
Error Analysis for the C6 Coefficient in Rb.

The dispersion coefficient C6 is expressed as an integral over the dynamic
polarizability α(iω) through the equation

C6 =
3

π

∫ ∞
0
[α(iω)]2 . (1)

The dynamic polarizability α(iω) is, in turn, given by

α(iω) =
2

3

∑
k

(Ek − Ev)
(Ek − Ev)2 + ω2 〈v|

~R|k〉 · 〈k|~R|v〉 , (2)

where |v〉 is the valence state and |k〉 ranges over all excited states that
can couple to the valence state through the dipole operator. Possible states
|k〉 for an atom with one valence electron include excited valence states,
states with two valence electrons and one core hole, states with three valence
electrons and two core holes, and so forth.
We decompose the polarizability into three parts:

α = αv + αc + αvc , (3)

The term αv, which is the contribution to Eq. (2) from valence excited
states |k〉 only, is the dominant contribution for small values of ω. This
term accounts for about 97% of α(0) for Rb. The terms αc + αvc are the
contributions to Eq. (2) from core hole states; these terms contribute the
remaining 3%. The term αc is the polarizability of the Rb

+ core, and αvc is
a counter term that compensates for Pauli-principle violating excitations in
αc.

(1) The contribution from excited valence states αv can be reduced to the
form:

αv(iω) =
1

3

∑
k

Ek − Ev
(Ek − Ev)2 + ω2 〈v‖r‖k〉

2 (4)

In the case of Rb, v = 5s1/2 is the ground state and k = np1/2 or np3/2
are the possible excited valence states. The largest contributions to
αv(0) (>99%) are from the 5p1/2 and 5p3/2 states. For these states,
we use experimental rather than theoretical reduced matrix elements
and energies. The theoretical reduced matrix elements for these two
transitions are accurate to about 0.5%, whereas the experimental re-
duced matrix elements are known to higher accuracy for the 5s − 5p
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Table 1: Theoretical and experimental dipole matrix elements (a.u.) in Rb.

Theory Ref. [1] Ref [2] Ref [3] Expt.

〈5p1/2‖r‖5s〉 4.221 4.231(3) 4.228(5) 4.236(3) 4.233(2)

〈5p3/2‖r‖5s〉 5.956 5.977(4) 5.979(7) 5.983(10) 5.978(3)

transitions in Rb. The input data that we use for reduced matrix ele-
ments are shown in Table 1. The values in the column headed “Expt.”
are least-squares averages of the experimental values. In assessing the
accuracy of this largest contribution, we use the experimental errors
as discussed later.

(2) For np states with n = 6 · · · 8, we use the ab-initio calculations of the
5s − np matrix elements given in Ref. [4], which are expected to be
accurate to better than 5% based on comparisons of similar calcula-
tions with accurate experimental data in Cs. We also use experimental
energies in this term.

(3) The contribution of np states with n > 9 to αv(0) is very small (0.04%)
and is evaluated in the Hartree-Fock approximation. We estimate the
error in this term to be < 50% based on comparisons of HF and all-
order calculations of the 5s− 8p contributions to αv.

(4) To determine αc, which contributes 3% to α(0), we use a theoretical
value calculated in the random-phase approximation (RPA). To assess
the accuracy of the RPA calculation for the Rb+ core, we carry out
a similar calculation for Kr and compare with benchmark theoretical
calculations from Ref. [5]. We find for Kr, α(0) = 16.48 and C6 = 127.2
in the RPA, compared with the benchmark values α(0) = 17.06 and
C6 = 132.9 from [5]. Our calculations of the core contributions to
α(0) and C6 for Kr are therefore about 4% too small. The Thomas-
Reiche-Kuhn oscillator strength sum rule is satisfied exactly by RPA,
so our value of α(iω) is exact in the large ω limit. Since the calculation
of the polarizability of Rb+ is formally identical to that for Kr, but
less sensitive to correlation because of the higher nuclear charge, we
estimate the error in αc to be less than 4%.

(5) The term αvc, which contributes 0.08% to αv(0), is calculated in the
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HF approximation and assigned an error of 50% using the considera-
tions stated in item (3) above.

In our numerical program, we separate α(iω) in C6 into five parts:

α(iω) =
5∑
λ=1

αλ(iω)

The terms αλ are:

α1 is the contribution to αv from the 5s− 5p1/2 transition. Its uncer-
tainty is governed by the uncertainty in the experimental value of the
〈5s‖r‖5p1/2〉 matrix element. The relative error in the matrix element
σ = 0.00046 and the relative error in α1 is 0.00092.

α2 is the contribution to αv from the 5s− 5p3/2 transition. Its uncer-
tainty is governed by the uncertainty in the experimental value of the
〈5s‖r‖5p3/2〉 matrix element.The relative error in the matrix element
σ = 0.00055 and the relative error in α2 is 0.00110.

α3 is the contribution to αv from the 5s−np1/2 and 5s−np3/2 transi-
tions with n = 6, 7, 8. Its uncertainty is governed by the uncertainty
in the all-order theoretical values of the 〈5s‖r‖npj〉 matrix elements.
The relative error of these matrix elements is assumed to 5%; the
corresponding relative error in α3 is 0.1 .

α4 is the RPA value of αc. Its relative error is taken to be 0.04 based
on the comparison of a similar RPA calculation with benchmark values
for Kr.

α5 is the sum of the HF value of αvc and the HF value of the contri-
butions to αv from states with n > 9. Its relative error is taken to be
0.5 based on the comparison of a HF and all-order calculation of the
5s− 8p contribution to αv.
We evaluate the change in C6 induced by each of these individual sources

using
δλC6 = 2 [C6]λ rλ ,

where rλ is the relative error in αλ, and

[C6]λ =
3

π

∫ ∞
0
dω α(iω) αλ(iω) .
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Table 2: Contributions to C6 and δC6 for Rb.

λ C6 δC6(1σ) δC6(2σ) δC6(3σ)

1 1473 2.7 5.4 8.1
2 2912 6.4 12.8 19.2
3 27 5.4 5.4 5.4
4 286 22.9 22.9 22.9
5 -5 -5.0 -5.0 -5.0

Tot 4693 25.0 27.8 31.8

We use the square root of the sum of squares of δλC6 as the error in C6. It
should be noted that

C6 =
5∑
λ=1

[C6]λ .

The contributions to C6 from the five terms above, and the associated un-
certainties are listed in Table 2. We list columns with 1σ, 2σ, and 3σ values
for the uncertainties in the experimental matrix elements. In the last row,
we give our final value for C6 together with error estimates based on three
assumptions concerning the errors in the experimental data used to eval-
uate the dominant terms α1 and α2. Our best estimate of the value is
C6 = 4693± 25. This value can be compared with the value C6 = 4691± 23
given in Ref. [6]. The reason for the small differences is that two different
RPA calculations were used for αc(iω); the present value is from a non-
relativistic RPA calculation, whereas the one value used in [6] is from a
relativistic RPA calculation. A more conservative estimate, based on 3σ
errors in the two experimental matrix elements, is C6 = 4693 ± 32.
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