# Folding a Gaussian into Theoretical Data 

W. R. Johnson, Department of Physics. University of Notre Dame

July 30, 2012


#### Abstract

We construct an approximation to a $\delta$-function using a Gaussian of full width at half-maximum $w$. This approximate $\delta$-function is used to model a measuring instrument. The Gaussian is folded into theoretical data and used to approximate the outcome expected when measuring the quantity described by the theory.


## 1 Method

Consider the function

$$
\begin{equation*}
\delta(x, w)=A \exp \left(-x^{2} / \Delta^{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{1}{w} \sqrt{\frac{\log (16)}{\pi}} \quad \& \quad \Delta=\frac{w}{\sqrt{\log (16)}} . \tag{2}
\end{equation*}
$$

Note that $A \Delta=1 / \sqrt{\pi}$. The function $\delta(x, w)$, which serves as a finite-width approximation to the $\delta$-function, satisfies

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x, w) d x=1 \tag{3}
\end{equation*}
$$

Fig. 1 shows the approximation function.


Figure 1: Finite-width approximation $\delta(x, w)$ to a $\delta$-function. Case where $w=1$.


Figure 2: A Gaussian of width $w=2 / 3$ is folded into a wedge function, which is shown in black, to give the result shown in red.

If we let $\delta(x, w)$ describe the the response of an instrument to a unit signal at value $x$, then the response $F(x, w)$ to a distributed signal with amplitude $f(x)$ will be

$$
\begin{equation*}
F(z, w)=\int_{-\infty}^{\infty} \delta(x, w) f(z-x) d x \tag{4}
\end{equation*}
$$

We approximate the above integral using using the trapezoidal rule. To make this rule tractable, we truncate the above integral at a point $x_{m}$ where

$$
\begin{equation*}
\int_{-x_{m}}^{x_{m}} \delta(x, w) d x=0.9999 \tag{5}
\end{equation*}
$$

This point is $x_{m}=1.6521822525771246 \mathrm{w}$. Thus, we approximate

$$
\begin{equation*}
F(z, w) \approx \int_{-x_{m}}^{x_{m}} \delta(x, w) f(z-x) d x \tag{6}
\end{equation*}
$$

We suppose that $f(x)$ is laid out on a grid $x_{i}=i h, i=0 \cdots n$. and that $\delta(x, w)$ is laid out on a grid $x_{i}=i h, i=0 \cdots m$ The trapezoidal rule gives

$$
\begin{align*}
& F\left[x_{i}, w\right]=h\left[\frac{1}{2}\left(f\left[x_{i}-x_{m}\right]+f\left[x_{i}+x_{m}\right]\right) \delta\left[x_{m}, w\right]+f\left[x_{i}\right] \delta[0, w]\right. \\
&\left.+\sum_{j=1}^{m-1}\left(f\left[x_{i}-x_{j}\right]+f\left[x_{i}+x_{j}\right]\right) \delta\left[x_{j}, w\right]\right] \tag{7}
\end{align*}
$$

We extend the array $f\left[x_{i}\right]$ from $i=0 \cdots n$ to $i=-m \cdot n+m$ by adding subarrays of 0 's before and after the original array. In this way, the transformed array $F\left[x_{i}, w\right]$ will be defined everywhere on the original grid. As an example, we show the result of folding a Gaussian into a wedge function in Fig. 2

In Fig. 3, we consider the bound-state contribution to the dynamic structure function for scattering at $\theta=130^{\circ}$ of a 9000 eV photon from a Ti metal


Figure 3: Left panel: (black) Theoretical bound-state contribution to the structure function for Thomson scattering at $\theta=130^{\circ}$ of a 9000 eV photon from Ti metal at $T=10 \mathrm{eV}$. (red) Theoretical structure function after folding in an instrumental width of 10 eV . Right panel: (blue) Free-free contribution, (red) bound-state contribution and (black) total structure function after a folding in a 10 eV instrument function.
plasma at $T=10 \mathrm{eV}$. The black curve in the left panel shows the theoretical structure function and the red curve shows the theoretical prediction after a 10 eV instrumental width is folded in. The panel on the right shows the total structure function after folding in the Gaussian instrument function.

