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Equality of length-form and velocity-form transition amplitudes
in relativistic many-body perturbation theory
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Rules for obtaining transition amplitudes that are equal in length form and velocity form, order-by-order in
relativistic many-body perturbation theory are presented. Explicit formulas are derived for first-, second-, and
third-order amplitudes for transitions between valence states in alkali-metal atoms. Numerical codes are de-
veloped to evaluate amplitudes through third order and applied-®p3,, and 3-3ps), transitions in sodium
and sodiumlike ions. The present calculations for sodiumlike ions are compared with other accurate theoretical
calculations.

PACS numbdps): 32.70.Cs, 31.16-z, 31.15.Md

I. INTRODUCTION that are based on th&o-pair Hamiltonian[13], where con-
tributions from negative-energy stat¢NES) are omitted,
The transition amplitudd () =(¥,|t(w)|V¥,) between differ in length form and velocity form, as discussed, for
an exact initial atomic statd, and an exact final atomic example, if3]. The NES contributions for allowed electric-
stateW,,, wheret(w) is the frequency-dependent electro- dipole transitions in the Coulomb gauge scalead& for
magnetic multipole transition operator, is expected to bewdrogenlike ions, wheré is the ionic charg¢14]. There-
identical in length form and velocity form for energy- fore, for near neutral systems, we expect that the difference
conserving transitions. In nonrelativistic many-body calcula—bet‘é"ee” amplitudes calculated in different gauges will be
tions, the equivalence of length-form and velocity-form am-~¢ provided the calculations are otherwise exact. Indeed,
plitudes is a consequence of a well-known commutatoS W€ shall see later, length-velocity differences for allowed
identity [1]. A similar commutator identity, convenient for electn(_:-dlpole transitions appear in the fouth or fifih d|g|t_|n
relativistic calculations, can be derived using the fact tha umerical calculations. For forbidden transitions, neglecting

length-form and velocity-form amplitudes are related by a ES contributions can lead to significant differences be-

. . . ween amplitudes in different gauges. Gauge independence
gauge transformation of the photon field ofy3]. Since the .can be restored in such cases by including contributions from

basic commutator identity used here is obtained with the aig, . NES. This procedure was followed in the configuration-
of a limited kind of gauge transformation, we refer to theieraction calculations of Ref3].

length-velocity equality as gauge independence. We restrict | ejther relativistic or nonrelativistic MBPT calculations,
our attention to the length-velocity equivalence and do noty andw,, are determined perturbatively, and the transition
consider acceleration-form transition amplitudes, nor do We&mplitude T(w) is expanded in powers of the interaction

consider more general gauge transformations. potential as
Gauge independence of transition amplitudes in quantum ) .
field theory and in nonrelativistic quantum mechanics was T(0)=TM(0)+ T () +TC(w)+---, (1.1

addressed in Ref$4—7]. Indeed, a proof of the gauge inde- Dy _ .
pendence of nonrelativistic transition amplitudes can beVNereT ~(w) is the first-order matrix element ofw) taken

found in[5]. These studies were devoted primarily to multi- P€tween zeroth-order wave funct|ori$‘?)(w) and T(g)(“’),
photon systems, in contrast to the present work, which &€ the second- and thlrd-orc_ier am_plltudes written out in d_e-
concerned with single-photon transitions in many-electrorf@il for the case of atoms with a single valence electron in
systems. Although single-photon transition amplitudes obRef.[15]. In perturbative calculations, we must include “de-
tained in the Hartree-FockHF) approximation depend on _rlva'uve” terms in order to obtain amphtudes. that are gauge
gauge, those obtained in the random-phase approximatigidependent3]. We base the present analysis of the relativ-
(RPA) are gauge independefd], as are those in variants of iStic MBPT amplitudes on the expressions[itb], but we
the RPA such as the relativistic RF8] or the multiconfigu-  change the notation used in that reference slightly.the
ration RPA[10]. At a higher level of precision, gauge- APpendix, we summarize the formulas frditb] for conve-
independent amplitudes have been obtained in the Brueckn8jeénce. The gauge independence of the first two terms in the
approximation by Liaw[11] and applied to calculate transi- Perturbation expansion was considered in iR8f, where it
tion rates in alkali-metal atomil1] and in C& [12]. The  Was shown trlwat if we replace by wo=e€,~ ¢, in the first-
purpose of the present paper is to derive explicit formulas foPrder termT(w), then this term becomes independent of
transition amplitudes that are gauge-independent order by
order in many-body perturbation theofy!BPT) and to ap-
ply these formulas through third order to atoms and ions with we useT to designate the transition amplitude rather tizan
one valence electron. which was used ifi15], in order to avoid confusion with the ionic
Relativistic MBPT calculations of transition amplitudes chargeZz.

