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Equality of length-form and velocity-form transition amplitudes
in relativistic many-body perturbation theory
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Rules for obtaining transition amplitudes that are equal in length form and velocity form, order-by-order in
relativistic many-body perturbation theory are presented. Explicit formulas are derived for first-, second-, and
third-order amplitudes for transitions between valence states in alkali-metal atoms. Numerical codes are de-
veloped to evaluate amplitudes through third order and applied to 3s-3p1/2 and 3s-3p3/2 transitions in sodium
and sodiumlike ions. The present calculations for sodiumlike ions are compared with other accurate theoretical
calculations.

PACS number~s!: 32.70.Cs, 31.10.1z, 31.15.Md
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I. INTRODUCTION

The transition amplitudeT(v)5^Cwut(v)uCv& between
an exact initial atomic stateCv and an exact final atomic
stateCw , where t(v) is the frequency-dependent electr
magnetic multipole transition operator, is expected to
identical in length form and velocity form for energy
conserving transitions. In nonrelativistic many-body calcu
tions, the equivalence of length-form and velocity-form a
plitudes is a consequence of a well-known commuta
identity @1#. A similar commutator identity, convenient fo
relativistic calculations, can be derived using the fact t
length-form and velocity-form amplitudes are related by
gauge transformation of the photon field only@2,3#. Since the
basic commutator identity used here is obtained with the
of a limited kind of gauge transformation, we refer to t
length-velocity equality as gauge independence. We res
our attention to the length-velocity equivalence and do
consider acceleration-form transition amplitudes, nor do
consider more general gauge transformations.

Gauge independence of transition amplitudes in quan
field theory and in nonrelativistic quantum mechanics w
addressed in Refs.@4–7#. Indeed, a proof of the gauge inde
pendence of nonrelativistic transition amplitudes can
found in @5#. These studies were devoted primarily to mul
photon systems, in contrast to the present work, which
concerned with single-photon transitions in many-elect
systems. Although single-photon transition amplitudes
tained in the Hartree-Fock~HF! approximation depend on
gauge, those obtained in the random-phase approxima
~RPA! are gauge independent@8#, as are those in variants o
the RPA such as the relativistic RPA@9# or the multiconfigu-
ration RPA @10#. At a higher level of precision, gauge
independent amplitudes have been obtained in the Bruec
approximation by Liaw@11# and applied to calculate trans
tion rates in alkali-metal atoms@11# and in Ca1 @12#. The
purpose of the present paper is to derive explicit formulas
transition amplitudes that are gauge-independent orde
order in many-body perturbation theory~MBPT! and to ap-
ply these formulas through third order to atoms and ions w
one valence electron.

Relativistic MBPT calculations of transition amplitude
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that are based on theno-pair Hamiltonian@13#, where con-
tributions from negative-energy states~NES! are omitted,
differ in length form and velocity form, as discussed, f
example, in@3#. The NES contributions for allowed electric
dipole transitions in the Coulomb gauge scale asa2Z for
hydrogenlike ions, whereZ is the ionic charge@14#. There-
fore, for near neutral systems, we expect that the differe
between amplitudes calculated in different gauges will
}a2, provided the calculations are otherwise exact. Inde
as we shall see later, length-velocity differences for allow
electric-dipole transitions appear in the fourth or fifth digit
numerical calculations. For forbidden transitions, neglect
NES contributions can lead to significant differences b
tween amplitudes in different gauges. Gauge independe
can be restored in such cases by including contributions f
the NES. This procedure was followed in the configuratio
interaction calculations of Ref.@3#.

In either relativistic or nonrelativistic MBPT calculations
Cv andCw are determined perturbatively, and the transiti
amplitude T(v) is expanded in powers of the interactio
potential as

T~v!5T(1)~v!1T(2)~v!1T(3)~v!1•••, ~1.1!

whereT(1)(v) is the first-order matrix element oft(v) taken
between zeroth-order wave functions;T(2)(v) and T(3)(v)
are the second- and third-order amplitudes written out in
tail for the case of atoms with a single valence electron
Ref. @15#. In perturbative calculations, we must include ‘‘d
rivative’’ terms in order to obtain amplitudes that are gau
independent@3#. We base the present analysis of the relat
istic MBPT amplitudes on the expressions in@15#, but we
change the notation used in that reference slightly.1 In the
Appendix, we summarize the formulas from@15# for conve-
nience. The gauge independence of the first two terms in
perturbation expansion was considered in Ref.@3#, where it
was shown that if we replacev by v05ew2ev in the first-
order termT(1)(v), then this term becomes independent

1We useT to designate the transition amplitude rather thanZ,
which was used in@15#, in order to avoid confusion with the ionic
chargeZ.
©2000 The American Physical Society06-1
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the gauge oft(v). In second order, in addition to replacin
v by v0, it is necessary to add a derivative term to prese
gauge independence,

T(2)~v!→T(2)~v0!1
dT(1)~v!

dv U
v0

dv (1),

wheredv (1) is the first-order shift in the transition energ
Applying a similar analysis to the third-order term, it b
comes clear how to generate derivative terms for high
order matrix elements. The rule is to expand terms of e
order in powers ofdv5v2v0 and collect all terms of the
same order in powers of 1/Z:

T5T(1)~v0!1
dT(1)

dv
dv1

1

2

d2T(1)

dv2
~dv!21•••1T(2)~v0!

