.49[-2] 1.30[-2]	0.42[-2]	3.00[-2] 3.70[-2]	4.20[-4]	1.21[-0] 1 1/[-3]	0.20[-5] 4.73[-5]	6.40[-5]	3.04[-5] 3.25[-5]	4.00[-0]	1.20[-3] 1.18[-3]
92 03	1.05[-2] 1.35[-2]	9.42[-0] 8.53[_3]	3.58[_2]	3 09[-4]	1.14[-0] 1.07[-3]	4.75[-5] 4.91[-5]	5 77[-5]	2.20[-5] 2.80[-5]	4 33[-3]	1.10[-3] 1 19[-3]
93 04	1.30[-2] 1.31[-2]	7.62[3]	3.00[-2] 3.47[.9]	3.52[-4] 3.75[4]	1.07[-3] 1.01[3]	$\frac{4.21[-5]}{3.77[5]}$	5.18[5]	2.69[-0] 2.56[5]	4.55[-5]	1.12[-3] 1.05[3]
94 05	1.31[-2] 1.98[.9]	6.84[3]	3.47[-2] 3.38[.9]	3.70[-4] 3.69[-4]	0.43[4]	3.37[5]	4.60[-5]	2.00[-0] 2.28[5]	4.24[-3]	0.00[-3]
90 06	1.20[-2] 1.94[.9]	6 1 2 [3]	3.30[-2] 3.98[-2]	3.02[-4] 3.48[4]	9.45[-4] 8.85[-4]	3.07[-0] 3.01[-5]	4.13[5]	2.20[-0] 2.03[5]	4.03[3]	9.30[-4] 0.35[4]
90 07	1.24[-2] 1.91[9]	5 52[3]	3.20[-2] 3.16[-2]	3.40[-4] 3.38[4]	8.00[-4] 8.06[-4]	2.68[5]	3 60[5]	2.00[-0]	3 06[3]	9.35[-4] 8.77[-4]
08	1.21[-2] 1.18[9]	0.02[-0] 4.04[-3]	3.10[-2] 3.10[-2]	3.00[-4]	7.81[4]	2.00[-5] 2.40[-5]	3.09[-0]	1.01[-0] 1.61[-5]	3 80[-3]	8.26[4]
00	1.10[-2] 1.15[-2]	4.46[3]	3.10[-2] 3.01[-2]	3.20[-4] 3.15[-4]	7.01[-4] 7.30[-4]	2.40[-0] 2.15[5]	2.23[-3] 2.04[5]	1.01[-0] 1.44[5]	3 70[3]	7.81[4]
100	1.10[-2] 1.10[-2]	3 00[3]	2.01[-2] 2.05[2]	3.05[4]	6.85[4]	2.10[-0] 1.02[5]	2.54[-0] 2.63[5]	1.11[-0] 1.08[5]	3 79[-3] 3 79[-3]	7.01[-4] 7.35[-4]
$\frac{100}{7}$	1.12[-2]	$\frac{3.33[-3]}{3.33(3D)3}$	$\frac{2.30[-2]}{d}$	0.00[-4]	$\frac{0.00[-4]}{3e3n(^{3}P)}$	$\frac{1.32[-3]}{3d}$	2.00[-0]	<u> </u>	$\frac{3}{3}$ D)3d	1.00[-4]
	4 F .	$\frac{4F}{4F}$	$\frac{4}{4}F$	$4 \mathbf{p}$	$\frac{330p(1)}{4p}$	$\frac{4 \mathbf{p}}{4}$	4 D .	$\frac{330p}{4D}$	$\frac{1}{30}$	4 D .
15	$\frac{1'_{3/2}}{4.60[3]}$	$\frac{15/2}{345[2]}$	$\frac{1'7/2}{380[2]}$	$\frac{1}{2} \frac{1}{61} \frac{1}{1}$	$\frac{1}{2} \frac{3/2}{361[1]}$	$\frac{15/2}{264[1]}$	$\frac{\nu_{1/2}}{1.51[1]}$	$\frac{\nu_{3/2}}{1.51[1]}$	$\frac{\nu_{5/2}}{1.51[1]}$	$\frac{\nu_{7/2}}{1.51[1]}$
10 16	ษ.00[0] 1 3≍[2]	ม.ษม[ม] 1.06[ิ]	ວ.ວ∠[ວ] 1.20[2]	2.01[-1] 1 79[1]	2.01[-1] 1.70[1]	2.04[-1] 1.73[1]	0.00[.0]	1.01[-1] 1.00[1]	1.01[-1] 1.01[-1]	1.01[-1] 1.00[1]
10 17	1. JJ [J] 5. 31 [J]	1.00[0] 4.41[9]	1.20[0] 5.10[0]	1.12[-1] 1.20[1]	1.12[-1] 1.20[1]	1 30[1]	ラ.ララ[-4] フ 51[-9]	7 50[-1]	7.60[-1]	1.00[-1] 7.57[-9]
10	0.01[2] 0.20[0]	4.41[2]	0.14[4] 0.26[0]	1.29[-1] 1.09[1]	1.29[-1] 1.09[1]	1.30[-1]	7.01[-2] 6.11[-0]	7.09[-2] 6.19[-0]	7.00[-2] 6.10[-2]	7.07[-2] 6.12[-2]
10 10	∠.อย[∠] 1.16[ว]	2.02[2] 1.01[9]	⊿.50[⊿] 1.10[9]	1.02[-1] Q 25[0]	1.02[-1] © 96[-9]	1.04[-1] 8.56[-9]	0.11[-2] 5.17[-0]	U. 10[-4] 5 00[-0]	0.19[-2] 5.96[-9]	0.10[-2] 5.19[-2]
20 19	1.10[2] 6.19[1]	1.01[2] 5.47[1]	1.19[2] 6.49[1]	0.00[-2] 6 79[-0]	0.20[-2] 6.91[-9]	0.00[-2] 7.01[-0]	0.17[-2] 4.67[-0]	0.29[-2] 4.70[-9]	0.20[-2] 4.62[-0]	0.10[-2] 4.50[-2]
⊿∪ 91	0.10[1] 2.04[1]	J. ±/[⊥] 2,19[1]	0.40[1] 2.67[1]	U. 10[-2] 5 99[9]	5.66[9]	1.41[-4] 6.91[-9]	4.07[-2] 4.51[-9]	4.70[-2] 7.27[-2]	4.00[-2] 4.16[-9]	4.00[-2] 2.08[-2]
⊿⊥ วา	0.24[1] 1.77[1]	0.10[1] 1.00[1]	ə.∪/[⊥] ə.ə∩[1]	0.20[-2] 4.10[-0]	0.00[-2] 4.76[-0]	0.41[-4] 5.45[-9]	4.01[-2] 4.51[-0]	4.04[-2] 4.05[-0]	4.10[-2] 2.00[-0]	ə. 90[-4] 2 50[-2]
44 00	1.09[1]	1.00[1] 1.10[1]	4.40[1] 1.27[1]	4.10[-2] 2 52[0]	4.70[-2] 4.10[-9]	0.40[-2] 4.91[-9]	4.01[-2] 4.49[-9]	4.00[-2] ១.0១[-1]	0.00[-4] 2 ≝0[-0]	ರ.ರಿಶ[-∠] ೨ ೧೯[-೧]
∠ວ ວ∡	1.03[1] 6.61[0]	1.10[1] 7.67[0]	1.91[1]	ರಿ. ರಿರಿ[−2] ೨ 11 [೧]	4.10[-2] 2.62[-2]	4.01[-2] 4.24[-9]	4.42[-2]	ರಿ.೧೨[−2] ೧೯1[೧]	ರಿ.ರಿ∪[-2] ೧೧४೯ ೧	ა.20[-2] ე.00[-ე]
