Comments on the hyperfine structure of the $6 p_{3 / 2}$ state of Cs.

W. R. Johnson
Department of Physics, University of Notre Dame
Notre Dame, IN 46556

March 27, 2004

Abstract

These are working notes of the phenomenology of the $6 p_{3 / 2}$ hyperfine structure in Cs, written to help with the analysis of experimental data.

1 Perturbation Expansion

The hyperfine interaction has the form

$$
\begin{equation*}
H_{\mathrm{hf}}=\sum_{k \lambda} T_{-\lambda}^{(k)} M_{\lambda}^{(k)}, \tag{1}
\end{equation*}
$$

Where $T_{-\lambda}^{(k)}$ is an irreducible tensor operator acting in the electron sector and $M_{\lambda}^{(k)}$ is an irreducible tensor operator acting in the nuclear sector. We consider an isolated state, for example the $6 p_{3 / 2}$ state of Cs. We write the wave function of this state as a product of an electronic and nuclear wave function coupled to total angular momentum F :

$$
\begin{equation*}
|1\rangle=\sum_{M m}-\prod_{I M_{I}}^{\|_{F M_{F}}^{J M_{J}}} \quad\left|J M_{J}\right\rangle\left|I M_{I}\right\rangle . \tag{2}
\end{equation*}
$$

The notation used for angular momentum diagrams is that introduced by Lindgren and Morrison [1].

1.1 First-order

The first-order correction to the energy is

$$
\begin{align*}
W_{F}^{(1)} & =\langle 1| H_{\mathrm{hf}}|1\rangle \\
& =\sum_{k}(-1)^{I+J+F}\left\{\begin{array}{ccc}
J & I & F \\
I & J & k
\end{array}\right\}\left\langle J\left\|T^{(k)}\right\| J\right\rangle\left\langle I\left\|M^{(k)}\right\| I\right\rangle, \tag{3}
\end{align*}
$$

where we have used

$$
\langle n| H_{\mathrm{hf}}|1\rangle=\sum_{k}(-1)^{I+J+F}\left\{\begin{array}{ccc}
J_{n} & I & F \tag{4}\\
I & J & k
\end{array}\right\}\left\langle J_{n}\left\|T^{(k)}\right\| J\right\rangle\left\langle I\left\|M^{(k)}\right\| I\right\rangle .
$$

The expression for $W_{F}^{(1)}$ can be rewritten in terms of stretched matrix elements as

$$
\begin{equation*}
W_{F}^{(1)}=\sum_{k} M(I J, F ; k)\left\langle J J\left\|T_{0}^{(k)}\right\| J J\right\rangle\left\langle I I\left\|M_{0}^{(k)}\right\| I I\right\rangle, \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
M(I J, F ; k)=\frac{\sqrt{(2 I-k)!(2 I+k+1)!(2 J-k)!(2 J+k+1)!}}{(2 I)!(2 J)!} \times \\
(-1)^{I+J+k}\left\{\begin{array}{ccc}
J & I & F \\
I & J & k
\end{array}\right\} . \tag{6}
\end{gather*}
$$

Define the following quantities:

$$
\begin{aligned}
I_{+} & =I(I+1) \\
J_{+} & =J(J+1) \\
F_{+} & =F(F+1) \\
K & =F_{+}-J_{+}-I_{+} \\
K_{+} & =K(K+1) .
\end{aligned}
$$

With this notation, we may write

$$
\begin{align*}
M(I J, F ; 1) & =\frac{K}{2 I J}, \tag{7}\\
M(I J, F ; 2) & =\frac{3 K_{+}-4 J_{+} I_{+}}{2 I(2 I-1) J(2 J-1)}, \tag{8}\\
M(I J, F ; 3) & =\frac{5 K^{2}(K+4)-4 K\left[3 J_{+} I_{+}-J_{+}-I_{+}-3\right]-20 J_{+} I_{+}}{I(2 I-1)(2 I-2) J(2 J-1)(2 J-2)} . \tag{9}
\end{align*}
$$

