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of G(O(F) UI(F)). It is known (seé Edmonds and Fulkerson [65])
that the independence system (O(F) UI(F), M') so defined is a
matroid, the so-called matching matroid.

| Note the following relationship between M and M'. S €M
if and only if S = XUY where X € M' and Y < R(F); as a
consequence of Theorem 4.1. Since (V,M) is the direct sum of a
matching matroid, namely (Q(F)IJI(F),M') and a complefe matroid;

R(F)), it is itself a matroid..

namely (R(F), 2
Let w:V -+ R' be a vector of nonnegative wéights defined
Aon thé'qode set of G. The weight of a hypomatching J is
Vdefinedzas. Q(J) = Z{wi: node i is covered by J3}. Consider the
problem of finding.a maximum weight hypomatching in G. Since

(v,M) . is a matroid) a maximum weight hypomatching can be found

by the following greedy algorithm.

Order the nodes by nonincreasing weights Wy 2...2 W
0

Start with S = ¢ and Jo = @¢. Then n itefations are—pérfdrmed,
say jterations i=1,...,n. At the beginning of iteration i, the

1

set S is a.makimum weight independent subset of {1;...,i?13

i-1

1 is a hypomatching covering S . Iteration i con-

and Ji-
sists of either proving that Sif;l}{i} is not.indepehéénty or
setting Si = Si_lli{i} and modifyinéﬂ JiﬁlA(if necessary) into a
hypomatching Ji which covers the set Si. The algorithm
terminates when i=n. The hypomatching J%  is a maximum weight
hypomatching in G. Its weight is | |

n, _
w(J) = .Enuk.
i€s
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Next, we show how iteration i. of this greedy algorithm can
be performed by a variation of the Edmonds matching algorithm.
More generally, let . S . be an independent set in (V,M) and J a
-hypomatching covering S. The next algorithm will check-whethe{ﬂ
su{il} is indepenaent, where. 1 €. V-5 is.given, and if so,
modify J so that it covers. SLJ{i}. 

First, if i is covered by J we can stop immediately ahd
conclude that s U{i} is independent. Otherwise, we will construct
a tree A with root i in an associated graph G. 1Initially, .
G =G and the root i is the unique node of A and it is said
to be an even node. Then A 1is grown according to the following
procedure uﬁtil either SU{i} is found to be independent or A
cannot be grown any longer in which case we will shéw.that SLJ{i}
is not independent..

Step 1. If every edge of G which is incident with

an even node-ef A is alSo incident with an Qdd node

of A, stop:-. The set S U{i} is not independent (this

" claim will be proved later). Otherwise, let j be an

'edge which joins an even node of A, say u, to a node

v which is not an 6dd node of A. If v is an even -

node of A, go to Step 2. .If v is not in A but

is covered by an edge k = (vw) of J such that wEs,.

then go to Step 3. Finally, in the other cases where

v 1is not in A, go to. Step 4.

Step 2. Let C = {u,...,v} be the set of nodes in the

unique path of the tree A Jjoining nodes u and v,
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and let C be the set of nodes of G associated
with the node set C. C is hypomatchable.
1f ¢ ©S and GIC] is critical, modify A (and G)
by shrinking C to a single node. This shrunk node
becomes an even node of A. Go to Step 1.
Otherwise,:modify J by alternating the edges in
and out of J on the path of A from i to the
closest point in C. If necessary, modify the near
perfect matchings inside the shrunk even nodes on this.
path so that every node of G is in at most one member
of J. (Tﬁis is élways possible since the shrunk nodes
of A are hypomatchable:.) 1In adaition; if there exists
we€C-5,J is modified in GIC] so as to contain a
near perfect matching of GIC] leaving w uncovered;
on the other hand, if 'C © S, then GIC] is not critical
and J is modified in GI{C] so as to ihternally cover
the nodes of GIC). This produces a hypomatching J°
which covers sU{i}. Stop. N
Step 3. Grow thé tree A by adding the edges 3j and k

and the nodes v and w to A. Node v is called an

b,

odd node of A and w an even node. Go to Step 1.
Step 4. The’node v is not in A and is either (i) not /‘

covered by J, or (ii) covered by an edge (vw) of J such

e .
Mamgsy,
R LR

that w ¢ S or (iii) covered by a hypomatchable set of J.

Let J' be obtained from J by interchanging in and out -

G .
Mm

.
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of J the edges-og,the path of ‘A joining i to wv.
If necessary, modify the near-perfect matchings insidé '
..the shrunk even nodes on this path. In addition, in
case (ii), remove the edge (vw); in case (iii) replaée
the hypomatchable set T of J which covers Vv by a
near-perfect matching of T leaving only v uncovered.
~Now, in all 3 cases, J' 1s a hypomatching which covérs

«:sU{i}. So sU{i} is independent. Stop. .

proof of the Validity of the Algorithm: It is clear that this

algdrithm térmihates since every time it goes back to Step 1

a new eége of G 1is considered. When the algorithm terminates

in Steps 2 or 4, the hypomatching .J' proves that suUf{i} is
independent. So in order to prove the validity of the élgorithmﬁA
it suffices to show that, when the algorithm terminates in Step ‘1,
the set suU{i} is not independent. By construcfioﬁ of A, thé'k
even nodes of A which are shrunk only contain nodes of S

{(Step 2) and the other even nodes of A belong to S (Step 3).
Also by Consfruct;on the tree A containS’one.more:even-nodewfﬁén
odd. Finally, when the algorithm terminates everyvedge-incident
with an even node of A has an odd node of A as its otherv'
endpoint. As a consequence of Lemma 4.2, no hypomatching of G
canféover all the nodes inside critical components of GI[V-1I]
where I is the set of odd nodes of A, since there are jzt+17% -
such critical components. Thus, no hypomatching covers all the'"

nodes of SU{i}, proving that this set is not independent. - B.
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We conclude with a generalization of Theorem 1.7 of Berge [57].

An alternating path relative to a hypomatching J is a path whose

edges are alternately in and out of J. An augmenting path is an

alternating path, one of whose endnodes is not covered by J
and whose othér endnoée u is either
(a) not’covefed by J, or
(b) in a hypomatchable set of J, or
(c) in a noncritical hypomatchable graph G[C] -such
that the nodes of C- {u} are matched among
themselves by J. In addition, the length of

the alternating path must be even.

Note that in cases (a) and (b) the length of the alternating

~path will always be odd.

Theorem 4.9: A hypomatching is maximum if and only if there

exists no augmenting path.

