
1 Distributed Magnetization

Let us assume that we have a nucleus with a distributed moment described by
a magnetization vectorM(r) and magnetic moment µ related by

µ =

∫

d3rM(r)

The vector potential of a point dipole with magnetic moment µ:

A =
µ0

4π

µ× r

r3
,

is then generalized to

A =
µ0

4π

∫

d3s
M(s)× (r − s)

|r − s|3
.

Let us suppose that M(r) points along the z-axis and that its magnitude de-
pends only on r. Then, µ = µ ẑ with

µ = 4π

∫

dr r2 M(r) .

We may rewrite the vector potential as

A =
µ0

4π
ẑ ×

∫

d3s M(s)
r − s

|r − s|3
. (1)

This can be conveniently rewritten as

A = −
µ0

4π
ẑ ×∇ΦM (r) , (2)

where the magnetic scalar potential is ΦM (r) is defined by

ΦM (r) =

∫

d3s
M(s)

|r − s|
= 4π

[

1

r

∫ r

0

ds s2 M(s) +

∫

∞

r

ds sM(s)

]

. (3)

One easily shows that

−∇ΦM (r) =
r

r3
4π

∫ r

0

ds s2 M(s) .

It follows that we may write the vector potential for distributed magnetization
in the form

A =
µ0

4π

µ× r

r3
f(r) , (4)

where

f(r) =
4π

µ

∫ r

0

ds s2 M(s) =

∫ r

0

ds s2 M(s) ÷

∫

∞

0

ds s2 M(s) .
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1.1 Uniform Distribution

If M(r) is constant inside a sphere of radius R and vanishes outside, then

f(r) =

{

r3/R3, r ≤ R
1, r > R

(5)

From this, it follows that

A =
µ0

4π







µ× r
R3 , r ≤ R

µ× r
r3 , r > R .

(6)

A simple prescription to use in this case is to let

1

r2
→

r

R3
, r < R

in the point dipole formula!

1.2 Fermi Distribution

Let M(r) be described by a Fermi distribution:

M(r) =
M0

1 + exp[(r − c)/a]
. (7)

The total magnetic moment is then given by

µ = 4π

[

c3

3
+

∞
∑

n=1

(−1)n e−nc/a

∫ c

0

ds s2 ens/a

−
∞
∑

n=1

(−1)n enc/a

∫

∞

c

ds s2 e−ns/a

]

(8)

From Maple, we obtain
∫ c

0

ds s2 ens/a = enc/a

(

ac2

n
− 2

a2c

n2
+ 2

a3

n3

)

− 2
a3

n3
, (9)

so that the first sum becomes

∞
∑

n=1

(−1)n e−nc/a

∫ c

0

ds s2 ens/a = ac2
∞
∑

1

(−1)n

n

−2a2c

∞
∑

1

(−1)n

n2
+ 2a3

∞
∑

1

(−1)n

n2
− 2a3

∞
∑

1

(−1)n

n3
e−nc/a . (10)

For the second integral, we obtain
∫

∞

c

ds s2 e−ns/a = e−nc/a

(

ac2

n
+ 2

a2c

n2
+ 2

a3

n3

)

(11)
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so the second sum becomes
∞
∑

n=1

(−1)n enc/a

∫

∞

c

ds s2 e−ns/a = ac2
∞
∑

1

(−1)n

n

+2a2c

∞
∑

1

(−1)n

n2
+ 2a3

∞
∑

1

(−1)n

n2
. (12)

Combining, we find

µ = 4πM0

[

c3

3
− 4a2c

∞
∑

1

(−1)n

n2
− 2a3

∞
∑

1

(−1)n

n3
e−nc/a

]

. (13)

Making use of the fact that

∞
∑

1

(−1)n

n2
= −

π2

12
,

and defining

Sk(x) =
∞
∑

1

(−1)n−1

nk
e−nx ,

we may rewrite the expression above as

µ =
4π

3
c3M0

[

1 +
a2

c2
π2 + 6

a3

c3
S3

( c

a

)

]

. (14)

Now, we may evaluate the factor f(r) in Eq. (5) using Maple

f(r, r < c) =
4πM0

µ

[

r3

3
+

∞
∑

n=1

(−1)n e−nc/a

∫ r

0

ds s2 ens/a

]

=
4πM0

µ

[

r3

3
− ar2S1

(

c− r

a

)

+ 2a2rS2

(

c− r

a

)

− 2a3S3

(

c− r

a

)

+ 2a3S3

( c

a

)

]

. (15)

Similarly, again using Maple, we find

f(r, r > c) =
4πM0

µ

[

c3

3
+

a2c

3
π2 + 2a3 S3

( c

a

)

−ar2 S1

(

r − c

a

)

− 2a2r S2

(

r − c

a

)

− 2a3 S3

(

r − c

a

)]

(16)

These expressions may be simplified somewhat to give

f(r, r < c) =
1

N

[

r3

c3
− 3

ar2

c3
S1

(

c− r

a

)

+ 6
a2r

c3
S2

(

c− r

a

)

− 6
a3

c3
S3

(

c− r

a

)

+ 6
a3

c3
S3

( c

a

)

]

, (17)
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Figure 1: Upper panel: f(r) and 50f(r)/r2 are shown for a Fermi distribution
with c = 5.748 fm and t = 2.3 fm. Lower panel: g(r) and 500g(r)/r3 are shown
for a Fermi distribution with c = 5.748 fm and t = 2.3 fm.

and

f(r, r > c) = 1 −

1

N

[

3
ar2

c3
S1

(

r − c

a

)

+ 6
a2r

c3
S2

(

r − c

a

)

+ 6
a3

c3
S3

(

r − c

a

)]

, (18)

where N is given by by

N =

[

1 +
a2

c2
π2 + 6

a3

c3
S3

( c

a

)

]

.

