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Abstract

These are working notes of the phenomenology of the 6p3/2 hyperfine
structure in Cs, written to help with the analysis of experimental data.

1 Perturbation Expansion

The hyperfine interaction has the form

Hhf =
∑
kλ

T
(k)
−λ M

(k)
λ , (1)

Where T (k)
−λ is an irreducible tensor operator acting in the electron sector and

M
(k)
λ is an irreducible tensor operator acting in the nuclear sector. We consider

an isolated state, for example the 6p3/2 state of Cs. We write the wave function
of this state as a product of an electronic and nuclear wave function coupled to
total angular momentum F :

|1〉 =
∑
Mm

?

?
−

FMF

JMJ

IMI

|JMJ〉 |IMI〉 . (2)

The notation used for angular momentum diagrams is that introduced by Lind-
gren and Morrison [1].

1.1 First-order

The first-order correction to the energy is

W
(1)
F = 〈1|Hhf |1〉

=
∑
k

(−1)I+J+F

{
J I F
I J k

}〈
J‖T (k)‖J

〉〈
I‖M (k)‖I

〉
, (3)
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where we have used

〈n|Hhf |1〉 =
∑
k

(−1)I+J+F

{
Jn I F
I J k

}〈
Jn‖T (k)‖J

〉〈
I‖M (k)‖I

〉
. (4)

The expression for W (1)
F can be rewritten in terms of stretched matrix elements

as
W

(1)
F =

∑
k

M(IJ, F ; k)
〈
JJ‖T (k)

0 ‖JJ
〉〈

II‖M (k)
0 ‖II

〉
, (5)

where

M(IJ, F ; k) =

√
(2I − k)!(2I + k + 1)!(2J − k)!(2J + k + 1)!

(2I)!(2J)!
×

(−1)I+J+k

{
J I F
I J k

}
. (6)

Define the following quantities:

I+ = I(I + 1)
J+ = J(J + 1)
F+ = F (F + 1)
K = F+ − J+ − I+
K+ = K(K + 1).

With this notation, we may write

M(IJ, F ; 1) =
K

2IJ
, (7)

M(IJ, F ; 2) =
3K+ − 4J+I+

2I(2I − 1)J(2J − 1)
, (8)

M(IJ, F ; 3) =
5K2(K + 4)− 4K[3J+I+ − J+ − I+ − 3]− 20J+I+

I(2I − 1)(2I − 2)J(2J − 1)(2J − 2)
. (9)

We now re-express the stretched nuclear matrix elements in terms of conven-
tional nuclear moments: 〈

II|M (1)|II
〉

= µ (10)〈
II|M (2)|II

〉
=

1
2
Q (11)〈

II|M (3)|II
〉

= −Ω. (12)

Here, µ is the nuclear magnetic dipole moment, Q is the nuclear electric quadrupole
moment, and Ω is the nuclear magnetic octupole moment. Now, we introduce
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the conventional hyperfine constants a, b, and c:

a =
µ

IJ

〈
JJ |T (1)

0 |JJ
〉

=
1
IJ

〈
II|M (1)

0 |II
〉〈

JJ |T (1)
0 |JJ

〉
(13)

b = 2Q
〈
JJ |T (2)

0 |JJ
〉

= 4
〈
II|M (2)

0 |II
〉〈

JJ |T (2)
0 |JJ

〉
(14)

c = − Ω
〈
JJ |T (3)

0 |JJ
〉

=
〈
II|M (3)

0 |II
〉〈

JJ |T (3)
0 |JJ

〉
(15)

With this notation, we may write the first-order hyperfine energy of a state as

W
(1)
F =

1
2
K a

+
3K+ − 4J+I+

8I(2I − 1)J(2J − 1)
b (16)

+
5K2(K + 4)− 4K[3J+I+ − J+ − I+ − 3]− 20J+I+

I(2I − 1)(2I − 2)J(2J − 1)(2J − 2)
c . (17)