24 05	0.01[U]	1.07[U] E 1E[O]	0.00[U] E 0E[0]	ე.11[-2] ე.01[-0]	3.03[-2] 2.06[-0]	4.34[-2] 2.04[-2]	4.19[-2]	3.01[-2]	3.24[-2] 2.09[-9]	2.99[-2] 0.76[-0]
20 06	4.08[U] 2.20[0]	0.10[U]	0.80[U] 4.00[0]	2.01[-2] 0.56[0]	3.20[-2] 3.06[-3]	3.94[-2] 2.60[-2]	3.92[-2] ១.৫៩[-0]	3.40[-2] 2.10[-2]	3.02[-2] 3.00[-3]	2.70[-2] 0.50[-0]
20 07	3.32[U] 9.46[0]	3.35[U] 9.50[0]	4.00[0]	2.90[-2] 9.95[-9]	2.90[-2] 0.71[0]	3.00[-2] 2.24[-2]	3.00[-2] 2.41[-0]	3.19[-2] 3.07[-3]	2.80[-2] 9.61[-9]	2.98[-2] 9.40[-9]
21	2.40[U]	∠.50[0]	2.78[U]	2.59[-2]	Z.(1[-2])	3.34[-2]	5.41[-2]	2.97[-2]	2.01[-2]	2.40[-2]

Z		$3s3p(^{3}P)3c$	d	e e	$Bs3p(^{3}P)3$	d		3s3p($^{3}P)3d$	
	${}^{4}F_{3/2}$	${}^{4}F_{5/2}$	${}^{4}F_{7/2}$	${}^{4}P_{1/2}$	${}^{4}P_{3/2}$	${}^{4}P_{5/2}$	${}^{4}D_{1/2}$	${}^{4}D_{3/2}$	${}^{4}D_{5/2}$	${}^{4}D_{7/2}$
$\overline{28}$	1.84[0]	1.81[0]	1.98[0]	2.17[-2]	2.50[-2]	3.10[-2]	3.17[-2]	2.78[-2]	2.43[-2]	2.25[-2]
29	1.39[0]	1.33[0]	1.43[0]	2.01[-2]	2.31[-2]	2.89[-2]	2.94[-2]	2.59[-2]	2.26[-2]	2.12[-2]
30	1.07[0]	9.98[-1]	1.06[0]	1.87[-2]	2.15[-2]	2.72[-2]	2.74[-2]	2.42[-2]	2.10[-2]	2.00[-2]
31	8.22[-1]	7.60[-1]	7.95[-1]	1.74[-2]	2.01[-2]	2.57[-2]	2.55[-2]	2.26[-2]	1.95[-2]	1.89[-2]
32	6.34[-1]	5.87[-1]	6.07[-1]	1.62[-2]	1.88[-2]	2.41[-2]	2.37[-2]	2.11[-2]	1.82[-2]	1.79[-2]
33	4.87[-1]	4.59[-1]	4.72[-1]	1.51[-2]	1.76[-2]	2.27[-2]	2.21[-2]	1.96[-2]	1.69[-2]	1.70[-2]
34	3.68[-1]	3.63[-1]	3.72[-1]	1.41[-2]	1.71[-2]	2.15[-2]	2.06[-2]	1.83[-2]	1.56[-2]	1.61[-2]
35	2.66[-1]	2.87[-1]	2.96[-1]	1.31[-2]	1.91[-2]	2.03[-2]	1.92[-2]	1.70[-2]	1.45[-2]	1.53[-2]
36	1.78[-1]	2.29[-1]	2.39[-1]	1.22[-2]	2.07[-2]	1.93[-2]	1.78[-2]	1.58[-2]	1.35[-2]	1.46[-2]
37	1.05[-1]	1.84[-1]	1.95[-1]	1.13[-2]	1.99[-2]	1.82[-2]	1.66[-2]	1.48[-2]	1.27[-2]	1.39[-2]
38	5.20[-2]	1.46[-1]	1.61[-1]	1.05[-2]	1.83[-2]	1.73[-2]	1.54[-2]	1.40[-2]	1.27[-2]	1.32[-2]
39	2.59[-2]	1.17[-1]	1.35[-1]	1.16[-2]	1.63[-2]	1.63[-2]	1.44[-2]	1.34[-2]	1.46[-2]	1.25[-2]
40	1.69[-2]	9 29[-2]	1 1 4 [-1]	1.46[-2]	1.39[-2]	1.55[-2]	1 33[-2]	1.33[-2]	1.60[-2]	1.20[2] 1.19[-2]
41	1.36[-2]	7.45[-2]	9.72[-2]	1.40[-2]	1.00[2] 1.14[-2]	1.66[-2]	1.00[2] 1.24[-2]	1.32[-2]	1.60[-2]	1.10[2] 1 13[-2]
42	1.00[2] 1.20[-2]	613[-2]	840[-2]	1.30[-2]	916[-3]	1.38[-2]	1.21[2] 1.15[-2]	1.02[2] 1.03[-2]	1.51[2] 1.55[-2]	1.10[2] 1.07[-2]
43	1.20[2] 1.00[-2]	5.22[-2]	7.23[-2]	1 1 9[_2]	7 40[-3]	1.30[-2] 1.32[-2]	1.10[2] 1.06[-2]	0.22[_3]	1.00[2] 1.46[-2]	1.01[-2]
44	9.99[-3]	4.58[-2]	6.30[-2]	1.10[2] 1.08[-2]	6.34[-3]	1.02[2] 1.26[-2]	9.89[-3]	8.85[-3]	1.37[-2]	9.56[-3]
45	9.27[-3]	4.08[-2]	5.57[-2]	9.83[-3]	5.52[-3]	1.20[2] 1.22[-2]	9.00[0] 9.16[-3]	8 44[-3]	1.07[2] 1.27[-2]	8.98[-3]
46	8.63[-3]	3.60[-2]	4.91[-2]	8 91[-3]	4 93[-3]	1.22[2] 1.19[-2]	8 42[-3]	7.88[-3]	$1.2 \cdot [2]$ 1.16[-2]	8.41[-3]
47	8 29[-3]	3.00[-2]	4.38[-2]	8.08[-3]	4 46[-3]	1.10[2] 1.10[-2]	773[-3]	7.24[-3]	1.10[2] 1.06[-2]	7.92[-3]
48	6.24[-3]	2.63[-2]	3.91[-2]	7 29[-3]	4.07[-3]	1.10[2] 1.20[-2]	7.14[-3]	6.61[-3]	9.58[-3]	7.32[0] 7.38[-3]
49	5.31[-3]	2.00[2] 2.23[-2]	3.51[-2]	6.60[-3]	3.70[-3]	1.20[2] 1.23[-2]	6 58[-3]	6.02[-3]	8.67[-3]	6.86[-3]
50	4.79[-3]	1.93[-2]	3.17[-2]	5.00[-0]	3 39[-3]	1.26[-2]	6.02[-3]	5.02[0]	7 90[-3]	6.33[-3]
51	4.30[-3]	1.00[2] 1.70[-2]	2.86[-2]	5.36[-3]	3.09[-3]	1.20[2] 1.28[-2]	5.52[-3]	4.98[-3]	7 13[-3]	5.88[-3]
$51 \\ 52$	3.87[-3]	1.52[-2]	2.60[-2]	4.81[-3]	2.83[-3]	1.29[-2]	5.06[-3]	4.52[-3]	6.51[-3]	5.40[-3]