We now re-express the stretched nuclear matrix elements in terms of conventional nuclear moments:

$$
\begin{align*}
\langle I I| M^{(1)}|I I\rangle & =\mu \tag{10}\\
\langle I I| M^{(2)}|I I\rangle & =\frac{1}{2} Q \tag{11}\\
\langle I I| M^{(3)}|I I\rangle & =-\Omega . \tag{12}
\end{align*}
$$

Here, μ is the nuclear magnetic dipole moment, Q is the nuclear electric quadrupole moment, and Ω is the nuclear magnetic octupole moment. Now, we introduce
the conventional hyperfine constants a, b, and c :

$$
\begin{align*}
a & =\frac{\mu}{I J}\langle J J| T_{0}^{(1)}|J J\rangle=\frac{1}{I J}\langle I I| M_{0}^{(1)}|I I\rangle\langle J J| T_{0}^{(1)}|J J\rangle \tag{13}\\
b & =2 Q\langle J J| T_{0}^{(2)}|J J\rangle=4\langle I I| M_{0}^{(2)}|I I\rangle\langle J J| T_{0}^{(2)}|J J\rangle \tag{14}\\
c & =-\Omega\langle J J| T_{0}^{(3)}|J J\rangle=\langle I I| M_{0}^{(3)}|I I\rangle\langle J J| T_{0}^{(3)}|J J\rangle \tag{15}
\end{align*}
$$

With this notation, we may write the first-order hyperfine energy of a state as

$$
\begin{align*}
W_{F}^{(1)} & =\frac{1}{2} K a \\
& +\frac{3 K_{+}-4 J_{+} I_{+}}{8 I(2 I-1) J(2 J-1)} b \tag{16}\\
& +\frac{5 K^{2}(K+4)-4 K\left[3 J_{+} I_{+}-J_{+}-I_{+}-3\right]-20 J_{+} I_{+}}{I(2 I-1)(2 I-2) J(2 J-1)(2 J-2)} c . \tag{17}
\end{align*}
$$

1.2 Second-order

The second-order correction may be written

$$
\begin{equation*}
W_{F}^{(2)}=\sum_{n \neq 1} \frac{\langle 1| H_{\mathrm{hf}}|n\rangle\langle n| H_{\mathrm{hf}}|1\rangle}{E_{1}-E_{n}} . \tag{18}
\end{equation*}
$$

After angular reduction, this correction can be expressed as

$$
\begin{align*}
W_{F}^{(2)}= & \sum_{n \neq 1} \sum_{k k^{\prime}}(-1)^{J+J_{n}+2 I+2 F}\left\{\begin{array}{ccc}
J_{n} & I & F \\
I & J & k
\end{array}\right\}\left\{\begin{array}{ccc}
J & I & F \\
I & J_{n} & k^{\prime}
\end{array}\right\} \\
& \times \frac{\left\langle J_{n}\left\|T^{(k)}\right\| J\right\rangle\left\langle I\left\|M^{(k)}\right\| I\right\rangle\left\langle J\left\|T^{\left(k^{\prime}\right)}\right\| J_{n}\right\rangle\left\langle I\left\|M^{\left(k^{\prime}\right)}\right\| I\right\rangle}{E_{1}-E_{n}} . \tag{19}
\end{align*}
$$

For our example of the $6 p_{3 / 2}$ state of Cs , the second-order correction is dominated by the single state $n=6 p_{1 / 2}$. Moreover, the largest contribution from this state is that associated with the magnetic dipole term $k=k^{\prime}=1$. The resulting single perturbing state correction is given by

$$
W_{F}^{(2)} \approx\left\{\begin{array}{ccc}
J_{n} & I & F \tag{20}\\
I & J & 1
\end{array}\right\}^{2} \frac{\left|\left\langle J_{n}\left\|T^{(1)}\right\| J\right\rangle\right|^{2}\left|\left\langle I\left\|M^{(1)}\right\| I\right\rangle\right|^{2}}{E_{1}-E_{n}}
$$

1.3 Numerical approximations

In this subsection, we estimate the size of the second-order correction by expressing $\left\langle J_{n}\left\|T^{(1)}\right\| J\right\rangle$ in terms of $a_{6 p_{3 / 2}}$ in the nonrelativistic HF limit. The resulting estimate could be improved if necessary using MBPT.

