1 Distributed Magnetization

Let us assume that we have a nucleus with a distributed moment described by a magnetization vector $\boldsymbol{M}(r)$ and magnetic moment $\boldsymbol{\mu}$ related by

$$
\boldsymbol{\mu}=\int d^{3} r \boldsymbol{M}(\boldsymbol{r})
$$

The vector potential of a point dipole with magnetic moment $\boldsymbol{\mu}$:

$$
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \frac{\boldsymbol{\mu} \times \boldsymbol{r}}{r^{3}}
$$

is then generalized to

$$
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \int d^{3} s \frac{\boldsymbol{M}(\boldsymbol{s}) \times(\boldsymbol{r}-\boldsymbol{s})}{|\boldsymbol{r}-\boldsymbol{s}|^{3}}
$$

Let us suppose that $\boldsymbol{M}(\boldsymbol{r})$ points along the z-axis and that its magnitude depends only on r. Then, $\boldsymbol{\mu}=\mu \hat{z}$ with

$$
\mu=4 \pi \int d r r^{2} M(r)
$$

We may rewrite the vector potential as

$$
\begin{equation*}
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \hat{z} \times \int d^{3} s M(s) \frac{\boldsymbol{r}-\boldsymbol{s}}{|\boldsymbol{r}-\boldsymbol{s}|^{3}} . \tag{1}
\end{equation*}
$$

This can be conveniently rewritten as

$$
\begin{equation*}
\boldsymbol{A}=-\frac{\mu_{0}}{4 \pi} \hat{z} \times \nabla \Phi_{M}(r) \tag{2}
\end{equation*}
$$

where the magnetic scalar potential is $\Phi_{M}(r)$ is defined by

$$
\begin{equation*}
\Phi_{M}(r)=\int d^{3} s \frac{M(s)}{|\boldsymbol{r}-\boldsymbol{s}|}=4 \pi\left[\frac{1}{r} \int_{0}^{r} d s s^{2} M(s)+\int_{r}^{\infty} d s s M(s)\right] \tag{3}
\end{equation*}
$$

One easily shows that

$$
-\nabla \Phi_{M}(r)=\frac{\boldsymbol{r}}{r^{3}} 4 \pi \int_{0}^{r} d s s^{2} M(s)
$$

It follows that we may write the vector potential for distributed magnetization in the form

$$
\begin{equation*}
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \frac{\boldsymbol{\mu} \times \boldsymbol{r}}{r^{3}} f(r) \tag{4}
\end{equation*}
$$

where

$$
f(r)=\frac{4 \pi}{\mu} \int_{0}^{r} d s s^{2} M(s)=\int_{0}^{r} d s s^{2} M(s) \div \int_{0}^{\infty} d s s^{2} M(s)
$$

1.1 Uniform Distribution

If $M(r)$ is constant inside a sphere of radius R and vanishes outside, then

$$
f(r)= \begin{cases}r^{3} / R^{3}, & r \leq R \tag{5}\\ 1, & r>R\end{cases}
$$

From this, it follows that

$$
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \begin{cases}\frac{\boldsymbol{\mu} \times \boldsymbol{r}}{R^{3}}, & r \leq R \tag{6}\\ \frac{\boldsymbol{\mu} \times \boldsymbol{r}}{r^{3}}, & r>R\end{cases}
$$

A simple prescription to use in this case is to let

$$
\frac{1}{r^{2}} \rightarrow \frac{r}{R^{3}}, \quad r<R
$$

in the point dipole formula!

1.2 Fermi Distribution

Let $M(r)$ be described by a Fermi distribution:

$$
\begin{equation*}
M(r)=\frac{M_{0}}{1+\exp [(r-c) / a]} \tag{7}
\end{equation*}
$$

The total magnetic moment is then given by

$$
\begin{align*}
\mu=4 \pi\left[\frac{c^{3}}{3}+\sum_{n=1}^{\infty}(\right. & -1)^{n} e^{-n c / a} \int_{0}^{c} d s s^{2} e^{n s / a} \\
& \left.-\sum_{n=1}^{\infty}(-1)^{n} e^{n c / a} \int_{c}^{\infty} d s s^{2} e^{-n s / a}\right] \tag{8}
\end{align*}
$$