1
dT(2)

dv
dv1•••1T(3)~v0!1•••,

5T (1)1T (2)1T (3)1•••, ~1.2!

where

T (1)5T(1)~v0!, ~1.3!

T (2)5T(2)~v0!1
dT(1)

dv
dv (1), ~1.4!

T (3)5T(3)~v0!1
dT(2)

dv
dv (1)1

dT(1)

dv
dv (2)

1
1

2

d2T(1)

dv2
~dv (1)!2, ~1.5!

to third order. The derivatives in the above expressions
defined as

dnT(k)

dvn
[

dnT(k)~v!

dvn U
v0

~1.6!

and powers ofdv as

dv5dv (1)1dv (2)1•••

5~Ew
(1)2Ev

(1)!1~Ew
(2)2Ev

(2)!1•••. ~1.7!
05250
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In calculations based on the Dirac equation, the sing
particle multipole transition operator is given in terms
multipole potentials of the electromagnetic field (A,f) by

t~r ,v!52ca•A~r ,v!1f~r ,v!, ~1.8!

where we denote the quantityhI of Ref. @3# by t and use
atomic units,e5\5me51. The gauge transformation

A~r ,v!→A~r ,v!1“x~r ,v!, ~1.9!

f~r ,v!→f~r ,v!1 ivx~r ,v!, ~1.10!

induces the change

Dt5$2ca“x~r ,v!1 ivx~r ,v!% ~1.11!

in the transition operatort(v). With the aid of the Dirac
equation, single-particle matrix elements ofDt can be ex-
pressed in terms of the gauge functionx(r ,v) as @3#,

Dt i j ~v!5^ i uDtu j &52 i ~e i2e j2v!x i j . ~1.12!

Since the first-order matrix elementT(1)5twv(v0) is just
the one-particle matrix element oft, and sincev05ew
2ev , it follows from Eq. ~1.12! that the first-order matrix
element is unchanged under the gauge transformation@Eqs.
~1.9! and ~1.10!#. It should be emphasized that this resu
depends on the assumption that the interaction potentia
the one-particle Dirac equation is local. For calculatio
based on the nonlocal HF potential, it is a well-known fa
that first-order transition amplitude depends on the gaug
the electromagnetic field.

II. SECOND-ORDER TERMS

In this section we discuss in detail the gauge indep
dence of the second-order amplitude in order to clarify so
points concerning third-order terms; a similar discussion
given in @3# for atoms with two valence electrons. Formul
for the second-order amplitude are given in Ref.@15# and
repeated here in the Appendix for convenience. The seco
order amplitude consists of two partsT(2)5TRPA

(2) 1TD
(2) writ-

ten out in Eqs.~A9! and ~A10!. The termTRPA
(2) accounts in

lowest order for shielding of the transition operator by t
core electrons; it is the leading term in an expansion of
random-phase approximation to the transition amplitude. T
term TD

(2) is proportional toD5VHF2U, the difference be-
TABLE I. Contributions to the first- and second-order 3s1/2-3p3/2 and 3s1/2-3p1/2 transition amplitudes for
sodium in length and velocity forms.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

T (1) 0.451940 0.451940 20.318992 20.318992
TRPA

(2) 20.012038 20.002423 0.008507 0.001799
TD

(2) 0.083700 20.077685 20.059077 0.054351
(dT(1)/dv)dv (1) 20.151773 0.000000 0.106717 0.000000

T (2) 20.080110 20.080108 0.056147 0.056150
6-2
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tween the Hartree-Fock potentialVHF and the local potentia
U(r ) defining the basic one-electron states; this term v
ishes for calculations based on a HF potential. To make
second-order amplitude gauge independent, according to
um
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~1.4!, we must setv5v0 in T(2)(v) and add a derivative
term. Following the procedure outlined in Sec. I, with the a
of Eq. ~1.12!, we find that the change inT(2) induced by a
gauge transformation is
DT(2)52 i(
na

xan~gwnva2gwnav!1 i(
na

~gwavn2gwanv!xna2 i (
iÞv

xwi~VHF2U ! iv1 i (
iÞw

~VHF2U !wix iv

52 i(
ia

xai~gwiva2gwiav!1 i(
ia

~gwav i2gwaiv!x ia2 i(
i

xwi~VHF2U ! iv1 i(
i

~VHF2U !wix iv2 idv (1)xwv

52 i(
ia

@xai~gwiva2gwiav!2~gwav i2gwaiv!x ia#2 i(
ia

@xwi~giava2giaav!2~gwaia2gwaai!x iv#2 idv (1)xwv

52 i(
a

~@gx~2!#wava2@gx~2!#waav2@gx~2!#wava1@gx~1!#waav!2 i(
a

~@gx~1!#wava2@gx~1!#waav

2@gx~1!#wava1@gx~2!#waav!2 idv (1)xwv

52 idv (1)xwv , ~2.1!
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where dv (1)5(VHF2U)ww2(VHF2U)vv is the first-order

