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Form-independent third-order transition amplitudes for atoms with one valence electron
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A procedure is given for calculating transition amplitudes that are equal in the length and velocity forms for
transitions in atoms with one valence electron within the framework of relativistic many-body perturbation
theory starting from the Dirac-Hartree-Fock approximation. This procedure is applied to obtain form-
independent second- and third-order dipole matrix elements for the principal transitions in alkali-metal atoms.
Comparisons are made with other calculations and with experiment.

PACS number~s!: 32.70.Cs, 31.10.1z, 31.15.Md
an
it

e
rs
t
e
lu
e

n-
ec
e

de
o
tin
n

er
fo

v
th
h,
in
o
u

en
to
a

si-
e

, w
de
en
W
ts

itu
m
-
th
o

for

us-
es
F
r-

ef.

e-

in

Of
in

PA
the
ore
unt
d
he
rst-
nts
nt-
y is

es
tab-
le-
d

ms

our
-

el-
e

eri-
at-

in
to

ent

or
u-
I. INTRODUCTION

In this paper, we describe a procedure for obtaining tr
sition amplitudes that are equal in length form and veloc
form in relativistic many-body perturbation theory~MBPT!
calculations that start from the Dirac-Hartree-Fock~DHF!
approximation. We restrict our attention to atoms that hav
single valence electron, and show that although fi
second-, and third-order transition amplitudes depend on
form of the transition operator, it is possible to modify th
perturbation expansion in such a way that first-order p
second-order and third-order amplitudes are form indep
dent.

Relativistic MBPT is simplest starting from the froze
core DHF approximation. For atoms with one valence el
tron, lowest-order valence ionization energies are the eig
values of the DHF equations. There are no first-or
corrections to the valence energies in accordance with Ko
man’s theorem. Second-order MBPT corrections, accoun
for core polarization, range from 1% for lithium to more tha
10% for francium; the resulting transition energies diff
from measurement by amounts ranging from 0.1%
lithium to 1% for francium.

An unavoidable consequence of the use of DHF wa
functions to calculate transition amplitudes is that leng
form and velocity-form amplitudes are different. Althoug
lowest-order transition matrix elements calculated us
local-potential wave functions are independent of the form
the transition operator, and while higher-order MBPT calc
lations, starting from a local potential are form-independ
order-by-order, provided proper attention is given
negative-energy states and appropriate derivative terms
included@1#, the same is not true for calculations of tran
tion amplitudes starting from the DHF approximation. W
address this problem in the present paper. As a first step
show that although first-order and second-order amplitu
depend on the form of transition operator, the form dep
dence is weakened when we consider the sum of the two.
show further that when we replace ‘‘bare’’ matrix elemen
between states in expressions for the second-order ampl
by their ‘‘dressed’’ counterparts calculated in the rando
phase approximation~RPA!, the resulting first- plus second
order transition matrix elements become independent of
form of the transition operator. The form independence
1050-2947/2000/62~5!/052512~7!/$15.00 62 0525
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RPA matrix elements is not new; it was noted previously,
example, in Refs.@2# and @3#.

The purpose of this paper is to go beyond RPA and ill
trate how to obtain form-independent transition amplitud
in third-order MBPT calculations that start from the DH
approximation. An alternative form-independent highe
order extension of the RPA was discussed in Ref.@3# and
applied to atoms with one valence electron by Liaw in R
@4#.

Third-order matrix elements for transitions in on
electron atoms were written out in detail in Ref.@5# and used
to evaluate matrix elements for the principal transitions
alkali metals and alkalilike ions in Ref.@8#. The third-order
corrections consist of 64 Brueckner-Goldstone diagrams.
these, the 16 third-order RPA diagrams must be omitted
the present calculation since they are included in the R
extension of second-order-MBPT described above. Of
remaining, eight Brueckner-orbital diagrams account for c
polarization effects, 36 structural radiation diagrams acco
for the interaction of the photon with virtual orbitals, an
four normalization diagrams account for normalization of t
state vector and folded diagrams. Later, we show that if fi
order matrix elements are replaced by RPA matrix eleme
in the third-order diagrams, and if a derivative term accou
ing for the second-order correction to the transition energ
added, the resulting third-order transition amplitude becom
form independent. In fact, form independence can be es
lished separately for the 22 single-excitation and 22 doub
excitation contributions to the Brueckner-orbital an
structural-radiation diagrams. The normalization diagra
are separately form independent.

