Scalar and Tensor Polarizabilities of Atoms

W. R. Johnson
Department of Physics, 225 Nieuwland Science Hall
University of Notre Dame, Notre Dame, IN 46556

November 13, 2009

Abstract

This is a note written to understand the formulas for scalar and tensor polarizabilities of atoms,

1 Basic Formulas

We derive formulas for the scalar and tensor polarizabilities following the outline given by Khadjavi et al. [1]. We assume that the atom is in state $\left|J M_{J}\right\rangle$ and is subject to a perturbation $H^{(1)}=e \boldsymbol{r} \cdot E$. Owing to parity conservation, the first-order correction to the unperturbed energy vanishes. The second-order energy is

$$
\begin{align*}
\Delta W_{J M_{J}} & =-e^{2} \sum_{K \neq J} \sum_{M_{K}} \frac{\left\langle J M_{J}\right| \boldsymbol{r} \cdot E\left|K M_{K}\right\rangle\left\langle K M_{K}\right| \boldsymbol{r} \cdot E\left|J M_{J}\right\rangle}{W_{K}-W_{J}} \\
& =-e^{2} \sum_{K \neq J} \sum_{M_{K}} \sum_{\mu \nu}(-1)^{\mu+\nu} E_{\mu} E_{\nu} \frac{\left\langle J M_{J}\right| r_{-\mu}\left|K M_{K}\right\rangle\left\langle K M_{K}\right| r_{-\nu}\left|J M_{J}\right\rangle}{W_{K}-W_{J}}, \tag{1}
\end{align*}
$$

where E_{μ} and r_{μ} are components of the vectors \boldsymbol{E} and \boldsymbol{r}, respectively, in a spherical basis.

1.1 Product Tensor

To put Eq.(1) into a tractable form, we express the product $E_{\mu} E_{\nu}$ of two rank 1 irreducible tensor operators E_{μ} and E_{ν} as a sum of irreducible tensor operators $\mathcal{E}\left(L, M_{L}\right)$ defined by

$$
\mathcal{E}\left(L, M_{L}\right)=\sum_{\mu \nu} \sqrt{[L]}(-1)^{M_{L}}\left(\begin{array}{ccc}
1 & 1 & L \tag{2}\\
\mu & \nu & -M_{L}
\end{array}\right) E_{\mu} E_{\nu}
$$

Inverting this relation, we find

$$
E_{\mu} E_{\nu}=\sum_{L=0}^{2} \sum_{M_{L}=-L}^{L} \sqrt{[L]}(-1)^{M_{L}}\left(\begin{array}{ccc}
1 & 1 & L \tag{3}\\
\mu & \nu & -M_{L}
\end{array}\right) \mathcal{E}\left(L, M_{L}\right)
$$

Explicit formulas for the components of the irreducible tensor operator $\mathcal{E}\left(L, M_{L}\right)$ are as follows:

$$
\begin{aligned}
\mathcal{E}(0,0) & =-\frac{1}{\sqrt{3}}\left[E_{0}^{2}-2 E_{-1} E_{1}\right]=-\frac{1}{\sqrt{3}} E^{2} \\
\mathcal{E}(1, \mp 1) & =0 \quad \mathcal{E}(1,0)=0 \\
\mathcal{E}(2, \mp 2) & =E_{\mp 1}^{2} \quad \mathcal{E}(2, \mp 1)=\sqrt{2} E_{\mp 1} E_{0} \\
\mathcal{E}(2,0) & =\sqrt{\frac{2}{3}}\left[E_{0}^{2}+E_{-1} E_{1}\right]=\frac{1}{\sqrt{6}}\left[3 E_{z}^{2}-E^{2}\right]
\end{aligned}
$$

1.2 Sum over magnetic quantum numbers

As a first step in evaluating the sum over magnetic quantum numbers in Eq.(1), we define

$$
\begin{equation*}
S\left(J, M_{J}\right)=\sum_{M_{K}} \sum_{\mu \nu}(-1)^{\mu+\nu} E_{\mu} E_{\nu}\left\langle J M_{J}\right| r_{-\mu}\left|K M_{K}\right\rangle\left\langle K M_{K}\right| r_{-\nu}\left|J M_{J}\right\rangle \tag{4}
\end{equation*}
$$