In the one-particle approximation, we may write

$$
\begin{equation*}
\langle w| T^{(1)}|v\rangle=\left(\kappa_{w}+\kappa_{v}\right)\left\langle-\kappa_{w} m_{w}\right| C_{1}\left|\kappa_{v} m_{v}\right\rangle\left(\frac{1}{r^{2}}\right)_{w v}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{1}{r^{2}}\right)_{w v}=\int_{0}^{\infty} \frac{d r}{r^{2}}\left(P_{w}(r) Q_{v}(r)+Q_{w}(r) P_{v}(r)\right) . \tag{22}
\end{equation*}
$$

In the nonrelativistic approximation, this reduces to

$$
\begin{equation*}
\left(\frac{1}{r^{2}}\right)_{w v} \approx\left(\frac{P_{w} P_{v}}{r^{2}}\right)_{r=0}-\frac{\kappa_{w}+\kappa_{v}+2}{2 c}\left\langle\frac{1}{r^{3}}\right\rangle_{w v} \tag{23}
\end{equation*}
$$

From this, it follows that

$$
\begin{align*}
\left\langle 6 p_{3 / 2}, j_{v}\right| T^{(1)}\left|6 p_{3 / 2}, j_{v}\right\rangle & =-\frac{2 \kappa_{v}\left(2 \kappa_{v}+2\right)}{2 c}\left\langle j_{v} j_{v}\right| C_{1}\left|j_{v} j_{v}\right\rangle\left\langle\frac{1}{r^{3}}\right\rangle_{v v} \\
& =\frac{l_{v}\left(l_{v}+1\right)}{\left(j_{v}+1\right) c}\left\langle\frac{1}{r^{3}}\right\rangle_{v v} \tag{24}
\end{align*}
$$

This leads to

$$
\begin{align*}
& a_{6 p_{1 / 2}}=\frac{\mu}{I j_{v}} \frac{4}{3 c}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p}=\frac{\mu}{c} \frac{16}{21}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p} \tag{25}\\
& a_{6 p_{3 / 2}}=\frac{\mu}{I j_{v}} \frac{4}{5 c}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p}=\frac{\mu}{c} \frac{16}{105}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p} \tag{26}
\end{align*}
$$

If the matrix element is evaluated using nonrelativistic HF wave functions and $g_{I}=0.73772$, then one obtains

$$
\begin{align*}
a_{6 p_{1 / 2}} & =114.29 \mathrm{MHz} \tag{27}\\
a_{6 p_{3 / 2}} & =22.86 \mathrm{MHz} \tag{28}
\end{align*}
$$

The corresponding experimental values are

$$
\begin{align*}
a_{6 p_{1 / 2}} & =291.89 \mathrm{MHz} \tag{29}\\
a_{6 p_{3 / 2}} & =50.275 \mathrm{MHz} \tag{30}
\end{align*}
$$

The ratio of the experimental values is 5.8 compared to the ratio 5 for nonrelativistic theory.

