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Form-independent third-order transition amplitudes for atoms with one valence electron
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A procedure is given for calculating transition amplitudes that are equal in the length and velocity forms for
transitions in atoms with one valence electron within the framework of relativistic many-body perturbation
theory starting from the Dirac-Hartree-Fock approximation. This procedure is applied to obtain form-
independent second- and third-order dipole matrix elements for the principal transitions in alkali-metal atoms.
Comparisons are made with other calculations and with experiment.

PACS numbdps): 32.70.Cs, 31.16-z, 31.15.Md

[. INTRODUCTION RPA matrix elements is not new; it was noted previously, for
example, in Refs[2] and[3].

In this paper, we describe a procedure for obtaining tran- The purpose of this paper is to go beyond RPA and illus-
sition amplitudes that are equal in length form and velocity(raté how to obtain form-independent transition amplitudes
form in relativistic many-body perturbation theofy!BPT) n thll’d.-OI’dQI’ MBPT calcula'tlons that'start from the DHF
calculations that start from the Dirac-Hartree-Fo@HF) approximation. An alternative form-independent higher-

S . ! order extension of the RPA was discussed in R&f.and
approximation. We restrict our attention to atoms that have %pplied to atoms with one valence electron by Liaw in Ref.
single valence electron, and show that although firstr,y

second-, and third-order transition amplitudes depend on the "Third-order matrix elements for transitions in one-

form of the transition operator, it is possible to modify the electron atoms were written out in detail in RE§] and used
perturbation expansion in such a way that first-order pluso evaluate matrix elements for the principal transitions in
second-order and third-order amplitudes are form indeperalkali metals and alkalilike ions in Reff8]. The third-order
dent. corrections consist of 64 Brueckner-Goldstone diagrams. Of
Relativistic MBPT is simplest starting from the frozen- these, the 16 third-order RPA diagrams must be omitted in

core DHF approximation_ For atoms with one valence e|ethe present calculation since they are included in the RPA

tron, lowest-order valence ionization energies are the eigerXtension of second-order-MBPT described above. Of the

values of the DHF equations. There are no ﬁrst_ordeiremaining,eight Brueckner-orbital diagrams account for core

. S . olarization effects, 36 structural radiation diagrams account
corrections to the valence energies in accordance with Koop?Or the interaction of the photon with virtual orbitals, and

man’s theorem. Second-order MBPT colrre.ctlons, accounting, ;- normalization diagrams account for normalization of the
for core polarization, range from 1% for lithium to more than gtate vector and folded diagrams. Later, we show that if first-
10% for francium; the resulting transition energies differ order matrix elements are replaced by RPA matrix elements
from measurement by amounts ranging from 0.1% forin the third-order diagrams, and if a derivative term account-
lithium to 1% for francium. ing for the second-order correction to the transition energy is
An unavoidable consequence of the use of DHF waveadded, the resulting third-order transition amplitude becomes
functions to calculate transition amplitudes is that lengthform independent. In fact, form independence can be estab-
form and velocity-form amplitudes are different. Although, lished separately for the 22 single-excitation and 22 double-
lowest-order transition matrix elements calculated usingXcitation —contributions to the Brueckner-orbital and

local-potential wave functions are independent of the form oft'Uctural-radiation diagrams. The normalization diagrams

the transition operator, and while higher-order MBPT calcu2'® separately f°“.”” mdepend.ent. .
In the next section, we outline the theory and describe our

lations, starting from a local potential are form-independent lculat Th in the final i v f
order-by-order, provided proper attention is given ipcalculation. Ihen, in the mnal secton, we apply torm-

negative-energy states and appropriate derivative terms ap%deptendfenttthlrd?:_)rder 'MBPI‘II It_o evtalluatte d'pO|E.mT‘Itr'X el-
included[1], the same is not true for calculations of transi- EMENtS Tor transitions in alkali-metal atoms. Finally, we
tion amplitudes starting from the DHF approximation. We make comparisons with other calculations and with experi-