transition energy and @gx(1)#abcd5
def

( ixaigibcd

5( igabidx ic . In the above equation, we extended the s
over virtual statesn to include contributions from core state
which cancel, and negative-energy states. We then make
of completeness to obtain the expressions in the next-to
equality. It should be noted that including NES contributio
represents an extension of the MBPT formulas given in@15#.
The change in the derivative term under a gauge transfor
tion is given by

dDT(1)

dv
52 i

d

dv
~ew2ev2v!xwv5 ixwv . ~2.2!

Therefore, the complete second-order amplitudeT (2) is
gauge independent,

DT (2)5DT(2)1
dDT(1)

dv
dv (1)

52 idv (1)xwv1 ixwvdv (1)50. ~2.3!

We notice that the hydrogenlike terms, those containing o
U(r ) including the derivative component, can be group
into a gauge-independent contribution. The remaining ter
those containingVHF and the RPA terms, are not gauge i
dependent separately but only when added together.
complication arises because of the exchange parts of t
terms, since@gx(1)#waavÞ@gx(2)#waav . In Table I we
present a breakdown of the contributions toT (2) for the
3s1/2-3p3/2 and 3s1/2-3p1/2 transitions in sodium. The tabl
illustrates that although the individual termsTD

(2) and TRPA
(2)

are gauge dependent, the final second-order transition am
tude is indeed independent of gauge; the tiny residual dif
se
st

s

a-

ly
d
s,

is
se

li-
r-

ences in the final amplitudes given in the table are the re
of our neglect of contributions from negative-energy states
the numerical calculations.

The calculations used in preparing Table I are based o
local Dirac-Fock-Kohn-Sham potential that takes into a
count exchange, approximately. The values given in the ta
are reduced matrix elements of the transition operator,
glecting retardation effects@of relative order (a0 /l)2#. One
consequence of the neglect of retardation is that the der
tive terms of the velocity-form amplitude vanishes. Mor
over, the second derivatives of both length- and veloc
form amplitudes vanish.

As alluded to above, we include only positive-ener
states in the sums over intermediate states. The agree
between velocity and length results in the table not o
confirms our analysis but also shows that contributions fr
omitted negative-energy states are very small. With this
mind, we ignore them also in third-order calculations. F
nally, a very important point is that the length-veloci
agreement provides an excellent test for logical errors, s
errors, and other errors in our analysis and in the associ
computer programs.

The gauge-independent perturbation theory above
tains only to many-body calculations based on a local pot
tial; for calculations starting from a nonlocal Hartree-Fo
potential, the theory presented above isnot gauge indepen-
dent, even in lowest order. This is a consequence of the
that the Hartree-Fock potentialVHF does not commute with
the gauge functionx(r ); indeed, Eq.~1.12! is no longer
valid. Instead we have

Dt i j
(1)~v!52 i F ~e i2e j2v!x i j 2(

ka
~giaakxk j2x ikgkaa j!G .

~2.4!
6-3
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TABLE II. Contributions to the third-order transition amplitudes for 3s1/2-3p3/2 and 3s1/2-3p1/2 transi-
tions in Na from the first gauge-invariant subset of terms.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

J1 20.000001 0.004042 0.000000 20.002846
(dTRPA

(2) /dv)dv (1) 0.004043 0.000000 20.002846 0.000000

J 0.004042 0.004042 20.002846 20.002846
ti
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The matrix element between the final and initial states sa
fying ew2ev5v0 is not zero,

DT(1)[Dtwv~v0!5 i(
ia

@gwaaix iv2xwigiaav#.

The difference between length and velocity transition am
tudes in the Hartree-Fock basis, though nonzero, will be
order in 1/Z smaller thanT(1). With the second-order term
added, this difference becomes even smaller. The remai
in first order is canceled by the RPA remainder, and o
terms of second and higher order in 1/Z survive. Specifically,
in second order for Hartree-Fock calculations only RP
terms contribute,

DTRPA
(2) 52 i(

a
$@gx~2!#waav2@gx~1!#waav%1R(3),

whereR(3) is a residual term of relative order (1/Z)2. Com-
bining the RPA amplitude with the lowest-order amplitud
one finds

DT(1)1DTRPA
(2) 5R(3),

which is of relative order (1/Z)2. The third-order contribu-
tions will compensateR(3), and so on. Eventually, even th
HF result is expected to be gauge independent. In Ref.@16#,
convergence of the length and velocity amplitudes to e
other in the iterated RPA was demonstrated numerically.
the 3s1/2-3p3/2 transition in sodium starting from a HF po
tential, in first, second, third, and thirty-first order, th
length-velocity differences are 6%, 0.7%, 0.4%, and 0.001
respectively.

