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Figure 3.15

Note that u must be real even since
Therefore v must be shrunk even and p(u)
v is the only node which has a predecessor
the other nodes (it may be a root).

In case a) méke z an odd node of §.

z 1is dummy odd.

= v. Since -pf(z) = w,

which is not among

If y 4is not in &

or is a duﬁmy odd node of 8, make y an even node of § with

Py = (y,z,w,PV). Make uvw a triangular p
call uwz a triangular petal. Go to Step
In case b) set P, = (z,u,w,v,u,x,P_),

s = (u,v,w,x,2z), b =v, and go to Step 5.

Case 3.10c: uvw shares edges with on

etal and no longer
2.

e or two triangular

petals uvx and/or uwz where all four or five nodes are even.

We have the following possibilities:
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Figure 3.16

There are one or two nodes in each case whose predeceesors
are not among the other nodes and they must be nodes which have
degree 1 in the matchlng in the figure (same reasonlng as in
Case 3.8c).

~ Assume fo; each case there are two nodes whose predecessors
are not amoﬁg the others (they may be roots). Using the following,

we go to Step 3.6 and either shrink or augment.
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a) and f): Set Pvu = (v,x,u,v,w,u)

b) and h): Set._va_='(x,v,u,w,v)

c) and i): Set 1qu = (x,u,v,w,u)

d) Set Pou = (v,w,2z,1)

e) and g): Set PVz = (v,w,z) .
j) Set PXz = (x,u,v,w,z). N

Assume for each case there is just one node whose predecessor
is not among the others. :Then we may reason as in Case 3.8c
to see that a shrinking was being blocked because a matching eage,
with one endnode. Yy, whiCh is adjacent to one of the four or
five nodes in the figure, coula not become a petal. We consider

all the possible cases:

a) petal vV, Py = (y,v,x,u,v,w,Pu), S = (u,v,w,x), b =u
petal yu, Py =v(y,u,w,v,u,x,Pv), S = (u,v,w,x), b=V
b) petal yv, Py = (y,v,w,u,v,Px), s = (u,v,w,x), b=x
c) pe#al yu, Py = (y,u,w,v,u,PX), s = (u,v,w,x), b =x
d) petal yu, Py-= (y,u,z,w,PV), s = (u,v,w,2), b=V -

£) petal yu, same as for a)
i) petal yu, same as for c).

Go to Step 5.

Steg 3.11 [w is even and j forms a blocking triangle with no
matching edge which does not share an edge with an existing pétall-
Let uvw be the blocking triangle. It must be the case

that two of the three nodes 6f the blocking ﬁriangle.are even
shrunk nodes. The third node is real even (otherwise the triangle

is not blocking and we are in Case 3.6).

T —
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call the triangle uvw a triangular petal and go to Step 2.

Step 3.12 [w is.é;en and j forms a blocking triangle which has
. no matching edges and which shares an edge with oﬁe or two existing
triangular petals].
Let uvw be the blocking triangle containing the edge j. .

We have the following possibilities for uvw:

u = pi{w) w

7
v ) ¢ )

o]
1

p(v) = p(w) v =pla) w = pla)

Figure 3.17

since v and w play symmétrical“fdles;‘let us assume;
without losszof,generalityq.that.'w is shrunk.

Case 3.12a: There exists a triangular petal -uvx where X

is dummy odd. We have the following possibilities:

Figure 3.18
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Note that u and v mayvbe iﬁterchangea.in these ekamples.
The corresponding cases can be handled by interchanging u and
v in what follows. |

In all cases u must be real even sincé x‘ is dummy odd.
Also, in all cases p(x) =v. In a) and b) u is the‘only node
whose predecessor is not among the other nodes. 1In c) plu) = z,
so in this case 2z 1is the only node whose predecessof is not among
the éthers.

In case a) make x an odd node bf 8. If y is not in $§
or is a dummy odd node of 8, make y an even node with |
P = (y,x,v,w,Pu). Make uvw a triangular petal and no longer

Y
call uvx a triangular petal. Go to Step 2.

;n case b), set Px = (x,u,v,w,z,Pu), Py = (y,x,v,w,Pu),
s = (u,v,w,%,2), b =u, and go to Step .

In case c¢), set Px = (x,u,v,w,PZ), Py = (y,x,v,w,Pz),
8 = (u,v,w,%x,2z), b =12z, and go to Step 5.

Note that uvx cannot have two matching edges since one of
them would be incident with a shrunk node u or V. This.implieé
that the base of this shrunk node is a matching edge, which is not
the case. Thus we have just the.remaining one caée,

Case 3.12b: uvw shares edges with one or two triangular

petals uvx and/or uwz and all four or five nodes are even.

We have the following possibilities:

= £

Lk -
HERE



Figure 3.19

Note that.we can. interchange the ro1es.Qf w and v in. a)
and.b) and interchange the.roles of Vv and w in d) to get three
more:cases. These cases can be dealt with in what follows by
making the corresponding interchanges.