Proof: If (a), (b), or (c) occurs, the hypomatching J is not
maximum. Conversely assume that J is not maximum. Let S be
the set of nodes covered by J and let i be a node such that
suU{i} can be covered. By the algorithm we will fihd_aﬁ;aﬁéﬁéh-
tation. It occurs either in Step 2, providing an augmenting

path as stated in (c), or in Step 14, providing auémenting’paths
(a) or (b). (Note that Step 4 case (1ii) does not occur‘with

our choice of 8.}

&
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Section 4. An Algorithm for Maximum Cardinality Hypomatchings

We next givéléh algorithm for solving the maximum.
_cafdinality hypomatching problem. It is; again, an Edmond's -
style algorithm and is a variation of the greedy algofithm
just given(

In the course of the algorithm we grow an alternating forest.

The nodes of the alternating forest A may be of two types; A

reai node of A is simply a node of‘ G. A shrunk node of A is
'-a nbde—induced subgraph of G which is critical. The edges of
A are edges of G and we” consider an edge j to be incident
with a shrunk node of A if exactly one end of 3 is in the
shrunk node. Each tree in the forest is rooted at some node
(which may be a reallnode or a shrunk node). A node in a tree
of A is said to be odd (even) if the number of edges in the
path of A to the root is odd (even). Qdd nodes of A will
always be real nodes and be incident with two edges of A. An
alternating forest A is always defined relativeito a packing
PCF (which.will;nqt be perfect). The roots of the treeébéf A
are pregisely the'nodés whiéh»are not éovered by P. In evéry
path of A starting at a root the edgés ﬁﬁgt_béwaltéfnatély10ﬁtm

of P and in P.

Step 0 (Initialization)

Let P CF be any packing (e.g., P=0).
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Step 1 (Optimality test)
1f P covers every node, terminate. Otherwise let A
consist of the nodes of G ‘which are not covered by . P.. Thus,

initially, A reduces to'a set :0f even nodes, its roots.

Step 2 (Edgevselection)
Find, if one exists, an edge j joining an even node u of A
to a node v which is not an odd node of A. If no such node
exists,‘terminate. Otherwise 4 cases may odcur.
Case 1: v is not a node of A and is incident with
an'edge k in P. Go to Step 3.
Case 2: v 1is not a node of A and is covered by a
hypomatchable graph H of ' P. Go to Step 4.
Case 3: ﬁ is an even node of A in a different tree
than u. Go to Sﬁep 5.
Case 4: v is an even node of A in the same tree as - u.
Go to Step 6.
Step 3 (fbreét grow?h)
Let w be the node incident with k wﬁiéﬁ is differéht from v.
Grow A by adding'edées 3 and"k -ahd nédéé v and W. Thusf‘
v becomes an odd node of A‘ ana \ bécomes an even node. GO .
to Step 2.
'Step 4 (Hypomatchable augmentation)
Remove H from P and replace it by the edges of é ?erfect
matching of H{s - {v}]., Qhere S is the node set of H. Go to

Step 5.
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Step 5 (Simple augmentation) -

Aadd j to P. 1In the path of A from u to the root, the
edges which were in P are removed whereas those which were

.not in P are now inciuded in P. Change P similarly in thewﬁ
path of A from v to its root (if Case 3 applies). After this,
every shrunk node of A has exactly one edge of P incident N
with it. Since the shrunk nodes are hypomatchable, P can be
modified appropriately inside each shrunk node to perfectly match
" jt. ‘We now "throw away" A and any shrunk node previousl? found

and go to Step 1.

Step 6 (Augment or shgink) |

Edge Jj added to A creates an odd cycle C. Let H be the
subgraph of G induced by the real vertices of C and those
inside shrunk nodes of C. Check whether H is critical. If

it is, go to Step 6a. Otherwise go to Step 6b.

Step 6a (shrinking)

Create a new shrunk node containing -H. This shrunk node becomes

an even node of A. Go to Step 2.

SteE 6b (Augmentation)
Find a perfect packing of H. Complete the augmentation along
the path of A from 'H to the root as in Step 5. “Throw away"

A and any shrunk node and go to Step 1.

Remarks on the algorithm. (i) The algorithm cannot cycle since

at most |V| augmentations can occur and, between augmentations,
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either the alternating forest is grown or an odd cycle is
shrunk.
(ii) To prove the validity of the algorithm note that,

at termination in Step 2, every edge incident with an even

node 6f A is also incident with an odd node of A. Since the
even nodes are P-critical, Lemma 4.2 implies ' - . s
that the perfect packing of some subset of them requires also HRE
the-COVering of at least as many odd nodes of A. In the current

packihg P the odd nodes are already all matched with even nodes, -

so P is maximum.

The complexity of this algorithm is polynomially equivalent
to the complexity of Step 6 where we perform the following two
. operations:

- (1) check whether H is critical and,

(2) if H is not critical, find a perfect hypomatching

of H.

Lemma 4.6 is useful in carrying out these operations. For
example, if F onlf contains the edges of G and a polynomial.
number of hypomatchable subgraphs, then operations (1) and (2)
can be performed in polynomial time. Namely},leﬁ- G[Sf be é; )
hypomatchable subgraph of G. If ’T is the node set of a graph
in F and G[S-T] has a perfect matching, then. G[S] is not
critical. Conversely, if G[S - T] does not have a perfect'
matching_for'every grapbh-in F, then G[S] is P-critical by

Lemma 4.6.
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Therefore

Theorem 4.10: If F consists of all the edges of G and a

polynomial famii&hof hypomatchable subgraphs, then the maximum

cardinality.hypomatching-problemfis polynomially solvable.

This shows that thé problem of packing edges and triangles
is polynomially:solvable. There are other hypomatching problems,
wheré the family of hypomatchable subgraphs in F is not
polyhomial, which can also be solved in polynomial time; for
example, the maximum cérdinality problem (Qi) for any fixed k.
(See Cornuejols and’PulleyBlank [83].) -

A related result which helps in éharacterizing the critical
graphs for a hypomatching problem is the following, wﬁiéh is

proved in Cornuejols, Hartvigsen, and Pulleyblank [82].

Theorem 4.11: Every critical graph is hypomatchable.

Iin fact, a variation of this theorem motivated a specialized
characterizationdpf the critical graphs for the'maximum cardinality
problem.(Qé) which yields a-polynomial identification procédure.
(See Cornuejols ;nd Pulléyblank.[83].) We discuss this in the’
‘next chapter. Note that such a characterizatioh’is not known for

the edge and triangle hypomatching problem.