1.2 Second-order

The second-order correction may be written

W
(2)
F =

∑
n 6=1

〈1|Hhf |n〉 〈n|Hhf |1〉
E1 − En

. (18)

After angular reduction, this correction can be expressed as

W
(2)
F =

∑
n 6=1

∑
kk′

(−1)J+Jn+2I+2F

{
Jn I F
I J k

}{
J I F
I Jn k′

}

×

〈
Jn‖T (k)‖J

〉 〈
I‖M (k)‖I

〉 〈
J‖T (k′)‖Jn

〉〈
I‖M (k′)‖I

〉
E1 − En

. (19)

For our example of the 6p3/2 state of Cs, the second-order correction is dom-
inated by the single state n = 6p1/2. Moreover, the largest contribution from
this state is that associated with the magnetic dipole term k = k′ = 1. The
resulting single perturbing state correction is given by

W
(2)
F ≈

{
Jn I F
I J 1

}2
∣∣〈Jn‖T (1)‖J

〉∣∣2 ∣∣〈I‖M (1)‖I
〉∣∣2

E1 − En
. (20)

1.3 Numerical approximations

In this subsection, we estimate the size of the second-order correction by ex-
pressing

〈
Jn‖T (1)‖J

〉
in terms of a6p3/2 in the nonrelativistic HF limit. The

resulting estimate could be improved if necessary using MBPT.
In the one-particle approximation, we may write〈

w|T (1)|v
〉

= (κw + κv) 〈−κwmw|C1|κvmv〉
(

1
r2

)
wv

, (21)
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where (
1
r2

)
wv

=
∫ ∞

0

dr

r2

(
Pw(r)Qv(r) +Qw(r)Pv(r)

)
. (22)

In the nonrelativistic approximation, this reduces to(
1
r2

)
wv

≈
(
PwPv
r2

)
r=0

− κw + κv + 2
2c

〈
1
r3

〉
wv

(23)

From this, it follows that〈
6p3/2, jv|T (1)|6p3/2, jv

〉
= −2κv(2κv + 2)

2c
〈jv jv|C1|jv jv〉

〈
1
r3

〉
vv

=
lv(lv + 1)
(jv + 1) c

〈
1
r3

〉
vv

(24)

This leads to

a6p1/2 =
µ

Ijv

4
3 c

〈
1
r3

〉
6p

=
µ

c

16
21

〈
1
r3

〉
6p

(25)

a6p3/2 =
µ

Ijv

4
5 c

〈
1
r3

〉
6p

=
µ

c

16
105

〈
1
r3

〉
6p

(26)

If the matrix element is evaluated using nonrelativistic HF wave functions and
gI = 0.73772, then one obtains

a6p1/2 = 114.29 MHz (27)
a6p3/2 = 22.86 MHz (28)

The corresponding experimental values are

a6p1/2 = 291.89 MHz (29)
a6p3/2 = 50.275 MHz (30)

The ratio of the experimental values is 5.8 compared to the ratio 5 for nonrela-
tivistic theory.

Let us consider the off-diagonal matrix element〈
6p1/2‖T (1)‖6p3/2

〉
=
〈1/2‖C1‖3/2〉

2c

〈
1
r3

〉
6p

=
1√
3 c

〈
1
r3

〉
6p

(31)

=
105

16
√

3

a6p3/2

µ
(32)

We note that 〈
I‖M (1)‖I

〉
=

√
(I + 1)(2I + 1)

I
µ =

√
72
7
µ (33)
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Combining these two,∣∣∣〈7/2‖M (1)‖7/2
〉∣∣∣2 ∣∣∣〈1/2‖T (1)‖3/2

〉∣∣∣2 =
4725
32

a2
6p3/2

(34)

Inserting this into Eq. (19), we find that only the F = 3 and 4 states are modified

W
(2)
3 =

675
256

a2
6p3/2

∆
(35)

W
(2)
4 =

875
256

a2
6p3/2

∆
, (36)

