
Average Exchange Energy

The following is a reprise of the derivation of the Kohn-Sham exchange potential
given in Ref. [1]. Let us consider an N electron atom and suppose that a given
state can be described by a single determinental wave function Ψabc···. The
energy of the atom in this state can be written

E =
∑
a

〈a|h0|a〉+ 1
2

∑
ab

∫ ∫
d3r1d

3r2

R
φ†a(r1)φa(r1)φ

†
b(r2)φb(r2)

−1
2

∑
ab

∫ ∫
d3r1d

3r2

R
φ†a(r1)φb(r1)φ

†
b(r2)φa(r2) . (1)

The term on the second line of Eq. (1) is the exchange energy Eexch. The
exchange energy is evaluated assuming that the single-particle orbitals are non-
relativistic plane waves:

φa(r) =
1√
V
eipa·rχσa .

We find

Eexch = − 1

2V 2

∑
σaσb

(
χ†σaχσb

) (
χ†σbχσa

)∑
papb

∫ ∫
d3r1d

3r2

R
eiq·R , (2)

with q = pb − pa and R = r1 − r2. We make use of the fact that
1

V

∑
pa

→ 1

(2π)3

∫
d3pa ,

and ∑
σaσb

(
χ†σaχσb

) (
χ†σbχσa

)
=
∑
σa

(
χ†σaχσa

)
= 2 ,

to rewrite the expression for the exchange energy as

Eexch = − 1

(2π)6

∫ ∫
d3r1d

3r2

∫ ∫
d3pad

3pb
1

R
eiq·R . (3)

Change variables to R = r1 − r2, and r = r2; then d3r1d3r2 = d3Rd3r and the
exchange energy becomes

Eexch = − 1

(2π)6

∫
d3r

∫ ∫
d3pad

3pb

∫
d3R

R
eiq·R . (4)

One can evaluate the innermost integral (with damping at large R) as∫
d3R

R
eiq·R =

4π

q2
. (5)
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It follows that

Eexch = − 2

(2π)4

∫
d3r

∫
d3pa

∫ pf
0

p2bdpb

∫ 1
−1

dµ

p2a + p
2
b − 2papbµ

. (6)

The integral over µ can be carried out to give∫ 1
−1

dµ

p2a + p
2
b − 2papbµ

=
1

papb
ln

(
pa + pb
|pa − pb|

)
. (7)

The integral over pb is next carried out to give∫ pf
0

dpb
pb

pa
ln

(
pa + pb
|pa − pb|

)
=
1

2pa

[(
p2f − p2a

)
ln

(
pf + pa
pf − pa

)
+ 2pfpa

]
. (8)

The integral over d3pa is next carried out to give

2π

∫ pf
0

dpa pa

[(
p2f − p2a

)
ln

(
pf + pa
pf − pa

)
+ 2pfpa

]
= 2πp4f (9)

This gives us finally,

Eexch = − 2

(2π)3

∫
d3r p4f = −

3

4π
(3π2)1/3

∫
d3rρ4/3(r) , (10)

where we have used the relation

pf = (3π
2ρ(r))1/3

to express the Fermi-momentum in terms of the particle density.

Variational Equations

We may express the energy of a system of particles in terms of the electronic
wave functions as

E =

∫
d3r

{∑
a

φ†ah0φa +
1

2

∫
d3r′ρ(r)ρ(r′)

R
− 3
4π
(3π2)1/3ρ4/3(r)

}
, (11)

where
ρ(r) =

∑
a

|φa(r)|2 . (12)

In our discussion, we require

Na =

∫
d3r|φa(r)|2 = 1 .
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The variation δφ†a in the single-particle orbital φa leads to the variation

δ [E − εaNa]

=

∫
d3r δφ†a

{
h0φa +

∫
d3r′ ρ(r′)
R

φa −
[
3

π
ρ(r)

]1/3
φa − εaφa

}
, (13)

in E − εaNa, where εa is a Lagrange multiplier introduced to insure that the
normalization constraint is satisfied. The condition δ [E − εaNa] = 0 leads to
the Kohn-Sham equations(

h0 +

∫
d3r′ ρ(r′)
R

+ vexch(r)

)
φa = εaφa , (14)

where

vexch(r) = −
[
3

π
ρ(r)

]1/3
. (15)

As shown in [1], the Kohn-Sham exchange potential is related to the average
exchange potential introduced earlier by Slater [2] by

vexch(r) =
2

3
vSlater .

Practical Matters

In numerical codes, one deals with the radial parts Pa(r) of the orbitals φa(r),

φa(r) ≡ φnalamaσa(r) =
1

r
Pnala(r)Ylama(r̂)χσa , (16)

which are normalized by ∫ ∞
0

dr [Pnala(r)]
2 = 1 . (17)

The corresponding radial density for the atom is

n(r) =
∑
a

gaP
2
a (r) , (18)

where ga is the occupation number of the subshell a ≡ (nala). Averaging over
angles, one obtains ∫ ∞

0

dr n(r) = N , (19)

where N is the total number of electrons in the atom. We write the density in
terms of the radial density as

ρ(r) =
1

4πr2
n(r) , (20)

and consequently

vexch(r) = −
[
3

4π2
n(r)

r2

]1/3
. (21)
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