Section 5. Max-min and Polyhedral Theorems for Hypomatchings

The following theorem is a consequence of the validity of

the algorithm.
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Theorem 4.12: Given a graph G = (V,E) and a hypomatching

problem on G, the.cardinality of a maximum hypomatching is
.equal to

min |V|+|V'L;0(G[V\V i)
V'CV

where O(G[V\V']) denotes the number of components of G[V\V']

which are critical.
- Proof: Analogous to the proof of Theorem 1.8. = §
Let us end this chapter with a polyhedral result.

Theorem 4.13: Consider the following hypomatching problems: The

maximum cardindlity edge and triangle packing problem and the
maximum cardinélity versions of problem.(Qk). Given a graph

G = (V,E) and one of the above hypomatbhingvproblems, the
following polyhedral characterization is sufficient to solve the

problem as an LP: max 1 - x

-

subject to x(&8(v)) <2 for.all v €V

x(E') < lv'] -1 for all subgraphs

G' = (V',E') which are
critical

xe >0 : for all e €.E.

Proof: We must check that the cardinality of a maximum hypomatching

is equal to the optimal value of the objective function over the
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set of constraints. To do this we set up a weighted algorithm, as
in the primal-dual weighted matching algorithm, by choosing primal -
and dual feasible solutions which satisfyeasubset;of1jmacomplementary

slackness condltlons, that is, we choose any hypomatchlng x for

the primal solutlon and, for the dual.solution, Y, = % for
every node i and yj = 0 otherwise. Thus every edge is in

the gquality subéraph. We apply the algorithm to G- and, at
the end, perform a dual change which produces a duai feasible
solution eéqual in value to the primal. (There are no nodes 1
such thaﬁ: Y5 > 0 and x(6(i)) < 2.) Since the objective vélue

is the cardinality of a maximum hypomatching, we are done. ]
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Chapter 5

THE MAXIMUM WEIGHT- TRIANGLE AND. PENTAGON~FREE 2-MATCHING PROBLEM

.Section 1. 1Introduction and Cardinality Problem -

In this chapter we consider some of the guestions involved s
in finding'a polynomial algorithm for the problem (Qé). First, -;;
‘we discuss a polynomial algorithm for the cardinality problem'
and we give a class of 0-1 and 0-1-2 facets for the weighted
" problem which we conjecture are sufficient for a complete
polyhedral characterization. We then giVe some useful propérties
needed to find a primal-dual Edmond's sytle algorithm for the
weighted problem.

- The cardinality problem of (Qé) is solved using the algorithm

for maximum cardinality hypomatchings given at the end of the last

.

chapter. To make this algorithm polynomial for (Qé) we must be
able to determine in polynomial time if.a given hypomatchable
graph is Qs—critical. (In this chapter, we use "Qs—critical" to
refer to graphs whiéh are critical with respect to triangle and
pentagon-free 2-matchings. We will also refer to such matchings
as "Qs—matchings“.) To do this we use a cﬁaracterization of
Qs-critical graphs due to Cornuejols and Pulleyblank [83].

The characterization of Qs—critical graphs which we use is

a specialization of the following theorem due to Lovasz [72].
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Theorem 5.1: A graph G = (V,E) is hypomatchable iff there exists

a sequence of node sets’ Ves 0 i< p, (called an ear decompo-
sition of G) such that

(a) v is the node set of an odd cycle of G,

(b) Vi ©V; for 1 <i<p. Furthermore, V.-V,

1 i-1

has even cardinality. and is the node set of a
. path Pij;of G- both of whose endnodes are
adjacent :to vi—l’
c) V. =V.
(e) v,

Let us say a graph G is nonseparable if it has no cutnode

and an ear decomposition is nonsepérable if G[Vi] is nonseparable
for all i=1,2,...,p. Since we characterize the nonseparable
, Qs-critical.graphs by describing their ear decomposition, the
following.theorem¢.a150'due;t0"Cornuéjols-and Pulleyblank [83],

is useful.

Theorem 5.2: G 1is a nonseparable hypomatchable graph, iff G

‘has a nonseparable ear decomposition.
We are now ready for the characterization.

Theorem 5.3: Let G = (V,E) be a hypomatchable nonseparable graph

and let VO,..S;VP be any nonseparable ear decomposition of G.
Then G 1is Q5¥critical iff the féllowing conditions are

satisfied:
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{a') VO' has cardinality 3 or 5.

(b’) For éach~‘i==1,..,,p, Vi-;Vi_l has cardinality 2,
say vi-—vi—l = {y,z}. Furthermore, for any pair
of vertices u#v in nVi_l, such that u is
adjacent to y and v is adjacent to z (we
distinguish our pair of such nodes u;\rland call
them the attachment nodes of the ear), there must.

exist a vertex w € V. , which is adjacent to only

u and v.

It is possible using this theorembto polynomially determine
if a given hypomatchable gr&ph is Qs—critical or not (see
Cornuejols and Pulleyblank [83]1). Focusing on the nonseparable
Qs—critical graphs is also important because thése.are fhe_graphg

with which we associate 0-1 inequalities in the weighted case.

Section 2. Some Polyhedral Results

In this sectioﬁ we conjectﬁre what a complete~polyhedfél
characterization of the convex hull, P(C), of Qs—matchingé for é
graph G looks like. We first define three classes of graphs;

Class 1: The nonseparable QS—critical graphs

Class 2: The graphs which éan be built from either

| of the two graphs in Figure 5.1 by the

addition of nonéeparable ears as described

in part b' of Theorem 5.3.



1Ce

Figure 5.1

Class 3: The graphs which can be built from the graph
in Figure 5.2 by the addition of nonseparable

ears as described in part b' of Theorem 5.3.

Figure 5.2
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We make three propositions concerning the graphs in these

classes.

Proposition 5.1: Associated with every Class 1 graph G = (V,E)

is the inequality
x(E) < lvli-1
which is a facet for P(G).

(V,E)

Proposition 5.2: Associated with every Class 2 graph G

is the inequality
X(E"{el’GZ'eBJ)A+ 2x({e1;§2,e3}) < vl +1

"which is a facet for P(G) where"el,ez,eB' are as in-Figure 5.1.

Proposition 5.3: Associated with every Class 3 graph G = (V,E)

is the inequality

X(E"{ell'o-res}) + ZX({e_il'o‘-res}) 5_ lvl + 3
which is a facet for vP(G)zwherev el,..-igs‘uére@as in Figure 5.2.

Proof of Proposition 5.1: The fact that the inequality is a

facet follows from the fact that G is a nonseparable hypomatchable

graph. (See Pulleyblank and Edmonds [74].) B
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Proof of Proposition 5.2: Consider the graphs in Figure 5.1.