III. THIRD-ORDER TERMS

It is possible to separate the complete third-order am
tude into six gauge independent subsetsT (3)5J1D1G
1N1S1D. The first subsetJ consists of the terms on th
second line of Eq.~A26! for TSR-D

(3) , and their complex con-
jugates, combined with the derivative term fromTRPA

(2) ,

J15dv (1)H (
an

tang̃wnva

~en2ea1v0!2
2(

an

g̃wavntna

~en2ea2v0!2J ,

~3.1!
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dTRPA
(2)

dv
dv (1)52dv (1)H (

an

dtan

dv

g̃wnva

en2ea1v0

1(
an

g̃wavn

en2ea2v0

dtna

dv J , ~3.2!

wherev05ew2ev . Contributions from these two terms fo
the 3s-3p3/2 and 3s-3p1/2 transitions in sodium are shown i
Table II.

The following subsetD consisting of eight third-order
terms is also independent of gauge:

D15 (
iÞw
j Þv

Dwit i j D j v

~e i2ew!~e j2ev!
, ~3.3!

D252(
iÞv

twiDvvD iv

~e i2ev!2
1c.c., ~3.4!

D35(
iÞv
j Þv

twiD i j D j v

~e i2ev!~e j2ev!
1c.c., ~3.5!

D45 (
iÞw
ma

Dwitamg̃miav

~e i2ew!~em2ea1v0!
1c.c., ~3.6!

D55(
iÞv
ma

D ivtamg̃mwai

~e i2ev!~em2ea1v0!
1c.c., ~3.7!

dTD
(2)

dv
dv (1)5F(

iÞv

dtwi

dv

D iv

~ev2e i !
1 (

iÞw

Dwi

~ew2e i !

dtiv
dv Gdv (1),

~3.8!

dT(1)

dv
dvD

(2)5
dtwv

dv F(
iÞv

Dv iD iv

~e i2ev!
2 (

iÞw

DwiD iw

~e i2ew!G ,
~3.9!

1

2

d2T(1)

dv2
~dv (1)!25

1

2

d2twv

dv2
~dv (1)!2. ~3.10!

The first three of the terms aboveD1–D3 are those of order
D2 from TBO-D

(3) in Eq. ~A25!, including complex conjugates
The next two terms,D4 andD5, are those from the first line
of TSR-D

(3) in Eq. ~A26!, including complex conjugates. Th
6-4
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TABLE III. Contributions to the third-order amplitudes for 3s1/2-3p3/2 and 3s1/2-3p3/2 transitions in Na
from the second gauge-invariant subset of terms.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

D1 0.029031 0.036853 20.020602 20.026010
D2 0.029994 20.027834 20.021132 0.019612
D3 20.019780 0.018110 0.013983 20.012489
D4 0.002326 20.030585 20.001640 0.021580
D5 0.002062 0.027205 20.001459 20.019307
(dTD

(2)/dv)dv (1) 20.028109 0.000000 0.019764 0.000000
(dT(1)/dv)dvD

(2) 0.008228 0.000000 20.005524 0.000000
1/2(d2T(1)/dv2)(dv (1))2 0.000000 0.000000 0.000000 0.000000

D 0.023752 0.023750 20.016611 20.016613
tio
e

d-

al
th
tiv
final three terms are derivative terms. We use the nota
dvD

(2) in Eq. ~3.9! to designate the contribution to th
second-order transition energy from terms of orderD2 in Eq.
~A6!. The contributions from this subset of terms to thir
order matrix elements for the 3s1/2-3p1/2 and 3s1/2-3p3/2
transitions in sodium are listed in Table III. Again, the sm
residual differences between length and velocity forms in
numerical values are a consequence of neglecting nega
energy contributions.

The third gauge-invariant subsetG consists of the third-
order RPA termTRPA

(3) given in Eq.~A12! combined with the
following terms:

G15(
nab

g̃wnavtabDbn

~en2eb!~en2ea1v0!
1c.c., ~3.11!

G25(
nma

g̃mwavtnmDan

~en2ea!~em2ea1v0!
1c.c., ~3.12!

G352(
nab

Dnag̃awbvtbn

~en2ea!~en2eb1v0!
1c.c., ~3.13!
05250
n

l
e
e-

G45(
amn

Dnatamg̃wmvn

~en2ea!~em2ea1v0!
1c.c., ~3.14!

G55(
nab

g̃wnavtbnDab

~en2ea1v0!~en2eb1v0!
1c.c., ~3.15!

G65(
amn

Dnmtang̃mwav

~em2ea1v0!~en2ea1v0!
1c.c., ~3.16!

G75(
ma
iÞv

twig̃imvaDam

~e i2ev!~em2ea!
1c.c., ~3.17!