In cases a) and c¢), u 1is the only node whose predecessor
is not among the other nodes. If u is deficient'by 2, then an
augmientation was being blocked. Set P = (u,x,v,w,u) and go to
Step 4. If wu is deficient by 1 or saturated, then a shrinking
was being blocked. If u is saturated, then there is an edge
yu € M whiqh could not become a petal. Set Py = (y,u,x,v;w,Pu).

in either case, set S = (u,v,w,x) or (u,v,w,x,z) and go to Step 5.
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For the remaining cases, assume there are two-nqdes whose
predecessors are not among the other nodes (they may be roots).
Using the following, we go to Step 3.6 and either»shrink or
augment.

b) Set va = (x,u,w,Vv)

I

d) Set Pu (u,v,w,z)

z

n

e) Set PX (x,v,w,z).

z

Finally, we assume for these cases that, there is just one
node whose predecessor is not among the others. Then, reasoning
as in Cases 3.8c and 3.10c, we had a blocked petal and shrinking.
There are only two -possible cases:

b) petal yu, P, = (y,u,w,v,P ), S = (u,v,w,x), b =x

d) .petal yua, Py = (y,u,v,w,z), s = (u,v,w,X,2), b = z.

Go to Step 5.

Step 3.13 [w is a dummy odd node] : Supppse u,w and u,w €M
‘and  uywx is the triangular petal contaihihg w. Hence the
addition of the edge u,w to 8 and the making of u, into
an even node (assuﬁing it was dummy odd or not in S when‘thé’
petal,contaiping w was forméd).was blocked by the triangular
petal .ulwx. The.quective in this‘step is tolmaké’-u2 even;
if it-is not already even, and to make w an odd node of §.
We will see that this can be done in all caseé. In particular;
if u, is even, make w an odd node of 8§ and go to Step 2.
So let us assume u, is dummy odd or not in §&. Note that in
all cases u; is real even. We have avbldcking‘triangle if

augmenting on P = (uz,w,Pv) cteates a triangle. So if we do
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not have a blocking triangle, make,-w an odd nqde, make u,

an even node, and cset Pu2 = (uz,w,Pv). No longer call ulwx

a triangular petal. If Ax is a redlvnode,'remove the matching
‘edge xul‘ from 8. Suppose X is shrunk. If uyx € M, make
u,;x a petal of x. If u, X ¢ M, make uy X the base of x.

Go to Step 2.

Let us assume we do have a blocking triangle. If it has
two matching edges, then the two edges must bé ugw and ulv;
if ‘it has one matching edge, then the edge must be u,w. Thus
if"ulwx has two matching edges and we form a blocking triangle
with two matching edges, then v = X. So we disregard this case.

Note also that it is not possible here to form a blocking triangle

with no matching edges. The remaining cases are illustrated in

Figure 3.20.

a) b) c)

Figure 3.20

Note that the blocking triangle wu,vw may share a second

edge, that is ulv, with an existing petal, call it ulvz. We
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illustrate these possibilities in Figure 3.21.

[
F
ek

ISR

Figure 3.21
Note that in all cases in Figures 3.20 and 3.21, v and =z

are shrunk even. We set Pu as follows:
2 .
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Fig. 3.20 a) and Fig. 3.21 a): Pu2 = (uZ'W’V'u17w’Px)
Fig. 3.20 b) and Fig. 3.21 b) and c): Pu = ('uz,w,x,ul,w,v,Pu
2 ' :
Fig. 3.20 c) and Fig. 3.21 4) and e): P = {(u,,w,%x,u,,w,P_}.
u, 2 A | v

Make w an odd node and make u, an even node. No longer
call ulwx' a triangular petal. (However, u,vz remains a
triangular petal.) If: x is a real node, remove .the matching..
edge Xuy from 8. Suppose x is shrunk. If uix-é M, make
u;x a pétal of x. If u,x ¢ M, make u, % the base of x.

Go to Step 2.

Step 4 [Augmentation]: ?Let e be a generic edge of p. If

e ¢ M, then add the edge e to the set M; on the other hand,

if e € M, then remove the edge e from M. Let u be a generic
shrunk node encountered on the path P. Modify the matching inside
u so that the new matching is a triangle-free simple Zematchihg.

(This modification of. M inside u. involves intexchanging edges:

1

in and out of M along a portion of the alternating cycle defined

when u was shrunk: The fact that-the modification is possible
follows from the validity of the shrinking step. See Theorem

3.1.) Throw & away and go to Step 1.
Steg 5 [Shrinkingl]: We are given S and b.
Shrink all the nodes of S into a single node of G, say

node u.

Case 5a: If 8 contains a node which is deficient in G,

then call u a root of §. Let T=MNO6(S). Continue Step 5.

Case Sb: If S does not contain any deficient node of G,

then let j = bp(b). Call 3j the base of u. If j € M, let

)
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= (M N 6(s))I\{j} and if J € M, Jet T = (M N o(s)) u [33.

Define P as Py Continue Step 5.
Let the petals of u be
(i) the triangular petals of 3§ which contain one node

of S, and. , : : e
(ii) . the edges of T which do not belong to triangular

petals of § (these edges form the edge petals of u) . A
I1f, in some triangular petal of u,,the;two other nodes,

say x and Yy, are shrunk nodes of &, then define S as the

set of nodes comprised in u, x and y. At least one of the

paﬁhs Py P

' Py does not contain the two other nodes, say Pb.

Go to Step 5 with this new S and b.