We first show that the inequalities corresponding to the graphs
in (a) and (b) are valid and facets. Then we show that the
.graphs obtained from these by the addition ofvears as described N
in part b' of Theorem 5.3 also correspond to facets. -

Consider first the graph in {(a). Note that all the
Qs—matchings are either l—matchings.or the.single éyéle of
length 7. Since no 1—matching uses more than one of e;r e,

S or eg and since the length '7‘cycle satisfies the inequéiity,
the:inequality is valid.

To show that the inequality corresponding to fﬁe graph in (a)
is a facet, we exhibit 10 affinély independent’QS—matchings which
s;tisfy the inequality at equality. Shrink the triangle Vyr V2,
V3 to a single node.'u. ,The resulting graph G' is nénseparable
and hypomatchable and therefore there exist 7 (one for each édge)
affinely independent 1—matching5'for G'. Each of these
1-matching5'may.be.extended:to a 1-matching for the original
graph by apprbpriately adaipg one of the;three edges eys €, OF

€3
affinely independent, so are their extensions. So we need 3

to the l-matching. Since the 7 i-matchings of G' are

more such Qs—matchings. One of the 7 i~matchings'éhbséh fdr ”Gﬂ
say X must be defiéiént at u. (Since G° is'hypOmatchable,
there exists such a l-matching x_ . If all 7 1l-matchings
saturate u, then they all satisfy x(6(u)) = 2. Since

x (8(u)) =0, it is affinely independent of the other 7, which
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is not possible.) Let Xml bé the extension of X and assume;
without loss of generality, that xml(el) = 2. Then all 7

1-matchings satisfy x(b(v,)) + x(8(v,)) = 4. Consider the two
other exténsions ‘of X say sz and‘, xm3, where »xmz(e:z) = 2
and xm3(e3) = 2, respectively. xm‘2 is affinely independe‘nt of e
the first 7 since it does not satisfy x(é(vl)') +x(6(v,)) = 4.

Thesg 8 Qs-rriatchin‘gs satisfy x(é(vz))‘ = 2. HéWevér':,'xm3_ ddeS' R
not and therefore is affinely indépendent'of.the first 8. Note
that all 9 of these sétisfy‘ x({el', ey e33) = 2 We fnay take
the final Qs—matching,' say Xm4' to be the length 7 cycle which

contains e,, since xm4({e1,_e2,.e3}) = 1.

Let us now consider the gr-aph in (b). All the Qs-matchi‘n'gs
are either l-matchings, one of the three length 7 cycles (each:
of which contains one of eyr €yr OF e3) together with an edge,

or the single length 9 cycle which contalns nelther bi, €,

nor es. Since no l-—matchlng can contaln more than one of the
édges ejre, or ey, all of the Qs—matchlng on this graph o
satisfy the correspondlng inequality, so it is valld |

To show that thlS 1nequa11ty is a facet, we exhlbit 12
’v'afflnely 1ndependent Q —matchlngs. Again shrink the triangl’e
VirVar Vg3 to a single node u and call the resultlng graph G'.
For the first 3 matchings, set xmi(e8) = xmi( 11) = 2, i=1",2,.3',
and then take the 3 1l-matchings of the triangle eyr Cgr gy

extending each to the triangle eyr €y eg. Notice that theée 3

satisfy x{e7) = x(e9) = x(elo) = x(elz) = 0 and if we consider
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in turn 4'1~matchings‘such that these edges are at value 2,
we get 4 more affinely independent matchings. (For example,
for e, we take- the matching which contains es,e._/.,ell and
.ez so that x(eg),=vx(e10) =-x(e12) = 0.) Note that we may geﬁﬁ
2 more“affinelybindependent:matchihgs»by extending the 1l-matching
of G' which is deficient at u into the shrunk node as we did
for the graph in (a). We must produce 3 more affinely independept
Qs—matchiﬁgs_, For th?se we take the Qs-matchings which use the
- length 7 .cycles. For example, the matching which uses the
length 7 cycle (e4, €5, €cr 4, g4 €g; ez) is _éffinely independent
of the other jjr matchings because they all satisfy x(el,...,e9)==5
whereas this matching satisfies x(el,..., eg)_= 7. We argue
similarly for the remaining 2 Qs—matchings: |

We next show that the inequalities corresponding to the graéhs_»
obtained from (a) and (b) by adding on ears as in b' of TheoreﬁlS;B-
are. facets. - Let:us,assume,this.is,true7up to some point for a |
graph . G' and let us. inductively add on one more ear, say P,
to get a graph G= (V,E}). Let vy and Vs be the two nqdes

of P and let u, and u, be the attachments where. ug is

1
adjacent td'"vi for ,i==1,2;

To see that the inequality for G is vaiid, consider how.
we may match the edges in P. A Qs—matching of G may have |
value 2,3, or 4 in P. If it haé value 2, then it cannot

violate the inequality since we have with the addition of P

added 2 to the right hand side of the inequality for G'.
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If the ear is matched at value 3 or 4, then we must be*covéring'
two nodes, say u, and u,, in G' with the edges in P which
are in the matching. Note that there exists a node w  in G!
adjacent to only 'dl -and u,. Suppose w is contained in an
ear P*. If P is matched at value 3; then P* can be matched
at most at vélue 1 (because w has degree 2) and if P~ is
matched at value 4, then P* can have no edges in the matching.
Hence for these two ears we get a total value of no more than 4 |
and so, by inductive hypothesis, the ineguality is valid. We

can argue similarly if w is not in an ear.

We now exhibit |E| affinely independent Qs—matchings which
satisfy the inéquality at equality. By adding the edge (Vl’VZ)
~at valué 2 to all the affinely independent Q5~matchings for G';
we get.lEl-{k affinely indepehdént Q.-matchings for G where Xk
equals the number of edges in P. We may put each edge in the
ear, except (vl,vd), at value 2 and extend this to a near perfect.
matching of G' +to get k-1 more affinely independent’
Q5~mat¢hings. (Thé§ are independent because for any matching
in which some edge e of P is gt value 2, all the other
'matchings satisfy x(e) = 0.) We need only oné more Qs-matéhingf
For this set (v,,u;) and (vz,‘uz) at value 2. Let w be the
degree 2 node between uy and u,. Suppose w is contained’
in an ear, say P*, and assume, without loss of generality,
that u and w are the two nodes of P*. Then we may extend

1
this matching to a matching for G which satisfies the inequality

at equality by near perfectly matching G‘\P‘\P*‘\uz.
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If w 1is not contained ‘in an eary, then u1 and u, are
‘nodes of one of the:graphs in (a) or (b). 1In both cases it-is
easy to construct a ﬁatching‘which satisfies the inequality at
.equality, Thisvlast'matching is affinely independent of the

rest because it satisfies x{(P) = 4 whereas all the others

satisfy x(P) = 2.