In the next section, we outline the theory and describe
calculation. Then, in the final section, we apply form
independent third-order MBPT to evaluate dipole matrix
ements for transitions in alkali-metal atoms. Finally, w
make comparisons with other calculations and with exp
mental data. For the principal transitions in alkali-metal
oms,~length-form! DHF dipole matrix elements differ from
precise experimental values by amounts ranging from 1%
lithium to 20% in francium. These differences are reduced
0.5%–10% in the RPA, and to 0.1%–1% in the pres
form-independent third-order calculations.

II. THEORY

We begin by reviewing briefly the conditions required f
form independence of matrix elements. Following the arg
©2000 The American Physical Society12-1
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ments in Sec. IIB of Ref.@6#, the change of the transitio
operator

t~r ,v!52ca•A~r ,v!1f~r ,v!, ~2.1!

induced by the gauge transformation

A~r ,v!→A~r ,v!1“x~r ,v! ~2.2!

f~r ,v!→f~r ,v!1 ivx~r ,v!, ~2.3!

is given by

Dt5$2ca“x~r ,v!1 ivx~r ,v!%. ~2.4!

The unretarded velocity form of the dipole operator is o
tained by choosingAv52 ê/c and fv50, where ê is the
photon polarization vector. The corresponding length-fo
transition operator is obtained from potentialsA l50 and
f l5 ik ê•r , with k5v/c. The gauge functionx52 ê•r /c
transforms the length-form dipole operator to velocity for
The generalization to arbitrary multipoles including retard
tion is given in Refs.@6,7#. Single-particle matrix element
of Dt can be expressed in terms of the gauge funct
x(r ,v) as

Dt i j ~v!5^ i uDtu j &52 i ~e i2e j2v!x i j ~ local potential!,
~2.5!

provided the single-particle orbitals for statesi and j are ob-
tained in a local potential. For energy-conserving transitio
(v5e i2e j ), the change int i j induced by a gauge transfo
mation vanishes, explaining why lowest-order matrix e
ments in a local potential are independent of the form of
electromagnetic field. The identity~2.5! is the fundamenta
relation used in Ref.@1# to establish the form independenc
of second- and third-order MBPT calculations starting fro
a local potential.

If transition matrix elements are calculated using DH
orbitals for statesi andj, then the change induced by a gau
transformation is

Dt i j ~v!52 i ~e i2e j2v!x i j

2 i(
ak

@giaakxk j2x ikgkaa j# ~DHF potential!,

~2.6!

wheregi jkl are two-particle matrix elements of the electro
electron Coulomb interaction. The sum overa on the right-
hand side of Eq.~2.6! extends over occupied core orbita
and the sum overk extends over all possible~positive- and
negative-energy! orbitals. The sum in Eq.~2.6! arises from
the nonlocal exchange term in the DHF potential. It follow
from Eq.~2.6! that DHF matrix elements are form depende
even for energy-conserving transitions.

A. Random-phase approximation

In this paragraph, we consider amplitudesTan
RPA andTna

RPA

for transitions between core states and excited state
closed-shell atoms calculated in the random-phase app
05251
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mation ~RPA!. We verify that the changes in these amp
tudes induced by a gauge transformation satisfy

DTan
RPA52 i ~ea2en2v!xan , ~2.7!

DTna
RPA52 i ~en2ea2v!xna , ~2.8!

and, consequently, that RPA amplitudes are form indep
dent for energy-conserving transitions. The RPA amplitud
for transitions between core and excited states are define
the equations@8#:

Tan
RPA5tan1(

bm

Tbm
RPAg̃amnb

eb2em2v
1(

bm

g̃abnmTmb
RPA

eb2em1v
, ~2.9!

Tna
RPA5tna1(

bm

Tbm
RPAg̃nmab

eb2em2v
1(

bm

g̃nbamTmb
RPA

eb2em1v
.