Let us consider the off-diagonal matrix element

$$
\begin{align*}
\left\langle 6 p_{1 / 2}\left\|T^{(1)}\right\| 6 p_{3 / 2}\right\rangle & =\frac{\left\langle 1 / 2\left\|C_{1}\right\| 3 / 2\right\rangle}{2 c}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p} \\
& =\frac{1}{\sqrt{3} c}\left\langle\frac{1}{r^{3}}\right\rangle_{6 p} \tag{31}\\
& =\frac{105}{16 \sqrt{3}} \frac{a_{6 p_{3 / 2}}}{\mu} \tag{32}
\end{align*}
$$

We note that

$$
\begin{equation*}
\left\langle I\left\|M^{(1)}\right\| I\right\rangle=\sqrt{\frac{(I+1)(2 I+1)}{I}} \mu=\sqrt{\frac{72}{7}} \mu \tag{33}
\end{equation*}
$$

Combining these two,

$$
\begin{equation*}
\left|\left\langle 7 / 2\left\|M^{(1)}\right\| 7 / 2\right\rangle\right|^{2}\left|\left\langle 1 / 2\left\|T^{(1)}\right\| 3 / 2\right\rangle\right|^{2}=\frac{4725}{32} a_{6 p_{3 / 2}}^{2} \tag{34}
\end{equation*}
$$

Inserting this into Eq. (19), we find that only the $F=3$ and 4 states are modified

$$
\begin{align*}
& W_{3}^{(2)}=\frac{675}{256} \frac{a_{6 p_{3 / 2}}^{2}}{\Delta} \tag{35}\\
& W_{4}^{(2)}=\frac{875}{256} \frac{a_{6 p_{3 / 2}}^{2}}{\Delta}, \tag{36}\\
& \Delta=E_{6 p_{3 / 2}}-E_{6 p_{1 / 2}} \\
& =554.11 \mathrm{~cm}^{-1} \\
& =1.6611 \times 10^{7} \mathrm{MHz}
\end{align*}
$$

It may be more accurate to replace

$$
a_{6 p_{3 / 2}}^{2} \rightarrow \frac{1}{5} a_{6 p_{1 / 2}} a_{6 p_{3 / 2}}
$$

since $\left\langle 6 p_{1 / 2}\left\|T^{(1)}\right\| 6 p_{3 / 2}\right\rangle$ has contributions from both states. With this replacement, we find

$$
\begin{align*}
W_{3}^{(2)} & =\frac{135}{256} \frac{a_{6 p_{1 / 2}} a_{6 p_{3 / 2}}}{\Delta} \tag{37}\\
W_{4}^{(2)} & =\frac{175}{256} \frac{a_{6 p_{1 / 2}} a_{6 p_{3 / 2}}}{\Delta}, \tag{38}
\end{align*}
$$

The relative size of the second-order energy is governed by the ratio

$$
\rho_{1 / 2}=\frac{a_{6 p_{1 / 2}}}{\Delta}=1.757 \times 10^{-5}
$$

Thus, we may write

$$
\begin{align*}
W_{3}^{(2)} & =\frac{135}{256} \rho_{1 / 2} a_{6 p_{3 / 2}} \tag{39}\\
W_{4}^{(2)} & =\frac{175}{256} \rho_{1 / 2} a_{6 p_{3 / 2}} \tag{40}
\end{align*}
$$

1.4 Phenomenology for the $6 p_{3 / 2}$ state

Let us temporarily ignore the second-order correction. For the $I=7 / 2, J=3 / 2$ level of Cs, we have from Eq. (17)

$$
\begin{align*}
W_{2}^{(1)} & =-\frac{27}{4} a+\frac{15}{28} b-\frac{33}{7} c \tag{41}\\
W_{3}^{(1)} & =-\frac{15}{4} a-\frac{5}{28} b+\frac{55}{7} c \tag{42}\\
W_{4}^{(1)} & =\frac{1}{4} a-\frac{13}{28} b-\frac{33}{7} c \tag{43}\\
W_{5}^{(1)} & =\frac{21}{4} a+\frac{1}{4} b+c \tag{44}
\end{align*}
$$

The levels W_{F} are not independent. They satisfy the sum rule

$$
\begin{equation*}
\sum_{F}(2 F+1) W_{F}^{(1)}=0 . \tag{45}
\end{equation*}
$$

If we define $\Delta W_{F}=W_{F}^{(1)}-W_{F-1}^{(1)}$, then we find

$$
\begin{align*}
\Delta W_{3} & =3 a-\frac{5}{7} b+\frac{88}{7} c \tag{46}\\
\Delta W_{4} & =4 a-\frac{2}{7} b-\frac{88}{7} c \tag{47}\\
\Delta W_{5} & =5 a+\frac{5}{7} b+\frac{40}{7} c \tag{48}
\end{align*}
$$