Proof of Proposition 5.3: Exactly analogous to the proof of

Proposition 5.2.

We next define an operation which combines graphs in
Classes 1, 2, and 3 to give us graphs which correspond to the

inegualities in our conjecture.

| Let Gl = (Vl’El) and G, = (VZ;EZ) be two graphs such thatl
E1 n E2 = @ and V1 n V2 = y. Consider an edge e = (u,v) such
that u € V, -y ' ‘and v € V,-y and suppose

there exist nodes  wy € Vi-y and w, € V,-y such that Wy
is adjacent»in,.GI. to only "u and y, and Wy is adjacent in

G to only v, and y. Then we define

2

(5.1) (Gl*e*Gz) ”_(V',E' U(u,V))Q

Let us define one more class of graphs as follows.

Class 4: The graphs recursively generated from the
graphs in Classes 1, 2, and 3 by the

operation defined in (5.1). (See Figure 5.3.)
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" Figure 5.3

Note that Classes 1, 2 and 3 are included in Class 4.

We have the following theorem about the graphs in Class 4.

Theorem 5.4: Let G = (V,E) be any graph in Class 4 such that

Gv= ((Go*el*c_;l) *-ez*Gz)* ...*en*Gn

where G; is in Classes 1, 2, or 3 and has associated with it
the ineguality a;x < a; for i=0,...,n. Then,

ax+x({e1,...,en}) < a

is a facet for P(G) where ax = a;X+...+3aX, and @ = @) +...+0,.



Proof: By induction on i.

is true for

—_ | R
G.=G'xe * Gn where

(G

0 * €

Gl - (V',E') - l

GO,.-o,

NnNe_=49¢, v Nv

n n""Yl

Bl

— )
v € Vn Yoo Wy €V

i =0._ Suppose it is true for

*Gl) *ez*Gz*..,.*e

Gn are in Classes 1, 2, or 3, Gn

is adjaceht in G' to only u 'and
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By Propositions 5.1 - 5.3 the theorem

i=n-1. Then

* G

n-1 n-1'

=’(vn'Eﬁ)’

e =

n (ulv) ’ u € v’ -Y,

Y

to only v and y, and

are facets of P(G') and P(Gn),

v, € Vn is adjacent in Gn
3 ¥ p
a'x ¢ a' and ax £ @,
respectively. We must show that
g 1 ]
(5.2) a x+anx+x({en}) <a'+al

is a facet for P(G).

Let x be any Qs—matching;

the ineguality (5.2) is valid by
us assume x(en)'> 0.
Since

Suppose .x(en) = 1.

2 implieé

x(8(w))) = x(8(w,))

pentagon u, w;,¥,W,,V OT else

or x{(6(v)) > 2. So we must have x(6(wl)) < 2 or x(&(wz)) <

Yy

First we show that it is . valid.

Note. that if x(e ) = 0, then

inductiveﬁhypofhesis, So let

and w have degree 2,

2
that eitheér x ‘contains the

x(6(y)) > 2, x(d(u)) > 2,

Assume, without loss of generality, that X(éLwI)) < 2. We

construct a new Q5~matching X as follows:
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If x(6(w;)) =0 or, if x(8(w;)) =1 and x(uw)) = 1,

set -
X for e e _, uw
e # n’ 1
x =({x -1 for e =e_ _ _ o
e e n Eits
x +1 for e = uw,. R
e 1

If x(8(wy)) =1 and x(w,;y) =1, set

X for e # e ruw;, Wiy

X =(x -1 for e=¢e_,w
Xe \ e n' W1¥

x ¥1 for e = uw,.
e 1

Suppose x(en) = 2. Then, as above, we must have
x(6(wl)) < 2 or x(é(wz)) < 2 since Wy and W, have degree 2.
So let us assume, without loss of generality, that x(ﬁ(wl)) < 2. o

We construct a new Q-matching X as follows:
s

-

if X(é(wl)) = 0, set

X for e e uw
e #, n' 1

X =(x =2 for e =e
e e

x +2 for e
e .

Il
ot
g

if x(é(wl)) =1, then x(é(wz)) < 1, and we set

X V for e
Xg # e,

x ={(x -2 for e = e
e e n

x +1 for e = uw,, w
e 1
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in all cases, X - and ; have the same value in (5.2).
However gh%Q = 0 _and therefore, by inductiye hypothesis,
X satisfies (5.2).._HenCe x does also and (5,2) is valid.

To finish the proof we exhibit e} affinelylindépendent
QéfmatchingsAwhi§h¢satisfy'(5.2) at_equality. | :

By the proofs of Propositions 5.1-5.3, we know thaﬁ-at any
node of:éAclass 1, 2, or 3 graph there exists a'near—perféct
“ matching which is deficient at that noge. Hence this is also
true for any graph in Class 4. . So, considé& any near-perfect
matching Qv of G' which is deficient at y, zero on En»b‘{en},
and such that a?Q = qa'. Sin;e a X < a is a facet for P(Gh);
 there exist_IEn[ affinely independent Q5—matchingS'whiCh'satiSfy
'anx =a. Thus 2 added to-each of these gives ]Enl affinely
.indepénaent Qs—matchings of G which satisfy ax = a.
Similarly, -we may.cﬁooseaa near-perfect matching X of G,
Which is deficient-at  y and extend it to |E'| affinely
ihdependent".ngmatchingSuof G which satisfy ax = «. If.we-“-
combine these twb,sets of Q5~matchings, we geﬁ a set bf
lE“l-+|Enl-1 ‘affinely independent Qs-mafchings of G whiéh
satisfy ax = a. vWe need two mofe such matchingg. To get these,
take two hatchings in which e is at value 2.with the added

constraint that in one (wl,y) is at value 2 ana Vo is deficient

while in the other (wz,y) is at value 2 and vy is deficient.
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Clearly the first of the two is affihely indéﬁendent of the
IE'I-+lEnI-1 othegé because it is the ohly matching using e .
Note that all of these IE'I-+iEnI matéhings satisfy a'x = a'.
.However'thelast one does not, since it is deficient at two hodéé

of G', and so if is éffinély independent at the rest.

With this final class of facets we are ready to make the

~ following conjecture.