1050-2947/2000/63)/05250610)/$15.00 62 052506-1 ©2000 The American Physical Society



I. M. SAVUKOV AND W. R. JOHNSON

PHYSICAL REVIEW A62 052506

the gauge of(w). In second order, in addition to replacing  In calculations based on the Dirac equation, the single-
o by wg, it is necessary to add a derivative term to preserveparticle multipole transition operator is given in terms of

gauge independence,

dT®
T(Z)(m)—>T(2)(wo)+% S,

@®g

where 5wV is the first-order shift in the transition energy.
Applying a similar analysis to the third-order term, it be-

multipole potentials of the electromagnetic fieldl, () by
t(r,w)=—ca-A(r,w)+ ¢(r,w), (1.9

where we denote the quantity of Ref. [3] by t and use
atomic unitse=%=m,=1. The gauge transformation

A(r,m)—A(r,o)+Vx(r,m), (1.9

comes clear how to generate derivative terms for higher-

order matrix elements. The rule is to expand terms of each
order in powers ofdw=w— wqy and collect all terms of the

same order in powers of Z/

dT® 5 1d?T®
+ —
do °“7 2 dw?

T=TO(w) +

dT®
do

+ Sw+ - +T@(wg)+- -,

=TW 4 7@ 7@ 4.
where
TO=TW(wy),

dT®
TE=T®(wo) + -

5(‘)(1),

dT® dT®
TO=TC) (wg) + SoM+ S0
dow dow
1d?T®
2 402 (S0M)?,
w

(Sw)?+ -+ T (wy)

d(r,w)— d(r,w)+iox(r,o), (1.10
induces the change
At={-caVx(r,o)tiox(r,o)} (1.11

in the transition operatot(w). With the aid of the Dirac
equation, single-particle matrix elements &f can be ex-
pressed in terms of the gauge functig(r,w) as[3],

Atjj(0)=(i|At]j)=—i(— - w)x;j. (112

Since the first-order matrix elememt?=t,, (w) is just
the one-particle matrix element df and sincewgy= ¢,
—€,, it follows from Eg. (1.12 that the first-order matrix
element is unchanged under the gauge transformfEgs.
(1.9 and (1.10]. It should be emphasized that this result
depends on the assumption that the interaction potential in
the one-particle Dirac equation is local. For calculations
based on the nonlocal HF potential, it is a well-known fact
that first-order transition amplitude depends on the gauge of
the electromagnetic field.

Il. SECOND-ORDER TERMS

In this section we discuss in detail the gauge indepen-

to third order. The derivatives in the above expressions argence of the second-order amplitude in order to clarify some

defined as

d"T®  d"TW(w)

do" do"

@0
and powers obw as
bw=060M+ 0@+ . ..

=(EQ—EM)+(EP-EP)+- -

points concerning third-order terms; a similar discussion is
given in[3] for atoms with two valence electrons. Formulas
for the second-order amplitude are given in Rdf5] and
repeated here in the Appendix for convenience. The second-
order amplitude consists of two paf§?=T&,+ T writ-

ten out in Eqs(A9) and (A10). The termT &, accounts in
lowest order for shielding of the transition operator by the
core electrons; it is the leading term in an expansion of the
random-phase approximation to the transition amplitude. The
term T?) is proportional toA =V,-— U, the difference be-

TABLE |. Contributions to the first- and second-ordes; 3-3ps, and 35,,-3p1» transition amplitudes for

sodium in length and velocity forms.

351/2-3P3p2 3S1/2-3P1s
Term Length Velocity Length Velocity
7 0.451940 0.451940 —0.318992 —0.318992
T@, —0.012038 —0.002423 0.008507 0.001799
T 0.083700 —0.077685 —0.059077 0.054351
(dTY/dw) 5™ —0.151773 0.000000 0.106717 0.000000
73 —0.080110 —0.080108 0.056147 0.056150
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tween the Hartree-Fock potentid),c and the local potential (1.4), we must setw=w, in T¥)(w) and add a derivative
U(r) defining the basic one-electron states; this term vanterm. Following the procedure outlined in Sec. I, with the aid
ishes for calculations based on a HF potential. To make thef Eq. (1.12, we find that the change i® induced by a
second-order amplitude gauge independent, according to Eqauge transformation is

AT(Z):_iE Xan(gwnua_gwnay)+i2 (gwaun_gwanv))(na_iz XWi(VHF_U)iU_}_i.E (V= Uwixiv
na na 1#v i1#w
:_i% Xai(gwiua_gwiau)+i% (gwawi_gwaiv)Xia_izi Xwi(VHF_U)iv"HEi (VHF_U)WiXiv_i5w(1)XWU
:_i% [Xai(gwiua_gwiav)_(gwaui_gwaiu)Xia]_i% [Xwi(giaua_giaav)_(gwaia_gwaai)Xiv]_i5(‘)(1)va

