Average Exchange Energy

The following is a reprise of the derivation of the Kohn-Sham exchange potential
given in Ref. [1]. Let us consider an N electron atom and suppose that a given
state can be described by a single determinental wave function Wup..... The
energy of the atom in this state can be written
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The term on the second line of Eq. (1) is the exchange energy Fexcn. The
exchange energy is evaluated assuming that the single-particle orbitals are non-
relativistic plane waves:
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with ¢ = p, — pq and R = r; — ro. We make use of the fact that
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to rewrite the expression for the exchange energy as
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Change variables to R = r, — 72, and 7 = ry; then d®rid3ry = d®Rd®r and the

exchange energy becomes
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One can evaluate the innermost integral (with damping at large R) as
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It follows that
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The integral over y can be carried out to give
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The integral over p; is next carried out to give
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The integral over d3p, is next carried out to give
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This gives us finally,
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where we have used the relation
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to express the Fermi-momentum in terms of the particle density.

Variational Equations

We may express the energy of a system of particles in terms of the electronic
wave functions as
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where

p(r) = lda(r)l®. (12)

In our discussion, we require

N, = /d3r|¢a(r)|2 =1.



The variation 5(152 in the single-particle orbital ¢, leads to the variation
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in E — €,N,, where ¢, is a Lagrange multiplier introduced to insure that the
normalization constraint is satisfied. The condition ¢ [F — €,N,] = 0 leads to

the Kohn-Sham equations
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As shown in [1], the Kohn-Sham exchange potential is related to the average
exchange potential introduced earlier by Slater [2] by
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Practical Matters

In numerical codes, one deals with the radial parts P,(r) of the orbitals ¢, (r),
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which are normalized by

[e.e]
/ dr [Pos, (]2 =1, (17)
0
The corresponding radial density for the atom is

n(r) = g.Pi(r), (18)

where g, is the occupation number of the subshell a = (n,l,). Averaging over
angles, one obtains
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where N is the total number of electrons in the atom. We write the density in
terms of the radial density as

pr) = —=n(r), (20)
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and consequently
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