This set is independent and can be solved for $\{a, b, c\}$.

$$
\begin{align*}
a & =\frac{11}{120} \Delta W_{5}+\frac{2}{21} \Delta W_{4}+\frac{3}{56} \Delta W_{3} \tag{49}\\
b & =\frac{77}{120} \Delta W_{5}-\frac{1}{3} \Delta W_{4}-\frac{5}{8} \Delta W_{3} \tag{50}\\
c & =\frac{7}{480} \Delta W_{5}-\frac{1}{24} \Delta W_{4}+\frac{1}{32} \Delta W_{3} \tag{51}
\end{align*}
$$

We use the data (given in MHz units) from Tanner and Wieman [2]

$$
\begin{align*}
\Delta W_{5} & =251.00(2) \tag{52}\\
\Delta W_{4} & =201.24(2) \tag{53}\\
\Delta W_{3} & =151.21(2) \tag{54}
\end{align*}
$$

and solve for $\{a, b, c\}$ to obtain

$$
\begin{align*}
a & =50.2746 \pm 0.0028 \tag{55}\\
b & =-0.5279 \pm 0.0191 \tag{56}\\
c & =0.00073 \pm 0.00108 \tag{57}
\end{align*}
$$

These values are consistent with the values found in Ref.[2]:

$$
\begin{align*}
a & =50.275(3) \tag{58}\\
b & =-0.53(2) \tag{59}
\end{align*}
$$

An improvement in precision by a factor ten would provide evidence for a nuclear octupole moment! Indeed, Gerginov et al. [3] obtained $c=0.56(7) \mathrm{kHz}$ from their measurements of the hyperfine intervals. From their measurements, they inferred $Q=-3.22(4) \mathrm{mb}$ for the nuclear quadrupole moment and $\Omega=0.82(10)$ $\mathrm{b} \mu_{N}$. With the data from [3], we write

$$
\begin{align*}
& \Delta W_{5}=251.0916(20) \tag{60}\\
& \Delta W_{4}=201.2871(11) \tag{61}\\
& \Delta W_{3}=151.2247(16) \tag{62}
\end{align*}
$$

We obtain

$$
\begin{align*}
a & =50.28827(23) \tag{63}\\
b & =-0.4934(17) \tag{64}\\
c & =0.00056(7) \tag{65}
\end{align*}
$$

using the 2nd-order analysis given in the following subsection. These values agree precisely with those obtained in [3].

1.5 Analysis including 2nd-order perturbation

Let us include the second-order corrections. We let $W_{F}=W_{F}^{(1)}+W_{F}^{(2)}$ and find

$$
\begin{align*}
& W_{2}=-\frac{27}{4} a-\frac{15}{28} b-\frac{33}{7} c \tag{66}\\
& W_{3}=-\left[\frac{15}{4}-\frac{135}{256} \rho_{1 / 2}\right] a-\frac{5}{28} b+\frac{55}{7} c \tag{67}\\
& W_{4}=\left[\frac{1}{4}+\frac{175}{256} \rho_{1 / 2}\right] a-\frac{13}{28} b-\frac{33}{7} c \tag{68}\\
& W_{5}=\frac{21}{4} a+\frac{1}{4} b+c \tag{69}
\end{align*}
$$

These equations can be solved for $\{a, b, c\}$. They appear to be relevant only for the precise measurements in [3].

Thanks are owed to K. Calkins for suggestions on this manuscript.

References

[1] I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer Verlag, Berlin, 1986), 2nd ed.
[2] C. E. Tanner and C. E. Wieman, Phys. Rev. A 38, 1616 (1988).
[3] V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett 91, 072501 (2003).