For any triangular petal'.uxy such that x is a shrunk

even node and y is a dummy odd node, change Yy into an even

node of 8§ and set Py = (y,Pu). (This is valid since yu &€ M
-and yx € M, see Figure 3.4.) . S
Check whether some edge petal t of u joins u to an odd

node of 8 or to a shrunk: even node of §. If there exists such

an edge t = (u',w), u"E S, where plw) #u* and plu) # w,
then go to Step 3.6‘where v and w are taken to be the two
endnodes of t. o : R |

Check whether some nonmatching edge of 8§ joins u to a node
w of & where p(w) # u', u"é S, and p(u) # w. 1If such an
edge exists, set Vv and w to be the endnodes of thatbedge.

Go to Step 3.6.
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For each edge petal tip -z which is not in §, make z
an even node of §, define P = (z,Pu) and add the edge uz 
to §.

For each edge petal.tip z which is a dummy odd node of
s, make 1z an even.node of 8 and let Pz = (z,Pu)."Add the
edge. -uz to §..

‘For each odd node w of & such that p(w) € S, :eeet
piw) = u. similarly for each shrunk even node w of 8 such
that pi{w) € S, reset pl{w) = u.

Finally, if two petals k and 4 of u have a common even

node z as a tip, and neither k nor 4 contains a dummy odd
node, then modlfy the blossom tree by adding the node z (and

other tips of k and L, 1f any) to the set 5, and by removing
k and 4 from the set of petals.' If either k or 4 happens

to be the edge 3j, then reset P, = Pz’ Go to Step 2.

End of. Algorithm

Section 4. The Validity of the Algorithm
.In order to prove that the algorlthm polynomlally ‘solves the
cardinality trlangle—free 51mple Z-matchlng problem, we must prove

the following:

»Proposition'3;3: In Step 3.2 both ulv' and uzv' € M cannot

occur.

Theorem 3.1. The shrunk nodes defined in Step 5 are critical and

they are always saturated‘by the current triangle—free:simple
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2-matching M. (This implies that augmentations through shrunk

nodes are valid.)

Proposition 3.4: The algorithm terminates after a polynomial

number of iterations.

Theorem 3.2: When the algorithm terminates, the triangle-free

simple 2-matching has maximum cardinality.

proposition 3.3: In Step 3.2 both wu,v' and u, v € M cannot
occur. |

Proof: Léﬁ us assume Uy is qot a dummy odd node and ulv'}E M.
(If u; was dummy odd we would be in Step 3.3.) Under these
assumptions we show that dzv‘-e M. '(Seé Figure 3.22;)

Assume ﬁzv‘ € M. Since uy is not a dummy odd node; it
must be a real even node or not in § (if it were either odd or
shrunk then w € 8). Since v 1is a real or shrunk even node
"and since u, is real even or not in 8§, u, must be.a dummy
odd node (if it were odd then w € §). Dummy 0dd nodes are made
in either Step 3;2 or 3.4.

- Suppose 'uz. was made abdummy odd node‘ih Step 3.2 and that
we are now facing the Situation"where’ u, v and ‘u,v' € M |
occurs for the first time inbthe algorithm. Then vp(uz) é M
which implies p(uz) =y since vuy € M. This implies that
0y € 8 and is hence real even. When uyu, Wwas coﬁsidered
and u, Wwas made a duﬁmy odd node, we were in Step 3.2 with w
and Vv' playing the roles of u,y and -uz. Thus we had wu,

and v'uy € M which contradiéts'our assumption that in ‘considering
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vw we are facing this situation foé the first time.

Suppose u, was made a dummy odd node in Step 3.4. Then
there must be arshrunk node x such that Xu,v is a triangular
'petal with the one matching.edge u,v. It must also be true that
u, was made a.dummy -odd node and hence entered & after v
entered 8. 'But since uy is real even or not in .8 and. v is

even and saturated, it is not possible that v could have

entered § Dbefore u,. Contradiction.

Figure 3.22

Theorem 3.1: The shrunk nodes defined ih:Step-S‘are-critical,,

and they are satﬁrated by the current triangle-free simple 2-
matching M;

Proof: We'begin the proof by observing that M saturates the
blossom tree B associated with the shrunk node u. The remainder
of the proof conéists of proving that B 1is critical. We do

this in two main parts. In Part 1), we exhibit augmenting paths
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from every node in B to the root aﬁd in Part 2), we prove that
using these augmenting paths can create no triangles, which.shbws
‘that B is critical.

By inductive hypothesis we assume the theorem is true for

all blossom trees of §. 'Note that 8§ is the structure just

before we go into Step 5 where we shrink S into a shrunk node u.
First, we see that M saturates B. If S does not contain %

the root r, then every node of S is saturated by M. In

addition, by definition of the petals, M saturates B. The only

deficient node of B is one of the endnodes at the base defined

in Step 5. In the case that . S contains r, M also saturates

‘B, since the only deficient node in B 1is 1 (or a node of G

inside r if r 1is a shrunk node) .
Part 1: We now exhibit auémenting paths frém every node in

s and from every petal tip of u to the root. (These‘paths are

.defined much as we did in Theorem 2.1 for the simple 2-

‘matching problem.)
If we go to Step 5 from any step other than Step 3.6,

(i.e. Steps 3.8, 3.9, 3.10, 3.12 or Step 5 when we shrink three

even nodes together) then all of.the}paths have been defined and

we are done. So, let us assume that we are goihg to Step 5 from.

Step 3.6. In this case we have the two nodes v and w from.