address this problem in the present paper. As a first step, v\;gental data. For the principal transitions in alkali-metal at-

show that although first-order and second-order amp"tudegms{(Iength—fprn) DHF dipole matrix elementg differ fror(? .
depend on the form of transition operator, the form depenprec'Se experimental values by amounts ranging from 1% in

dence is weakened when we consider the sum of the two. V\) h';Jm toOZO% in francium. These d|ff<§rencoes_are reduced to
show further that when we replace “bare” matrix elements '5/0._10/0 in the RPA’ and to 0'1./0_1/0 in the present
between states in expressions for the second-order ampmué%rm-mdependent third-order calculations.

by their “dressed” counterparts calculated in the random-
phase approximatiofRPA), the resulting first- plus second-
order transition matrix elements become independent of the We begin by reviewing briefly the conditions required for
form of the transition operator. The form independence ofform independence of matrix elements. Following the argu-
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ments in Sec. IIB of Ref{6], the change of the transition mation (RPA). We verify that the changes in these ampli-
operator tudes induced by a gauge transformation satisfy

t(r,w)=—ca-A(r,0)+ ¢(r,o), (2.2 ATRPA= —i(€,— €n— ) Xan, (2.7

induced by the gauge transformation _
ATEaPAZ—I(en—ea—w)Xna, (2.8
A(r,o)—A(r,o)+Vx(r,m) (2.2
) and, consequently, that RPA amplitudes are form indepen-
b(r,w)— ¢(r,w) +iwx(r,o), (2.3 dent for energy-conserving transitions. The RPA amplitudes
is given by for transm_ons between core and excited states are defined by
the equation$8]:

At={—caVx(r,o)tiox(r,n)}. (2.9
i i i TbRP amnb aabanREA

The unretarded velocity form of the dipole operator is ob- TRPA= gt + >, — T » TR (2.9
tained by choosingd,=—e/c and ¢,=0, wheree is the bm €~ €m— @  bm €pT €mT @
photon polarization vector. The corresponding length-form
transitif)n operator is obtained from potentim:q and A Tgr': amab Enbameb
¢ =ike-r, with k=w/c. The gauge functiony=—e-r/c Tha :tna+b2 m*; e —etw
transforms the length-form dipole operator to velocity form. mEh Em mEhm (2.10
The generalization to arbitrary multipoles including retarda- '
tion is given in Refs[6,7]. Single-particle matrix elements
of At can be expressed in terms of the gauge functio
x(r,w) as

RPA

In these equations and in the sequel we use indigcds c

"hear the beginning of the alphabet to represent occupied core

orbitals, indicesn, n, o to represent virtual orbitals, indicés

Atij()=(i|At]j)=—i(e—¢—w)x; (local potential, j» k to represent arbitraryvirtual or occupied oibitals, and
(2.5 v, W to represent valence orbitals. The notat@my, desig-

) ) ) ) ) nates antisymmetrized Coulomb matrix elements. From Egs.
pr_owde_d the smgle-par_tlcle orbitals for staiezsngj] are ob_-_ (2.9 and (2.10, it follows that the changes\TEﬁA and
tained in a local potentla[. qu energy-conserving transmonsATRpA induced by a gauge transformation satisfy
(w=¢€—¢j), the change in;; induced by a gauge transfor- na
mation vanishes, explaining why lowest-order matrix ele- P ~ RPA
ments in a local potential are independent of the form of the ATRPAZ At +2 AT amnb JabnmA Trb
electromagnetic field. The identit§2.5) is the fundamental an AN oep—em—w  Pm ep—€mto
relation used in Refl1] to establish the form independence (2.10)
of second- and third-order MBPT calculations starting from
a local potential. RP ~ RPA

If transition matrix elements are calculated using DHF A TRPA_ z¢ +2 ATbnAEnmab_i_E Onbamd Trp .
orbitals for states andj, then the change induced by a gauge na "t €m0 fm e ento