From Maple, we obtain

$$
\begin{equation*}
\int_{0}^{c} d s s^{2} e^{n s / a}=e^{n c / a}\left(\frac{a c^{2}}{n}-2 \frac{a^{2} c}{n^{2}}+2 \frac{a^{3}}{n^{3}}\right)-2 \frac{a^{3}}{n^{3}} \tag{9}
\end{equation*}
$$

so that the first sum becomes

$$
\begin{align*}
\sum_{n=1}^{\infty}(-1)^{n} & e^{-n c / a} \int_{0}^{c} d s s^{2} e^{n s / a}=a c^{2} \sum_{1}^{\infty} \frac{(-1)^{n}}{n} \\
& -2 a^{2} c \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}+2 a^{3} \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}-2 a^{3} \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{3}} e^{-n c / a} \tag{10}
\end{align*}
$$

For the second integral, we obtain

$$
\begin{equation*}
\int_{c}^{\infty} d s s^{2} e^{-n s / a}=e^{-n c / a}\left(\frac{a c^{2}}{n}+2 \frac{a^{2} c}{n^{2}}+2 \frac{a^{3}}{n^{3}}\right) \tag{11}
\end{equation*}
$$

so the second sum becomes

$$
\begin{array}{r}
\sum_{n=1}^{\infty}(-1)^{n} e^{n c / a} \int_{c}^{\infty} d s s^{2} e^{-n s / a}=a c^{2} \sum_{1}^{\infty} \frac{(-1)^{n}}{n} \\
+2 a^{2} c \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}+2 a^{3} \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}} \tag{12}
\end{array}
$$

Combining, we find

$$
\begin{equation*}
\mu=4 \pi M_{0}\left[\frac{c^{3}}{3}-4 a^{2} c \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}-2 a^{3} \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{3}} e^{-n c / a}\right] \tag{13}
\end{equation*}
$$

Making use of the fact that

$$
\sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\pi^{2}}{12}
$$

and defining

$$
S_{k}(x)=\sum_{1}^{\infty} \frac{(-1)^{n-1}}{n^{k}} e^{-n x}
$$

we may rewrite the expression above as

$$
\begin{equation*}
\mu=\frac{4 \pi}{3} c^{3} M_{0}\left[1+\frac{a^{2}}{c^{2}} \pi^{2}+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c}{a}\right)\right] \tag{14}
\end{equation*}
$$

Now, we may evaluate the factor $f(r)$ in Eq. (5) using Maple

$$
\begin{align*}
f(r, r<c)= & \frac{4 \pi M_{0}}{\mu}\left[\frac{r^{3}}{3}+\sum_{n=1}^{\infty}(-1)^{n} e^{-n c / a} \int_{0}^{r} d s s^{2} e^{n s / a}\right] \\
= & \frac{4 \pi M_{0}}{\mu}\left[\frac{r^{3}}{3}-a r^{2} S_{1}\left(\frac{c-r}{a}\right)+2 a^{2} r S_{2}\left(\frac{c-r}{a}\right)\right. \\
& \left.-2 a^{3} S_{3}\left(\frac{c-r}{a}\right)+2 a^{3} S_{3}\left(\frac{c}{a}\right)\right] \tag{15}
\end{align*}
$$

Similarly, again using Maple, we find

$$
\begin{align*}
& f(r, r>c)=\frac{4 \pi M_{0}}{\mu}\left[\frac{c^{3}}{3}+\frac{a^{2} c}{3} \pi^{2}+2 a^{3} S_{3}\left(\frac{c}{a}\right)\right. \\
& \left.\quad-a r^{2} S_{1}\left(\frac{r-c}{a}\right)-2 a^{2} r S_{2}\left(\frac{r-c}{a}\right)-2 a^{3} S_{3}\left(\frac{r-c}{a}\right)\right] \tag{16}
\end{align*}
$$

These expressions may be simplified somewhat to give

$$
\begin{align*}
f(r, r<c)=\frac{1}{\mathcal{N}}\left[\frac{r^{3}}{c^{3}}\right. & -3 \frac{a r^{2}}{c^{3}} S_{1}\left(\frac{c-r}{a}\right)+6 \frac{a^{2} r}{c^{3}} S_{2}\left(\frac{c-r}{a}\right) \\
& \left.-6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c-r}{a}\right)+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c}{a}\right)\right], \tag{17}
\end{align*}
$$