=—i§ ([gx(znwaua—[gx(2>]waau—[gx<2>]waua+[gx(l)]waa»—ig ([9x(D) Iwava—[9X(1) Twaa

—[9x(1) Jwara T [9X(2) Jwaa) —1 5w(1)va
= —j 6w(1)XWU , (2.1

where so®=(Vye—U)yw— (Vae—U),, is the first-order ences in the final amplitudes given in the table are the result
def - ; ;

" oe of our neglect of contributions from negative-energy states in

transition energy  and  [gx(1)]apea=ZiXaiGibed  the numerical calculations.

=Zi0aviaXic - In the above equation, we extended the SUM™“r o0 jations used in preparing Table | are based on a
over virtual states to include contributions from core states, local Dirac-Fock-Kohn-Sham potential that takes into ac-
UBunt exchange, approximately. The values given in the table
. . . o -3gte reduced matrix elements of the transition operator, ne-
equality. It should be noted that including NES con'[rlbutlons:g'ecﬁng retardation effectof relative order &,/1)2]. One

represents an extension O.f the MBPT formulas givefib}. consequence of the neglect of retardation is that the deriva-
The change in the derivative term under a gauge transformgg,e terms of the velocity-form amplitude vanishes. More-
tion is given by over, the second derivatives of both length- and velocity-
dAT® d form amplitudes vanish.
=—1——(€w— €~ ®) Xwo=1 Xwo - (2.2 As alluded to above, we include only positive-energy
do do states in the sums over intermediate states. The agreement

between velocity and length results in the table not only
confirms our analysis but also shows that contributions from
omitted negative-energy states are very small. With this in

Therefore, the complete second-order amplitufi& is
gauge independent,

dATD mind, we ignore them also in third-order calculations. Fi-

AT =AT@ + S nally, a very important point is that the length-velocity
agreement provides an excellent test for logical errors, sign
= _igw(l)XWUJriXWvgw(l):o_ (2.3 errors, and other errors in our analysis and in the associated

computer programs.
We notice that the hydrogenlike terms, those containing only The gauge-independent perturbation theory above per-
U(r) including the derivative component, can be groupedains only to many-body calculations based on a local poten-
into a gauge-independent contribution. The remaining termdjal; for calculations starting from a nonlocal Hartree-Fock
those containing/ye and the RPA terms, are not gauge in- potential, the theory presented aboveni gauge indepen-
dependent separately but only when added together. Thigent, even in lowest order. This is a consequence of the fact
complication arises because of the exchange parts of theseat the Hartree-Fock potentigl,r does not commute with
terms, since[gx(1)lwaa#[9x(2)]was - In Table | we the gauge functiony(r); indeed, Eqg.(1.12 is no longer
present a breakdown of the contributions &) for the  valid. Instead we have
3s1/-3p3;p and 354,-3p4p transitions in sodigzr)n. The(gz)ible
illustrates that although the individual termig” and Tgpa oY il (o o . o '
are gauge dependent, the final second-order transition ampliétij (@)=~ (&€&~ w)xi kEa (GiaakXi X'kgkaa‘)}'
tude is indeed independent of gauge; the tiny residual differ- (2.9
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TABLE Il. Contributions to the third-order transition amplitudes fo;3-3ps, and 3,,-3p4, transi-
tions in Na from the first gauge-invariant subset of terms.

3S1/7-3P3s2 381/2-3P112
Term Length Velocity Length Velocity
E —0.000001 0.004042 0.000000 —0.002846
(dT@ ) dw) o™ 0.004043 0.000000 —0.002846 0.000000
=) 0.004042 0.004042 —0.002846 —0.002846
The matrix element between the final and initial states satis- dT1®

dt.,
fying €,— €,= wq is not zero, dRPAéw(l)= - 5(0(1)[ > - Gunva

1) an do €,— €+ wg

AT(l)EAtWU(O)O):i% [ QwaaiXiv — XwiTiaa - —I—E M dtna]' (3.2

an €n— €3~ wg do

The difference between length and velocity transition ampliwhere w,= €, — €, . Contributions from these two terms for

tudes in the Hartree-Fock basis, though nonzero, will be onehe 3s-3p,,, and 3-3p4,, transitions in sodium are shown in
order in 1Z smaller thanT™™. With the second-order terms Table L.