’

transformation is (2.12
Atjj(0)=—i(€&— ¢~ w)xjj With the aid of Eq.(2.6), it is elementary to verify that Egs.
(2.7 and(2.8) provide a solution to Eqg2.11) and (2.12.
—iE [GiaakXkj— Xikkaajl (DHF potential, The uniqueness of the solution follows from the fact that
ak

Egs. (2.11) and (2.12 are a nonsingular system of linear
(2.6) equations.
From these results for core-excited amplitudes, it follows

wheregjy, are two-particle matrix elements of the electron-that the generalization of the RPA amplitude to arbitrary
electron Coulomb interaction. The sum oweon the right-  transitions given by

hand side of Eq(2.6) extends over occupied core orbitals

and the sum ovek extends over all possiblgositive- and RPA

RPAS =
negative-energyorbitals. The sum in Eq(2.6) arises from TRPA_ ¢ +> M+Z iainTha (2.13
the nonlocal exchange term in the DHF potential. It follows . ' ea a0 Weagegto
from Eq.(2.6) that DHF matrix elements are form dependent
even for energy-conserving transitions. satisfies
A. Random-phase approximation ATﬁPA: —i(&—€—)xi - (2.19

In this paragraph, we consider amplitude,”* and TR>A
for transitions between core states and excited states ifhis is the fundamental identity needed to construct form-
closed-shell atoms calculated in the random-phase approxirdependent second- and third-order transition amplitudes.
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TABLE I. Iterative solution to the RPA equatid2.13 for the C. Form-independent third-order MBPT
5s1,—5py, transition in Rb, showing the convergence of length-
form (L) and velocity-form(V) dipole matrix elements to a gauge-
independent value for increasing orders of perturbation theory.

Explicit formulas for the third-order transition amplitude
are written out in Ref[5] and evaluated for transitions in
alkali-metal atoms and alkalilike ions in RgB]. As men-
Order L v tioned in the introduction, the third-order terms may be sub-
divided into classes according to

DHF 4.81 889 4.64 009

2nd 459522 4.61229 TO=TE+ TR+ T (2.17

3rd 4.62 324 4.62 061 L . . . .
4th 4.60236 4.60910 There is, in ado_llt!on, a thlrd_-order RF_’A term, Wh_lch is omit-
Sth 4.60834 4.60883 t_ed here since it is already m_cluded_ in th_e form-lnd_ependent
6th 4.60522 4.60 654 Q(raségigr:us second-order amplitude given in the previous sub-
7th 4.60632 460643 We demonstrate below that with a suitable derivative
8th 4.60581 4.60604 term, the third-order amplitude is also form independent. The
oth 4.60601 4.60603 need for derivative terms in MBPT calculations of transition
10th 4.60 592 4.60 596 amplitudes was discussed previously in Réf. The transi-
11th 4.60596 4.60 596 tion operator depends on the transition energy and the tran-
12th 4.60594 4.60595

sition energy changes order-by-order in an MBPT calcula-
RPA 4.60595 4.60595 tion. The corresponding MBPT amplitude must be modified

to account for these changes. For MBPT calculations starting
from a DHF potential, there are no first-order corrections to

energies. To account for the second-order correction to the

The second-order MBPT amplitude, which accounts fortransition energyw(?, the term

shielding of the transition operator by the atomic core, is
given by[5]

B. Form-independent second-order MBPT

dty,

5 B Té?é)rifm S (2.18
T@ = 2 tanGwnoa " Owavntna - -
Wo L e —€n—€nt €, Ta €a—€nten—¢€, must be added to the third-order amplitude.
(2.15 To achieve form independence, it was found necessary to

replace all single-particle amplitudég in the expressions
On comparing the surt1NU~l—T\(N23 with the generalized RPA for the third-order MBPT amplitude by the corresponding
amplitude in Eq(2.13), it follows that generalized RPA amplitud&g; . With these replacements,
P - ePA the Brueckne_r-orbita[BO) correction, which accounts for
TRPA_y S TR Guwnoa > Gwaun Tna (2.16 core polarization, becomes
wu Wwu -~ 6a_ €n_w ~ fa_ €n+_w, .