Substituting for $E_{\mu} E_{\nu}$ and writing the dipole matrix elements in terms of reduced matrix elements, Eq.(4) becomes

$$
\begin{align*}
& S\left(J, M_{J}\right)=(-1)^{J-K}|\langle J\|r\| K\rangle|^{2} \\
& \quad \sum_{L} \sqrt{[L]} \sum_{M_{L}} \mathcal{E}\left(L, M_{L}\right) \sum_{\mu \nu}(-1)^{\mu+\nu}(-1)^{M_{L}}\left(\begin{array}{ccc}
1 & 1 & L \\
\mu & \nu & -M_{L}
\end{array}\right) \\
& \sum_{M_{K}}\left[(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & 1 & K \\
-M_{J} & -\mu & M_{K}
\end{array}\right)(-1)^{K-M_{K}}\left(\begin{array}{ccc}
K & 1 & J \\
-M_{K} & -\nu & M_{J}
\end{array}\right)\right] \tag{5}
\end{align*}
$$

The sum over μ, ν and M_{K} in Eq.(5) is carried out to give

$$
\begin{align*}
& \sum_{\mu \nu M_{K}}(-1)^{\mu+\nu}(-1)^{M_{L}}\left(\begin{array}{ccc}
1 & 1 & L \\
\mu & \nu & -M_{L}
\end{array}\right) \\
& (-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & 1 & K \\
-M_{J} & -\mu & M_{K}
\end{array}\right)(-1)^{K-M_{K}}\left(\begin{array}{ccc}
K & 1 & J \\
-M_{K} & -\nu & M_{J}
\end{array}\right) \\
& \quad=(-1)^{2 J}(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & L & J \\
-M_{J} & 0 & M_{J}
\end{array}\right)\left\{\begin{array}{ccc}
J & 1 & K \\
1 & K & L
\end{array}\right\} \delta_{M_{L}, 0} \tag{6}
\end{align*}
$$

Substituting Eq.(6) into Eq.(5), we find

$$
\begin{align*}
& S\left(J, M_{J}\right)=(-1)^{J+K}|\langle J\|r\| K\rangle|^{2} \\
& \quad \sum_{L} \mathcal{E}(L, 0) \sqrt{[L]}(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & L & J \\
-M_{J} & 0 & M_{J}
\end{array}\right)\left\{\begin{array}{ccc}
J & 1 & K \\
1 & K & L
\end{array}\right\} \tag{7}
\end{align*}
$$

With the aid of $\mathrm{Eq}(7)$ we decompose $\Delta W_{J M_{J}}$ into a sum over L :

$$
\begin{equation*}
\Delta W_{J M_{J}}=\sum_{L} \Delta W_{J M_{J}}^{(L)} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta W_{J M_{J}}^{(L)} & =-e^{2} \sum_{K \neq J} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \mathcal{E}(L, 0) \\
& \sqrt{[L]}(-1)^{J+K}(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & L & J \\
-M_{J} & 0 & M_{J}
\end{array}\right)\left\{\begin{array}{ccc}
J & 1 & K \\
1 & K & L
\end{array}\right\} . \tag{9}
\end{align*}
$$

It should be noted that there are only two nonvanishing components of $\mathcal{E}(L, 0)$, $L=0$ and $L=2$.