G85(
na

iÞv

twig̃iavnDna

~e i2ev!~en2ea!
1c.c., ~3.18!
TABLE IV. Contributions to the third-order amplitudes for 3s1/2-3p1/2 and 3s1/2-3p3/2 transitions in Na
from the third gauge-invariant subset of terms.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

G1 20.000103 20.000221 0.000073 0.000155
G2 0.000690 0.000199 20.000487 20.000143
G3 20.000124 20.000214 0.000088 0.000151
G4 0.000374 0.001189 20.000267 20.000804
G5 0.003488 0.002380 20.002462 20.001711
G6 0.001422 0.001504 20.001004 20.001076
G7 0.003977 20.003469 20.002804 0.002400
G8 0.003377 20.001660 20.002385 0.001164
(dT(1)/dv)dvgD

(2) 20.012818 0.000000 0.009018 0.000000
TRPA

(3) 20.001730 20.001158 0.001219 0.000853

G 20.001448 20.001448 0.000989 0.000989
6-5
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dT(1)

dv
dvgD

(2)5
dtwv

dv H (
am

FDamg̃mwwa

em2ea
1

g̃wamwDma

em2ea
G

2(
am

FDamg̃mvva

em2ea
1

g̃vamvDma

em2ea
G J . ~3.19!

The termsG1–G4 are those on the third and fourth lines
TSR-D

(3) in Eq. ~A26!; G5 andG6 are the entireTRPA-D
(3) contri-

bution from Eq.~A24!, while G7 andG8 are the contributions
from the terms on the second line ofTBO-D

(3) in Eq. ~A25!.
Complex conjugates of all of these terms are included. In
~3.19!, dvgD

(2) designates the part of the second-order tran
tion energy that is proportional to the productgabcdD in Eq.
~A6!. Contributions to third-order matrix elements fo
3s1/2-3p1/2 and 3s1/2-3p3/2 transitions in sodium from this
subset are listed in Table IV, where they are combined w
TRPA

(3) to give contributions that differ in length and veloci
forms only by omitted negative-energy contributions.

The fourth set of gauge-independent termsN is the nor-
malization termsTNorm

(3) from Eq.~A23! andTNorm-D
(3) from Eq.

~A27!. This latter term consists of two parts,

N152
1

2
T(1)F(

iÞv

Dv iD iv

~e i2ev!2
1c.c.G , ~3.20!

N22
1

2
T(1)F(

an

g̃vavnDna

~en2ea!2
1(

an

Dang̃vnva

~en2ea!2
1c.c.G .

~3.21!

TABLE V. Contributions of the normalization terms to th
3s1/2-3p3/2 and 3s1/2-3p1/2 transition amplitude in sodium.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

TNorm
(3) 20.002388 20.002388 0.001687 0.001687

N1 20.027409 20.027409 0.019427 0.019427
N2 0.001201 0.001201 20.000850 20.000850

N 20.028596 20.028596 0.020264 0.020264
05250
q.
i-

h

The contributions of the normalization terms to the thir
order amplitude for the 3s1/2-3p1/2 and 3s1/2-3p3/2 transitions
in sodium from this subset are listed in Table V. The nume
cal values of terms are identical in length and veloc
gauges, since there are no negative-energy contribution
T(1).

The remaining terms are all bilinear in the Coulomb m
trix elementgi jkl . These can be grouped into two subse
each of which is individually independent of gauge. The fi
subsetSgg consists of the single-excitation terms, which co
sist of the part ofTBO

(3) given in Eq.~A13! and the parts of
TSR

(3) given in Eqs.~A15!, ~A16!, ~A18!, and ~A20!. These
terms lead to a gauge-independent subset when comb
with the contribution to the second-order excitation fr
quencydvs

(2) from the second term of Eq.~A6! times the
derivative ofT(1). The second subsetDgg consists of the part
of TBO

(3) given in Eq.~A14! and the parts ofTSR
(3) given in Eqs.

~A17!, ~A19!, ~A21!, and~A22!; again, these parts combine
with the contribution to the second-order excitation fr
quencydvd

(2) from the first term of Eq.~A6! times the de-
rivative of T(1) give a gauge-independent subset. We pres
the contributions to these two subsets from the single
double sums and from the derivative terms in Table VI.

In Table VII we list the subtotals from the six gaug
independent subsets for the 3s1/2-3p1/2 and 3s1/2-3p3/2 tran-
sitions in sodium and the resultant third-order amplitud

TABLE VII. Summary of various contributions to the third
order 3s1/2-3p3/2 and 3s1/2-3p1/2 transition amplitude in sodium.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

J 0.004042 0.004042 20.002846 20.002846
D 0.023752 0.023750 20.016611 20.016613
G 20.001448 20.001448 0.000989 0.000989
N 20.028596 20.028596 0.020264 0.020264
S 0.001710 0.001710 20.001220 20.001219
D 0.019280 0.019276 20.013550 20.013548

T (3) 0.018739 0.018735 20.012973 20.012973
TABLE VI. Contributions of the single- and double-excitation terms to the 3s1/2-3p3/2 and 3s1/2-3p1/2

transition amplitude in sodium.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

Sgg 0.005643 0.001710 20.004004 20.001219
(dT(1)/dv)dvs

(2) 20.003934 0.000000 0.002784 0.000000

S 0.001710 0.001710 20.001220 20.001219

Dgg 20.022288 0.019276 0.015739 20.013548
(dT(1)/dv)dvd

(2) 0.041568 0.000000 20.029289 0.000000

D 0.019280 0.019276 20.013550 20.013548
6-6
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Again the small difference between length form and veloc
form amplitudes is a result of omitting negative-energy co
tributions.