RP
gabn’vai A%miba
3)_
with w= €, — €, , is a generalization of the first- plus second- TR=2> LE__ ) e te—e—e) S (2.19
. .. abmi i v\ €T Em™ €q™ €p
order amplitude that is independent of form for energy-
conserving transitions. We adofit;>* here as the form- G TRPAY
independent first- plus second-order amplitude. +> Yaimn'wi Ymna +ec.cl
When the iterative solutions to Eq.9) and (2.10 are amni | (6= €,)(ent em—€a—€,)
substituted into Eq(2.16), we recover a subset of terms from (2.20

first-, second-, and higher-order MBPT that starts from the L ) )
form-dependent DHF approximation and converges to formT he. s_tructural-rgdlatlomSR) correction, which accounts for
independent RPA amplitude. The convergence of the iterd-2diation from virtual states, becomes
tion solution is illustrated in Table I, where we present suc-

- JHUSE g O TG
cessive approximations to the length-form and veIOC|ty-formT bavc'cn Ywnba TIPS
dipole matrix elements for thesy,—5p4, transition in ru- apen | (€n— €.t en—€,) (et ey—€a—€y)
bidium. The convergence becomes slower and slower as we (2.21
move from one alkali to the next heavier one. Although only
12 iterations are required to achieve convergence to six digits
for Rb, 40 iterations are required to achieve the same level of +

)=
SR

= RP
gnwabTbm amon

+cC.C.

convergence for thesq,;— 7py, transition in Fr. Indeed, for abmn | (€m—€p+€y—€,)(ent €y~ €3~ €p) 22
the next higher alkali-metal atofithe as yet unobserved el- 2.
ement eka-franciumZ=119), the perturbation solution to RP

the RPA equations diverges. Since the RPA equations are + 2 { ng“mTafAE]m“af tfeec.
linear, they can be solved directly using Gaussian elimina- amnr | (€, — €atT €y—€,) (€T €m— €3~ €,)

tion for this case. (2.23
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3 TRP In this case, the term inside the square bracket on the right-
+ > mna _bm Fawnb +c.c. hand side of the equation can be identified with the contri-
abmn| (€m—€pt €w—€)(€nt €m—€a™€,) bution to the transition energy from double excitations
(2.24 s0'3),. With the derivative term added, Eq&2.30 and
(2.31) may be rewritten as

) -I-RP
I 2 Jabun nm Ymwab (2'23

abmn (€n1 €,— €3~ €,)(€mt €y, — €3~ €p)

dt

AT(BSC))| sing+ AT(53F3| sing+ A = 5wgi2n)g: O, (2-32

B dw

E gwnastfAEbcnu (2 26) dt

abcn (6n+ 61) - e-b_ EC)( En+ EW_ ea_ Eb) AT(Bso)|d0Ub+ AT(83F\2|d0Ub+ A dZ:I)U 5(1)8%)[11): 0 (233
gmna)TEEA%bwnm

(2.27y  From these equations, it follows that the combinations

abmn (€n+ em—€p—€y)(ent €m—€a—€,)

by

~ TG . 7@ . 1 Sw'?
) E gwaanr{rrF;AEmna; (228 BOlsing SR|smg do Wging
e te—e—€,)(e+e—€—€y) '
amnf( n m a U)( r n a W) and
The normalization correction, which accounts for wave- dt
i izati i 3 3 wo 2
function normalization and for folded diagrams, becomes T goub™ T qout d_w&ugo)ub