1.2.1 $\mathrm{L}=0$

For the case $L=0$, we have

$$
(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & 0 & J \tag{10}\\
-M_{J} & 0 & M_{J}
\end{array}\right)=\frac{1}{\sqrt{[J]}}
$$

and

$$
\left\{\begin{array}{ccc}
J & 1 & K \tag{11}\\
1 & K & 0
\end{array}\right\}=\frac{(-1)^{J+K+1}}{\sqrt{[J][1]}}
$$

We also have

$$
\begin{equation*}
\mathcal{E}(0,0)=-\frac{1}{\sqrt{3}} E^{2} \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Delta W_{J M_{J}}^{(0)}=-e^{2} E^{2} \frac{1}{3(2 J+1)} \sum_{K \neq J} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{13}
\end{equation*}
$$

1.2.2 $\mathrm{L}=2$

For the case $L=2$, we have

$$
(-1)^{J-M_{J}}\left(\begin{array}{ccc}
J & 2 & J \tag{14}\\
-M_{J} & 0 & M_{J}
\end{array}\right)=\frac{2\left[3 M_{J}^{2}-J(J+1)\right]}{[(2 J+3)(2 J+2)(2 J+1)(2 J)(2 J-1)]^{1 / 2}}
$$

and

$$
\begin{equation*}
\mathcal{E}(2,0)=\frac{1}{\sqrt{6}}\left(3 E_{z}^{2}-E^{2}\right) \tag{15}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\Delta W_{J M_{J}}^{(2)}= & -e^{2}\left(3 E_{z}^{2}-E^{2}\right) \sqrt{\frac{5 J(2 J-1)}{6(2 J+3)(J+1)(2 J+1)}} \\
& \frac{3 M_{J}^{2}-J(J+1)}{J(2 J-1)} \sum_{K \neq J}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{16}
\end{align*}
$$

Note that $\Delta W_{J, M_{J}}^{(2)}=0$ for the cases $J=0$ and $J=1 / 2$.

1.3 Definition of Polarizabilities

Let us choose our axis system so that the electric field is directed along the z-axis: $\boldsymbol{E}=E \hat{\boldsymbol{z}}$. We may then write

$$
\begin{align*}
\Delta W_{J M_{J}}^{(2)}= & -\frac{1}{2} e^{2} E^{2} \sqrt{\frac{40 J(2 J-1)}{3(2 J+3)(J+1)(2 J+1)}} \\
& \frac{3 M_{J}^{2}-J(J+1)}{J(2 J-1)} \sum_{K \neq J}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} \cdot \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{17}
\end{align*}
$$

We define the scalar and tensor polarizabilities in terms of $\Delta W_{J M_{J}}$ through the relation

$$
\begin{equation*}
\Delta W_{J M_{J}}=-\frac{1}{2} e^{2} E^{2}\left[\alpha_{J}^{(0)}+\frac{3 M_{J}^{2}-J(J+1)}{J(2 J-1)} \alpha_{J}^{(2)}\right] \tag{18}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\alpha_{J}^{(0)}= & \frac{2}{3(2 J+1)} \sum_{K \neq J} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{19}\\
\alpha_{J}^{(2)}= & \sqrt{\frac{40 J(2 J-1)}{3(2 J+3)(J+1)(2 J+1)}} \\
& \sum_{K \neq J}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{20}
\end{align*}
$$

For a general orientation of the electric field, in which the electric field vector makes an angle θ with the z-axis, we may write

$$
\begin{equation*}
\Delta W_{J M_{J}}=-\frac{1}{2} e^{2} E^{2}\left[\alpha_{J}^{(0)}+P_{2}(\cos \theta) \frac{3 M_{J}^{2}-J(J+1)}{J(2 J-1)} \alpha_{J}^{(2)}\right] \tag{21}
\end{equation*}
$$

Table 1: Values of the coefficients $C_{2}[J, K]$ for half-integer values of J.

J	$C_{2}[J, J-1]$	$C_{2}[J, J]$	$C_{2}[J, J+1]$
$\frac{3}{2}$	$-\frac{1}{6}$	$\frac{2}{15}$	$-\frac{1}{30}$
$\frac{5}{2}$	$-\frac{1}{9}$	$\frac{8}{63}$	$-\frac{5}{126}$
$\frac{7}{2}$	$-\frac{1}{12}$	$\frac{1}{9}$	$-\frac{7}{180}$
$\frac{9}{2}$	$-\frac{1}{15}$	$\frac{16}{165}$	$-\frac{2}{55}$
$\frac{11}{2}$	$-\frac{1}{18}$	$\frac{10}{117}$	$-\frac{55}{1638}$

Table 2: Values of the coefficients $C_{2}[J, K]$ for integer values of J.