In the upper panel of Fig. 1, we plot the magnetic dipole scale factor f(r) and
the function f(r)/r2 occurring in hyperfine integrals.

2 Distributed Quadrupole Moment

Now let us suppose that the nuclear quadrupole moment is distributed over
the nucleus according to some radial distribution function ρ(r). To analyze the
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resulting potential, we first consider a point quadrupole. The point quadrupole
potential is given by

Φ(r) =
1

2

∑

ij

Qij

4πε0

xixj

r5
.

Since the trace of Qij vanishes, we may replace

xixj

r5
→
1

3
∂j∂j

(

1

r

)

in the expression for the potential. It follows that the potential of a quadrupole
distributed symmetrically over the nucleus may be written

Φ(r) =
1

6

∑

ij

Qij

4πε0
∂j∂j

∫

4πx2ρ(x)

|r − x|
dx,

where Qij ρ(r) is the distributed quadrupole moment density. The moment is
normalized by requiring

∫

∞

0

4πx2ρ(x) = 1.

2.1 Uniform Distribution

Assuming that the distribution function ρ(r) = ρ0 is constant over the nuclear
volume, we have

ρ0 =
3

4πR3

where R is the nuclear radius, and

∫

4πx2ρ(x)

|r − x|
dx =







1
R

(

3
2 −

r2

2R2

)

, r < R

1
r , r > R

Differentiating and dropping terms proportional to δij , we find

Φ =
1

2

∑

ij

Qij

4πε0

xixj

r5
g(r),

where

g(r) =

{

0, r < R
1, r > R

2.2 Fermi Distribution

For a spherically symmetric distribution ρ(x), we may write

∫

4πx2ρ(x)

|r − x|
dx = 4π

[

1

r

∫ r

0

x2ρ(x)dx+

∫

∞

r

x2ρ(x)dx

]

.
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Operating on this term with ∂j∂j leads to two terms, one proportional to xixj

and one proportional to δij . Only the former term is of interest here. We pick
out the coefficient of xixj using

∂j∂jF (r)→ xixj ×
1

r

d

dr

1

r

d

dr
F (r).

It follows that

1

3
∂i∂j

∫

4πx2ρ(x)

|r − x|
dx→

4πxixj

r5

[
∫ r

0

x2ρ(x)dx−
r3

3
ρ(r)

]

.

The potential for the distributed moment can therefore be written

Φ(r) =
1

2

∑

ij

Qij

4πε0

xixj

r5
g(r).

with

g(r) = 4π

[
∫ r

0

x2ρ(x)dx−
r3

3
ρ(r)

]

(19)

The two screening functions f(r) and g(r) are seen to be identical, except for
the second term in Eq. (19)!
Now, let us determine g(r) for a Fermi distribution

ρ(r) =
ρ0

1 + e(r−c)/a
.

Carrying out the integrations in Eq. (19), we find

g(r, r < c) =
1

N

[

r3

c3
1

1 + e(c−r)/a
+ 6

a3

c3
S3

( c

a

)

− 6
a3

c3
S3

(

c− r

a

)

+6
a2r

c3
S2

(

c− r

a

)

− 3
ar2

c3
S1

(

c− r

a

)

]

, (20)

and

g(r, r > c) = 1−
1

N

[

r3

c3
1

1 + e(r−c)/a
+ 6

a3

c3
S3

(

r − c

a

)

+6
a2r

c3
S2

(

r − c

a

)

+ 3
ar2

c3
S1

(

r − c

a

)

]

. (21)

In the above formulas, the normalization constant N is given by

N =

[

1 +
a2

c2
π2 + 6

a3

c3
S3

( c

a

)

]

(22)
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The functions Sn(x), as before, are defined by

Sn(x) =
∞
∑

k=1

(−1)k−1

kn
e−kx ≡ −Lin(−e

−x) ≡ −Polylog(n,−e−x)

It might be noted that
S1(x) = log

(

1 + e−x
)

.

For small r, one finds

g(r)→
ec/a r4

12 aN
(

1 + ec/a
)2 ,

while for large r, g(r)→ 1. The function g(r) is continuous at the point r = c.
Indeed, the two forms are analytic continuations of a single function.
In the lower panel of Fig. 1, we plot the quadrupole scale factor g(r) and the

function g(r)/r3 occurring in quadrupole integrals.
The functions f(r) and g(r) for a Fermi distribution are available numerically

in the fortran subroutine nucfac.f.
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