53	3.48[-3]	1.37[-2]	2.37[-2]	4.34[-3]	2.59[-3]	1.27[-2]	4.67[-3]	4.13[-3]	5.96[-3]	4.99[-3]
54	3.11[-3]	1.26[-2]	2.17[-2]	3.92[-3]	2.37[-3]	1.25[-2]	4.25[-3]	3.74[-3]	5.44[-3]	4.58[-3]
55	2.78[-3]	1.16[-2]	1.99[-2]	3.50[-3]	2.17[-3]	1.20[-2]	3.89[-3]	3.38[-3]	4.98[-3]	4.19[-3]
56	2.49[-3]	1.08[-2]	1.83[-2]	3.15[-3]	1.98[-3]	1.15[-2]	3.55[-3]	3.07[-3]	4.58[-3]	3.82[-3]
57	2.23[-3]	1.01[-2]	1.69[-2]	2.82[-3]	1.81[-3]	1.09[-2]	3.24[-3]	2.78[-3]	4.17[-3]	3.50[-3]
58	1.98[-3]	9.34[-3]	1.55[-2]	2.53[-3]	1.66[-3]	1.03[-2]	2.95[-3]	2.51[-3]	3.82[-3]	3.16[-3]
59	1.77[-3]	8.80[-3]	1.43[-2]	2.26[-3]	1.51[-3]	9.78[-3]	2.69[-3]	2.26[-3]	3.48[-3]	2.89[-3]
60	1.57[-3]	8.26[-3]	1.31[-2]	2.04[-3]	1.36[-3]	9.16[-3]	2.43[-3]	2.04[-3]	3.21[-3]	2.59[-3]
61	1.40[-3]	7.78[-3]	1.23[-2]	1.81[-3]	1.24[-3]	8.71[-3]	2.21[-3]	1.84[-3]	2.90[-3]	2.37[-3]
62	1.25[-3]	7.30[-3]	1.14[-2]	1.62[-3]	1.13[-3]	8.20[-3]	2.01[-3]	1.67[-3]	2.64[-3]	2.14[-3]
63	1.10[-3]	6.87[-3]	1.06[-2]	1.45[-3]	1.02[-3]	7.73[-3]	1.82[-3]	1.49[-3]	2.40[-3]	1.93[-3]
64	9.71[-4]	6.49[-3]	9.80[-3]	1.30[-3]	9.24[-4]	7.28[-3]	1.65[-3]	1.34[-3]	2.19[-3]	1.75[-3]
65	8.62[-4]	6.11[-3]	9.15[-3]	1.16[-3]	8.35[-4]	6.88[-3]	1.49[-3]	1.20[-3]	1.98[-3]	1.58[-3]
66	7.75[-4]	5.81[-3]	8.48[-3]	1.04[-3]	7.52[-4]	6.48[-3]	1.35[-3]	1.08[-3]	1.80[-3]	1.43[-3]
67	6.84[-4]	5.48[-3]	7.88[-3]	9.28[-4]	6.82[-4]	6.10[-3]	1.22[-3]	9.62[-4]	1.64[-3]	1.28[-3]
68	6.05[-4]	5.15[-3]	7.42[-3]	8.29[-4]	6.14[-4]	5.75[-3]	1.10[-3]	8.63[-4]	1.49[-3]	1.16[-3]
69	5.37[-4]	4.86[-3]	6.87[-3]	7.40[-4]	5.53[-4]	5.41[-3]	9.88[-4]	7.68[-4]	1.36[-3]	1.04[-3]
70	4.78[-4]	4.58[-3]	6.44[-3]	6.64[-4]	4.98[-4]	5.09[-3]	8.90[-4]	6.85[-4]	1.23[-3]	9.40[-4]
71	4.23[-4]	4.33[-3]	5.97[-3]	5.91[-4]	4.49[-4]	4.81[-3]	8.00[-4]	6.10[-4]	1.12[-3]	8.43[-4]
72	3.74[-4]	4.07[-3]	5.58[-3]	5.33[-4]	4.04[-4]	4.53[-3]	7.19[-4]	5.45[-4]	1.02[-3]	7.59[-4]
73	3.33[-4]	3.84[-3]	5.23[-3]	4.76[-4]	3.63[-4]	4.25[-3]	6.41[-4]	4.86[-4]	9.26[-4]	6.81[-4]
74	2.94[-4]	3.61[-3]	4.88[-3]	4.26[-4]	3.29[-4]	4.00[-3]	5.75[-4]	4.30[-4]	8.45[-4]	6.13[-4]
75	2.61[-4]	3.42[-3]	4.54[-3]	3.84[-4]	2.95[-4]	3.78[-3]	5.14[-4]	3.82[-4]	7.73[-4]	5.52[-4]
76	2.32[-4]	3.21[-3]	4.26[-3]	3.46[-4]	2.66[-4]	3.55[-3]	4.57[-4]	3.39[-4]	7.03[-4]	4.96[-4]
77	2.05[-4]	3.03[-3]	3.97[-3]	3.12[-4]	2.41[-4]	3.34[-3]	4.07[-4]	3.00[-4]	6.43[-4]	4.45[-4]
78	1.81[-4]	2.86[-3]	3.70[-3]	2.82[-4]	2.17[-4]	3.14[-3]	3.59[-4]	2.65[-4]	5.87[-4]	4.00[-4]

Z		$3s3p(^{3}P)3$	d		$3s3p(^{3}P)3c$	d		$3s3p(^{3}P)3d$		
	${}^{4}F_{3/2}$	${}^{4}F_{5/2}$	${}^{4}F_{7/2}$	${}^{4}P_{1/2}$	${}^{4}P_{3/2}$	${}^{4}P_{5/2}$	${}^{4}D_{1/2}$	${}^{4}D_{3/2}$	${}^{4}D_{5/2}$	${}^{4}D_{7/2}$
79	1.61[-4]	2.69[-3]	3.49[-3]	2.55[-4]	1.96[-4]	2.95[-3]	3.16[-4]	2.34[-4]	5.35[-4]	3.57[-4]
80	1.43[-4]	2.52[-3]	3.25[-3]	2.34[-4]	1.78[-4]	2.78[-3]	2.78[-4]	2.06[-4]	4.92[-4]	3.22[-4]
81	1.27[-4]	2.38[-3]	3.02[-3]	2.14[-4]	1.61[-4]	2.62[-3]	2.43[-4]	1.81[-4]	4.50[-4]	2.88[-4]
82	1.13[-4]	2.23[-3]	2.82[-3]	1.95[-4]	1.47[-4]	2.46[-3]	2.12[-4]	1.59[-4]	4.11[-4]	2.58[-4]
83	9.86[-5]	2.11[-3]	2.64[-3]	1.81[-4]	1.34[-4]	2.31[-3]	1.85[-4]	1.40[-4]	3.76[-4]	2.31[-4]
84	8.74[-5]	1.98[-3]	2.47[-3]	1.66[-4]	1.23[-4]	2.18[-3]	1.61[-4]	1.22[-4]	3.50[-4]	2.07[-4]
85	7.85[-5]	1.85[-3]	2.31[-3]	1.52[-4]	1.13[-4]	2.04[-3]	1.41[-4]	1.07[-4]	3.20[-4]	1.86[-4]
86	6.92[-5]	1.74[-3]	2.15[-3]	1.40[-4]	1.04[-4]	1.92[-3]	1.24[-4]	9.29[-5]	2.93[-4]	1.66[-4]