added, this difference becomes even smaller. The remainder The following subsetA consisting of eight third-order
in first order is canceled by the RPA remainder, and onlyterms is also independent of gauge:
terms of second and higher order iz Burvive. Specifically,

in second order for Hartree-Fock calculations only RPA AyitijAj,
terms contribute A= — )’ 33
) i#Fw (€i GW)(GJ €,)
j#Fv
ATE,=—i 2)lwam —[9x(1) +RO), twild A
RPA Ea {l9x(2) waa —[9X(1) Iwaa} AZZ_E M‘FC.C., 3.4
i#v (6i_€v)2
whereR®) is a residual term of relative order @)?. Com-
bining the RPA amplitude with the lowest-order amplitude, Aae 2 twidijAj, tec 3.5
Y 3 p o o Ly .
one finds 7o (6~ €,)(€;—€,)
J#Fv
1) (2) —REA) ~
AT +ATRPA_R ' Awitamgmiav
A4:_2 e e (e—cta )+c.c., (3.6
which is of relative order (Z)2. The third-order contribu- Zw RS FwI i Em e Fa T R0
tions will compensat&k(®), and so on. Eventually, even the
HF result is expected to be gauge independent. In [Rél, Aivtamamwai
convergence of the length and velocity amplitudes to each Aszz (e—€)(em—eat )+C-C-, 3.7
other in the iterated RPA was demonstrated numerically. For mo RS SeliEme Fa o
the 3s4,-3p3), transition in sodium starting from a HF po-
tential, in first, second, third, and thirty-first order, the dT(AZ) SoM— dtyi A, + Ay dt, "
Iength—\(elocny differences are 6%, 0.7%, 0.4%, and 0.001%,q, °“" ~| < de (e,— €) T (ey—€) do w
respectively. (3.9
IIl. THIRD-ORDER TERMS dTt® 5w(2):dth Aidi, AWiAiW}
. . . . d A do | (6 i i— '
It is possible to separate the complete third-order ampli- @ w |7 (6—€) iFw(e—¢€yw) 59
tude into six gauge independent subs@l$)=E+A+T '
+ N+ S8+ D. The first subseE consists of the terms on the 1 g2T® 1 g2

second line of Eq(A26) for T$),, and their complex con- S—
jugates, combined with the derivative term froff,, 2 do

t v
(d0l)?=3 d—Wz(awﬂ))Z. (3.10
w

~ ~ The first three of the terms abowe —A 5 are those of order

2= 0™ S tanQwnoa Ywavntna ’ A% from TS, in Eq. (A25), including complex conjugates.
an (en— €.+ )2  an (€,— €3— wg)? The next two termsA, andAg, are those from the first line

(3.)  of TS), in Eq. (A26), including complex conjugates. The
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TABLE Ill. Contributions to the third-order amplitudes fos3,-3ps,» and 35,,,-3paj, transitions in Na
from the second gauge-invariant subset of terms.

3S1-3P3p 3S1-3P12

Term Length Velocity Length Velocity

Ay 0.029031 0.036853 —0.020602 —0.026010
A, 0.029994 —0.027834 —0.021132 0.019612
Ag —0.019780 0.018110 0.013983  —0.012489
A, 0.002326 —0.030585 —0.001640 0.021580
Ag 0.002062 0.027205 —0.001459 —0.019307
(dTP/dw) sw™ —0.028109 0.000000 0.019764 0.000000
(dTY/dw) 6w?@ 0.008228 0.000000 —0.005524 0.000000
1/2(d*T®/dw?) (sw™)? 0.000000 0.000000 0.000000 0.000000
A 0.023752 0.023750 —0.016611 —0.016613

final three terms are derivative terms. We use the notation Aot
1_,4_ 2 na amgwmvn

s0? in Eq. (3.9 to designate the contribution to the PP T—— +cc., (319
second-order transition energy from terms of orfléin Eq. amn (€™ €a){€m™ €aT o
(A6). The contributions from this subset of terms to third-
order matrix elements for thesg,-3pi, and 351,-3psp g
transitions in sodium are listed in Table Ill. Again, the small Ownavtbnlab
residual differences between length and velocity forms in the I's= “l (€n— €at wo)(€n— €p+ wo) +cc, (319
numerical values are a consequence of neglecting negative-
energy contributions.
The third gauge-invariant subsEt consists of the third- ~
order RPA terniT), given in Eq.(A12) combined with the =3 AnmtanGmwa fec. (316
following terms: T (em—€atwo)(en—€atwg)
awnaytabAbn
ry= +c.c., 3.1 ~
! gb (€n— €p)(€n— €at wq) (319 twiBimpalam
r,=> +c.c. (3.17
~ ! ‘ma (€= €,)(€m—€a) ’
F — 2 gmwa;tnmAan +C c (3 12 1#v
2 fima (€n— €a)(€m— €a+ o) o .
= t 'aiaunAna
Analgawbvtbn I'g= E WI—-I—C.C. (3.18
Iy=- +c.c, (31 €—€,)(en—€ '
3 gb(fn_ea)(en_fb"'wo) (313 ig&au (e Jen~ea)

TABLE IV. Contributions to the third-order amplitudes fos3,-3p4, and 35,,,-3p3), transitions in Na
from the third gauge-invariant subset of terms.