Step 3.6 and a path between them which may consist of one or more

edges. Let us denote this path by va. ‘
For every node x which is in § or is a petal of u énd

even, let P = Px' {(This includes all nodes on va.) Suppose
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x 1is an odd node and suppose, without loss of generality, that

1

. - X, -
x occurs on P_. .Let P ((Pv) ,PVW,PW)°

Let x be an edge petal tip of u which is not in §
.of is dummy odd. If x 1is adjacent to an odd node y of S,

say in. Pv,_theﬁ let . P = (x,y,Pp(y)). If x 1is adjacent tb'ap

even node y of S, where y is not contained in a blocking

. . —_— 1 .
triangle, say .y EHPV, let P = (x,(Pz) 'va’Pw)’ Suppose x
is adjacent to an even node. y of S, where y is contained in
a ‘blocking triangle gyz where, say, PV contains two oxr three

nodes of qyz. See Figure 3.23.

Figure 3.23

1f P, hits y first, among q, y, and 1z, then let

P = (x,(Pz)-l,P ,Pw). 1f P, hits =z first and qyz has two

. _ z, -1 : .
matchlng‘edges, let P = (x,y,q,(PV) ,PVW,PW). if Pv hits z
1

first and qyz has one matching edge, let P ﬁ.(x,y,(Pi)_ ,PVW,PW)._
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Suppose x is an edge petal tip of u which is adjacent
to a dummy odd node of S in a triangular petal qyz where,
say, P, lcontains two or three nodes of gyz. Assume P hits
z first. Then, if qyz has two matching edges, let
P = (X,Y,q,(Pz)-l,PVQ,Pw) and if qyz has one matching edge, ' sy
let P = (x,y,(Pf,)'-l,va,‘Pw)'. ) S
If vy is the dummy odd node in the last case, let | ;ﬁg
P = (y,(Pz)_l,va,Pw) when * gyz has two matching edges and

. A __1 . o .
let P = (y,q,(Pv) ’va'Pw) when qgyz ‘has one matching edge.

Part 2: We now face the guestion of whether -augmenting
along any of these paths creafes a triangle.

By inductive hypothesis, augmenting along a path P, does
not create a triangle. We must consider augmenting paths of the

form (Pl,va,P ). 1In particular, "Does augmenting along a po:tion

P of a path Pv ever create a triangle?" The only place in

1
‘an augmenting path P, that a triangle is ever formed is while

augmenting through a structure created in Steps 3.8, 3.10, or

3.12. But, since all‘the nodes inside these structures (where
triangles are created):are even and are incident with no new
petals, we never have a path Py which ends inside such a
structure.

So we must consider if in augmenting through (v,va,w) we
create a triangle and finally we must consider if a combination of

augmentihg through Py va, and Pw can create a triangle.
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Claim 1): ,Augmenting through (V,va,w) does not create a
triangle. .

1f P, consists of more than just the edge vw, then
.va consists of a structure as defined in Steps 3.8, 3.10, or
3.12. .In none.of these cases,. since we have handled all cases.
in the algdfithm, can a triangle be created. So we consider the
case that val;consists of just the edge vw. If wvw € M,
we get no triangles since the augmentation removes vw from M.
If vww ¢ M and vw 1is the first edge to be considered from .-v
to w, then, again by design of the algdrithm, no triangles are
formed. if, however, vw 1is not the first edge to be considered
from v to w; then augmenting through Jj = vw may éreate a
triangle with one edge that is shrunk. (If two edges are shrunk,
ﬁhen v and w are also part of a shrunk node. We do not
consider such edges.  j in Step 2. Figure 3,24 illustrates
the possible cases. (See Figuré 3.25 for éome actual examples.)

Claim.la); Only. four of these cases. can occur.

Note that in all cases w must be even since we are shrinking.
In cases C) andid), if v 1is a root and x 1is the deficient
node, then zxiémust be a petal of v. So v cannot be a root.
(3.11) By observing all the augmenting pathé defined in the»
algorithm and in the first part of this proof one can see that any
augmenting path which contains more than one node of G inside
a shrunk node of G must contain all of these nodes consecutively
along the path (i.e. the‘path must make a single pass through‘the

shrunk node) and must also contain the base of the shrunk node.
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e) i) g)

‘Figure 3.24
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Examples::

Figure 3.25
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So in cases d) and g), an augmentation after edge j must |
contain at least two nodes of v, since both matching edges
incident with x are in v. Hence such a path must exit v at

its base. Therefore, in order for xzw to be blocking, k cannot

be the baSe of v and so must be contained in a petal of wv.

In cases a) and b),since w 1is even, the edge k must be

(i) the base of either v or w or.else (ii) p(v) # w and

p(w) # v and an augmentation throﬁgh k is_blocked. However
since we must augment through k to produce a triangle, we cannot
have case (ii). 1In cases a) and b), if k is the base'of \Y

then it is not the base of v, and when we augment along j we
cannot leave. v along k,‘so the triangle is not blocking. So
we may shrink these two nodes together, and need never use 3

in an augmentation.

Thus k must be the base of v. 1In cases a) and b) if w

is shrunk, again we may just shrink these two nodes together and

need never use 3j in an augmentation since both nodes are shrunk

and petal tips are even. So the final possibility is that w
is real even and k .is the base of v. The only problem in
shrinking v and w together iﬁ a) is that a.petal' wy may
appear which is adjacent to w. 1In this case setting ‘P& ="
(y,w,x,z,Pw) allows the shrinking to be performed. Thus we are
left with w as a real even node and k as the base of- v in
case b).