~2.10!

In these equations and in the sequel we use indicesa, b, c
near the beginning of the alphabet to represent occupied
orbitals, indicesm, n, o to represent virtual orbitals, indicesi,
j, k to represent arbitrary~virtual or occupied! orbitals, and

v, w to represent valence orbitals. The notationg̃i jkl desig-
nates antisymmetrized Coulomb matrix elements. From E
~2.9! and ~2.10!, it follows that the changesDTan

RPA and
DTna

RPA induced by a gauge transformation satisfy

DTan
RPA5Dtan1(

bm

DTbm
RPAg̃amnb

eb2em2v
1(

bm

g̃abnmDTmb
RPA

eb2em1v
,

~2.11!

DTna
RPA5Dtna1(

bm

DTbn
RPAg̃nmab

eb2em2v
1(

bm

g̃nbamDTmb
RPA

eb2em1v
.

~2.12!

With the aid of Eq.~2.6!, it is elementary to verify that Eqs
~2.7! and ~2.8! provide a solution to Eqs.~2.11! and ~2.12!.
The uniqueness of the solution follows from the fact th
Eqs. ~2.11! and ~2.12! are a nonsingular system of linea
equations.

From these results for core-excited amplitudes, it follo
that the generalization of the RPA amplitude to arbitra
transitions given by

Ti j
RPA5t i j 1(

na

Tan
RPAg̃in ja

ea2en2v
1(

na

g̃ia jnTna
RPA

ea2en1v
~2.13!

satisfies

DTi j
RPA52 i ~e i2e j2v!x i j . ~2.14!

This is the fundamental identity needed to construct for
independent second- and third-order transition amplitude
2-2
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B. Form-independent second-order MBPT

The second-order MBPT amplitude, which accounts
shielding of the transition operator by the atomic core,
given by @5#

Twv
(2)5(

na

tang̃wnva

ea2en2ew1ev
1(

na

g̃wavntna

ea2en1ew2ev
.

~2.15!

On comparing the sumtwv1Twv
(2) with the generalized RPA

amplitude in Eq.~2.13!, it follows that

Twv
RPA5twv1(

na

Tan
RPAg̃wnva

ea2en2v
1(

na

g̃wavnTna
RPA

ea2en1v
, ~2.16!

with v5ew2ev , is a generalization of the first- plus secon
order amplitude that is independent of form for energ
conserving transitions. We adoptTwv

RPA here as the form-
independent first- plus second-order amplitude.

When the iterative solutions to Eqs.~2.9! and ~2.10! are
substituted into Eq.~2.16!, we recover a subset of terms fro
first-, second-, and higher-order MBPT that starts from
form-dependent DHF approximation and converges to fo
independent RPA amplitude. The convergence of the ite
tion solution is illustrated in Table I, where we present su
cessive approximations to the length-form and velocity-fo
dipole matrix elements for the 5s1/225p1/2 transition in ru-
bidium. The convergence becomes slower and slower as
move from one alkali to the next heavier one. Although on
12 iterations are required to achieve convergence to six d
for Rb, 40 iterations are required to achieve the same leve
convergence for the 7s1/227p1/2 transition in Fr. Indeed, for
the next higher alkali-metal atom~the as yet unobserved e
ement eka-francium,Z5119), the perturbation solution t
the RPA equations diverges. Since the RPA equations
linear, they can be solved directly using Gaussian elimi
tion for this case.

TABLE I. Iterative solution to the RPA equation~2.13! for the
5s1/225p1/2 transition in Rb, showing the convergence of leng
form ~L! and velocity-form~V! dipole matrix elements to a gauge
independent value for increasing orders of perturbation theory.