IV. SUMMARY AND DISCUSSION

In the preceding two sections, we have presented for
las from relativistic MBPT for length-form and velocity
form amplitudes of dipole transitions between valence sta
of alkali-metal-like atoms and we have applied these form
las to obtain first-, second-, and third-order amplitudes
transitions in sodium as a specific example. Although
have considered length- and velocity-form amplitudes
electric-dipole transitions in our examples, it should be m
tioned that the formalism developed here applies as we
higher multipoles.

The partial contributions to the 3s1/2-3p1/2 and 3s1/2-3p3/2
amplitudes in sodium are shown, along with their sum,
Table VIII. Experimental or theoretical data for transitio
are often expressed in terms of line strengths or, equ
lently, reduced dipole matrix elements. Reduced matrix e
ments of the unretarded dipole operator can be obtained f
the transition amplitudes defined here by dividing out
transition energy. Therefore, we can define a sequenc
approximations of increasing accuracy in 1/Z for the dipole
matrix elements through the relations,

D (1)5T (1)/v0 , ~4.1!

D (2)5~T (1)1T (2)!/~v01dv (1)!, ~4.2!

D (3)5~T (1)1T (2)1T (3)!/~v01dv (1)1dv (2)!. ~4.3!

In Table IX we apply these formulas to determine firs
second-, and third-order dipole matrix elements for sodiu
like ions with nuclear chargesZ511216. We give length-
form dipole matrix elements only, since length-form a
velocity-form values agree to all digits quoted. The diffe
ences between the second and third approximations tD
range from 5% for neutral sodium to 0.4% for Na-like
(Z516).

One expects that third-order MBPT will provide accura
approximations to amplitudes for highly charged ions. T
expectation is confirmed for sodiumlike ions, as shown
Table X, where we compare the present third-order dip
matrix elements with a recent all-order single-double~SD!

TABLE VIII. Perturbation expansion of the 3s1/2-3p3/2 and
3s1/2-3p1/2 transition amplitude in sodium.

3s1/2-3p3/2 3s1/2-3p1/2

Term Length Velocity Length Velocity

T (1) 0.451940 0.451940 20.318992 20.318992
T (2) 20.080110 20.080108 0.056147 0.056150
T (3) 0.018739 0.018735 20.012973 20.012973

(
k51

3

T (k) 0.390569 0.390567 20.275819 20.275815
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calculation@17# for the Na sequence. We see that differenc
with the all-order results range from 0.3% for sodium
0.1% for Na-like S. Our results for neutral Na are in exc
lent agreement with the Brueckner calculations of Ref.@11#,
which give 5.006 and 3.540 for the 3s1/2-3p3/2 and
3s1/2-3p1/2 dipole matrix elements, respectively. The prese
values of these two matrix elements in Na are also in go
agreement with the values from a large-scale configurat
interaction~CI! calculation@18#, which are 4.993, and 3.530
respectively. The SD and CI calculations, which include c
relation corrections beyond third order, are in closer agr
ment with the recent experimental values@19#, 4.984~3! and
3.525~2!, respectively, than are the present third-order val
or the Brueckner values.

Our all-order expressions for derivative terms should p
vide the basis for the analysis of length-velocity disagr
ment in other gauge-dependent theories. Let us cons
some particular cases.

~1! If derivative terms are omitted innth order (n>2)
andv0 is substituted in transition-matrix elements, then t
length-velocity difference in dipole matrix elements is
second order, even though the first-order amplitude is ga
independent.

~2! If no derivative terms are added but an accurate tr
sition energy is used, then starting from first order, the d
ference between length and velocity gauges will be of
next-higher order of smallness. This gauge difference in
pole matrix elements is of the same order as the devia
from the exact~all-order! value.

TABLE IX. Order-by-order contributions to length-form
3s1/2-3p3/2 dipole matrix elements for sodiumlike ions. The lengt
form and velocity-form matrix elements are identical.

3s1/2-3p3/2 3s1/2-3p1/2

Z D(1) D (2) D (3) D (1) D (2) D (3)

11 4.274 5.295 5.010 3.023 3.743 3.544
12 3.087 3.387 3.367 2.182 2.395 2.381
13 2.474 2.616 2.620 1.748 1.849 1.852
14 2.082 2.163 2.170 1.471 1.528 1.534
15 1.805 1.856 1.863 1.275 1.311 1.317
16 1.597 1.630 1.636 1.128 1.152 1.156

TABLE X. Comparison of third-order dipole matrix elemen
D (3) for 3s1/2-3p3/2 and 3s1/2-3p1/2 transitions in sodiumlike ions
with all-order dipole matrix elements~SD! from @17# .