351/7-3P3p 351/2-3P1s
Term Length Velocity Length Velocity
ry —0.000103 —0.000221 0.000073 0.000155
r, 0.000690 0.000199 —0.000487 —0.000143
s —0.000124 —0.000214 0.000088 0.000151
r, 0.000374 0.001189 —0.000267 —0.000804
I's 0.003488 0.002380 —0.002462 —0.001711
I's 0.001422 0.001504 —0.001004 —0.001076
| 0.003977 —0.003469 —0.002804 0.002400
I's 0.003377 —0.001660 —0.002385 0.001164
(dT/dw) 50 —0.012818 0.000000 0.009018 0.000000
T, —0.001730 —0.001158 0.001219 0.000853
r —0.001448 —0.001448 0.000989 0.000989
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TABLE V. Contributions of the normalization terms to the
3s1-3p3 and 34,-3py, transition amplitude in sodium.

TABLE VII. Summary of various contributions to the third-
order 3,,-3p3, and 34,-3p4» transition amplitude in sodium.

3S1/2-3P32 3S1/2-3P1s2 351/2-3P32 3S1/2-3P1s2

Term Length Velocity Length Velocity Term Length Velocity Length Velocity

T¢,, —0.002388 —0.002388 0.001687 0.001687 E 0.004042 0.004042 —0.002846 —0.002846

Ny —0.027409 —0.027409 0.019427 0.019427 A 0.023752 0.023750 —0.016611 —0.016613

N, 0.001201 0.001201 —0.000850 —0.000850 r —0.001448 —0.001448 0.000989 0.000989
N —0.028596 —0.028596 0.020264 0.020264

N —0.028596 —0.028596 0.020264 0.020264 S 0.001710 0.001710 —0.001220 -0.001219
D 0.019280 0.019276 —0.013550 —0.013548
76 0.018739 0.018735 —0.012973 —0.012973

dT(l) (2)_ dtWU { {Aam’émwwa_’_ awammAma
am

w =
do 94 dow €m— €a €m— €a

The contributions of the normalization terms to the third-
N ;1 order amplitude for the §,,-3p1/» and 354,,-3p3), transitions

in sodium from this subset are listed in Table V. The numeri-
The termsl’—I", are those on the third and fourth lines of cal values of terms are identical in length and velocity
TS, in Eq. (A26); I's andT'g are the entireT&3, . contri-  gauges, since there are no negative-energy contributions to
bution from Eq.(A24), while I'; andI'g are the contributions T,
from the terms on the second line © %_A in Eq. (A25). The remaining terms are all bilinear in the Coulomb ma-
Complex conjugates of all of these terms are included. In Eqtrix elementg;;,; . These can be grouped into two subsets
(3.19, 5ng£ designates the part of the second-order transieach of which is individually independent of gauge. The first
tion energy that is proportional to the prodagh,.A in EQ.  subsetSy, consists of the single-excitation terms, which con-
(A6). Contributions to third-order matrix elements for sist of the part ofT&) given in Eq.(A13) and the parts of
381/7-3p12 and 3y7-3pg transitions in sodium from this  TE) given in Egs.(A15), (A16), (A18), and (A20). These
S‘(Jgset are listed in Table IV, where they are combined withgrms |ead to a gauge-independent subset when combined
Tkea to give contributions that differ in length and velocity \yith the contribution to the second-order excitation fre-
forms only by omitted negative-energy contributions. quencyawgz) from the second term of EqA6) times the

The .fourth Set(%f gauge-independent tg;MSS the nor-  yerivative of T, The second subs#l,q consists of the part
malization termsTyony from Eq.(A23) andTygm. lom Bd. ¢ 13) given in Eq.(A14) and the parts oT &) given in Egs.
(A27). This latter term consists of two parts,

(A17), (A19), (A21), and(A22); again, these parts combined

with the contribution to the second-order excitation fre-

quencyawff) from the first term of Eq(A6) times the de-

rivative of T!) give a gauge-independent subset. We present

the contributions to these two subsets from the single and
1 double sums and from the derivative terms in Table VI.

c

Aamgmvva + guavama

J. (3.19

€m~ €a €m— €a

1 Ay
Np=— T > — e
=& e 2

: (3.20

Aangvnva

an (en—€a)’

In Table VII we list the subtotals from the six gauge-
independent subsets for the;3-3p4» and 35,,-3p5), tran-
sitions in sodium and the resultant third-order amplitude.