Order L V

DHF 4.81 889 4.64 009
2nd 4.59 522 4.61 229
3rd 4.62 324 4.62 061
4th 4.60 236 4.60 910
5th 4.60 834 4.60 883
6th 4.60 522 4.60 654
7th 4.60 632 4.60 643
8th 4.60 581 4.60 604
9th 4.60 601 4.60 603
10th 4.60 592 4.60 596
11th 4.60 596 4.60 596
12th 4.60 594 4.60 595
RPA 4.60 595 4.60 595
05251
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C. Form-independent third-order MBPT

Explicit formulas for the third-order transition amplitud
are written out in Ref.@5# and evaluated for transitions i
alkali-metal atoms and alkalilike ions in Ref.@8#. As men-
tioned in the introduction, the third-order terms may be su
divided into classes according to

T(3)5TBO
(3)1TSR

(3)1TNorm
(3) . ~2.17!

There is, in addition, a third-order RPA term, which is om
ted here since it is already included in the form-independ
first- plus second-order amplitude given in the previous s
section.

We demonstrate below that with a suitable derivat
term, the third-order amplitude is also form independent. T
need for derivative terms in MBPT calculations of transiti
amplitudes was discussed previously in Ref.@1#. The transi-
tion operator depends on the transition energy and the t
sition energy changes order-by-order in an MBPT calcu
tion. The corresponding MBPT amplitude must be modifi
to account for these changes. For MBPT calculations star
from a DHF potential, there are no first-order corrections
energies. To account for the second-order correction to
transition energydv (2), the term

Tderiv
(3) 5

dtwv

dv
dv (2) ~2.18!

must be added to the third-order amplitude.
To achieve form independence, it was found necessar

replace all single-particle amplitudest i j in the expressions
for the third-order MBPT amplitude by the correspondi
generalized RPA amplitudesTi j

RPA. With these replacements
the Brueckner-orbital~BO! correction, which accounts fo
core polarization, becomes

TBO
(3)5 (

abmi
F gabmvTwi

RPAg̃miba

~e i2ev!~ev1em2ea2eb!
1c.c.G ~2.19!

1 (
amni

F g̃aimnTwi
RPAgmnav

~e i2ev!~en1em2ea2ev!
1c.c.G .

~2.20!

The structural-radiation~SR! correction, which accounts fo
radiation from virtual states, becomes

TSR
(3)5 (

abcn
F gbavcTcn

RPAg̃wnba

~en2ec1ew2ev!~en1ew2ea2eb!
1c.c.G

~2.21!

1 (
abmn

F g̃nwabTbm
RPAg̃amvn

~em2eb1ew2ev!~en1ew2ea2eb!
1c.c.G

~2.22!

1 (
amnr

F gwrnmTar
RPAg̃mnav

~e r2ea1ew2ev!~en1em2ea2ev!
1c.c.G

~2.23!
2-3
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1 (
abmn

F g̃mnavTbm
RPAg̃awnb

~em2eb1ew2ev!~en1em2ea2ev!
1c.c.G

~2.24!

1 (
abmn

gabvnTnm
RPAg̃mwab

~en1ev2ea2eb!~em1ew2ea2eb!
~2.25!

1 (
abcn

g̃wnabTac
RPAg̃bcnv

~en1ev2eb2ec!~en1ew2ea2eb!
~2.26!

1 (
abmn

gmnavTab
RPAg̃bwnm

~en1em2eb2ew!~en1em2ea2ev!
~2.27!

1 (
amnr

g̃wanrTrm
RPAg̃mnav

~en1em2ea2ev!~e r1en2ea2ew!
. ~2.28!

The normalization correction, which accounts for wav
function normalization and for folded diagrams, becomes

TNorm
(3) 5

1

2
Twv

RPAH (
amn

g̃vamngmnav

~em1en2ea2ev!2

1(
abn

g̃abnvgnvba

~ev1en2ea2eb!2
1c.c.J . ~2.29!

In Eqs. ~2.19!–~2.29!, the notation ‘‘c.c.’’ designates com
plex conjugation together with interchange of indicesv and
w. No replacement is required in the derivative term, giv
by Eq. ~2.18!.

To establish form independence of the third-order corr
tion, we note first that with the aid of Eq.~2.14!, the change
induced by a gauge transformation in the ‘‘single excitatio
contributions toTBO

(3)1TSR
(3) , which consist of terms~2.19!,

~2.21!–~2.22! and ~2.25!–~2.26!, can be reduced to

DTBO
(3)using1DTSR

(3)using

52 ixwvF (
abm

gabmwg̃mwba

~ew1em2ea2eb!
2~w→v !G .