..Conjecture: For any graph G = (V,E), P(G) iéZCharaCtériiéd by

the following inequalities:

x(6(v)) < 2 for all v €7V,
ax { a for all Class 4 subgraphs
of G, | |
x, >0 . for all e €E.

e

proposed proof: Using an Edmond's style:algorithm for the
weighted problem (Qf). '

A ‘ P A
In the next section we give some properties of Qs-Critical

graphs which will be useful in developing an Edmond's style

algorithm.
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Section 3. Properties of Qs-criticél Graphs

Let G be a Aonseparable Qs—critical graph with nonseparaple
_ea;»decomposition Vore--+ fo Let PO be the edges in the od§
cyéle with node set Vg and let Pi be the three edges in the
pafh determined by the nodes V,-V. , and the two associated

attachment nodes. We refer to _P0 ‘as the "original polygon"

and to the»»Pl's, i >» 0, as "ears".

Consider an ear ph in GF. Its two attachment nodes arél

mutually adjacent to a degree 2 node. If this node is not

in PO, then ‘it is contained in another ear, say Pn—l,-which

has its own degree 2 node. Continuing this process until 'PO

0 n

is reached yields a sequence P ,...,P" =called an ear sequence.

Every ear in G has a unigque ear sequence. A maximal ear

sequence . is called a branch. Thus two ears are in the same
branéh;if and ondly if the ear sequence for one is a subsequence
.Qf the‘eaf sequence for the other.

Let X ¢ % be a node in G. Consider the length.ZApath
from - X to the attachmenf, say X 17 of the ear that contains
it If x4 ¢ PO, then consider the length 2 path from x__,
to the attachment node of the ear that contains it. 'Continuing
this until a node X € PO is reached yields the descending path

from Xn to PO. (See Figure’S.é.),
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Decending path

from Xx
/ ~
/ ,\\
/ N e
/ ~ X
/ //()\
/7 7 \

Figure 5.4

We call each Qg -critical subgraph GV, GVl .., GIV,]
that occurred in the ear decomposition of G a level. Any
Qs—matching of G which has maximum cardinality for each level

is called levelwise correct. We will say that such a matching

saturates every level of G.
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Consider two nodes. u and v of G and the descending
paths from edach. 'éupp05e the path from 1 intersects the path‘
~from v and does so for the first time at a node x. If the
paths from u to x and x to v are both e&en; then we cali

the path which they describe from - to. v a connector from . u

to v. If the paths do not intersect, then they end at different
nodes ’xl and X, of P°. In this case we define the connector
frcm u to v to be the path described by the two descending

paths (which may be of length 0) together with the even length

path from % - to x, in PQ.

Proposition 5.4: Let G be a nonseparable Qs—critical graph
and let u,v € V have a connector C bétween them. Then -G
can be matched levelwise correctly where the edges in C are
given the value 1,

0 0

froof: Supposexmuwé.E and v € P. Then perfectly match the

odd path from u to v in PO, near-perfectly match the even
path from u to v in Po, and match every pair of nodes
occurring in an ear. This matching is levelwise correct.

Suppose that u ¢ P0 and v»€ PQ. Stppose theudescending .

paths from u and v interéect at a node w; then near-perfectly

0

match the descending path from w to, say, w* in P leaving w

deficient, and match every pair of nodes occurring in an ear
which is not already matched. If u and v descend to u,

and v, in p? where u,y # vy, then perfectly match the odd
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path from uy to vy in PO, near-perfectly match the even path
from u to Vv im. PO, and match every pair of nodes occurring
in an ear which is not already matched. Those matchings are

levelwise correct.

Similarly, we can handle the case u_ﬁ:PO_ and v € pC, _ | %1 St
Proposition 5.5: There is always a connector between two nodes P

in different branches of a nonsepa;able Qs—critical graph G.

Proof: Let us call the fwo nodes u and v. If the descending
paths from u and v extend to PO' without iﬁtersecting,
except possibly at the last node, then by the definition we
get a connector.

Let us assume the descending paths intersect beforé PO;
This implies that the ear sequences_containing u and v. build
upon a common degree 2 node z which‘ié not in PO. Let x; - =

and x, be the two nodes of Gt which ‘are adjacent to z.

{See Figure 5.5.)

Figure 5.5



The descending path from u
after an even number of edges as

or X

" If they both contain x, 5

‘without loss of generality, that

containS"xi and the descending

z must be in an ear with either
ear with' x,, then the descendin
through z to x, to yieldac

- in an ear with x,, then the des

" continues through 2z to x to

1
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must contain x and/or x

1 2

must the descending path from v.
we have a connector. Suppose,
the descending path from u-

27

If it is in an

- path from v contains x

X .
or X.2

1 _
g path from u to X3 contiﬁues
onnector. ‘Similarly, if =z is.
cending path from v to X,

yield a connector.

Suppose u and v are two nodes of two ears in the same

branch of a QS-critical'graph where v 1is contained in u's

ear sequence. To see if a conne
us say x 1is the first node on

which is in one.of the three-edg

Let us say Yy isxthe’degree:_z

attachmentsxof;’P¥;

 of P and two for the attachme

cto: exists from u to v, let .
the descehding path from u

es of the ear p?t containing V.

node of G adjacent to- the

We consider - four cases, two. for the nodes

nt nodes of PY. (See Figure 5.6.)

Case 1: x is an attachment node of P* and is adjacent

to v in GF.:.-.a;f,79‘°

Case 2: X is an atfachment-noae of 'Pi. ahd is not
adjacent to v in GF;

Case 3: v = x.

Case 4: v # x and x is a node of Pi.
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- - - -: Edges of the "connecting” path : s

s

Figure 5.6

.
: - . AR
- .

In cases 1, 2, and 3 the conneétb; is defined,.bﬁt‘it is

" not defined in case 4 because thé path from u fo v is of

odd length. However, if we consider the connector from u to Xy
which 1is defined, and then change this path by exchanging edge
{v,x) for edge (x,xl), we get a path from u to v with the

property that G can be matched levelwise correctly if the

edges in the path are given the value 1.

g
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Let us call all connector pathé together with those paths

occurring in case 4 above connecting paths in a nonseparable

Qs-critical graph G.

Suppose G is a (separable) Qs—critical graph and u and v

are two nodes in different blocks, say GY and GV, of G. Let

u \'4

G- =G G_. =G be the sequence of blocks of G

ll. 2""-' n

encountered on any path from u to v . and let Xy be the

G

cutnode shared by Gi and Gi+1 for i=1,..., n-1. .Let P

"be the path consisting of the connecting paths from u to Xq

%3 n-1

in a (separable) Qs—critical graph G.

to Xore-or X to v. Then we call P a conneéting path

We may now state the following theorem.