87	6.15[-5]	1.64[-3]	2.01[-3]	1.28[-4]	9.54[-5]	1.80[-3]	1.09[-4]	8.08[-5]	2.69[-4]	1.49[-4]
88	5.45[-5]	1.55[-3]	1.87[-3]	1.17[-4]	8.84[-5]	1.69[-3]	9.62[-5]	7.01[-5]	2.47[-4]	1.34[-4]
89	4.84[-5]	1.45[-3]	1.76[-3]	1.06[-4]	8.23[-5]	1.58[-3]	8.53[-5]	6.10[-5]	2.25[-4]	1.20[-4]
90	4.30[-5]	1.36[-3]	1.64[-3]	9.65[-5]	7.67[-5]	1.49[-3]	7.57[-5]	5.29[-5]	2.06[-4]	1.07[-4]
91 91	3.81[-5]	1.28[-3]	153[-3]	8 70[-5]	722[-5]	1 40[-3]	6 71 [-5]	4.57[-5]	1 89[-4]	9.62[-5]
92	3.39[-5]	1.19[-3]	1 43[-3]	7 86[-5]	6 78[-5]	1 31[-3]	6.01[-5]	3.98[-5]	1.72[-4]	8 62[-5]
93	3.01[-5]	$1 \ 12[-3]$	1.34[-3]	7.12[-5]	6.42[-5]	1 23[-3]	5.36[-5]	344[-5]	1.58[-4]	7 69[-5]
94	2.68[-5]	1.05[-3]	1.01[0] 1.25[-3]	6 41[-5]	6.09[-5]	1.20[0] 1.15[-3]	4 81[-5]	3.00[-5]	1 44[-4]	6 89[-5]
95	2.38[-5]	9.88[-4]	1.16[-3]	5.79[-5]	5.78[-5]	1.08[-3]	4.30[-5]	2.61[-5]	1.31[-4]	6.13[-5]
96	2.11[-5]	9.27[-4]	1.09[-3]	5.19[-5]	5.49[-5]	1.01[-3]	3.84[-5]	2.28[-5]	1.19[-4]	5.48[-5]
97	1.87[-5]	8.68[-4]	1.02[-3]	4.66[-5]	5.20[-5]	9.50[-4]	3.43[-5]	1.99[-5]	1.08[-4]	4.92[-5]
98	1.67[-5]	8.16[-4]	9.45[-4]	4.17[-5]	4.91[-5]	8.89[-4]	3.08[-5]	1.75[-5]	9.82[-5]	4.40[-5]
99	1.49[-5]	7.63[-4]	8.85[-4]	3.74[-5]	4.61[-5]	8.35[-4]	2.76[-5]	1.55[-5]	8.88[-5]	3.93[-5]
100	1.32[-5]	7.17[-4]	8.26[-4]	3.35[-5]	4.29[-5]	7.83[-4]	2.47[-5]	1.37[-5]	8.04[-5]	3.51[-5]
\overline{Z}	3s3p($({}^{3}P)3d$	3s3p($^{3}P)3d$	3s3p($^{3}P)3d$	$\frac{1}{3p^2}(3)$	(P)3p	$\frac{1}{3p^2}(3)$	$^{3}P)3p$
	$^{2}D_{3/2}$	$2D_{5/2}$	$^{2}F_{5/2}$	$^{2}F_{7/2}$	$^{2}P_{1/2}$	$^{2}P_{3/2}$	$^{2}D_{3/2}$	$^{2}D_{5/2}$	$^{2}P_{1/2}$	$\frac{1}{2}P_{3/2}$
15	1.78[-1]	1.78[-1]	4.88[-1]	4.88[-1]	1.63[-1]	1.59[-1]	1.23[1]	1.20[1]	6.44[-1]	6.42[-1]
16	1.20[-1]	1.20[-1]	3.08[-1]	3.07[-1]	9.99[-2]	9.83[-2]	4.36[0]	4.30[0]	3.62[-1]	3.64[-1]
17	9.17[-2]	9.19[-2]	2.20[-1]	2.18[-1]	7.08[-2]	6.97[-2]	2.21[0]	2.18[0]	2.63[-1]	2.65[-1]
18	7.47[-2]	7.54[-2]	1.75[-1]	1.72[-1]	5.61[-2]	5.49[-2]	1.43[0]	1.41[0]	2.03[-1]	2.05[-1]
19	6.31[-2]	6.33[-2]	1.43[-1]	1.40[-1]	4.62[-2]	4.52[-2]	1.01[0]	1.00[0]	1.62[-1]	1.64[-1]
20	5.40[-2]	5.45[-2]	1.22[-1]	1.19[-1]	3.73[-2]	3.61[-2]	7.58[-1]	7.50[-1]	1.04[-1]	1.01[-1]
21	4.71[-2]	4.74[-2]	1.04[-1]	1.01[-1]	3.54[-2]	3.41[-2]	6.06[-1]	6.00[-1]	1.23[-1]	1.23[-1]
22	4.19[-2]	4.21[-2]	9.15[-2]	8.78[-2]	3.15[-2]	3.00[-2]	4.91[-1]	4.94[-1]	1.03[-1]	1.03[-1]
23	3.75[-2]	3.79[-2]	8.14[-2]	7.75[-2]	2.84[-2]	2.69[-2]	4.08[-1]	4.15[-1]	8.97[-2]	8.93[-2]
24	3.39[-2]	3.44[-2]	7.35[-2]	6.97[-2]	2.59[-2]	2.42[-2]	3.40[-1]	3.54[-1]	7.90[-2]	7.94[-2]
25	3.08[-2]	3.14[-2]	6.66[-2]	6.24[-2]	2.38[-2]	2.19[-2]	2.83[-1]	3.09[-1]	6.98[-2]	7.08[-2]
26	2.82[-2]	2.89[-2]	6.08[-2]	5.64[-2]	2.22[-2]	2.00[-2]	2.34[-1]	2.71[-1]	6.22[-2]	6.29[-2]
27	2.59[-2]	2.68[-2]	5.55[-2]	5.13[-2]	2.07[-2]	1.82[-2]	1.91[-1]	2.42[-1]	5.61[-2]	5.65[-2]
28	2.39[-2]	2.50[-2]	5.07[-2]	4.67[-2]	1.94[-2]	1.67[-2]	1.54[-1]	2.17[-1]	5.05[-2]	5.08[-2]
29	2.20[-2]	2.35[-2]	4.66[-2]	4.25[-2]	1.82[-2]	1.53[-2]	1.24[-1]	1.96[-1]	4.57[-2]	4.58[-2]
30	2.04[-2]	2.22[-2]	4.23[-2]	3.90[-2]	1.71[-2]	1.41[-2]	1.01[-1]	1.79[-1]	4.15[-2]	4.15[-2]
31	1.89[-2]	2.12[-2]	3.83[-2]	3.58[-2]	1.62[-2]	1.29[-2]	8.30[-2]	1.64[-1]	3.76[-2]	3.76[-2]
32	1.75[-2]	2.06[-2]	3.43[-2]	3.29[-2]	1.54[-2]	1.18[-2]	6.95[-2]	1.52[-1]	3.43[-2]	3.44[-2]
33	1.63[-2]	2.02[-2]	2.99[-2]	3.03[-2]	1.47[-2]	1.09[-2]	5.93[-2]	1.41[-1]	3.13[-2]	3.11[-2]
34	1.52[-2]	2.04[-2]	2.57[-2]	2.78[-2]	1.40[-2]	1.00[-2]	5.15[-2]	1.33[-1]	2.86[-2]	2.68[-2]