Case e), by our observation (3.11), cannot be a blocking -

triangle since an augmenting path which creates a triangle must
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contain the sequence w,X,y; Or W,X,Yy, and so must revisit the
shrunk node v in order to put the edge zx into the matching.

- Suppose a triangle is produced in case f). Then an -augmenting
path must contain the sequence of,verticesv”w,x,yl,..b,z,x,yz-
This*implies that  xy, is the base of v. We may shortcut such:.
augmenting path sequences to the sequence w,x,yz,_which;creates}
no triangle. So the remaining cases are b), where w is a real
even node and k in the base of v, c), d4), and g).

Claim 1b): By more carefully choosing our augmenting paths
none of these cases need produce a triangle. |

Suppose zx 1is shrunk for the first time in some node V!
and suppose an edge 4 was considered which caused the node V'
to be shrunk. Let us unshrink this node by removing 4. from &
and renaming all the nodes in v' as they were beforé the
shrinking was performed:. If 4 = zx, then in cases b) and qg),
where 2zx ¢ M, there exists an augmenting path from  x to the
root which does. not. use zx. We may use this in conjunction with
j to form triéngie—free augmenting paths in these two cases. In
caSes c) and d), where 2zx € M, there exists an augmenting path
from x through z to the root. (The casés wnerensu¢h an edge
may create a shrinking arise in Step 5 where either z is odd
and x is shrunk even, or x is odd and 2z is shrunk even, or
X énd z are shrunk even.) So let us assume 4 # zX.

Suppose X 1s even.

If we now consider j in Step 2, then we identify the

blocking triangle xzw since all of its edges are in G. Let
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us now consider the edge 4 in Step 2. We will -again perform
the shrinking almost exactly as before except that now we have
two shrunk nodes of the blocking triangle xzw. The shrinking
procedure now defines for us augmenting paths from w through j.
By inductive hypothesis these paths, since they are the same as
paths defined through 'v' earlier in the algorithm, create no:
triapgles when passing through 4 and so are valid.

Suppose x is dummy odd.

Then we must have one of the following two situations:

" root

h)
' Figure 3.26 i)

Note that in case b), if x 1is dummy odd‘then considering
j in Step 2 puts us into Step 3.13 where no blocking triangles
are created. So we must considexr cases cf, d), and g). In case
h), in order for this dummy odd node to become even in a shrinking
due to edge 4, we must have an augmenting path which contains the

sequence (a,x,c). In i) we must have the sequence (a,b,d).
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Let us consider case c). (Note that xy must be the ﬁase
of v since it'is.the first edge in P, and hence it must be
contained in a pétél of v.) We look in h) and i) for a matching
-edge'whiéh after the shrinking could play the role of the petal k-
in ¢). 1In h) only ac could play the role of k.  But thén cx
corresponds to j and it is-already present before the shrinking.
In i) only bd -could play the role of k: But becauSe,thg
aughenting-path contains bd, it could not become a petalfin;the
shrinking. The  reasoning is exactly the same for case d) and
very similar for case g).

Let us finally suppose x 1is odd.

0dd nodes are made ih Steps 3.1, 3.3, 3.5, 3.8a, 3.iQa,
3.10b, 3.12a, and 3.13. Let us consider cases c¢) and d) when
x 1is not the node b (as was designatéd in Step 5 when v was
shrunk). In all the cases in which.we make an odd'node.in the
algorithm, the odd node:either: ends up after aqshrinking_ipcident‘
toia‘maféhihgwedgeainva;petal or. can be adjacent to no node, via
a matching edge, whic¢h is incident with a petal. ;For example,
cohsider Figure 3.6 c) in Step 3.3, If théwaugmenﬁiqg_pathv 3d1
or PC2 (where_-L:=_CIC2)Acqniaihs ui and Vw;'thén ué “becomés
a petal tip'and if the augmenting path contains u, and w, then
uli-is incident with no petal. If x is the node b, then the
augmentation from x passes through x twice, so the triangle
is not blocking.

Let us now consider case g). 1f X was not at some time

dummy odd, then x was made odd in Step 3.1, 3.3, or 3.5 and
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zx is the only nonmatching edée of; sf,incident:with x. Then
one of the two nodes adjacent to Xx- via a matching edge must be
a petal of v, if x was made odd in 3.1'0: 3.3, and there can
be no petal k if x was made. odd in 3.5. So let us assume X
was at some time a dummy odd node. If it became odd in 3.8, 3.10,
or 3.12, then there can be no petal k. So let us assume it
became odd in 3.13.: So there must be two nonmqtch;ng edgés iﬁ

S ihcident with  x. Let us qall'the other one XZ 3. ‘Because

zq and z, are in v, there must have been an edge m %.dldz

which caused a shrinking such that z € P and z., € Py .
1 dl R 2 dz_

Exactly one of the two paths Pd’- or sz ,contains xz. We
Tdy 5 :
have an augmenting path from x of the.form.{(Px.)—l,P . P ).
'dl' dld_2 4,
If we replace this with '((Px )_1,P = ,P. ), we do. not create the
. dz dzd1 d1

triangle xzw.

lLet us finally consider case b). If x 'is odd, then there
are two matching edges: xyl-;and :XY2; 'As in cases e) and £)
both y, and vy, must be contained in v (this is a consequence
of observation (3.11)). -We can now use.the_Same,reaspning that
we did for case g) to construct an augmenting. path which does not
contain zXx.