Theorem 5.5: Between any two nodes of a Qs-critical graph G

there exists a connecting-path- C. such that G can be' matched
levelwise correctiy where the edges in ;C are given the value 1.
Note that if two.nodes. in a Qs-critical graph are mutually.

adjacent to a degfee 2 node, then the connecting path between
thém goes through this node.

- Let us now consider one final result which will?be'of;uSé"
to us. | | | |

N An ear of a Qs—critical graph is said to be extreme if it

is not contained in the ear sequence of any other ear.



185

Proposition 5.6: For all nodes x 'in nonextreme ears of a

Qs-cfitical graph - .G,

d ;(x) =2 = 4,.(x) = 2.
GF G

Proof: Suppose there exists an x such that d F(x) = 2 and ' g
G

dG(x) > 2. Let P* be the ear which contains x. Then, since

no ear can have x as'an.attachment (since 4d F(x)==2),

G
dG(x) > 2 must be the result of some edge (x,y) which is

in G but not GF. Letl PY be the ear or original polygoﬁ
which contains y. o |

1f PY occurs after P* in the ear sequence for the branch
B containing Px,‘then considér the connecting path from x to y.
'We must be in case 4 of Figure 5.3.which_means that this connecting
path has length > 7. Hence G could not be Qs-critical, a ' -
contradiction,

Suppose ,Py occurs before P* . in the ear sequence for the

e, 2

branch B, or occurs in a different branch. Let P% be the ear
just after P* in the branch B. Consider the cycle C consis-
ting of the edggs_of ?z’ the edée between the two nodes (say x
and t) of PX,F(x,y), and the connecting path‘from y to the

attachment of P? which is not adjacent to t. (See Figure 5.7)
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This cycle has length > 7 and clearly can be completed into

a perfect Qs—matChing of G. (Note that this 'Qs—matching contains

only one edge at value 1 of p*.) E:
.

Observation 5.1: Every nonextreme ear in a Qs—critical graph

contains exactly one degree 2. node.

Section 4. An InformallLook at an Edmond’'s Style Algorithm for (Qé)

Let us now consider what an Edmond's style algorithm for
the weighted case might look like. Just as we did for the
weighted i—matching prbeEm in Section 5 of the Introduction,
we take our coﬁjectured system of inequalities, given earlier
in this chaptef, as our primal LP. From this we derive the
dual LP and complementarszlackness conditions. We begin to
construct an algorithm“exactlyﬁas in thg-l-matchgng case:
Step 0 is. the initialization: step where‘we choose feasible primal
ang'dual'solutioﬁS“which"Satisfy-all but a-Certain.collectiOn of
cé@blementary slackness conditions; Step 1 is the optimality
qﬁéck and node selection step; Step 2 is the edge selection step
where new edges are considered; Step 3 is the forest-growthjétép;V’
S?ep 4 is the augmenting étep; Step S‘is the shrinking stép where
suﬁgraphs corresponding to Ciass 4 graphs afe shrunk; Step 6 is
the dual change step which we go to when.there are no more edges
to choose in Step 2; Step 7 is a pseudo augmehtation step; and

Step 8 is a node expansion step.
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The objective of the algorithm is to modify the primal and

dual optimal solutions until the complementary slackness

conditions are satisfied.

At the beginning of the algorithm, shrunk nodes correspond
to Qs—critical graphs {(not necessarily nonseparable). For each
nonseparable Qs-critical gréph, thé.algorithm first constructs a
triangle or pentagon and then adds ears to this which have three

edgés and whose attachment hodésAare adjacent to degree 2 nodes.

. The algorithm may also add edges between nodes of these graphs.
A dual variable is aésociated with each such nonseparable
Qs—critical gfaph and all of its levels. After a few passes
through the dual change step some of ﬁhese dual variables may

be positive, as in the l1-matching algorithm. A complementary

 slackness condition requires that if a Q. -critical graph has a
-on r 57 _ grap

positive dual variable associated with it, then it must be
saturated by the matchiné.

Suppose an edge (u,v) is considered in the algorithm such
that u and v occur inga“QS—criticalvgraph and such that
the connecting path from u to v‘_hés lengtﬁ >6. Then
there exists a perfect matching of this graph which is
levelwise correct; i.e., the matching doesinot Qiolate
the root. Similaily, suppose the algorithm considers an edge
in Step 2 which creaﬁes a (nonseparable) ear on a Qs—critical
graph. Then, if the ear has more than two nodes or if the

connecting path between its attachments has length >4, then
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an augmentation can be made. Let us now consider the complementary.
possibilities which are responsible for the difficulties.

Let us say that a Qs—matching x 1is deficient on an ear Pi
if >x(Pi) < 2 and that x 1is deficient On-an'original'pglygon.iPO
if x(PO) < 2 for P0 a triangle or x(PO) < 4 for PO a
pentagon.

The cases remaining to-consider are: (i) when an edge (u,v),
between two nodes of a~Q5—cfitical graph, is.considered invstep 2
such that the connecting path from u to v is of length 2 or 4,
and (ii) when an ear with two nodes is considered such that the |
connecting path between its attachment nodes is of»léngﬁh 2.

When one of these cases occurs and~an'augmentation'iS‘pOSsible,
- we will see that the augﬁentation'is not levelwise correct, so,
in general, we must lower to zero any positive dual variable
associated with a level which is not saturated after the augmen-
tation. This will allow us to augment without violating a
complementary slackness condition.. The matchings after the
augmentation are of two types: those deficient on an ear and
those deficient on an original po}ygon. if we weré_faced solely
.with augmentatiOns of the first type, then anyiduélivariableé*‘
which must be lowered could be lowered using jusﬁ_ 0-1
inequalities from Class 4. Unfortunately, the augmentations of
the second type- require the introduction of 0-1-2 inequalities
from Class 4. We will examine briefly the dual change when

augmentations of both types are found. Before we do this, we
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need to look more-closely at what happens when a nonseparable:

Qs—critical graph loses its criticality.

