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Abstract

These are working notes written as a first step in understanding atomic
potentials and atomic structure in finite-temperature systems.

1 Thomas-Fermi Theory

As a first step, we consider the Thomas-Fermi theory at finite temper-
atures. This is my version of the discussion of temperature-dependent
Thomas-Fermi theory given in the seminal work of Feynman, Metropolis,
and Teller [1]. Later, we will make detailed comparisons with results from
that paper.
In the discussion to follow, we imagine that a material is divided into

neutral cells, each containing a single nucleus (charge Z) and Z electrons.
We isolate an individual neutral cell and treat it in a thermodynamic
average sense, ignoring the interaction between neighboring cells. These
cells are later considered to be spherical; the radius of each cell is taken
to be the Wigner-Seitz radius determined from the material density ρm
(g/cm3) and the atomic weight A (g/mol) by:

Ω =
A

Aρm
R =

(
3Ω

4π

)1/3
,

where A = 6.022×1023 is Avagadro’s number and Ω is the atomic volume.

1.1 Elementary formulas

We consider an atom with N electrons moving in a potential V (r). We
suppose that locally the electrons are moving in a box of side L and depth
V (r). The number of states in momentum interval d3p is

d3N = 2
L3

(2π)3
d3p ,
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so that the particle density is

ρ =
N

L3
=
1

π2

∫ pf
0

p2dp =
p3f
3π2

,

at zero temperature, assuming levels up to the Fermi level pf are occupied.
At finite temperature T this generalizes to

ρ =
1

π2

∫ ∞
0

p2dp

[1 + e(E−µ)/kT ]
,

where E is the particle energy, µ is the chemical potential, and k =
8.617342 × 10−5 eV/K is Boltzmann’s constant. Taking advantage of the
energy-momentum relation

p2

2m
+ V (r) = E ,

we may change the independent variable to E. We have pdp = mdE, from
which follows

ρ =
m

π2

∫ ∞
V (r)

pdE

[1 + e(E−µ)/kT ]
.

With the further change of variable ε = E − V , p = √2mε, we obtain

ρ =
(2m)3/2

2π2

∫ ∞
0

√
ε dε

[1 + e(ε+V (r)−µ)/kT ]
.

It is convenient to write this expression in terms of the Fermi integral

I1/2(x) =

∫ ∞
0

y1/2 dy

[1 + ey−x]
.

We find that

ρ(r) =
(2mkT )3/2

2π2
I1/2(x) (1)

with

x = [µ− V (r)] /kT .
For low temperatures, x is large and

I1/2 ≈ 2
3
x3/2 .

The corresponding low temperature approximation to ρ is

ρ(r) ≈ (2m [µ− V (r)])
3/2

3π2
,

which agrees with the zero temperature result provided we identify the
low-temperature limit of the chemical potential µ(T ) with the Fermi en-
ergy,

lim
T→0
µ(T ) = Ef .
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In the finite-temperature case, µ(T ) is determined from the normalization
condition for a neutral atom (N = Z),

Z =

∫
ρ(r) d3r = 4π

∫ R
0

r2ρ(r)dr ,

where we have replaced the box by a spherical cavity of radius R.

1.2 Self-consistent potential

Let us assume a nucleus of charge Z surrounded by a cloud of Z electrons
with density ρ, and let us determine ρ(r) self-consistently using the con-
siderations of the previous section. We ignore exchange and determine
V (r) from the Poisson equation:

∇2V = −4πρ . (2)

(We use atomic units here) Assuming spherical symmetry, the solution to
this equation that reduces to the nuclear Coulomb potential at the origin
is

V (r) = −Z
r
+
1

r

∫ r
0

4πs2ρ(s) ds+

∫ R
r

4πsρ(s)ds .

This potential satisfies Eq. (2) and the boundary conditions

V (R) = 0 and
dV

dr
(R) = 0 .