3s1/2-3p3/2 3s1/2-3p1/2

Z D(3) SD D (3) SD

11 5.010 4.994 3.544 3.531
12 3.367 3.351 2.381 2.369
13 2.620 2.611 1.852 1.845
14 2.170 2.165 1.534 1.523
15 1.863 1.859 1.317 1.314
16 1.636 1.634 1.156 1.154
6-7
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~3! In Hartree-Fock calculations, regardless of derivat
terms, the length-velocity difference in dipole matrix el
ments is of the next-higher order, provided the experime
frequency is used. Again, the difference provides an estim
of accuracy of that order calculations.

Finally, there is the question of which gauge is preferable
calculations. In gauge-dependent calculations, the len
gauge amplitude is often expected to be more reliable
cause the velocity-form dipole matrix elements implicitly i
clude the lower-order energies while the length-form ma
elements do not. For example, in first order, the veloc
transition amplitudeTv5v0r ~for the sake of simplicity, we
consider nonrelativistic transition amplitudesv and vr in
which case only the first derivative contributes, and only
the length-gauge amplitude! but the length amplitude is mor
accurateTl5vr if the frequency is taken from experimen
Dividing Tv by v0 we can obtain the same result as in t
length case; however, it is not obvious how to do this
higher-order corrections in gauge-dependent potentials o
Dirac-Hartree-Fock~DHF! calculations. In second orde
again the velocity-form resultTv5v1r (1)1v0r (2) is less ac-
curate than length oneTl5v(r (2)1r (1)) and the length
gauge cannot be obtained with simple division byv0 and
multiplication by v. A similar situation exists for higher
order contributions; dividing velocity transition amplitude
by (v01v11•••1vn) wheren11 corresponds to the or
der of transition amplitude, we can bring the velocity-gau
amplitudes inton12 order of 1/Z agreement with length
gauge results and, correspondingly, into better agreem
with experiment.

In summary, we have presented detailed formulas for
taining gauge-independent transition amplitudes thro
third order for atoms with a single valence electron with
the framework of relativistic MBPT and, as a practical e
ample, we have applied these formulas to obtain elect
dipole amplitudes for the principal transitions in sodiumli
ions Z511216.

APPENDIX: BASIC MBPT FORMULAS

In this appendix we summarize the basic formulas fr
Ref. @15# needed for the present analysis. These formulas
based on the relativistic no-pair Hamiltonian@13#, which can
be written in second-quantization as

H5(
i

e i :ai
†ai :1

1

2 (
i jkl

gi jkl :ai
†aj

†alak:1(
i j

D i j :ai
†aj :,

~A1!

where the sums are restricted to positive-energy states o
In this equation,e i is the eigenvalue of the one-electro
Dirac equation

h f i5e if i , ~A2!

with

h5caW •pW 1bc21Vnuc1U. ~A3!
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The arbitrary central potentialU(r ) approximates the effec
of the electron-electron interaction. The quantitygi jkl in Eq.
~A1! is a two-particle Coulomb integral,

gi jkl 5^ i j u
1

r 12
ukl&.

Later, we represent the antisymmetrized Coulomb integ
by g̃i jkl 5gi jkl 2gi j lk . The difference between the Hartre
Fock potentialVHF and the potentialU(r ) is represented as

D i j 5~VHF2U ! i j .

The normal products of creation operatorsai
† and annihila-

tion operatorsaj , designated in Eq.~A1! by bracketing op-
erators with colons, are taken with respect to the closed-s
atomic coreu0&. An atomic stateuv& of an atom with one-
electron outside the closed core is then given by

uv&5av
†u0&.

The energy of the atom in a statev consists of a core
contribution, which is the same for all valence states, an
valence contribution, which changes from state to state.
valence energy can be expanded as

Ev5Ev
(0)1Ev

(1)1Ev
(2)1•••,

whereEv
(0) is the eigenvalue of the Dirac equation~A2!,

Ev
(0)5ev , ~A4!

andEv
(1) is the perturbation caused byD,

Ev
(1)5^vuDuv&5Dvv . ~A5!

The second-order contribution to the valence energy fr
Ref. @15# is

Ev
(2)52(

amn

gvamng̃mnva

em1en2ev2ea
1(

abm

gabmvg̃mvab

em1ev2ea2eb

1F(
am

Damg̃mvva

em2ea
1c.c.G2(

iÞv

Dv iD iv

e i2ev
. ~A6!

We use the following conventions for the summation in
ces:

~1! Indices a,b, . . . , at thebeginning of the alphabe
range over occupied core orbitals.

~2! Indicesm, n, and r, later in the alphabet range ove
virtual orbitals outside the core.

~3! Indicesi, j, k, l range over both core and virtual orbi
als.

~4! Indicesv andw refer to valence states.
From Ref.@15#, we find that the amplitude for a transitio

from v to w in a one valence electron atom can be writte

T5T(1)1T(2)1T(3)1•••,
6-8
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where the first-order amplitude is simply the matrix elem
of the transition operator between one-electron valence o
als

T(1)5twv5^wutuv&. ~A7!