Claim 2: Augmenting‘on a path of the fofm (Pl'PVW'Pw)
cannot create a triangle due tO'the conbined effect of the
three parts.

We have just seen that augmenting on such a path cannot

create a triangle which contains an edge in Pﬁw; So the only

place a triangle could be created is by the combination of
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augmenting on Py and P_. Since by our definition of the node
b in Step 5, no edge can occur more than once in an augmentlng
path P, a - triangle can occur only if the two paths share a node.
‘Even nodes can occur twice in an augmenting path (see Steps 3.8,
3.10, 3.12) but in none of these cases can the node be passed
through twice by different paths. If a node is dummy odd, then>
it is incident.ﬁith only two edges of & and so can be contained
in at most one path. So we are left with the case that the common
node, say ¢, is odd. If ¢ was made odd in Steps 3.1, 3.3,

3.5, 3.8, 3;10 or 3.12, then ¢ is incident with at most three
edges of § and so can be contained in at most one augmenting
path. So the chared node c can only be an odd node with degree
four in & which was created in Step 3.13. In each augmentation.
which contains c¢ twice, two matching edges, say zlx and |
z,x, are removed from the matching and two nonmatching edges,

say yli and Y% are put into the matching.

In each case, because of the existence of the blocking
triangle which contained x when it was dummy odd, there can be
no matching edge ylyz. For example, consider the constructiens
in Figures 3.20 and 3.21 in Step 3.13. 1In no case can there be

an edge vx € M since in every case either v or x is shrunk
with a base which is not in the matching. Hence both matching
edges adjacent to these bases, which are our candidates for
vx € M, are contalned in the corresponding shrunk node.

Finally, we observe that, just as in the proof of Theorem 2.1,
augmenting on a path of the form (Pl’va’Pw) leaves every shrunk

node on this path saturated.
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Proposition 3.4: The algorithm terminates after a polynomial

number of iterations.

Proof: The algorithm only gbes to Step 1 after an augmentation

(Step 4), which can occur at most 2|{v] times. Between visits of

Step 1, the algorithm constructs an alternating,structure-by
either adding rniew nodes (Step 3) or by shrinking a set of nodes
(Step 5). Each of these possibilities can occur O(|V]) times.

So the algorithm terminates after a polynomial number of steps.

Theorem 3.2: When the algorithm terminates, the triangle-free

simple 2—matching.has maximum cardinality.

Proof: Let M be the matchihg at the end of the algbrithm.

Let S be the set of odd nodes, let T be the set of nodes 

" not in &, and let 8 be the set of nodes in V\S\T (that is,
those nodes which are even or dummy odd).

When the algorithm terminates, the structure 3§ has the
‘following properties (see Figure 3.27):

‘1) All odd nodes are saturated and both matqhing_edges
from each odd node are incidentiwith even nodes of 8.

2) All blossom trees in 8 . are internally saturated.

3) All edges from even nodes to nodes in T are in the
matching.

4) All dummy odd nodes are saturated; one'matching edge is
in the petal which containé the dummy odd node.and'the other
matching edge is incidént with a node in T or another dummy
odd node. (Note that, if the two matching edges incident with

a dummy odd node are also incident with two even nodes, then we
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call the dummy odd node an odd node.)

5) There may ‘be nonmatching edges from dummy odd nodes to
nodes in T and‘to other dummy odd nodes.

6) Dummy*é&d nodes all occur in triangular petals
with one or two matching edges as in.Steps 3.2 or 3.4. There
is at most one dummy odd node per petal. The second.petal tip
in any petal which contains a dummy odd node is adjacent to no
vnodes in T.

7) All nodes in T are saturated.

Figure 3.27

Let B be a blossom tree in & which contains dummy odd
nodes vl;;..,vn. Note that B\{vl,.,.,vn} is a blossom tree by
6). (Let us for now consider a single matching edge to be a

degenerate blossom tree in the case that B 1is a blossom tree
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consisting of a,single triangular petal.) Also note that.
B\{Vl""’vn} when internally saturated has the same number of
deficiencies which require outside matching edges (i.e. the.
number of matching edges needed which are not contained in
B\{vl,..,,vﬁ}) as does B. This is implied by our definition of
critical‘blossom trees since B and B\{Vl""'vn} have the
same number of petals.
Sp iet us consider the blossom trees of & obtained by
putting all the dummy odd nodes into T. Let us call the new.
sets S, T', and &'.
Consider the new edge petals of #'. We have two edges from
T' édjacént to each. Suppose M is any matching which uses at’
most one of these two edges for each petal. Then M cannot
eliminate more deficiencies in the blossom trees than did M
since we have exactly the same number of edges-available to use
,from outside the blossoms as we used in M and each such edge
was used in M to eliminate a deficiency (properties 1), 3), i
and 4)). | | |
So let us consider any matching M which uses both edges
from T' for some petéls of B'; Recall that these pairs of
edges are part of the original triangular petals and therefore
correspond to a matching which uses ho edges from T to this
petal (see Property 7) about the second tip in a petal which
contains a dummy odd node). Hence we are in effect using fewer
edges from outside the blossom trees than we did in M and so -

cannot eliminate more deficiencies.