~2.30!

From Ref.@5#, one finds that the first term inside the brack
on the right-hand side of this equation is the single-excitat
contribution to the second-order valence energy of statew.
The bracket, therefore, represents the single-excitation
tribution the transition energydvsing

(2) . In a similar way, one
finds that the change induced in the ‘‘double excitatio
contributions toTBO

(3)1TSR
(3) , which consist of terms~2.20!,

~2.23!, ~2.24!, ~2.27! and ~2.28!, can be reduced to

DTBO
(3)udoub1DTSR

(3)udoub

52 ixwvF (
amn

g̃avmngmnav

~en1em2ea2ev!
2~v→w!G .

~2.31!
05251
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In this case, the term inside the square bracket on the ri
hand side of the equation can be identified with the con
bution to the transition energy from double excitatio
dvdoub

(2) . With the derivative term added, Eqs.~2.30! and
~2.31! may be rewritten as

DTBO
(3)using1DTSR

(3)using1D
dtwv

dv
dvsing

(2) 50, ~2.32!

DTBO
(3)udoub1DTSR

(3)udoub1D
dtwv

dv
dvdoub

(2) 50. ~2.33!

From these equations, it follows that the combinations

TBO
(3)using1TSR

(3)using1
dtwv

dv
dvsing

(2)

and

TBO
(3)udoub1TSR

(3)udoub1
dtwv

dv
dvdoub

(2)

are form independent. Adding these two, we see that the
of the BO, SR, and derivative terms is form independe
The modified third-order normalization correction, which
proportional toTwv

RPA is obviously also form independent.
In Table II, we give a breakdown of the single and doub

contributions to the dipole matrix element for the 5s-5p1/2
transition in rubidium. Both length-form~L! and velocity-
form ~V! matrix elements are shown. Row labels refer to t
formulas used to evaluate the terms. Length- and veloc
values of the individual terms differ in sign and order
magnitude; moreover, the totals from the BO and SR d
grams differ inL andV forms. When the single- and double
excitation contributions to the derivative term are add
however,L and V contributions come into agreement. Th
smallL-V difference seen for the double excitation contrib
tions arises because we have truncated the double sums

In the following section, we apply the form-independe
expressions developed here to evaluate transitions in al
metal atoms.

III. RESULTS AND COMPARISONS

Length and velocity-form matrix elements from our DH
RPA, and third-order calculations are given in Table III f
the principal transitions in alkali-metal atoms. Following th
procedure discussed in Ref.@1#, the DHF and RPA matrix
elements in the tables were obtained by dividing the co
sponding amplitudes by the lowest-order transition energ
while the third-order matrix elements were obtained by
viding the third-order amplitudes by the second-order tran
tion energies. The DHF results differ inL and V forms as
expected. TheL andV forms of the RPA matrix elements ar
identical to the five decimals quoted. There are, howev
smallL-V differences in the third-order matrix elements p
marily of numerical origin. In our numerical work, we em
ploy 40 positive-energy basis functions for each partial wa
and truncate the partial-wave sums atl 58. The primary
2-4
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TABLE II. Single- and double-excitation contributions to th
third-order dipole matrix element for the 5s1/225p1/2 transition in
Rb are given in length-form~L! and velocity-form (V). The num-
bers in parentheses are equation numbers of the correspon
terms. The term~c.c.! gives the complex conjugate part of the ter
on the row above.

Single Double
Term L V Term L V

~2.19! 20.0503 0.0715 ~2.20! 0.5036 20.5665
~c.c.! 0.0051 20.0583 ~c.c.! 20.0190 0.0572
~2.21! 20.0003 0.0130 ~2.23! 0.0201 20.5058
~c.c.! 0.0003 0.0024 ~c.c.! 0.0220 0.5429
~2.22! 0.0000 20.0084 ~2.24! 20.0233 0.5747
~c.c.! 0.0001 0.0044 ~c.c.! 20.0257 20.6160
~2.25! 20.0001 20.0020 ~2.27! 0.0003 20.0004
~2.26! 0.0001 20.0022 ~2.28! 20.0184 20.0439
Sum 20.0452 0.0203 Sum 0.4597 20.5579
deriv 0.0655 0.0000 deriv 21.0176 0.0000
Total 0.0203 0.0203 Total 20.5580 20.5579

TABLE III. First-order ~DHF!, second-order~RPA!, and third-
order approximations to the dipole matrix elements for the princ
transitions in alkali-metal atoms.