The second-order amplitude consists of two parts, a rand
phase approximation~RPA! correction and a correction from
the potential differenceD,

T(2)5TRPA
(2) 1TD

(2) , ~A8!

where

TRPA
(2) 52(

na

tang̃wnva

en2ea1v0
2(

na

g̃wavntna

en2ea2v0
, ~A9!

TD
(2)5(

iÞv

twiD iv

ev2e i
1 (

iÞw

Dwit iv

ew2e i
, ~A10!

with v05ew2ev .
The third-order correction is considerably more compl

it consists of the eight terms

T(3)5TRPA
(3) 1TBO

(3)1TSR
(3)1TNorm

(3) 1TRPA-D
(3) 1TBO-D

(3) 1TSR-D
(3)

1TNorm-D
(3) . ~A11!

The RPA contribution is given by

TRPA
(3) 5 (

abmn
F g̃wnvatbmg̃amnb

~em2eb1v0!~en2ea1v0!
1c.c.G

1 (
abmn

F g̃mnabtbmg̃wanv

~em2eb1v0!~en2ea2v0!
1c.c.G . ~A12!

The Brueckner-orbital~BO! correction is

TBO
(3)5 (

abmi
F gabmvtwig̃miba

~e i2ev!~ev1em2ea2eb!
1c.c.G ~A13!

1 (
abmi

F g̃aimntwigmnav

~e i2ev!~en1em2ea2ev!
1c.c.G .

~A14!

The structural-radiation~SR! correction is

TSR
(3)5 (

abcn
F gbavc tcng̃wnba

~en2ec1v0!~en1ew2ea2eb!
1c.c.G ~A15!

1 (
abcn

g̃wnabtacg̃bcnv

~en1ev2eb2ec!~en1ew2ea2eb!
~A16!

1 (
abmn

F g̃mnavtbmg̃awnb

~em2eb1v0!~en1em2ea2ev!
1c.c.G

~A17!
05250
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;

1 (
abmn

F g̃nwabtbmg̃amvn

~em2eb1v0!~en1ew2ea2eb!
1c.c.G

~A18!

1 (
abmn

gmnavtabg̃bwnm

~en1em2eb2ew!~en1em2ea2ev!
~A19!

1 (
abmn

gabvntnmg̃mwab

~en1ev2ea2eb!~em1ew2ea2eb!
~A20!

1 (
amnr

F gwrnmtarg̃mnav

~e r2ea1v0!~en1em2ea2ev!
1c.c.G

~A21!

1 (
amnr

g̃wanrt rmg̃mnav

~en1em2ea2ev!~e r1en2ea2ew!
.

~A22!

The Norm correction is

TNorm
(3) 5

1

2
T(1)H (

amn

g̃vamngmnav

~em1en2ea2ev!2

1(
abn

g̃abnvgnvba

~ev1en2ea2eb!2
1c.c.J . ~A23!

The RPA-D terms are

TRPA-D
(3) 5H (

abn

g̃wnavtbnDab

~en2ea1v0!~en2eb1v0!

1(
amn

Dnmtang̃mwav

~em2ea1v0!~en2ea1v0!
1c.c.J . ~A24!

The BO-D term is given by

TBO-D
(3) 5 (

iÞw
j Þv

Dwit i j D j v

~e i2ew!~e j2ev!
1H 2(

iÞv

twiDvvD iv

~e i2ev!2

1(
iÞv
j Þv

twiD i j D j v

~e i2ev!~e j2ev!
1(

iÞv
ma

twig̃imvaDam

~e i2ev!~em2ea!

1(
iÞv
na

twig̃iavnDna

~e i2ev!~en2ea!
1c.c.J . ~A25!

The SR-D correction is
6-9



es-

I. M. SAVUKOV AND W. R. JOHNSON PHYSICAL REVIEW A62 052506
TSR-D
(3) 5H (

iÞw,ma

Dwitamg̃miav

~e i2ew!~em2ea1v0!

1 (
iÞv,ma

D ivtamg̃mwai

~e i2ev!~em2ea1v0!

1(
an

Dwwtang̃wnva

~en2ea1v0!2
2(

an

Dvvtang̃wnva

~en2ea1v0!2

2(
nab

g̃wnvatabDbn

~en2eb!~en2ea1v0!

1(
amn

g̃wmvatnmDan

~en2ea!~em2ea1v0!

2(
nab

Dnag̃wavbtbn

~en2ea!~en2eb1v0!
d

nn

, J

05250
1(
amn

Dnatamg̃wmvn

~en2ea!~em2ea1v0!
1c.c.J . ~A26!

The Norm-D correction is

TNorm-D
(3) 5

1

2
T(1)H 2(

an

g̃vavnDna

~en2ea!2
2(

an

Dang̃vnva

~en2ea!2

2(
iÞv

Dv iD iv

~e i2ev!2
1c.c.J . ~A27!

This formula corrects a misprint in the corresponding expr
sion given in Ref.@15#.
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