T(3) _}TRPA YvamrImna

Norm™ 2 Wy

5 are form independent. Adding these two, we see that the sum
amn (€m+ €n— €3~ €,) of the BO, SR, and derivative terms is form independent.
~ The modified third-order normalization correction, which is
+> abrwOmoba - (2.29  proportional toT; " is obviously also form independent.
abn (€,+ €,— €5— €p)° In Table Il, we give a breakdown of the single and double
) ) contributions to the dipole matrix element for the-5p4,
In Egs. (2.19—-(2.29, the notation “c.c.” designates com- yansition in rubidium. Both length-forniL) and velocity-
plex conjugation together with interchange of indiceand  form (v) matrix elements are shown. Row labels refer to the
w. No replacement is required in the derivative term, givengormylas used to evaluate the terms. Length- and velocity-
by Eq.(2.18. _ _ values of the individual terms differ in sign and order of
To establish form independence of the third-order COrreCmagnitude; moreover, the totals from the BO and SR dia-

tion, we note first that with the aid of E(R.14), the change grams differ inL andV forms. When the single- and double-
induced by a gauge transformation in the “single excitation” excitation contributions to the derivative term are added,
contributions toT{2+TER, which consist of terms2.19,  however,L and V contributions come into agreement. The
(2.21—(2.22 and(2.295—(2.26), can be reduced to smallL-V difference seen for the double excitation contribu-
AT(3)| . +AT(3)| A tions arises be(_:ause we have truncated the do_uble sums.
BOlsing SRlsing In the following section, we apply the form-independent
expressions developed here to evaluate transitions in alkali-

. gabm\/\g~mwba

- Z _ metal atoms.
| W—v)|.
Xwo abm (€t €m— €3~ €p) ( )

(2.30 Ill. RESULTS AND COMPARISONS

From Ref.[5], one finds that the first term inside the bracket _Length and velocity-form matrix elements from our DHF,
on the right-hand side of this equation is the single-excitatiofRPA, and third-order calculations are given in Table IIl for
contribution to the second-order valence energy of state the principal transitions in alkali-metal atoms. Following the
The bracket, therefore, represents the single-excitation coyocedure discussed in Réfl], the DHF and RPA matrix
tribution the transition energtﬁw‘sizr?g. In a similar way, one elements in the tables were obtained by dividing the corre-

finds that the change induced in the “double excitation” SPonding amplitudes by the lowest-order transition energies

contributions toT(B33+Tg3F§, which consist of termg2.20), while the third-order matrix elements were obtained by di-

viding the third-order amplitudes by the second-order transi-
(2.23, (2.24, (2.27) and(2.28, can be reduced to tion energies. The DHF results differ in and V forms as
AT dous™ A TR goun expected. Thé andV forms of the RPA matrix elements are

identical to the five decimals quoted. There are, however,
_ JavmrImna smallL-V differences in the third-order matrix elements pri-
=1 Xwy E ——— (v—>w) | marily of numerical origin. In our numerical work, we em-
amn (€ntem—€3—€,) L ; . :
ploy 40 positive-energy basis functions for each partial wave
(2.3)  and truncate the partial-wave sumslat8. The primary
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TABLE 1. Single- and double-excitation contributions to the

third-order dipole matrix element for thesh,—5p,, transition in
Rb are given in length-fornfL) and velocity-form ¥/). The num-

bers in parentheses are equation numbers of the corresponding
terms. The ternic.c) gives the complex conjugate part of the term Element

on the row above.

Single Double

Term L \ Term L \%

(2.19 —0.0503 0.0715 (2.20 0.5036 —0.5665
(c.c) 0.0051 —0.0583 (c.c) —0.0190 0.0572
(2.2) —0.0003 0.0130 (2.23 0.0201 —-0.5058
(c.c) 0.0003 0.0024 (c.c) 0.0220 0.5429
(2.22 0.0000 —0.0084 (2.249 —0.0233 0.5747
(c.c) 0.0001 0.0044 (c.c) —0.0257 —0.6160
(2.2 —0.0001 -—0.0020 (2.27 0.0003 —0.0004
(2.26 0.0001 —-0.0022 (2.2 —0.0184 —0.0439
Sum —0.0452 0.0203 Sum 0.4597 —0.5579
deriv 0.0655 0.0000 deriv —1.0176 0.0000
Total 0.0203 0.0203 Total —0.5580 —0.5579

TABLE lll. First-order (DHF), second-ordefRPA), and third-

order approximations to the dipole matrix elements for the principal

transitions in alkali-metal atoms.