NZ_ %T(l)|:2 gvavnAna+

an (e~ €a)’

(3.2)

TABLE VI. Contributions of the single- and double-excitation terms to tisg,3Bps, and 351/-3p1
transition amplitude in sodium.

3S1/2-3P3p 3S1/2-3P1s2
Term Length Velocity Length Velocity
Sgo 0.005643 0.001710 —0.004004 —0.001219
w w —VU. . . .

dTW/dw) 0 0.003934 0.000000 0.002784 0.000000
S 0.001710 0.001710 —0.001220 —0.001219
Dyg —0.022288 0.019276 0.015739 —0.013548

dT/dw) 6P 0.041568 0.000000 —0.029289 0.000000

d

D 0.019280 0.019276 —0.013550 —0.013548
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TABLE VIII. Perturbation expansion of the s3,-3ps, and TABLE IX. Order-by-order contributions to length-form
3s4/-3py, transition amplitude in sodium. 3s4/-3p3), dipole matrix elements for sodiumlike ions. The length-
form and velocity-form matrix elements are identical.
3S1/2-3P3p2 3S1/2-3P1s2
Term Length Velocity Length Velocity 3S1/7-3P32 3S1/7-3P1s2
DM D(®) D® DM D(®) D®
7 0.451940 0.451940 —0.318992 —0.318992
7 —0.080110 —0.080108  0.056147  0.056150 11 4274 5295 5010 3.023 3.743 3.544
78 0.018739  0.018735 —0.012973 —0.012973 12 3.087 3387 3367 2182 2395 2381

13 2474 2616 2620 1.748 1.849  1.852
3 14 2.082 2163 2170 1471 1528 1534
;ﬂk) 0.390569 0.390567 —0.275819 —0.275815 15 1.805 1.856 1.863 1.275 1311  1.317
=1

16 1.597 1.630 1.636 1.128 1.152 1.156

Again the small difference between length form and velocity
form amplitudes is a result of omitting negative-energy con-calculation[17] for the Na sequence. We see that differences
tributions. with the all-order results range from 0.3% for sodium to
0.1% for Na-like S. Our results for neutral Na are in excel-
IV. SUMMARY AND DISCUSSION lent agreement with the Brueckner calculations of R&t],
) ) which give 5.006 and 3.540 for the sg,»3ps, and
In the preceding two sections, we have presented formuss, ~3p. . dipole matrix elements, respectively. The present
las from relativistic MBPT for length-form and velocity- 5jues of these two matrix elements in Na are also in good
form amplitudes of dipole transitions between valence stateggreement with the values from a large-scale configuration-
of alkali-metal-like atoms and we have applied these formuinieraction(Cl) calculation[18], which are 4.993, and 3.530,
las to obtain first-, second-, and third-order amplitudes fofegpectively. The SD and Cl calculations, which include cor-
transitions in sodium as a specific example. Although Weglation corrections beyond third order, are in closer agree-
have considered length- and velocity-form amplitudes forynent with the recent experimental valUds)], 4.9843) and
electric-dipole transitions in our examples, it should be men3 5252) respectively, than are the present third-order values
tioned that the formalism developed here applies as well 1@ the Brueckner values.
higher multipoles. Our all-order expressions for derivative terms should pro-
The partial contributions to thes-3p;,and 317-3p32  vide the basis for the analysis of length-velocity disagree-

amplitudes in sodium are shown, along with their sum, iNment in other gauge-dependent theories. Let us consider
Table VIIl. Experimental or theoretical data for transitions some particular cases.

are often expressed in terms of line strengths or, equiva-

lently, reduced dipole matrix elements. Reduced matrix ele- (1) If derivative terms are omitted inth order i=2)
ments of the unretarded dipole operator can be obtained fromnd wg is substituted in transition-matrix elements, then the
the transition amplitudes defined here by dividing out thelength-velocity difference in dipole matrix elements is of
transition energy. Therefore, we can define a sequence second order, even though the first-order amplitude is gauge
approximations of increasing accuracy irZ ffbr the dipole  independent.

matrix elements through the relations, (2) If no derivative terms are added but an accurate tran-
sition energy is used, then starting from first order, the dif-

