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1 Introduction

Atomic energy levels are commonly evaluated assuming that the nuclear mass
is infinite. In this report, we consider corrections to atomic levels associated
with finite nuclear mass. These corrections are referred to as isotope shifts. We
evaluate isotope shifts using many-body perturbation theory (MBPT), following
the pioneering work by Martensson-Pendrill et al. [1, 2, 3, 4, 5, 6, 7, 8, 9]. We
first give a brief discussion of contributions to the isotope shift, then go on to
specific examples. For simplicity, the examples discussed here are limited to
isotope shifts in atoms with a single valence electron.

We consider a nonrelativistic atom with N electrons of mass m, at (7, 7, - )
and a nucleus of mass M4 at y. The Hamiltonian for the N + 1 particle atom
may be written
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Let us transform to relative coordinates:
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where Mp = M4+ N m.. The generalized momenta conjugate to p; and R are:
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We find using the four previous equations:
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The kinetic energy term in the original Hamiltonian can be rewritten
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The wave function for the atom is therefore factorizable into a product of plane
wave describing the center of mass motion and an N-electron wave function
describing the motion relative to the nucleus. The Hamiltonian for the relative
motion is
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where the reduced mass p is given by

My me
_ A (10)
MA + me
1.1 Normal and Specific Mass Shifts
We write the Hamiltonian as a sum
H(py,p2,- -, m1,7T2,-++) = H,+AH (11)
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Normal Mass Shift The effect of the finite nuclear mass on the first term is
to scale the infinite mass Rydberg constant by the ratio p/me = Ma/(Ma+m.).
The corresponding shift of the energy from the infinite-mass value is is referred
to as the normal mass shift. The value of the normal mass shift is
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Here E,,, is the value of the energy in atomic units (calculated with the infinite-
mass Rydberg constant). We may use the above expression with E,, replaced by
the experimental energy to evaluate the normal mass shift to obtain an accurate
approximation to the normal mass shift.

Specific Mass Shift The correction to the energy from AH is referred to as
the specific mass shift. The value of the specific mass shift is
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The energy is proportional to the mass (u for H,) or (m. for Hy, ) in the
denominator of the kinetic energy. It follows that lengths scale inversely with
mass and that kinetic energy scales directly as mass. The scaling of kinetic
energy implies that momentum scales directly with mass. With the aid of these
scaling relations, one may rewrite
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in the center of mass system. The scaling is required since we evaluate the SMS
matrix element using infinite nuclear mass wave functions. The prescription is
as follows:

(a) Express all answers in terms of the R, the infinite mass Rydberg con-
stant.

(b) Multiply the total energy by —m./(M4 + m.) to obtain the the normal
mass shift.

(c) Multiply the matrix element of Y 7 - p; by Ma/(Ma + m.)? to find the
spectfic mass shift.

Alternatively, we may use experimental energies for £, and evaluate the normal

mass shift as
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1.2 Field Shift

In addition to the normal and specific mass shifts, we have an additional shift
from the change in nuclear size as we shift from one isotope to the next. This
shift is referred to as the field shift and is parameterized as

SE =—F5(r*), (18)

where § <r2> is the change in the root-mean-square radius if the nucleus. As-
suming that the nucleus can be described as a uniformly charged ball of radius



R, the nuclear potential is
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The change in V (r, R) induced by a change JR in the radius is
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Using the the fact that (r?) = 3R?/5 for a uniform distribution, one may rewrite
the above equation in the form
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With this result in mind, we can introduce the single-particle operator hpy,q(r)
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and find the field-shift parameter as
F = (hpuc) - (23)

2 MBPT Calculations of SMS

The operator
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can be expressed in second quantization as the sum of one- and two-particle

operators
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The “direct” part of the one-particle operator ¢;; vanishes by reasons of sym-
metry.



2.1 Angular Decomposition
The two-particle operator t;j;; may be decomposed in an angular-momentum

basis as
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which, in turn, can be expressed diagramatically as
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In Eq. (28), the quantities P(ik) are radial matrix elements of the momen-
tum operator. We give explicit forms for these reduced matrix elements in the
following subsection.

2.2 Matrix elements of momentum

Let us digress to give explicit forms for the matrix elements of the momentum
operator. We first consider the nonrelativistic case.

2.2.1 Nonrelativistic case:

We write p = % V and note that in the nonrelativistic case
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Note that we can rewrite the operators on spherical harmonics in terms of
vector spherical harmonics as
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Using the expansion of vector spherical harmonics in terms of ?JL Mm(7), we
easily establish that
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With the aid of this expression, We find
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We may therefore write, as in Eq. (28),

(blpala) = (lym| C llama) P(ba),

where the radial matrix element P(ab) is
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2.2.2 Relativistic case I:

It is simple to generalize the previous nonrelatvistic matrix element to the rel-
ativistic case. We may write

(blpala) = (ryme| C |kama) P(ba),

where the relativistic radial matrix elements P(ab) is
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with n, =1, or —l, — 1, for l, =1, — 1 or Iy =1, + 1, respectively; and (, =1/,
or I, —1forlj =1, —1orl; =1+ 1, respectively. Here I’ = I(—«). This is
the proper form for the matrix element of the momentum operator.

2.2.3 Relativistic case II:

An alternative form that is equivalent to the above in the nonrelativistic limit
is obtained by replacing p — mecd. This form leads to
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we may write the matrix element in Eq. (37) as
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From this expression, one obtains the alternative expression
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for the radial integral of the momentum operator. In the Pauli approximation,
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By enumerating the six possible combinations, one can show that
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which is just the nonrelativistic expression for the radial matrix element. We
will use Eq. (40) in our calculations because of its relative simplicity.

2.3 Lowest-order calculation

Consider an atom with a single valence electron described by an HF wave func-
tion. The lowest-order matrix element of 7" in a state v is given by

<U|T‘U>(1) = tvv = - Ztvaav = - Z - ! + Tl(vaav) .

We can carry out the sum over magnetic substates using standard graphical
rules to find:
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where we have used the fact that

P(ba) = P(ab)*.



Table 1: Lowest-order matrix elements of the specific-mass-shift operator 1" for
valence states of Li and Na.

Lithium Z =3 Sodium Z =3
State Eyp (v|T|v)  State Eyp (v|T|v)
2s -0.19632  0.00000 3s -0.18203 -0.06150
21/ -0.12864 -0.04162 3py,  -0.10949 -0.03201
My -0.12864 -0.04162 3ps,  -0.10942  -0.03199
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