L \% L \%

Li 25—=2pyp 25—2pg3p

DHF 3.3644 3.4301 4.7580 4.8510
RPA 3.3505 3.3505 4.7383 4.7383
Third Order 3.3205 3.3205 4.6959 4.6959
Na 3s—3p1p2 3s—3p3p2

DHF 3.6906 3.6516 5.2188 5.1632
RPA 3.6474 3.6474 5.1578 5.1578
Third Order 3.5497 3.5497 5.0197 5.0196
K 4s—4py; 4s—4pgp,

DHF 4.5546 4.4294 6.4391 6.2598
RPA 4.4005 4.4005 6.2221 6.2221
Third Order 4.1316 4.1316 5.8414 5.8413
Rb 55—5py2 55—5p32

DHF 4.8189 4.6401 6.8017 6.5399
RPA 4.6059 4.6059 6.5052 6.5052
Third Order 4.2685 4.2684 6.0249 6.0248
Cs 65— 6Py 6s—6pa;2

DHF 5.2777 5.0371 7.4265 7.0662
RPA 4.9747 4.9747 7.0137 7.0137
Third Order 4.5402 4.5400 6.3892 6.3891
Fr 7s=7pyp 75—=7p3p

DHF 5.1437 4.8402 7.0903 6.6424
RPA 47741 47741 6.6268 6.6268
Third Order 4.3236 4.3234 5.9450 5.9448
eka-Fr &—8pyp 85— 8p3p»

DHF 4.5306 4.0110 5.5280 4.9964
RPA 3.9878 3.9878 4.9927 4.9927
Third Order 3.6354 3.6346 4.4487 4.4484

PHYSICAL REVIEW /&2 052512

TABLE 1IV. Comparison of third-order MBPT calculations of
reduced-matrix elements for the principal transitions with other cal-
culations and with precise experiments.

NsS—NpPy» NS—nNpsp, Source
Li (n=2) 3.320 4.696 3rd-ord
3.321 4.696 Br-oriy4]
3.316 4.691 SO10]
3.318 4.693 othef14,15
3.317 4.691 othef16—-20
3.3163) 4.6905) Expt. [11]
Na (n=3) 3.550 5.020 3rd-ord
3.540 5.006 Br-orly4]
3.531 4.994 SO9]
3.538 5.004 Cg21]
3.526 4.987 MCHH22]
3.5624 4.984 MCHF-CI [23]
3.5252) 4.9843) Expt. [11]
K (n=4) 4.132 5.841 3rd-ord
4.120 5.825 Br-orh4]
4.098 5.794 Sn9|
4.1025) 5.8008) Expt. [11]
Rb (n=5) 4.269 6.025 3rd-ord
4,237 5.978 Br-oriy4]
4.221 5.956 SO9]
4.2313) 5.97714) Expt. [11]
Cs (n=6) 4.540 6.389 3rd-ord
4.474 6.286 Br-orh4]
4.478 6.298 Sn9|
4.499 6.332 MBPT 24]
4.525 6.370 SO25]
4.4897) 6.3247) Expt. [12]
Fr (n=7) 4.324 5.945 3rd-ord
4.256 5.851 SO9]
4.279 5.894 MBPT26]
4.2778) 5.898 Expt.[13]

source of error in our third-order matrix elements is this trun-
cation. Although the truncation error is small, it is useful to
have a quantitative estimate of its size in a specific case. To
this end, we do calculations of thesf,— 6p4,, dipole matrix
element in Cs including partial waves up to valued tfat
range from six to nine. We find that the matrix element falls
off as 112 for largel. Assuming this asymptotic behavior, we
extrapolate our numerical results for theandV-form ma-

trix elements and find L,,=4.53869(1) and V.,
=4.5386%1). Theagreement betweelr and V-form ma-