1.3 Self-Consistent TF Code

We wrote a small fortran code “thomas.f” to evaluate the Thomas-Fermi
potential V (r) for a cavity of a given radius. The input parameters are
the nuclear charge Z, the cavity radius R (a.u.), the temperature range
[T1, T2, dT ], and two initial guesses for the chemical potential µ (µ1, µ2).
These initial guesses are chosen so that F (µ1)× F (µ2) < 0, where

F (µ) = Z − 4π
∫ R
0

r2ρ(r) dr . (3)

The initial guesses insure that the normalization condition F (µ) = 0 is
satisfied for some value of µ in the interval (µ1, µ2). The density ρ(r)
is evaluated on the standard 500 point atomic grid from Eq. (1). (The
Fermi integral I1/2(x) in Eq. (1) is evaluated at each point on the grid
using an adaptive 15-point Gaussian quadrature rule from quadpack.)
Starting from a Coulomb potential V (r) = −Z/r, ρ(r) is evaluated and
normalized by solving F (µ) = 0 from Eq. (3) using the subroutine “root.f”
downloaded from netlib which is based on the secant method. After find-
ing ρ(r) and the corresponding value of µ, the Hartree screening function
Y (r)

Y (r) =

∫ r
0

4πs2ρ(s) ds+ r

∫ R
r

4πsρ(s) ds
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Figure 1: The radial electron density 4πr2ρ(r), the Hartree screening function
Y (r) and the “effective” charge Z − Y (r) are shown as functions of r for Fe
(Z=26, A= 55.845) at density ρm = 7.874 corresponding to R = 2.6672 The
temperature in this example is T = 10 a.u. = 272.1 eV. The insert shows the
potential V (r). Note that V and its derivative vanish at r = R.

is evaluated and a new effective charge Zeff = Z−Y (r) is determined. This
charge is used to obtain a new potential and the whole process is repeated
until the chemical potential has converged between successive iterations
to a relative accuracy ε < 10−7. The iteration scheme is repeated for each
temperature in the interval [T1, T2, dT ].
Solutions to the above equation for Fe (Z = 26) at temperature kT =

10 (a.u.) are shown in Fig. 1. The cell radius is R = 2.6672 (a.u.) based
on normal iron density 7.874 g/cm3 and atomic weight A = 55.845 g/mol.

1.4 Pressure

Now, we evaluate the pressure at the surface of the containing sphere
r = R. Note that the potential and its gradient vanish at the surface.
Therefore, the forces on the electron cloud vanish at the surface and the
particles move as free particles. One sixth of the electrons move in the
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x direction, one sixth in the y direction and one sixth in the z direction.
Consider those electrons in a tube of length lx and area Ax moving along
x. The momentum transferred to the surface on an elastic collision is
2px. The force per unit area on Ax by an electron inside the tube having
momentum px is therefore

Txx = 2px × vx
lx
× 1

Ax
= 2

p2x
mAxlx

.

The pressure on the surface is

P =
1

6
[Txx + Tyy + Tzz] =

p2

3m
× N
V
,

where N/V is the density of particles with momentum p at the surface.
Average this over a thermal distribution to obtain

d3P = 2
d3p

(2π)3
p2

3m

1

[1 + e(E−µ)/kT ]
,

giving

P =
1

3π2m

∫ ∞
0

p4dp

[1 + e(E−µ)/kT ]

=
1

3π2

∫ ∞
0

p3dE

[1 + e(E−µ)/kT ]

=
(2m)3/2

3π2

∫ ∞
0

E3/2dE

[1 + e(E−µ)/kT ]

=
(2mkT )5/2

6mπ2
I3/2(µ/kT ) ,

where

I3/2(x) =

∫ ∞
0

y3/2 dy

[1 + ey−x]
.

It should be mentioned that the formula for pressure obtained here is in
complete agreement with that derived in Ref. [2] from the Helmholtz free
energy F using thermodynamic arguments.

Atomic units of force and length:
[F ] 8.23872181 × 10−8 N
[L] 5.291772083 × 10−11 m
[P ] 294.2100996 Mbar

In Table 1, we compare the results of the present calculation of the
chemical potential and pressure with the examples given in Table IX in
the paper of Feynman, Metropolis, and Teller [1]. We see that with two
exceptions, which are obvious misprints, the present calculations are in
agreement with those of [1]. The results for P are also in agreement with
values from [3].
In the upper panel of Fig. 2, we plot the chemical potential as a func-

tion of temperature for Fe at the normal density ρm = ρ0 = 7.874 gm/cc
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Table 1: Comparison of output from the Thomas-Fermi code with results from
Table XI of Feynman, Metropolis, and Teller [1]. The cavity radius a and the
temperature T are input parameters. The chemical potential from Ref. [1] is
inferred from their tabulated values of βb.