L V L V

Li 2s22p1/2 2s22p3/2

DHF 3.3644 3.4301 4.7580 4.8510
RPA 3.3505 3.3505 4.7383 4.7383
Third Order 3.3205 3.3205 4.6959 4.6959
Na 3s23p1/2 3s23p3/2

DHF 3.6906 3.6516 5.2188 5.1632
RPA 3.6474 3.6474 5.1578 5.1578
Third Order 3.5497 3.5497 5.0197 5.0196
K 4s24p1/2 4s24p3/2

DHF 4.5546 4.4294 6.4391 6.2598
RPA 4.4005 4.4005 6.2221 6.2221
Third Order 4.1316 4.1316 5.8414 5.8413
Rb 5s25p1/2 5s25p3/2

DHF 4.8189 4.6401 6.8017 6.5399
RPA 4.6059 4.6059 6.5052 6.5052
Third Order 4.2685 4.2684 6.0249 6.0248
Cs 6s26p1/2 6s26p3/2

DHF 5.2777 5.0371 7.4265 7.0662
RPA 4.9747 4.9747 7.0137 7.0137
Third Order 4.5402 4.5400 6.3892 6.3891
Fr 7s27p1/2 7s27p3/2

DHF 5.1437 4.8402 7.0903 6.6424
RPA 4.7741 4.7741 6.6268 6.6268
Third Order 4.3236 4.3234 5.9450 5.9448
eka-Fr 8s28p1/2 8s28p3/2

DHF 4.5306 4.0110 5.5280 4.9964
RPA 3.9878 3.9878 4.9927 4.9927
Third Order 3.6354 3.6346 4.4487 4.4484
05251
source of error in our third-order matrix elements is this tru
cation. Although the truncation error is small, it is useful
have a quantitative estimate of its size in a specific case
this end, we do calculations of the 6s1/226p1/2 dipole matrix
element in Cs including partial waves up to values ofl that
range from six to nine. We find that the matrix element fa
off as 1/l 3 for largel. Assuming this asymptotic behavior, w
extrapolate our numerical results for theL- andV-form ma-
trix elements and find L`54.53 869(1) and V`

54.53 865(1). The agreement betweenL- and V-form ma-
trix elements is improved over the truncated results witl
58 by one digit. The residual differenceL`2V`

50.00 005(2) is the contribution from omitted negativ
energy states. In previous studies, it was found that nega
energy states contribute principally toV-form matrix ele-
ments. Therefore, the form-independent amplitude for
6s1/2-6p1/2 transition in Cs isL[L`54.53 869(1). The nu-
merical accuracy of this result is far greater than warrant
considering that we have neglected contributions fr
fourth-order perturbation theory that are expected to be

ing

l

TABLE IV. Comparison of third-order MBPT calculations o
reduced-matrix elements for the principal transitions with other c
culations and with precise experiments.