trix elements is improved over the truncated results with
=8 by one digit. The residual difference -V,
=0.00005(2) is the contribution from omitted negative-
energy states. In previous studies, it was found that negative-
energy states contribute principally ¥-form matrix ele-
ments. Therefore, the form-independent amplitude for the
65,,-6p4, transition in Cs id.=L,=4.538691). The nu-
merical accuracy of this result is far greater than warranted,
considering that we have neglected contributions from
fourth-order perturbation theory that are expected to be of
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order 1%. In the tables, we give unextrapolated values of theor Cs exhibitL-V agreement and agreement with experi-
matrix elements obtained by truncating the partial-wavement at the level of 0.7%. As in our third-order calculations,
sums al =8. The effect of truncation slightly increases with “hare” matrix elements were replaced by their RPA coun-
increasingZ as can be seen from the tabulated values.  terparts; however, experimental instead of lowest-order tran-
Now let us tumn to comparisons with other accurate calsijtion energies were used in evaluating the RPA amplitudes,
culations and with experiment. We present our form-,nq gerivative terms were ignored. Furthermore, high-order
independent thlrd-o_rder matrix elements in Table !V fo"fterms, which need not to be form independent, are included
Io_wed by the form-mc_jependent Brueckner calculations %%n the SD matrix element contributing to theV difference.
Liaw [4]. The values listed from Ref4] are averages df For Fr, in addition to those mentioned previously, there is the

and v matrix elements; thd.-V differences are less than ll-order MBPT calculation of26], but again, no discussion
0.2%. These two form-independent generalizations of RPA . : ' gain,
f L-V differences was given.

are in close agreement with one another for Li and Na, buf _ ! . .
One interesting aspect of heavy element calculations is

drift apart for the heavier alkalis. All-order single-double cal- ) ) X
culations have been carried out in Rd®,10] for all of the that the convergence of the iteration solution of the RPA

cases considered in Table IV. Theform SD calculations €duations is slow. In the case of Fr, the absolute values of the
[9] are generally in good agreement with experiment. Thdndividual + and —w terms in the velocity-form RPA am-
SD matrix elements agree in and V form to better than Plitudes from Eq(2.13 are of approximately the same size
0.1% for Li and Na. For heavier alkalis theV differences as the first-order amplitude, although their smaller sum con-
in the SD calculations increase to the 1% level; the differ-verges to the full RPA amplitude after many iterations. This
ences are: 0.2% for K, 0.3% for Rb, 0.5% for Cs, and 1% forfragile convergence breaks down totally in eka-Fr, where
Fr. already the third-order RPA term becomes very large. To

For Li, we also compare our third-order matrix elementsavoid such convergence problems, it is preferable to solve
with other high-precision calculationd4—20. All of the the full RPA equations using Gaussian elimination.
calculations for Li cited in the table agree with one another In summary, we have presented a method based on MBPT
to better than 0.1%. Moreover, these calculations agree witfor obtaining form-independent transition amplitudes
experimentally determined matrix elementkl] to better through third order for atoms with one valence electron. As a
than 0.1%. The close agreement of the present MBPT calcispecific application, the method is used to calculate dipole
lation with more elaborate calculations and with experimenimatrix elements for the principal transitions in all alkali-
for Li is somewhat surprising given the fact that thee2p  metal atoms. Results are obtained that agree with precise
matrix elements change by 1% from second order to thirdneasurements and more elaborate many-body calculations
order. For Na there are, in addition to the Brueckner-orbitato 1% or better for all cases. The method given here can
and SD calculations discussed earlier, coupled-cly2#f be generalized in several ways. For example, we could
and multiconfiguration HF22,23 calculations. No discus- extend it to fourth and higher orders in MBPT, or generalize
sion of length-velocity differences is given for these calcula-it to atoms with two or three valence electrons. In the later
tions. For cesium, the all-order MBPT result [#4] is in case, it should be noted that form-independent second-order
excellent agreement with experiment, howeuety differ- calculations have been carried out recently for several cases
ences are not discussed. The all-order SD results of[Ref. [27-29.
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