∆ = E6p3/2 − E6p1/2

= 554.11 cm−1

= 1.6611× 107 MHz

It may be more accurate to replace

a2
6p3/2

→ 1
5
a6p1/2a6p3/2

since
〈
6p1/2‖T (1)‖6p3/2

〉
has contributions from both states. With this replace-

ment, we find

W
(2)
3 =

135
256

a6p1/2a6p3/2

∆
(37)

W
(2)
4 =

175
256

a6p1/2a6p3/2

∆
, (38)

The relative size of the second-order energy is governed by the ratio

ρ1/2 =
a6p1/2

∆
= 1.757× 10−5.

Thus, we may write

W
(2)
3 =

135
256

ρ1/2 a6p3/2 (39)

W
(2)
4 =

175
256

ρ1/2 a6p3/2 , (40)

1.4 Phenomenology for the 6p3/2 state

Let us temporarily ignore the second-order correction. For the I = 7/2, J = 3/2
level of Cs, we have from Eq. (17)

W
(1)
2 = −27

4
a+

15
28
b− 33

7
c (41)

W
(1)
3 = −15

4
a− 5

28
b+

55
7
c (42)

W
(1)
4 =

1
4
a− 13

28
b− 33

7
c (43)

W
(1)
5 =

21
4
a+

1
4
b+ c (44)
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The levels WF are not independent. They satisfy the sum rule∑
F

(2F + 1)W (1)
F = 0. (45)

If we define ∆WF = W
(1)
F −W (1)

F−1, then we find

∆W3 = 3 a− 5
7
b+

88
7
c (46)

∆W4 = 4 a− 2
7
b− 88

7
c (47)

∆W5 = 5 a+
5
7
b+

40
7
c (48)

This set is independent and can be solved for {a, b, c}.

a =
11
120

∆W5 +
2
21

∆W4 +
3
56

∆W3 (49)

b =
77
120

∆W5 −
1
3

∆W4 −
5
8

∆W3 (50)

c =
7

480
∆W5 −

1
24

∆W4 +
1
32

∆W3 (51)

We use the data (given in MHz units) from Tanner and Wieman [2]

∆W5 = 251.00(2) (52)
∆W4 = 201.24(2) (53)
∆W3 = 151.21(2) (54)

and solve for {a, b, c} to obtain

a = 50.2746± 0.0028 (55)
b = −0.5279± 0.0191 (56)
c = 0.00073± 0.00108 (57)

These values are consistent with the values found in Ref.[2]:

a = 50.275(3) (58)
b = −0.53(2) (59)

An improvement in precision by a factor ten would provide evidence for a nuclear
octupole moment! Indeed, Gerginov et al. [3] obtained c = 0.56(7) kHz from
their measurements of the hyperfine intervals. From their measurements, they
inferred Q = −3.22(4) mb for the nuclear quadrupole moment and Ω = 0.82(10)
bµN . With the data from [3], we write

∆W5 = 251.0916(20) (60)
∆W4 = 201.2871(11) (61)
∆W3 = 151.2247(16). (62)
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We obtain

a = 50.28827(23) (63)
b = −0.4934(17) (64)
c = 0.00056(7) (65)

using the 2nd-order analysis given in the following subsection. These values
agree precisely with those obtained in [3].

1.5 Analysis including 2nd-order perturbation

Let us include the second-order corrections. We let WF = W
(1)
F +W

(2)
F and find

W2 = −27
4
a− 15

28
b− 33

7
c (66)

W3 = −
[

15
4
− 135

256
ρ1/2

]
a− 5

28
b+

55
7
c (67)

W4 =
[

1
4

+
175
256

ρ1/2

]
a− 13

28
b− 33

7
c (68)

W5 =
21
4
a+

1
4
b+ c (69)

These equations can be solved for {a, b, c}. They appear to be relevant only
for the precise measurements in [3].

Thanks are owed to K. Calkins for suggestions on this manuscript.
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