Figure 1: Upper panel: $f(r)$ and $50 f(r) / r^{2}$ are shown for a Fermi distribution with $c=5.748 \mathrm{fm}$ and $t=2.3 \mathrm{fm}$. Lower panel: $g(r)$ and $500 g(r) / r^{3}$ are shown for a Fermi distribution with $c=5.748 \mathrm{fm}$ and $t=2.3 \mathrm{fm}$.
and

$$
\begin{align*}
& f(r, r>c)=1- \\
& \quad \frac{1}{\mathcal{N}}\left[3 \frac{a r^{2}}{c^{3}} S_{1}\left(\frac{r-c}{a}\right)+6 \frac{a^{2} r}{c^{3}} S_{2}\left(\frac{r-c}{a}\right)+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{r-c}{a}\right)\right], \tag{18}
\end{align*}
$$

where \mathcal{N} is given by by

$$
\mathcal{N}=\left[1+\frac{a^{2}}{c^{2}} \pi^{2}+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c}{a}\right)\right]
$$

In the upper panel of Fig. 1, we plot the magnetic dipole scale factor $f(r)$ and the function $f(r) / r^{2}$ occurring in hyperfine integrals.

2 Distributed Quadrupole Moment

Now let us suppose that the nuclear quadrupole moment is distributed over the nucleus according to some radial distribution function $\rho(r)$. To analyze the
resulting potential, we first consider a point quadrupole. The point quadrupole potential is given by

$$
\Phi(\boldsymbol{r})=\frac{1}{2} \sum_{i j} \frac{Q_{i j}}{4 \pi \epsilon_{0}} \frac{x_{i} x_{j}}{r^{5}} .
$$

Since the trace of $Q_{i j}$ vanishes, we may replace

$$
\frac{x_{i} x_{j}}{r^{5}} \rightarrow \frac{1}{3} \partial_{j} \partial_{j}\left(\frac{1}{r}\right)
$$

in the expression for the potential. It follows that the potential of a quadrupole distributed symmetrically over the nucleus may be written

$$
\Phi(\boldsymbol{r})=\frac{1}{6} \sum_{i j} \frac{Q_{i j}}{4 \pi \epsilon_{0}} \partial_{j} \partial_{j} \int \frac{4 \pi x^{2} \rho(x)}{|\boldsymbol{r}-\boldsymbol{x}|} d x
$$

where $Q_{i j} \rho(r)$ is the distributed quadrupole moment density. The moment is normalized by requiring

$$
\int_{0}^{\infty} 4 \pi x^{2} \rho(x)=1
$$

2.1 Uniform Distribution

Assuming that the distribution function $\rho(r)=\rho_{0}$ is constant over the nuclear volume, we have

$$
\rho_{0}=\frac{3}{4 \pi R^{3}}
$$

where R is the nuclear radius, and

$$
\int \frac{4 \pi x^{2} \rho(x)}{|\boldsymbol{r}-\boldsymbol{x}|} d x=\left\{\begin{array}{cc}
\frac{1}{R}\left(\frac{3}{2}-\frac{r^{2}}{2 R^{2}}\right), & r<R \\
\frac{1}{r}, & r>R
\end{array}\right.
$$

Differentiating and dropping terms proportional to $\delta_{i j}$, we find

$$
\Phi=\frac{1}{2} \sum_{i j} \frac{Q_{i j}}{4 \pi \epsilon_{0}} \frac{x_{i} x_{j}}{r^{5}} g(r),
$$

where

$$
g(r)= \begin{cases}0, & r<R \\ 1, & r>R\end{cases}
$$

2.2 Fermi Distribution

For a spherically symmetric distribution $\rho(x)$, we may write

$$
\int \frac{4 \pi x^{2} \rho(x)}{|\boldsymbol{r}-\boldsymbol{x}|} d x=4 \pi\left[\frac{1}{r} \int_{0}^{r} x^{2} \rho(x) d x+\int_{r}^{\infty} x^{2} \rho(x) d x\right]
$$