35	1.41[-2]	2.09[-2]	2.20[-2]	2.55[-2]	1.33[-2]	9.23[-3]	4.54[-2]	1.26[-1]	2.61[-2]	1.95[-2]
36	1.30[-2]	2.14[-2]	1.92[-2]	2.36[-2]	1.26[-2]	8.55[-3]	4.06[-2]	1.22[-1]	2.40[-2]	1.58[-2]
37	1.22[-2]	2.11[-2]	1.70[-2]	2.16[-2]	1.20[-2]	7.88[-3]	3.65[-2]	1.20[-1]	2.20[-2]	1.42[-2]
38	1.13[-2]	1.86[-2]	1.55[-2]	1.99[-2]	1.13[-2]	7.23[-3]	3.32[-2]	1.21[-1]	2.01[-2]	1.31[-2]
39	1.05[-2]	1.38[-2]	1.43[-2]	1.83[-2]	1.05[-2]	6.70[-3]	3.04[-2]	1.27[-1]	1.42[-2]	1.21[-2]
40	9.73[-3]	1.13[-2]	1.33[-2]	1.68[-2]	9.69[-3]	[0.15[-3]]	2.79[-2]	1.42[-1]	9.83[-3]	1.12[-2]
41	8.85[-3]	9.93[-3]	1.25[-2]	1.55[-2]	8.82[-3]	5.70[-3]	2.57[-2]	1.73[-1]	8.80[-3]	1.04[-2]

Z	3s3p($^{3}P)3d$	3s3p($^{3}P)3d$	3s3p($^{3}P)3d$	$3p^{2}(^{3}$	P)3p	$3p^{2}(^{3}$	P)3p
	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$	${}^{2}F_{5/2}$	${}^{2}F_{7/2}$	${}^{2}P_{1/2}$	$^{2}P_{3/2}$	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$	${}^{2}P_{1/2}$	$^{2}P_{3/2}$
42	1.17[-2]	9.04[-3]	1.18[-2]	1.42[-2]	7.93[-3]	5.25[-3]	2.38[-2]	2.28[-1]	8.15[-3]	9.60[-3]
43	1.37[-2]	8.26[-3]	1.11[-2]	1.31[-2]	7.07[-3]	4.80[-3]	2.20[-2]	3.11[-1]	7.52[-3]	8.82[-3]
44	1 46[-2]	7 58[-3]	1.05[-2]	1 21 -2	6 24[-3]	4 41 -3	2.05[-2]	3 86[-1]	6 92[-3]	8 10 -3
45	1.50[-2]	6 95[-3]	9.86[-3]	1 11[-2]	5 50[-3]	4.04[-3]	1 91 [_2]	3 04[_1]	6 41 [-3]	743[-3]
46	1.00[2] 1.51[9]	6 35[3]	0.30[0]	1.03[2]	4.84[3]	3 60[3]	1.51[2] 1.78[9]	3.54[1] 3.51[1]	5 00[3]	6 74[3]
40	1.01[-2] 1.49[0]	ປ. ວິວ[-ວ] ຮູ ຊອ[ອ]	9.02[-0] 0.01[-9]	0.40[2]	4.04[-0]	2.09[-0] 2.40[-2]	1.70[-2] 1.65[0]	0.01[-1] 0.06[1]	5.90[-0] 5.49[-9]	6 00[2]
41	1.40[-2] 1.26[-0]	J.OJ[−J] ⊭ 20[_2]	0.01[-0] 0.01[-0]	9.49[-0] 0.01[-0]	4.20[-3] 2.75[-3]	0.40[-0] 0.10[-0]	1.55[-2]	2.90[-1] 0.46[1]	5.45[-5] 5.01[-9]	0.00[-0] 6.60[-0]
40	1.50[-2]	0.00[-0] 4.96[-0]	0.29[-0] 7.01[-0]	0.01[-0] 0.1E[-0]	0.70[-0] 0.00[-0]	0.10[-0] 0.00[-0]	1.00[-2]	2.40[-1]	0.01[-0] 4.60[-0]	0.02[-3] c r o[3]
49	1.21[-2]	4.80[-3]	(.81[-3]	8.10[-3]	3.32[-3] 3.05[-3]	2.92[-3] 0.70[-3]	1.44[-2]	2.09[-1]	4.02[-3]	0.08[-3]
00 E1	1.01[-2]	4.43[-3]	(.37[-3] C.09[-0]	7.00[-3]	2.90[-3]	2.70[-3]	1.30[-2]	1.01[-1]	4.20[-3]	0.20[-3] E 00[-0]
51	8.03[-3]	4.02[-3]	6.93[-3]	7.09[-3]	2.01[-3]	2.63[-3]	1.26[-2]	1.58[-1]	3.91[-3]	5.83[-3]
52	6.35[-3]	3.66[-3]	6.54[-3]	6.61[-3]	2.31[-3]	2.55[-3]	1.18[-2]	1.40[-1]	3.57[-3]	5.47[-3]
53	5.08[-3]	3.32[-3]	6.16[-3]	6.20[-3]	2.06[-3]	2.46[-3]	1.10[-2]	1.25[-1]	3.29[-3]	5.09[-3]
54	4.10[-3]	3.00[-3]	5.80[-3]	5.78[-3]	1.83[-3]	2.39[-3]	1.03[-2]	1.13[-1]	3.01[-3]	4.75[-3]
55	3.36[-3]	2.72[-3]	5.44[-3]	5.44[-3]	1.63[-3]	2.33[-3]	9.61[-3]	1.04[-1]	2.75[-3]	4.43[-3]
56	2.80[-3]	2.45[-3]	5.14[-3]	5.12[-3]	1.45[-3]	2.27[-3]	9.03[-3]	9.54[-2]	2.52[-3]	4.12[-3]
57	2.34[-3]	2.22[-3]	4.81[-3]	4.79[-3]	1.29[-3]	2.21[-3]	8.46[-3]	8.82[-2]	2.30[-3]	3.85[-3]
58	1.98[-3]	1.99[-3]	4.52[-3]	4.56[-3]	1.15[-3]	2.14[-3]	7.95[-3]	8.19[-2]	2.10[-3]	3.59[-3]
59	1.69[-3]	1.79[-3]	4.22[-3]	4.30[-3]	1.03[-3]	2.09[-3]	7.47[-3]	7.64[-2]	1.91[-3]	3.36[-3]
60	1.45[-3]	1.59[-3]	3.90[-3]	4.08[-3]	9.18[-4]	2.03[-3]	7.14[-3]	7.18[-2]	1.74[-3]	3.13[-3]
61	1.25[-3]	1.45[-3]	3.50[-3]	3.84[-3]	8.16[-4]	1.96[-3]	6.63[-3]	6.72[-2]	1.58[-3]	2.95[-3]
62	1.09[-3]	1.30[-3]	2.85[-3]	3.65[-3]	7.28[-4]	1.90[-3]	6.26[-3]	6.33[-2]	1.44[-3]	2.78[-3]
63	9.45[-4]	1.16[-3]	1.71[-3]	3.46[-3]	6.49[-4]	1.84[-3]	5.89[-3]	5.98[-2]	1.31[-3]	2.61[-3]
64	8.27[-4]	1.04[-3]	8.94[-4]	3.28[-3]	5.76[-4]	1.78[-3]	5.64[-3]	5.67[-2]	1.18[-3]	2.46[-3]