Element ns2np1/2 ns2np3/2 Source

Li ( n52) 3.320 4.696 3rd-ord
3.321 4.696 Br-orb@4#

3.316 4.691 SD@10#

3.318 4.693 other@14,15#
3.317 4.691 other@16–20#
3.316~3! 4.690~5! Expt. @11#

Na (n53) 3.550 5.020 3rd-ord
3.540 5.006 Br-orb@4#

3.531 4.994 SD@9#

3.538 5.004 CC@21#

3.526 4.987 MCHF@22#

3.524 4.984 MCHF1CI @23#

3.525~2! 4.984~3! Expt. @11#

K (n54) 4.132 5.841 3rd-ord
4.120 5.825 Br-orb@4#

4.098 5.794 SD@9#

4.102~5! 5.800~8! Expt. @11#

Rb (n55) 4.269 6.025 3rd-ord
4.237 5.978 Br-orb@4#

4.221 5.956 SD@9#

4.231~3! 5.977~4! Expt. @11#

Cs (n56) 4.540 6.389 3rd-ord
4.474 6.286 Br-orb@4#

4.478 6.298 SD@9#

4.499 6.332 MBPT@24#

4.525 6.370 SD@25#

4.489~7! 6.324~7! Expt. @12#

Fr (n57) 4.324 5.945 3rd-ord
4.256 5.851 SD@9#

4.279 5.894 MBPT@26#

4.277~8! 5.898 Expt.@13#
2-5
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order 1%. In the tables, we give unextrapolated values of
matrix elements obtained by truncating the partial-wa
sums atl 58. The effect of truncation slightly increases wi
increasingZ as can be seen from the tabulated values.

Now let us turn to comparisons with other accurate c
culations and with experiment. We present our for
independent third-order matrix elements in Table IV fo
lowed by the form-independent Brueckner calculations
Liaw @4#. The values listed from Ref.@4# are averages ofL
and V matrix elements; theL-V differences are less tha
0.2%. These two form-independent generalizations of R
are in close agreement with one another for Li and Na,
drift apart for the heavier alkalis. All-order single-double ca
culations have been carried out in Refs.@9,10# for all of the
cases considered in Table IV. TheL-form SD calculations
@9# are generally in good agreement with experiment. T
SD matrix elements agree inL and V form to better than
0.1% for Li and Na. For heavier alkalis theL-V differences
in the SD calculations increase to the 1% level; the diff
ences are: 0.2% for K, 0.3% for Rb, 0.5% for Cs, and 1%
Fr.

For Li, we also compare our third-order matrix elemen
with other high-precision calculations@14–20#. All of the
calculations for Li cited in the table agree with one anoth
to better than 0.1%. Moreover, these calculations agree
experimentally determined matrix elements@11# to better
than 0.1%. The close agreement of the present MBPT ca
lation with more elaborate calculations and with experim
for Li is somewhat surprising given the fact that the 2s-2p
matrix elements change by 1% from second order to th
order. For Na there are, in addition to the Brueckner-orb
and SD calculations discussed earlier, coupled-cluster@21#
and multiconfiguration HF@22,23# calculations. No discus
sion of length-velocity differences is given for these calcu
tions. For cesium, the all-order MBPT result of@24# is in
excellent agreement with experiment, however,L-V differ-
ences are not discussed. The all-order SD results of Ref.@25#
ms
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for Cs exhibit L-V agreement and agreement with expe
ment at the level of 0.7%. As in our third-order calculation
‘‘bare’’ matrix elements were replaced by their RPA cou
terparts; however, experimental instead of lowest-order tr
sition energies were used in evaluating the RPA amplitud
and derivative terms were ignored. Furthermore, high-or
terms, which need not to be form independent, are inclu
in the SD matrix element contributing to theL-V difference.
For Fr, in addition to those mentioned previously, there is
all-order MBPT calculation of@26#, but again, no discussion
of L-V differences was given.

One interesting aspect of heavy element calculation
that the convergence of the iteration solution of the R
equations is slow. In the case of Fr, the absolute values of
individual 1v and2v terms in the velocity-form RPA am
plitudes from Eq.~2.13! are of approximately the same siz
as the first-order amplitude, although their smaller sum c
verges to the full RPA amplitude after many iterations. Th
fragile convergence breaks down totally in eka-Fr, whe
already the third-order RPA term becomes very large.
avoid such convergence problems, it is preferable to so
the full RPA equations using Gaussian elimination.

In summary, we have presented a method based on MB
for obtaining form-independent transition amplitud
through third order for atoms with one valence electron. A
specific application, the method is used to calculate dip
matrix elements for the principal transitions in all alka
metal atoms. Results are obtained that agree with pre
measurements and more elaborate many-body calcula
to 1% or better for all cases. The method given here
be generalized in several ways. For example, we co
extend it to fourth and higher orders in MBPT, or general
it to atoms with two or three valence electrons. In the la
case, it should be noted that form-independent second-o
calculations have been carried out recently for several ca
@27–29#.
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