T(keV) a(Å) µ(keV) µ [1] P(Mbar) P [1]
0.2231 1.259 -0.5581 -0.5576 581.2 581.5
0.4926 1.274 -1.6991 -1.6925 1646. 1665.
0.1476 2.977 -0.6639 -0.6615 28.44 28.97
0.2381 3.101 -1.2152 -1.2142 51.34 51.40
0.5297 2.944 -3.1282 -3.1257 170.1 170.9
0.2366 0.966 -0.4269 -0.4193 1333. 1375.
14.660 0.757 -97.191 -97.182 332300. 166000.
0.2923 1.787 -1.1140 -1.1077 311.4 3.179
0.9892 2.844 -6.5628 -6.5571 391.2 392.4
0.3416 4.292 -2.1988 -2.1860 33.40 34.54
0.0326 3.567 -0.1190 -0.1154 1.518 1.703

and at density 0.1 ρ0. The chemical potential is small and positive at
T = 0 and decreases monotonically with T . In the lower panel, we plot
the pressure, which increases monotonically from P = 4.103 Mbar at
T = 0 for density ρ0 and from P = 0.012 Mbar for density 0.1 ρ0. The
results for P are in agreement with values given in Fig. 3 of Cowan and
Ashkin [3].

1.5 Kinetic and Potential Energies

The kinetic energy of the atom under consideration is

Ekin =

∫ R
0

4πr2dr

∫
p2

2m

d3p

(2π)3
1

[1 + e(E−µ)/kT ]

=
1

mπ

∫ R
0

r2dr

∫ ∞
0

p4dp

[1 + e(E−µ)/kT ]

=
2

π
(2mkT )3/2kT

∫ R
0

I3/2(x) r
2dr , (4)

where x = [µ − V (r)]/kT . Integrating by parts, the integral on the last
line of Eq. (4) may be transformed to

∫ R
0

I3/2(x) r
2dr =

R3

3
I3/2(µ/kT ) +

1

3kT

∫ R
0

r3
dI3/2(x)

dx

dV

dr
dr . (5)
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Figure 2: The chemical potential µ(T ) and the pressure P are shown as functions
of temperature T for Fe (Z=26, A= 55.845) at density ρm = 7.874 gm/cc
corresponding to R = 2.667 a0 and at and density 0.1 ρm.

The derivative of I3/2(x) is easily evaluated as

dI3/2(x)

dx
= −

∫ ∞
0

y3/2d

[
1

1 + ey−x

]

=
3

2

∫ ∞
0

y1/2 dy

[1 + ey−x]

=
3

2
I1/2(x) . (6)

With the aid of Eqs. (5) and (6), we can rewrite the kinetic energy from
Eq. (4) as

Ekin =
2

π
(2mkT )3/2kT

{
R3

3
I3/2(µ/kT ) +

1

2kT

∫ R
0

r3I1/2(x)
dV

dr
dr

}

=
4πR3

3

(2mkT )3/2kT

2π2
I3/2(µ/kT ) +

(2mkT )3/2

π

∫ R
0

I1/2(x)

(
r
dV

dr

)
dr

=
3

2
P Ω+

1

2

∫ R
0

4πr2ρ(r)

(
r
dV

dr

)
dr , (7)

where Ω = 4πR3/3 is the volume of the containing cell. Since

r
dV

dr
=
Z

r
− 1
r

∫ r
0

4πs2ρ(s)ds ,

7



the second term in (7) may be written

1

2

∫ R
0

4πr2ρ(r)

(
r
dV

dr

)
dr

=
1

2

∫ R
0

4πr2ρ(r)
Z

r
dr − 1

2

∫ R
0

4πrρ(r)dr

∫ r
0

4πs2ρ(s)ds

= −1
2
(Ee−n + Ee−e) = −1

2
Epot , (8)

where Epot is the total potential energy. We have written Epot = Ee−n+
Ee−e, where Ee−n is the electron-nucleus potential energy and Ee−e is
the electron-electron potential energy. Combining the above equations,
we obtain a generalized “virial” theorem

Ekin =
3

2
P Ω− 1

2
Epot (9)

1.6 Other Thermodynamic Quantities

Other important thermodynamic quantities are also given in [1]. We
write out explicit formulas for entropy S, the internal energy U and the
Helmholtz free energy F following notes of Rozsnyai [4]. (Rozsnyai’s defi-
nition of internal energy is the usual sum kinetic and potential energies; it
differs from the definition given in [1] where the T = 0 free-space energy
is subtracted out.) (The definition of internal energy in these notes is
the usual sum kinetic and potential energies; it differs from the definition
given in [1] where the T = 0 free-space energy is subtracted out.)
The entropy S for a collection of fermions is given by the expression