Suppose we add an edqe (u,v) to a ndnseparable,Vstcritical
‘graph G such that the connecting path from u to v is of
length 2 or 4 and such that u and Vv occur in ears which

are in the same branch of GF. If the connecting path from u

to v 1is of length 2, then let x denote the node in »GF on B
this path. If the connécting path is of‘léngth 4, then let %y
. and x, denote the second and fourth nodes in GF on this path.
Note that if G, with (u,v) added,has a perfect ;Qs—matchipg,
then the matching must include (u,v) since G is stcritidal..
So, if the connecting path is of»length 2 and dG(x) = 2, or if
the connecting path is of length 4 and dG(xl) = dG(xzy = 2,

then G has no perfect QS—matching; (See Figure 5.8.)

vergl

Figure 5.8
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So suppose,- in the first case, that dG(x) > 2 and suppose,
without loss of generality, that u and x occur in an ear
together. If the ear containing u and x is not extreme, then
.by:Observation-S.l, u must have been degree 2. Therefore (u,v}_
creates an augmentation as.outlined-in the proof of Proposition'SiSv
(and shown . in Figure:5.7) which:.is deficient on the ear containing... .
u “and x.

Suppbse the ear containing u and x is extreme. If this
‘ graph adm%ts a perfect Qs—matching then it must contain (u,v)
in a cycle. It must also contain one of the edges incident with x,
say (x,y), where (x,y) ¢ GF. (Otherwise the cycle would be the
triangle cbntaining u, X and v.) Therefore, the cycle contains.
(g,x). It must also, by our degree 2 node arguments, contain the
connecting path from y to v. So the connecting path from y
to v must be of length. > 2. and we get an augmentation deficient.
on the ear..containing: u. and: X. "(See-Figure 5.9.) If all such.
connecting paths-have:length: 2. (that is, if for all edges (x,¥),

y is the attachment node of the ear containing u .- and x  which
is not adjacent to x), then we have no perfeét Qs—matching and

the graPh'With (u,v) added is still Qs—critical.

Y Figure 5.9
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We may argue similarly for the second case where the:
connecting path from u to v is of length 4. 1In this case
if either d(xl) > 2 or d(le > 2, we:have an augmentation
.which is deficient on some ear. (5.3) Noté also that these
length 4 connecting paths may have endnodes in different
nonseparable Q5~critical graphs which share a single node. i
This case works exactly the same as above and results in the
shrinking of nontrivial Class 4 graphs. .

Note that with the proof of Proposition 5.6 we.can handle
the cése of ears with>three edges being added to another ear of a
Qs—critical.gfaph when the connecting path between attachment
nodes is of length 2 but the intermediate node onathis.path is
not degreeaz; In this case we get augmentations deficient on
the ear to which the new ear is being added as in Figure 5.7.

Note also that we are neglecting the case that uw and v are e

in different branches. The arguments and augmentations are
analogous to those just looked at. However, the dual change o o
becomes more complex so we choose not to elaborate any further

on this case.

Section 5. A Brief and Informal Look at the Dual Change

In reference to the two cases examined, (when u and v are
in the same branch and d(x), d(xl) or d(xz) > 2) let us note

that the augmentations which are not levelwise correct are



192

deficient on exactly one ear and a level is matched below its
maximum if and only- if this ear is extreme in this level. So
the positive dual variables associated with these levels are the
'ones which must be reduced to zero before the augmentation can
be made.

The . dual change 1is performed:éé follows for such dual
variables. Forveach dual variable with associated subgraph G'
which we wish to reduce, we create a new 0;1 inequality corres-

- ponding t6 G' with the new edge or ear added on. This inequality
corresponds to a Q5~critical graph since the ear to which the new
edge or ear is added was extreme. Inithe dual change we then
raise the dual variable‘associatediwith-the~new~-0—l ineguality
apd lower the dual Variable we wish to lower. This also keeps

all the edges in G', as well as the new edge or ear in the -
equality subgraph.- |

Letxus:nonlodk&briefIyaat?some»ofﬁfhe»remaining-types=df.
augmentations;ﬁnaMeiytthdsewWhiCh‘are'deficientton the -original -
polygon of a Q.-ceritical graph.

Suppose an edge {u,v) is considered such that the éonnecfing-
path from u to v is of length 4, u is in.an ear, v 1s on
the original polygon which is a triangle, and Vv is the degree 2
node of the triangle upon which the branch containing u was
"built. Then we get an augmentation, as illustrated in Figure 5.10

because the degree at v is > 2.
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Figure 5.10

This augmentation is deficient on the triangle. Hence every.
positive dual variable associated with a Qs-critical graph,
which contains the triangle but not the first ear in the branch

‘containing u, must be set to zero before the augmentation can be

made. The triangle, for example, can be set to zero by associating

a dual variable « with the 0-1-2 inequality obtained by
assigning 2's to the edges on the triangle in Figure 5.10 and.
1's to the other edges. (We have here the graph in Figure 5.1(a).)

That is,
x(E-—{el,ez,eB}) + 2x({e1,e2,e3}) < 8.
Then in the dual change, we raise = and lower the trianglé, thus

keeping all the edges, including the new one, in the equality

subgraph and lowering the dual variable we want to lower.
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Suppose the degree 2 node of a triangle upon which a branch
is built has its degree increased by the addition of an ear as

in Figure 5.11(a).

(a) | (b) (c)
Figure 5.11

In thiS'case:we:again,get.anvaugmentation deficient on the
trianglé,.as.illustrated, but. the dual chahge:fbriowérathevtrianglew
can be accomplish%d with 0-1 inequalities. Associate 0-1
inequalities with the Qs-critical graphsvin Figufe 5.11(bfénd (c).
Raise these and then lbwer the triangle.. |

Suppose, as the dual variable associated with the trianéle
is being lowered, that a third ear is added to the triangle as in
Figure 5.12(a). When this happens the dual change must be elaborated.
To lower the triangle to zero, we asSociateva dual variable =« |

with the 0-1-2 inequality obtained by assigning 2's to the edges
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on the triangle and 1's to the other edges. (Here we have the

graph of Figure 5.1(b).) That is,

x(E-—{el,ez,e3} + 2x({e1,e2,e3}) < 10.

Then in the dual change we raise w and lower the triangle.

(a)
Figure 5.12

The analogous sitﬁatién for pentagons ié iliustrated'in
Figure 5.12(b). “ | |

Backing_up a bit, suppose with ﬁhe graph.in Figure.S.li(a)-
and, whiie‘the triénéle is being lowerea, an additiohal édge

(u,v), as in Figure 5.13, is considered. Although no new

Figure 5.13
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augmentation is created, the dual change must be altered by the
introduction of a - 9-1-2 inequality just as was done for the
graph in Figure 5.10. (Note that the graph in Figure 5.10 is
'isomorphiéwtb the graph in Figure 5.13.) |

Let us justfmention«beﬁoreaending.this Section.thétﬂthese
types‘of“situations«can=becomeamuéhﬁmore»qomplex.andnwe«haQe

not yet been able to exhaust all the'possibilifiés.‘
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