Section 5. A Tutte-type Theorem for Triangle-free Simple 2-matchings

In the discussion that follows we will use a slightly different definition of
blossom trees: & "blossom free” isa blossom tree as before except pendent petals ofa
center may share an attachment node to that center; & node in the ceriter of a "blossom
tree” maybe a»_(degenerate)_petal—; the number of petals incident witha cenler &y be
odd or even; and isolated triangles are not considered “blossom trees” {although they
are considered .pends.nt triangular petals). |

‘Given G=(V.E), let Sc V and let f‘x c VAS \S. W obtain the graph GA[VAS
from G[V\S] by splitting the nodes of & in GV \C} as follows: Forv e A, if the de oree
of v is 0, do nothing; otherwise, replace v with nedes vy, ..., vy and replace every
edge (u,v) with an edge { u,'r,,x so that l‘t every node v; has degree 1 or 2 and after
ﬂphttvv-' 2y every degree 2 node isin a friangle; and 3} isclsted triangles contain 3
nedes that were split. —

With this definition, the coraponents of GA[V\S]are either_isola.ted nodes,
"blossom trees” {without degenerate petals) or isclated trisngles. Next, let B VASAA
have the following property: ift € B, then there exists a tn’ange Uy in GA[V\S] with
nodes X, Y, 2 such that the degree of % in GA[V \5]is 2, the degrees of yand zare > 2, y=
tend z ¢ B. Then,fort & B, we £pl;t into {wo nodes so that{ aﬁcl aﬂ the nodes i in B
are split) Uy becomes a penda.nt tns,ngular- petal (but, by deﬁnition, not an isola._ted
iriangle). Both split nodes become tips of petals; in particular, the *pht node not in Uy

called & {degeneraié) petal. Let T= A U B and let GT[V, 5] denote the graph resulting

Y

from splitting the nodes in T . Finally, we require that 4} if & trisngle of GI[V\SG]
centains a split node, then each node of the tdangle iz either split or is 5 cuinode of the



QS T)=Z(2-fitx:t e T) - PIGI[V\S)
where
- PGT[V\S]) = number of pendarit triangulsr petals of GT[V\S]; and

f{)= 0, ifthedegreeoftin GT[V'\S] iz 0, or the nurhber of nodes into which t

is split, otherwise.
Let D(S.T) = number of odd "blossom trees” of GT{V\S].

Theorewm: G has a perfect triangle-free simple 2-matching iff

218 = Q{S,T) +DE T forall5TCV, 5nT= & and all allowed splittirigs of T.

"

Proof: (=) Let kM be a perfect triangle-free simple 2-matching of G, Choose any 5,T ¢

V, S A T= @ and anyallowed splitting of T (where A,B c V\Sare as describied

sbove}. Let M’ =Mn yiVAS), Clearly, -

)

T
(ST)

2151 = 21VAS] - 21M'] = 21VAS] - (¥S,T) - 2101 + (S,
Z 2IVASATI + Z(f): 1 £ T) + PGTIVASD - 21M' | + QIS

We must showr that

{312y 21VASATI + Z(ftnt e Ty + RIGIVASH - 2161 = (S, T}
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Let us consider the contribution of each cormnponent C of GT[V1S] o the LHS of
(3.1 2). (We abuse notation slightly by saying that nodes of C thst hawe been split are in
T.) Thus it suffices to show for each cormponent C of GT[V\S]:

313) 2IV\SA\TYn V(O +Z(1:teTn V(CY + P(C) - 21" nE(CH

= 1,ifCis an odd "blossom tree,” or 0, otherwise.

w—r?

(3.13) is trivially true if C is an isolaled niode, :mw 2IM A ECH =0,
Suppese C iz anisolated triangle. By definition, this component is notan odd
"blossom tree,” so we must show that LH‘-‘(SJ"‘ = 0. Since no node of the *nal 51 isa
cutnode, every node mustbe in T; and xn ice the triangle is considered to be & pendant
trisngular petal, PIC) = 1. The result follows,

So, finally, we suppose C iz & "blossorm tree.” Let us definebCon Casin (3.

Dok
.
-
W
T
[0y
i
o
=t
(413
-
[Werpy
""h
._;,-
0»-4
[
H
et
e
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408
o
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with the addition that degeneraie petals v sﬂ.sf' by =

is maiched at or belew iz bC walue by b', then we get that

V{C)- 2IM' R ECY = 1,ifCis odd, 01'0 othemn

21V O+ 31t e T o VIO + FC) =bC{VICY),
the result follows, So let us suppose esch node of C i not matched at or below itsbS
walue. Let over{(C) = the number of degenerate petals of C maitched ai value 2 and let

under{C) = the number of nedes of C that are 1) in B i) in triangudar petals;

qirked 2F rralive T ama jor vl 21t pad e e adetiod 4 rraiire 7
maiched &t value I and 1) with 0*1 €Y spdil noae maichen al walue 2,



BO(V(C)) - 21" A E(C) = 1- over(C) + under(C), if C is odd, and

- over(C) + under(C), otherwise. ; .