J	$C_{2}[J, J-1]$	$C_{2}[J, J]$	$C_{2}[J, J+1]$
1	$-\frac{2}{9}$	$\frac{1}{9}$	$-\frac{1}{45}$
2	$-\frac{2}{15}$	$\frac{2}{15}$	$-\frac{4}{105}$
3	$-\frac{2}{21}$	$\frac{5}{42}$	$-\frac{5}{126}$
4	$-\frac{2}{27}$	$\frac{14}{135}$	$-\frac{56}{145}$
5	$-\frac{2}{33}$	$\frac{1}{11}$	$-\frac{5}{143}$

1.4 Useful Simplifications

Let us rewrite the expression for $\alpha_{J}^{(2)}$ in the form

$$
\begin{equation*}
\alpha_{J}^{(2)}=\sum_{K \neq J} C_{2}(J, K) \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{22}
\end{equation*}
$$

Values of the coefficients $C_{2}(J, K)$ are tabulated in Table 1 for half-integer values of J and in Table 2 for integer values of J.

2 Polarizability of a hyperfine level

In this section, wee derive the formulas for the scalar and tensor polarizabilities of a hyperfine level:

$$
\left|F M_{F}\right\rangle=\sum_{M_{J} M_{I}} C_{J M_{J} I M_{I}}^{F M_{F}}\left|J M_{J}\right\rangle\left|I M_{I}\right\rangle
$$

To this end, we must evaluate

$$
\begin{align*}
& S\left(F, M_{F}\right)=(-1)^{J-K}|\langle J\|r\| K\rangle|^{2} \\
& \quad \sum_{L} \sum_{M_{L}} \mathcal{E}\left(L, M_{L}\right) \sum_{\mu \nu}(-1)^{\mu+\nu} \sum_{M_{1} M_{2} M_{K}} C_{J M_{1} I M_{I}}^{F M_{F}} C_{J M_{2} I M_{I}}^{F M_{F}} C_{1 \mu 1_{\nu}}^{L M_{L}} \\
& \quad(-1)^{J-M_{1}}\left(\begin{array}{ccc}
J & 1 & K \\
-M_{1} & -\mu & M_{K}
\end{array}\right)(-1)^{K-M_{K}}\left(\begin{array}{ccc}
K & 1 & J \\
-M_{K} & -\nu & M_{2}
\end{array}\right) \tag{23}
\end{align*}
$$

The sum over μ, ν, M_{1}, M_{2} and M_{K} in Eq.(23) becomes

$$
\begin{align*}
& \sum_{\mu \nu}(-1)^{\mu+\nu} \sum_{M_{1} M_{2} M_{K}} C_{J M_{1} I M_{I}}^{F M_{F}} C_{J M_{2} I M_{I}}^{F M_{F}} C_{1 \mu 1_{\nu}}^{L M_{L}} \\
& (-1)^{J-M_{1}}\left(\begin{array}{ccc}
J & 1 & K \\
-M_{1} & -\mu & M_{K}
\end{array}\right)(-1)^{K-M_{K}}\left(\begin{array}{ccc}
K & 1 & J \\
-M_{K} & -\nu & M_{2}
\end{array}\right) \\
& =(-1)^{J-F-I} \sqrt{[L]}[F](-1)^{F-M_{F}}\left(\begin{array}{ccc}
F & L & F \\
-M_{F} & 0 & M_{F}
\end{array}\right) \\
& \qquad\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & L
\end{array}\right\}\left\{\begin{array}{ccc}
F & J & I \\
J & F & L
\end{array}\right\} \delta_{M_{L}, 0} \tag{24}
\end{align*}
$$