65	7.21[-4]	9.29[-4]	6.46[-4]	3.10[-3]	5.17[-4]	1.72[-3]	5.39[-3]	5.39[-2]	1.07[-3]	2.33[-3]
66	6.33[-4]	8.27[-4]	5.41[-4]	2.93[-3]	4.58[-4]	1.65[-3]	5.16[-3]	5.12[-2]	9.78[-4]	2.20[-3]
67	5.56[-4]	7.37[-4]	4.70[-4]	2.79[-3]	4.08[-4]	1.59[-3]	4.96[-3]	4.87[-2]	8.81[-4]	2.09[-3]
68	4.90[-4]	658[-4]	4 14[-4]	2.63[-3]	3.64[-4]	1.52[-3]	4 80[-3]	4.65[-2]	7.96[-4]	1.97[-3]
69	4 31[-4]	5.84[-4]	3.68[-4]	2.50[-3]	324[-4]	1.45[-3]	4 68[-3]	4 45[-2]	7 15[-4]	1.87[-3]
70	3.83[-4]	5.23[-4]	3.00[-1]	2.00[0] 2.35[-3]	2.88[-4]	1.30[-3]	4.58[-3]	4.26[-2]	654[-4]	1.07[-3]
71	3.00[4] 3.37[_4]	4 65[-4]	2.20[-4] 2.80[_4]	2.00[0]	2.00[-4] 2.57[-4]	1 30[-3]	4.50[-0] 4.59[-3]	4.00[_2]	5.88[_4]	1.68[-3]
72	2 08[_4]	4 1 3 [_4]	2.00[-4] 2.56[-4]	2.20[0] 2.11[-3]	2.01[4]	1.02[0] 1.06[-3]	4.50[-3]	3 02[_2]	5.00[4] 5.20[_4]	1.00[0]
72	2.30[-4] 2.64[-4]	2 6 9 [4]	2.00[-4] 2.07[4]	2.11[-3] 1.00[-3]	2.29[-4] 2.04[4]	1.20[-3] 1.10[3]	4.00[-0]	3.52[-2] 3.77[0]	5.29[-4] 4.78[4]	1.55[-5] 1.51[-2]
73	2.04[-4] 2.24[-4]	3.00[-4] 3.07[4]	2.27[-4] 2.02[4]	1.99[-0]	2.04[-4] 1.81[4]	1.15[3]	4.40[-0]	3.69[9]	4.70[-4]	1.01[-0]
75	2.54[-4] 2.07[4]	3.27[-4] 3.01[4]	2.02[-4] 1.80[4]	1.00[-0] 1.77[-0]	1.61[-4] 1.61[-4]	1.16[3]	4.60[3]	3.02[-2] 3.40[-2]	$\frac{4.00[-4]}{2.97[4]}$	1.40[-0] 1.26[-2]
70	2.07[-4] 1.85[-4]	2.91[-4] 9.59[-4]	1.60[-4] 1.60[-4]	1.77[-0] 1.66[-0]	1.01[-4] 1.44[4]	1.10[-3] 1.10[-9]	4.00[-3]	3.49[-2]	3.07[-4] 2.40[-4]	1.00[-0]
70	1.69[-4]	2.00[-4]	1.00[-4] 1.49[-4]	1.00[-5]	1.44[-4]	1.10[-0]	4.70[-3]	ರ.ರಿ0[-2] ೧೧4[-0]	0.49[-4] 0.14[-4]	1.29[-0]
11	1.04[-4] 1.45[-4]	2.30[-4]	1.42[-4] 1.96[-4]	1.07[-0]	1.20[-4]	1.04[-3]	4.04[-3] 5.02[-3]	0.24[-2] 0.10[-0]	0.14[-4] 0.00[-4]	1.22[-3] 1.16[-3]
18	1.40[-4]	2.04[-4]	1.20[-4]	1.48[-3]	1.14[-4]	9.70[-4]	5.03[-3] = or[-0]	3.13[-2]	2.82[-4]	1.10[-3]
79	1.29[-4]	1.82[-4]	1.12[-4]	1.39[-3]	1.01[-4]	9.14[-4]	5.25[-3]	3.02[-2]	2.53[-4]	1.10[-3]
80	1.15[-4]	1.61[-4]	9.96[-5]	1.30[-3]	8.98[-5]	8.57[-4]	5.50[-3]	2.92[-2]	2.28[-4]	1.04[-3]
81	1.02[-4]	1.44[-4]	8.83[-5]	1.22[-3]	8.00[-5]	7.99[-4]	5.82[-3]	2.82[-2]	2.05[-4]	9.89[-4]
82	9.08[-5]	1.28[-4]	7.88[-5]	1.15[-3]	7.11[-5]	7.48[-4]	6.16[-3]	2.72[-2]	1.84[-4]	9.37[-4]
83	8.06[-5]	1.14[-4]	6.98[-5]	1.08[-3]	6.32[-5]	6.96[-4]	6.59[-3]	2.64[-2]	1.65[-4]	8.89[-4]
84	7.19[-5]	1.01[-4]	6.16[-5]	2.32[-3]	5.63[-5]	7.00[-4]	7.07[-3]	2.56[-2]	1.48[-4]	8.42[-4]
85	6.38[-5]	8.99[-5]	5.51[-5]	2.20[-3]	4.99[-5]	6.47[-4]	7.58[-3]	2.49[-2]	1.33[-4]	7.98[-4]
86	5.68[-5]	8.02[-5]	4.87[-5]	2.06[-3]	4.45[-5]	5.99[-4]	8.17[-3]	2.40[-2]	1.19[-4]	7.55[-4]
87	5.06[-5]	7.14[-5]	4.34[-5]	1.93[-3]	3.96[-5]	5.54[-4]	8.89[-3]	2.34[-2]	1.07[-4]	7.14[-4]
88	4.51[-5]	6.35[-5]	3.84[-5]	1.80[-3]	3.52[-5]	5.10[-4]	9.63[-3]	2.27[-2]	9.57[-5]	6.76[-4]
89	4.02[-5]	5.70[-5]	3.42[-5]	1.68[-3]	3.15[-5]	4.67[-4]	1.06[-2]	2.20[-2]	8.58[-5]	6.39[-4]
90	3.57[-5]	5.07[-5]	3.03[-5]	1.57[-3]	2.79[-5]	4.29[-4]	1.16[-2]	2.15[-2]	7.72[-5]	6.05[-4]
91	3.17[-5]	4.52[-5]	2.69[-5]	1.46[-3]	2.48[-5]	3.94[-4]	1.28[-2]	2.08[-2]	6.92[-5]	5.74[-4]
92	2.83[-5]	4.05[-5]	2.39[-5]	1.36[-3]	2.22[-5]	3.62[-4]	1.41[-2]	2.03[-2]	6.19[-5]	5.43[-4]

Z	3:30	(1P)3d	3:320((1P)3d	3:320((P)3d	$3n^2(^{3}P)3n$
	$\frac{330p}{2D}$	$\frac{1}{2}D$	$\frac{333P(}{2F}$	$\frac{1}{2}F$	$\frac{333p}{2D}$	$\frac{1}{2D}$	$\frac{3p(1)3p}{4c}$
15	$\frac{D_{3/2}}{0.68[0]}$	$\frac{D_{5/2}}{0.72[2]}$	$\frac{I'_{5/2}}{1.61[1]}$	$\frac{T_{7/2}}{1.61[1]}$	$\frac{I_{1/2}}{100[1]}$	$\frac{1}{3/2}$	$\frac{J_{3/2}}{1.80[1]}$