Operating on this term with $\partial_{j} \partial_{j}$ leads to two terms, one proportional to $x_{i} x_{j}$ and one proportional to $\delta_{i j}$. Only the former term is of interest here. We pick out the coefficient of $x_{i} x_{j}$ using

$$
\partial_{j} \partial_{j} F(r) \rightarrow x_{i} x_{j} \times \frac{1}{r} \frac{d}{d r} \frac{1}{r} \frac{d}{d r} F(r)
$$

It follows that

$$
\frac{1}{3} \partial_{i} \partial_{j} \int \frac{4 \pi x^{2} \rho(x)}{|\boldsymbol{r}-\boldsymbol{x}|} d x \rightarrow \frac{4 \pi x_{i} x_{j}}{r^{5}}\left[\int_{0}^{r} x^{2} \rho(x) d x-\frac{r^{3}}{3} \rho(r)\right]
$$

The potential for the distributed moment can therefore be written

$$
\Phi(\boldsymbol{r})=\frac{1}{2} \sum_{i j} \frac{Q_{i j}}{4 \pi \epsilon_{0}} \frac{x_{i} x_{j}}{r^{5}} g(r)
$$

with

$$
\begin{equation*}
g(r)=4 \pi\left[\int_{0}^{r} x^{2} \rho(x) d x-\frac{r^{3}}{3} \rho(r)\right] \tag{19}
\end{equation*}
$$

The two screening functions $f(r)$ and $g(r)$ are seen to be identical, except for the second term in Eq. (19)!

Now, let us determine $g(r)$ for a Fermi distribution

$$
\rho(r)=\frac{\rho_{0}}{1+e^{(r-c) / a}} .
$$

Carrying out the integrations in Eq. (19), we find

$$
\begin{array}{r}
g(r, r<c)=\frac{1}{\mathcal{N}}\left[\frac{r^{3}}{c^{3}} \frac{1}{1+e^{(c-r) / a}}+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c}{a}\right)-6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c-r}{a}\right)\right. \\
\left.+6 \frac{a^{2} r}{c^{3}} S_{2}\left(\frac{c-r}{a}\right)-3 \frac{a r^{2}}{c^{3}} S_{1}\left(\frac{c-r}{a}\right)\right] \tag{20}
\end{array}
$$

and

$$
\begin{align*}
& g(r, r>c)=1-\frac{1}{\mathcal{N}}\left[\frac{r^{3}}{c^{3}} \frac{1}{1+e^{(r-c) / a}}+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{r-c}{a}\right)\right. \\
&\left.+6 \frac{a^{2} r}{c^{3}} S_{2}\left(\frac{r-c}{a}\right)+3 \frac{a r^{2}}{c^{3}} S_{1}\left(\frac{r-c}{a}\right)\right] \tag{21}
\end{align*}
$$

In the above formulas, the normalization constant N is given by

$$
\begin{equation*}
\mathcal{N}=\left[1+\frac{a^{2}}{c^{2}} \pi^{2}+6 \frac{a^{3}}{c^{3}} S_{3}\left(\frac{c}{a}\right)\right] \tag{22}
\end{equation*}
$$

The functions $S_{n}(x)$, as before, are defined by

$$
S_{n}(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{n}} e^{-k x} \equiv-\operatorname{Li}_{n}\left(-e^{-x}\right) \equiv-\operatorname{Polylog}\left(n,-e^{-x}\right)
$$

It might be noted that

$$
S_{1}(x)=\log \left(1+e^{-x}\right)
$$

For small r, one finds

$$
g(r) \rightarrow \frac{e^{c / a} r^{4}}{12 a \mathcal{N}\left(1+e^{c / a}\right)^{2}}
$$

while for large $r, g(r) \rightarrow 1$. The function $g(r)$ is continuous at the point $r=c$. Indeed, the two forms are analytic continuations of a single function.

In the lower panel of Fig. 1, we plot the quadrupole scale factor $g(r)$ and the function $g(r) / r^{3}$ occurring in quadrupole integrals.

The functions $f(r)$ and $g(r)$ for a Fermi distribution are available numerically in the fortran subroutine nucfac.f.