TS = −kT
∑
i

[ni lnni + (1− ni) ln (1− ni)] ,

where

ni =
1

[1 + e(εi−µ)/kT ]

is the number of states at energy εi. This can be rearranged to give

TS = −kT
∑
i

[
ni ln

(
ni

1− ni
)
+ ln (1− ni)

]

=
∑
i

[niεi − niµ]− kT
∑
i

ln (1− ni)

= Ekin + Ee−n + 2Ee−e − µN − kT
∑
i

ln (1− ni) . (10)

The sum on the last line of Eq. (10) can be expressed in terms of the
kinetic energy. To this end, we write

∑
i

ln (1− ni) ≡
∫
d3r

∫
2d3p

(2π)3
ln

(
e(E−µ)/kT

1 + e(E−µ)/kT

)

=
2(2mkT )3/2

π

∫ R
0

r2dr

∫ ∞
0

y1/2dy ln

(
ey−x

1 + ey−x

)
. (11)
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Figure 3: The entropy S/k is shown as functions of temperature T for Fe (Z=26,
A= 55.845) at density ρm = 7.874 corresponding to R = 2.6672 a.u.

The integral over y in Eq. (11) can be integrated by parts to give

∫ ∞
0

y1/2dy ln

(
ey−x

1 + ey−x

)
= −2

3

∫ ∞
0

y3/2 dy

[1 + ey−x]
= −2

3
I3/2(x) . (12)

It follows that

−kT
∑
i

ln (1− ni) = 2
3
kT
2(2mkT )3/2

π

∫ R
0

r2dr I3/2(x) =
2

3
Ekin

Combining, we have

TS =
5

3
Ekin + Ee−n + 2Ee−e − µN (13)

=
5

2
P Ω +

1

6
Ee−n +

7

6
Ee−e − µN . (14)

A plot of the (dimensionless) ratio of the entropy to Boltzmann’s constant
S/k as a function of T for Fe (Z=26, A= 55.845) at density ρm = 7.874
(gm/cc) is given in Fig. 3. Values of S from this plot are in agreement
with values given in Fig. 5 in Ref. [3].
The internal energy U is

U = Ekin + Epot =
3

2
P Ω+

1

2
Ee−n +

1

2
Ee−e . (15)

From thermodynamics, we know that

dU = dQ− PdΩ = TdS − PdΩ.
The Helmholtz free energy F is defined in terms of the internal energy U
by

F = U − TS = −P Ω+ 1
3
Ee−n − 2

3
Ee−e +Nµ . (16)

From the first of these it follows that

dF = −SdT − PdΩ .
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Table 2: Contributions to energies and entropy of Fe (Z = 26, A= 55.845) at
density ρm = 7.874 (gm/cc) are evaluated for the cases considered in Table 1.
The present values of energies are in agreement with values from Ref. [1] and
from the extensive tables in [5].

T(keV) a(Å) Epot/kTZ Ekin/kTZ P Ω/kTZ S/k

0.2231 1.259 -13.53 7.548 0.5227 87.53
0.4926 1.274 -5.439 3.762 0.6947 126.6
0.1476 2.977 -20.18 10.86 0.5112 116.5
0.2381 3.101 -11.62 6.780 0.6465 148.8
0.5297 2.944 -4.225 3.348 0.8238 195.1
0.2366 0.966 -12.98 7.256 0.5107 74.63
14.660 0.757 -0.0612 1.514 0.9888 236.9
0.2923 1.787 -9.679 5.757 0.6113 122.2
0.9892 2.844 -1.748 2.246 0.9147 226.9
0.3416 4.292 -7.143 4.738 0.7774 197.0
0.0326 3.567 -97.87 49.26 0.2125 56.51

From this, it follows in turn that the Helmholtz free energy is a thermo-
dynamic function of the “natural” variables of the problem (Ω and T ).
We have

S = −∂F
∂T

∣∣∣∣
Ω

P = −∂F
∂Ω

∣∣∣∣
T

In Table 2, we list values of the potential energy Epot, the kinetic energy
Ekin, the product P Ω, and the entropy S for those cases considered in
Table 1. The values of the energies are in agreement with values given in
Table XI of Ref. [1].
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