16	9.00[-2] 5.02[-2]	9.70[-2] 5.05[-2]	1.01[-1]	0.69[9]	1.99[-1]	2.02[-1] 1.26[1]	1.09[-1] 1.94[1]
10	0.90[-2] 4.94[-0]	0.90[-2] 4.26[-0]	9.70[-2] 6.07[-2]	9.00[-2] 6.00[-2]	1.32[-1]	1.05[1]	1.04[-1]
10	4.34[-2] 2.50[-2]	4.50[-2] 2.52[-2]	0.97[-2] E 44[-9]	0.98[-2] E 4E[-9]	9.99[-2] 7.97[-0]	1.00[-1]	1.04[-1]
18	3.50[-2]	3.53[-2]	5.44[-2]	5.45[-2]	(.37[-2]	(.99[-2]	8.41[-2]
19	2.90[-2]	2.92[-2]	4.52[-2]	4.52[-2]	5.97[-2]	0.09[-2]	7.00[-2] 5.00[-2]
20	2.49[-2]	2.50[-2]	3.77[-2]	3.78[-2]	4.85[-2]	5.57[-2]	5.93[-2]
21	2.24[-2]	2.19[-2]	3.37[-2]	3.41[-2]	4.10[-2]	5.17[-2]	5.13[-2]
22	2.11[-2]	1.94[-2]	3.00[-2]	3.03[-2]	3.57[-2]	5.50[-2]	4.49[-2]
23	2.03[-2]	1.75[-2]	2.70[-2]	2.74[-2]	3.07[-2]	5.74[-2]	3.99[-2]
24	1.92[-2]	1.59[-2]	2.44[-2]	2.49[-2]	2.70[-2]	5.48[-2]	3.57[-2]
25	1.79[-2]	1.46[-2]	2.22[-2]	2.28[-2]	2.37[-2]	4.97[-2]	3.23[-2]
26	1.65[-2]	1.34[-2]	2.03[-2]	2.10[-2]	2.11[-2]	4.42[-2]	2.96[-2]
27	1.52[-2]	1.24[-2]	1.87[-2]	1.95[-2]	1.89[-2]	3.95[-2]	2.72[-2]
28	1.40[-2]	1.15[-2]	1.72[-2]	1.81[-2]	1.71[-2]	3.51[-2]	2.53[-2]
29	1.29[-2]	1.07[-2]	1.59[-2]	1.69[-2]	1.55[-2]	3.17[-2]	2.38[-2]
30	1.19[-2]	9.95[-3]	1.47[-2]	1.58[-2]	1.43[-2]	2.88[-2]	2.23[-2]
31	1.09[-2]	9.32[-3]	1.35[-2]	1.48[-2]	1.32[-2]	2.62[-2]	2.12[-2]
32	1.00[-2]	8.73[-3]	1.25[-2]	1.39[-2]	1.23[-2]	2.42[-2]	2.01[-2]
33	9.23[-3]	8.21[-3]	1.15[-2]	1.31[-2]	1.15[-2]	2.23[-2]	1.92[-2]
34	8.48[-3]	7.69[-3]	1.07[-2]	1.23[-2]	1.09[-2]	2.11[-2]	1.82[-2]
35	7.75[-3]	7.26[-3]	9.86[-3]	1.16[-2]	1.04[-2]	2.07[-2]	1.74[-2]
36	7.13[-3]	6.84[-3]	9.13[-3]	1.10[-2]	1.01[-2]	1.96[-2]	1.68[-2]
37	6.53[-3]	6.44[-3]	8.42[-3]	1.04[-2]	9.94[-3]	1.82[-2]	1.67[-2]
38	5.95[-3]	6.06[-3]	7.75[-3]	9.81[-3]	1.00[-2]	1.67[-2]	1.81[-2]
39	5.45[-3]	5.74[-3]	7.13[-3]	9.26[-3]	1.08[-2]	1.52[-2]	2.41[-2]
40	4.98[-3]	5.40[-3]	6.56[-3]	8.76[-3]	1.20[-2]	1.37[-2]	3.78[-2]
41	4.60[-3]	5.08[-3]	6.04[-3]	8.25[-3]	1.32[-2]	1.24[-2]	5.30[-2]
42	4.23[-3]	4.78[-3]	5.53[-3]	7.82[-3]	1.44[-2]	1.11[-2]	6.36[-2]
43	3.90[-3]	4.49[-3]	5.07[-3]	7.36[-3]	1.52[-2]	9.88[-3]	6.84[-2]
44	3.59[-3]	4.22[-3]	4.67[-3]	6.94[-3]	1.54[-2]	8.83[-3]	6.85[-2]
45	3 31[-3]	3.97[-3]	$4\ 26[-3]$	6.54[-3]	1.49[-2]	7 85[-3]	6 61[-2]
46	3.06[-3]	3.72[-3]	3.90[-3]	6 13[-3]	1.44[-2]	7.06[-3]	6.23[-2]
47	2.81[-3]	3 47[-3]	356[-3]	5 75[-3]	1.36[-2]	6.35[-3]	5 78[-2]
48	2.59[-3]	324[-3]	325[-3]	5 42[-3]	1.00[2] 1.28[-2]	5.75[-3]	5 30[-2]
49	2.37[-3]	3.04[-3]	2.94[-3]	5.04[-3]	1 21[-2]	5 10[_3]	4 83[-2]
50	2.57[-5] 2.17[_3]	2.84[-3]	2.54[-0] 2.68[_3]	<u>उ.उ</u> ≖[-5] 4 79[_२]	1 14[-2]	ડ. <u>-</u> ડ[-ડ] 4 60[_ર]	4 39[-2]
50 51	⊿. <u>⊥≀[-</u> ગ] 1 00[ર]	2.04[-0] 2.65[-2]	2.00[-0] 2.42[-2]	1 35[2]	1 08[9]	4.0 <u>3[</u> -0] 4.96[-2]	3.05[-2] 3.06[-2]
51 59	1.80[2]	2.00[-0] 2.46[-2]	2. <u>∓0[</u> -0] 2.21[-2]	4.05[-0] 4.05[-2]	1.00[-2]	τ.∠υ[-υ] 3.8/[3]	3.50[-2] 3.57[-2]
52 52	⊥.0⊿[-0] 1.65[२]	2. <u>40[-0]</u> 2.28[-2]	2.21[-3]	3.70[-0] 3.70[-0]	0.68[2]	3.78[3] 3.0±[-9]	0.07[-2] 3.00[_0]
50 54	151[2]	⊿.⊿೮[-೮] ೧10[Ջ]	⊿.00[-0] 1.80[-0]	0.14[-0] 3.14[-0]	9.00[-0] 0.10[-0]	ວ.±ວ[-ວ] 3.1≍[_2]	0.44[-4] 0.88[0]
94 55	1.97[-9] 1.97[-9]	4.14[-3] 1.07[-9]	1.00[-0] 1.69[-0]	ປ.44[-ີ] ຊ.10[ິງ]	ຊ.⊥ສ[-ງ] ຊ.⊥ສ[-ງ]	ວ.⊥ວ[-ວ] ວ.⊥ວ[-ວ]	2.00[-2] 2.57[-2]
00 56	1.37[-3] 1.94[-9]	1.97[-3] 1.00[-0]	1.00[-0] 1.47[-0]	ວ. 10[-ວ] ງ ໑ດ[-ງ]	୦.70[-୦] ହ ର 4[ର]	⊿.ດຍ[-ð] ງ⊭¢[ງ]	⊿.⊍≀[-∠] Э.20[-9]
00 57	1.24[-3] 1.19[-9]	1.82[-3] 1.67[-9]	1.47[-5] 1.20[-9]	∠.ठ9[-১] २.६२[-२]	ð.∠4[-5] 7 on[n]	∠.∂ð[-ð] ე_99[-9]	∠.30[-2] 2.02[-2]