DW=TW/wy, (4.)  ference between length and velocity gauges will be of the

next-higher order of smallness. This gauge difference in di-

D@ =(TW+T@)/(wo+ ™)), (4.2)  pole matrix elements is of the same order as the deviation

from the exacft(all-ordep value.
DO =(TW+ 7T+ TO)/(wo+ S0 V+ s0?). (4.3

In Table IX we apply these formulas to determine first- TABLE X. Comparison of third-order dipole matrix elements
'D® for 3s,,-3p3, and 3,-3py, transitions in sodiumlike ions

second-, and third-order dipole matrix elements for sodium- . : :
. th all-order dipol trix el SD) f 17] .
like ions with nuclear charge2=11-16. We give length- with all-order dipole matrix elementSD) from [17]
form dipole matrix elements only, since length-form and

velocity-form values agree to all digits quoted. The differ- D(3)351/z 3p3/ZSD D(3)331/z 3p1/25D
ences between the second and third approximationB to
range from 5% for neutral sodium to 0.4% for Na-like S 11 5.010 4.994 3.544 3.531
(Z=16). 12 3.367 3.351 2.381 2.369
One expects that third-order MBPT will provide accurate 13 2.620 2.611 1.852 1.845
approximations to amplitudes for highly charged ions. That 14 2.170 2.165 1.534 1.523
expectation is confirmed for sodiumlike ions, as shown in 15 1.863 1.859 1.317 1.314
Table X, where we compare the present third-order dipole 1g 1.636 1.634 1.156 1.154

matrix elements with a recent all-order single-douf®)
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(3) In Hartree-Fock calculations, regardless of derivativeThe arbitrary central potentid) (r) approximates the effect
terms, the length-velocity difference in dipole matrix ele- of the electron-electron interaction. The quantty, in Eq.
ments is of the next-higher order, provided the experimentalAl) is a two-particle Coulomb integral,
frequency is used. Again, the difference provides an estimate
of accuracy of that order calculations. 1
ijii =(] |r_|k|>'

12
Finally, there is the question of which gauge is preferable in
calculations. In gauge-dependent calculations, the lengthater, we represent the antisymmetrized Coulomb integral
gauge amplitude is often expected to be more reliable beby gjji = Jijx — iji - The difference between the Hartree-
cause the velocity-form dipole matrix elements implicitly in- Fock potential e and the potential(r) is represented as
clude the lower-order energies while the length-form matrix
elements do not. For example, in first order, the velocity Ajj= (V= U)j; .
transition amplitudél', = wor (for the sake of simplicity, we
consider nonrelativistic transition amplitudesand wr in ~ The normal products of creation operatafsand annihila-
which case only the first derivative contributes, and only totion operatorsa;, designated in EqAL) by bracketing op-
the length-gauge amplituglbut the length amplitude is more erators with colons, are taken with respect to the closed-shell
accurateT,= wr if the frequency is taken from experiment. atomic core|0). An atomic statdv) of an atom with one-
Dividing T, by w, we can obtain the same result as in theelectron outside the closed core is then given by
length case; however, it is not obvious how to do this for

higher-order corrections in gauge-dependent potentials or in |v>=az|0>.
Dirac-Hartree-Fock(DHF) calculations. In second order,
again the velocity-form resul, = w.r Y+ w,r ? is less ac- The energy of the atom in a state consists of a core

curate than length ond,=w(r®+r®)) and the length contribution, which is the same for all valence states, and a
gauge cannot be obtained with simple division by and  valence contribution, which changes from state to state. The
multiplication by ». A similar situation exists for higher- Vvalence energy can be expanded as
order contributions; dividing velocity transition amplitudes
by (wo+ w1+ - - - + @) wheren+1 corresponds to the or- E,=EP+EMN+ER+ -,
der of transition amplitude, we can bring the velocity-gauge
amplitudes inton+2 order of 1Z agreement with length WhereE'” is the eigenvalue of the Dirac equatioh2),
gauge results and, correspondingly, into better agreement
with experiment. EQ=e,, (A4)
In summary, we have presented detailed formulas for ob-
taining gauge-independent transition amplitudes througtand Egl) is the perturbation caused Ly,
third order for atoms with a single valence electron within
the framework of relativistic MBPT and, as a practical ex- Ef,l)=(v|A|v>=Aw. (A5)
ample, we have applied these formulas to obtain electric-
dipole amplitudes for the principal transitions in sodiumlike The second-order contribution to the valence energy from

ionsZ=11-16. Ref.[15] is
APPENDIX: BASIC MBPT FORMULAS E@— _ 2 guamnamnua n gabmuamuab

In this appendix we summarize the basic formulas from ’ amn €m T €nT €, €a abm €mTt €, €2~ €p
Ref.[15] needed for the present analysis. These formulas are AT A A
based on the relativistic no-pair Hamiltonigt8], which can +S SamImova S YLl (AB)
be written in second-quantization as am €m~ €, i#v €T €

1 We use the following conventions for the summation indi-

_ ot catata 4 - N

H—Ei Ei.aiai.‘f'z% gijk|.aiaja|ak.+% Aij.aiaj., ces:

(A1) (1) Indices a,b, ..., at thebeginning of the alphabet
range over occupied core orbitals.
where the sums are restricted to positive-energy states only. (2) Indicesm, n, andr, later in the alphabet range over
In this equation,e; is the eigenvalue of the one-electron virtual orbitals outside the core.