$2.1 \quad \mathrm{~L}=0$

For $L=0$, we have

$$
\begin{array}{r}
S\left(F, M_{F}\right)=(-1)^{J-K}|\langle J\|r\| K\rangle|^{2} \mathcal{E}(0,0)(-1)^{J-F-I}[F] \\
(-1)^{F-M_{F}}\left(\begin{array}{ccc}
F & 0 & F \\
-M_{F} & 0 & M_{F}
\end{array}\right)\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 0
\end{array}\right\}\left\{\begin{array}{ccc}
F & J & I \\
J & F & 0
\end{array}\right\} \\
 \tag{25}\\
=\frac{1}{3[J]} E^{2}|\langle J\|r\| K\rangle|^{2}
\end{array}
$$

Note that the above result is independent of F and M_{F}. We may therefore write

$$
\begin{equation*}
\Delta W_{F M_{F}}^{(0)}=-\frac{1}{2} e^{2} E^{2} \alpha_{J}^{(0)} . \tag{26}
\end{equation*}
$$

$2.2 \mathrm{~L}=2$

For $L=2$, we have

$$
\begin{align*}
& S\left(F, M_{F}\right)=(-1)^{J-K}|\langle J\|r\| K\rangle|^{2} \mathcal{E}(2,0)(-1)^{J-F-I}[F] \sqrt{5} \\
& \quad(-1)^{F-M_{F}}\left(\begin{array}{ccc}
F & 2 & F \\
-M_{F} & 0 & M_{F}
\end{array}\right)\left\{\begin{array}{ccc}
J & 1 & K \\
1 & j & 2
\end{array}\right\}\left\{\begin{array}{ccc}
F & J & I \\
J & F & 2
\end{array}\right\} \\
& =E^{2} P_{2}(\cos \theta)|\langle J\|r\| K\rangle|^{2} \\
& {[F] \sqrt{\frac{40 F(2 F-1)}{3(2 F+3)(F+1)(2 F+1)}} \frac{3 M_{F}^{2}-F(F+1)}{F(2 F-1)}} \\
& \quad(-1)^{I+J+F}\left\{\begin{array}{ccc}
F & J & I \\
J & F & 2
\end{array}\right\}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} . \tag{27}
\end{align*}
$$

It follows that

$$
\begin{align*}
& \Delta W_{F M_{F}}^{(2)}= \\
& -\frac{1}{2} e^{2} E^{2} P_{2}(\cos \theta)[F] \sqrt{\frac{40 F(2 F-1)}{3(2 F+3)(F+1)(2 F+1)}} \frac{3 M_{F}^{2}-F(F+1)}{F(2 F-1)} \\
& \quad(-1)^{I+J+F}\left\{\begin{array}{ccc}
F & J & I \\
J & F & 2
\end{array}\right\} \sum_{K \neq J}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} \tag{28}
\end{align*}
$$

Defining $\alpha_{F}^{(2)}$ in terms of the energy shift, we have

$$
\begin{equation*}
\Delta W_{F M_{F}}=-\frac{1}{2} e^{2} E^{2}\left[\alpha_{F}^{(0)}+P_{2}(\cos \theta) \frac{3 M_{F}^{2}-F(F+1)}{F(2 F-1)} \alpha_{F}^{(2)}\right] . \tag{29}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\alpha_{F}^{(0)}= & \alpha_{J}^{(0)} \tag{30}\\
\alpha_{F}^{(2)}= & (-1)^{I+J+F} \\
& \sqrt{\frac{40 F(2 F-1)(2 F+1)}{3(2 F+3)(F+1)}}\left\{\begin{array}{ccc}
F & J & I \\
J & F & 2
\end{array}\right\} \tag{31}\\
& \times \sum_{K \neq J}(-1)^{J+K}\left\{\begin{array}{ccc}
J & 1 & K \\
1 & J & 2
\end{array}\right\} \frac{|\langle J\|r\| K\rangle|^{2}}{W_{K}-W_{J}} .
\end{align*}
$$

It is interesting to note that in the stretched state, $F=I+J$,

$$
\alpha_{F=I+J}^{(2)}=\alpha_{J}^{(2)}
$$

for $I \geq 1 / 2$ and $J \geq 3 / 2$.

References

[1] A. Khadjavi, A. Lurio, and W. Happer, Phys. Rev. 167, 128 (1968).