0/ E0	1.12[-3] 1.01[-9]	1.07[-3]	1.52[-5] 1.10[-9]	2.02[-3] 0.40[-0]	(.82[-3]	∠.33[-3] 0.10[_0]	2.U3[-2] 1.80[-3]
58	1.01[-3]	1.54[-3]	1.19[-3]	2.40[-3]	(.42[-3]	2.10[-3]	1.80[-2] 1.60[-2]
59	9.16[-4]	1.42[-3]	1.07[-3]	2.19[-3]	7.03[-3]	1.90[-3]	1.60[-2]
60	8.13[-4]	1.30[-3]	9.67[-4]	1.99[-3]	6.58[-3]	1.71[-3]	1.40[-2]
61	7.45[-4]	1.20[-3]	8.73[-4]	1.78[-3]	6.32[-3]	1.54[-3]	1.24[-2]
62	6.70[-4]	1.10[-3]	8.12[-4]	1.61[-3]	6.00[-3]	1.39[-3]	1.09[-2]
63	5.98[-4]	1.00[-3]	8.48[-4]	1.45[-3]	5.69[-3]	1.25[-3]	9.57[-3]

Z	3s3p($^{1}P)3d$	3s3p($^{1}P)3d$	3s3p($^{1}P)3d$	$3p^2({}^3P)3p$
	${}^{2}D_{3/2}$	${}^{2}D_{5/2}$	${}^{2}F_{5/2}$	${}^{2}F_{7/2}$	$^{2}P_{1/2}$	$^{2}P_{3/2}$	${}^{4}S_{3/2}$
64	5.39[-4]	9.15[-4]	1.20[-3]	1.30[-3]	5.39[-3]	1.12[-3]	8.35[-3]
65	4.83[-4]	8.36[-4]	1.61[-3]	1.16[-3]	5.11[-3]	1.01[-3]	7.31[-3]
66	4.35[-4]	7.61[-4]	1.80[-3]	1.04[-3]	4.85[-3]	9.05[-4]	6.39[-3]
67	3.87[-4]	6.93[-4]	1.83[-3]	9.34[-4]	4.61[-3]	8.08[-4]	5.57[-3]
68	3.47[-4]	6.29[-4]	1.78[-3]	8.37[-4]	4.37[-3]	7.24[-4]	4.88[-3]
69	3.10[-4]	5.70[-4]	1.71[-3]	7.46[-4]	4.15[-3]	6.52[-4]	4.24[-3]
70	2.77[-4]	5.18[-4]	1.62[-3]	6.68[-4]	3.93[-3]	5.82[-4]	3.71[-3]
71	2.48[-4]	4.68[-4]	1.52[-3]	5.94[-4]	3.73[-3]	5.23[-4]	3.26[-3]
72	2.21[-4]	4.25[-4]	1.42[-3]	5.31[-4]	3.55[-3]	4.70[-4]	2.86[-3]
73	1.98[-4]	3.84[-4]	1.32[-3]	4.74[-4]	3.37[-3]	4.20[-4]	2.52[-3]
74	1.94[-4]	3.56[-4]	1.23[-3]	4.20[-4]	3.24[-3]	3.77[-4]	2.23[-3]
75	4.43[-4]	3.76[-4]	1.14[-3]	3.76[-4]	3.35[-3]	3.41[-4]	1.98[-3]
76	3.62[-4]	3.36[-4]	1.06[-3]	3.33[-4]	3.18[-3]	3.05[-4]	1.77[-3]
77	3.35[-4]	3.00[-4]	9.77[-4]	2.97[-4]	3.03[-3]	2.73[-4]	1.58[-3]
78	1.91[-4]	2.69[-4]	9.01[-4]	2.65[-4]	2.88[-3]	2.44[-4]	1.43[-3]
79	1.72[-4]	2.39[-4]	8.30[-4]	2.37[-4]	2.72[-3]	2.18[-4]	1.30[-3]
80	1.55[-4]	2.14[-4]	7.64[-4]	2.10[-4]	2.60[-3]	1.95[-4]	1.17[-3]
81	1.39[-4]	1.90[-4]	7.01[-4]	1.87[-4]	2.47[-3]	1.74[-4]	1.08[-3]
82	1.24[-4]	1.70[-4]	6.44[-4]	1.66[-4]	2.35[-3]	1.55[-4]	9.88[-4]
83	1.11[-4]	1.52[-4]	5.90[-4]	1.48[-4]	2.23[-3]	1.39[-4]	9.16[-4]
84	9.99[-5]	1.36[-4]	6.84[-4]	1.38[-4]	2.13[-3]	1.24[-4]	8.55[-4]
85	8.92[-5]	1.21[-4]	6.22[-4]	1.22[-4]	2.03[-3]	1.11[-4]	7.97[-4]
86	7.99[-5]	1.08[-4]	5.66[-4]	1.09[-4]	1.93[-3]	9.94[-5]	7.46[-4]
87	7.19[-5]	9.64[-5]	5.13[-4]	9.68[-5]	1.84[-3]	8.89[-5]	7.06[-4]
88	6.40[-5]	8.62[-5]	4.64[-4]	8.59[-5]	1.75[-3]	7.90[-5]	6.70[-4]
89	5.74[-5]	7.68[-5]	4.22[-4]	7.60[-5]	1.67[-3]	7.10[-5]	6.46[-4]
90	5.15[-5]	6.88[-5]	3.82[-4]	6.77[-5]	1.60[-3]	6.29[-5]	6.20[-4]
91	4.63[-5]	6.11[-5]	3.45[-4]	5.99[-5]	1.52[-3]	5.65[-5]	6.00[-4]
92	4.15[-5]	5.47[-5]	3.12[-4]	5.35[-5]	1.45[-3]	5.05[-5]	5.80[-4]
93	3.70[-5]	4.88[-5]	2.83[-4]	4.76[-5]	1.38[-3]	4.52[-5]	5.72[-4]
94	3.31[-5]	4.36[-5]	2.55[-4]	4.25[-5]	1.32[-3]	4.02[-5]	5.61[-4]
95	2.97[-5]	3.90[-5]	2.30[-4]	3.77[-5]	1.26[-3]	3.60[-5]	5.60[-4]
96	2.66[-5]	3.47[-5]	2.08[-4]	3.35[-5]	1.20[-3]	3.23[-5]	5.55[-4]
97	2.37[-5]	3.10[-5]	1.89[-4]	2.98[-5]	1.15[-3]	2.89[-5]	5.60[-4]
98	2.13[-5]	2.78[-5]	1.69[-4]	2.67[-5]	1.10[-3]	2.58[-5]	5.65[-4]
99	1.90[-5]	2.48[-5]	1.53[-4]	2.37[-5]	1.05[-3]	2.31[-5]	5.73[-4]
100	1.71[-5]	2.21[-5]	1.38[-4]	2.11[-5]	1.00[-3]	2.07[-5]	5.82[-4]

Figure 20: Lifetime data (10⁻⁹s) for $3p^23s^{2S+1}L_J$ levels as function of Z in Al-like ions

Figure 21: Lifetime data (10⁻⁹s) for $3p^3 \ ^4S_{3/2}$ and $3s3p(^3P)3d \ ^4L_J$ levels as function of Z in Al-like ions