Dirac equation (3) Indicesi, j, k, | range over both core and virtual orbit-
als.
h =€ ¢;, (A2) (4) Indicesv andw refer to valence states.
. From Ref[15], we find that the amplitude for a transition
with from v to win a one valence electron atom can be written
h=ca-p+ Bc?+ Vet U. (A3) T=TO+T@O4+TO® 1 ...,
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where the first-order amplitude is simply the matrix element

PHYSICAL REVIEW A62 052506

==
of the transition operator between one-electron valence orbit- ~ + >, InwatlbmFamon +c.c.
als abmn | (€m— €pt o) (€, €y — €3~ €p)
(A18)
TO=t,,=(w|t|v). (A7)
The second-order amplitude consists of two parts, a random- Imnartabdownm
phase approximatiofRPA) correction and a correction from abmn (€nt+ €m—€p— €y)(€nt €m—€a—€,)
the potential difference, (A19)
T@O=T7@,+73, (A8) ~
gabuntnmgmwab
+ >
where abmn (€nt €,— €3~ €,)(emt €y~ €3 €p)
~ - (A20)
t anva gwauntna
T@) =— = — ., (A9
=2 e e e (A9 oz
gwrnm argmnav
+ > +c.c.
@ tyili, Ayiti, amnr | (€, — €3t wg)(€,+ €m— €3~ €,)
= A21
T ; . +;W g (A10) (A21)
with Wo= €y~ €y - o _ N 2 awanrtrmamna;
~ The third-order correction is considerably more complex; S (ent em—€a—€,) (€ + €n—€a—€w)
it consists of the eight terms
(A22)
TO= Tt TR+ T Tt T+ T+ TR, -
The Norm correction is
+T§\I30)rm-A ' (All)
The RPA contribution is given by (3) :E ' YvamImna
TNorm 2T 2
~ o= amn (€m+ €,— €3~ €,)
Gwnvalbmdamnb
T8),\= +c.c. 3
RPA a%m (€m— €pt wo)(€n— €a1 wg) +> ( GabrwGnuba )2+c.c.}. (A23)
~ ~ abn 6u+6n_5a_ Eb
+ E gmnabtbmgwanv +ec.cl (A12)
abmn | (€m— €p+ wo)(€n— €3~ wp) The RPAA terms are
The Brueckner-orbitaBO) correction is _
g ‘ a T(RgF))AA: ( gwnau)t(bnAab )
@)_ abmy'wi9miba " B abn (€n— €a+ wo)(€q— €p T wg
Teo a;ni Lfi_eu)(fv"_fm_ €2~ €p) “c (A13) A -
nmtangmwa;
~ + +c.c.p. (A29)
N 2 GaimntwiOmna N a%n(ém_ €at wp) (€, €51 wp) (
abmi | (€= €,)(€n T €m—€a—€,) ¢S
(Al4)  The BOA term is given by
The structural-radiatiofSR) correction is
~ T(BSC))A: 2 AWitijAju +) = tWiAvaiU
tend = Tw(e—€y)(€ei—€,) i e )2
(3)_ Obavc LenGwnba izw (€~ €y)(€j— €, i#v (€;—€,)
Tsr a%n{(en_ec+w0)(en+ew_ €2~ €p) e (A19) 17
- - n 2 tWiAijAjU E tWigimvaAam
S YwnattacIben i7v (6i—€,)(€j—€,) 7 (6i—€,)(em—€a)
aben (€nt €, — €p—€c)(€nt €y— €3~ €p) I7v ma
(A16) toO. A
+> _twiSiavnlna ool (A25)
~ ~ i7v (6i—€,)(en—€,)
+ { gmna;tbmgawnb +e.c na
abmn | (€m— €pt o) (€t €m— €3~ €,) o
(A17) The SRA correction is
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Ayt a i Ana\tam‘éwm n
TGQ) = wizamImiav + - +c.co. A26
SRAT L e (61— €,) (€m— €41 () zgw:n(fn_fa)(fm_ €31 o) (A26)
+ 2 Aivtamamwai
#vma (€&~ €,)(em~ €at wo) The NormA correction is
Awwtanawnva _ Auvtanawnva
an (€,— €3+ )2  an (€,— €4+ wg)? e ]_T(l){ > ToavnAna AanGonoa
~ NormA ™ 5 - -
_ OwnvatabBbn o 2 an (‘En_ea)2 an ('En_ea)2
nab (€n— €p)(€n— €5+ () A A,
~ A _i;& ﬁ +cC.C (A27)
n E OwmvatnmAan v €T €
amn (€, €3)(€m— €31 @)
_ Anadwaublon This formula corrects a misprint in the corresponding expres-
nab (€n— €a)(€n— €y wq) sion given in Ref[15].
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