LE

Note that if we sum these inequalities overasll the cbmponents, th‘en.ihe

coniributions of o*.?er() and under() cancel, and the result follows,

{<=) Suppose G = (V.E) does not have a perfect ﬁi&rigle—fme siraple 2-
matching. Apply the cardinality slgorithm to G. At termination, let Sbe the set of odd
nodes, and let T = A U B, where A is the set of ral even nodes and B is the set of -
durnmy odd nodes. Performn the splitting of nodes in T so that the odd "blossom
trees” and isolated tnangful&r petals of the structure S are separated from the rest of the
graph. One can show {using the properties of S) that ((S,T) + D(S,T} is precisely the

number of edges required frorm S to handle all of the deficiencies among the even

nodes {(plus the nurnber of odd components formed in V\S\{odd blossoms, isolated

nodes and isolated trisngles in §}). From the algorithrn we know that ex g nodein S

iz saturated and that bcth matching edges for each node in S are incident with even

nodes. Therefore, since this matching is not pcxf&t, 21S1 < S, T) + DIS,T).
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Section 5. A Tutte-type Theorem for Triangle-free Simple

2-Matchings

In the discussion which follows we will use a slightly

'different definition of blossom trees: A "blossom tree” is

a blossom tree as before except pendent petals of a center may

fshare an attachment node to that center; the number of petals

incident with éicénter may be odd or even; and 1solated triangles
are not considered "blossom t:ees".. A "blossom tree" is called
odd if it has én odd.number of petals. |

Given G = (V,E), let sc vV, Tcg V\§, and UC T. We
obtain the graph GTEY\éi from Gﬁy\gb by splitting the nodes
of T in GKY\éi as follows: For v € T, replace v with nodes
VyreeorVy and replace every edge (u,v) with an edge (u,vi) so
that 1) every node v has degree 1 or 2; and afte{ splittiné:
2) every degree 2 node is in a triangle; 3) isolaﬁed triangles
contain 3 nodes which. were. split; and 4) if a. triangle contains
a split node, then each node of the triangle is either split or
is a cutnode of the graph.

With thig definitién, the components bf GTE}\éi are either

"blossom treééﬁ,Or iso1ated“triangles. Define:

Q(S,T,‘@ = Z(2 - f(u) : u€ U - P(GTEV\S‘})

where
(b‘

pIﬁT[y\%}) =.numbér of pendent triangular petals of GT[y\%)
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and

f (u) = number of nodes into which u is split.
Let D(S,T,U) = number of odd "blossom trees" of GT[V\él,

Theorem 3.3: G has a perfect triangle-free simple 2-matching

iff . 2|s| > o(s,T,u) + D(S,T,U) for all s,T,U.
Proof: (=) Let M be a perfect triangle-free simple 2-matching

of G. Choose any S,T,U and splitting as described above.

Let M' =M N y(V\S). Clearly,

21s] > 2]Wsl - 21| = 2]Ws| - Q(s,T,0) - 2IM'] + O(S,T,U)

|v

2]V\S\U] + Z(f(u) : u € U) ‘+ P(GTK§\§7) - 2M'}l + Q(s,T,U).
We must show that
(3.12) - 2IW\S\U| + I(f(u) : u € U) + P(GTgﬁ\éj),é'2|M1l > D(s,T,U).

Let us consider the contribution of each component C of

GT[v\sf'to the LHS of (3.12). We want to show that

(3.13) 2/ (WS\U) N V(C)| + E(1 : u € U N V(C)) + P(C) - 2im* 0 E(C) |
1 if C is an odd "blossom tree"

2

0 otherwise

©(3.13) is trivially true if C 1is an isolated node since’

2iM" 0 E(C)] = o.
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Suppose C 1is an isolated triangle. By definition, this component
is not odd, so we must show_that LHS(3.13) > 0. Since no node of>
the triangle is a cutnode, every node must be in T. The |
'LHS(3.13) is minimized if, in addition, all 3 nodes are in u and
£he triangleiis.saturatéd by M' in which case LHS(3.13) = 0.
(Such a triangle does count as agpendent triangplar petal.)

" So, finally, let us suppose C is a nontriviql "blossqm
txee". Tf we define bc on the "blossom tree" C as in

{3.2) we get

1 if C is an odd "blossom tree"

pC(v(c)) - 2IM' n E@] >

® otherwise.

So all we need to show is
(3.14) 2l (W\s\u)y n vyl + Z»(l :w € UNVC)) +P(C) > bc(v(c)). |

..All>nodes in’ centers contribute 2 to the LHS (3.14) as
well as to the RHS (3.14). Tips of edge petals and nonpendent
triangular petéls-each cohtribute a£ leagt 1 'tp'tﬁe ~LH§ (3;14)
(i.e. if they are in U) and exactly 1 to the RHS (3.14). H
The two tips of a pendent triangular petal contribute at least 3
to the IHS (3.14) (i.e. if they are both in U) and exactly 3

to the RHS {(3.14). Hence (3.14) holds and we are done.
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{g) Supposé G = (V,E) does not have a perfect triangle-
free Simplé 2-matching. .Apply the cardinality algorithm te G.
At termination, let S be the set of odd nodes, let T be the
seﬁ of real nodes of 8 in V\S~ which have degree Z.l’ and
let u be the set of'réal‘eVen nodes of T. Perform the splitting
of nodes in T ' so that the "blossom trees" and isolatedltriangular
petals are separated from the rest of the graph. Note that.since
6ur "blossom trees" and isolated triangular petals areﬁcritical,
they individually need one edge from outside for every petal,.
plus 1 (this is exactly what (3.1) states). However, ﬁhe total
number of edges needed, for all of these structures together, is
reduced by x - 1 for every tip which is shared by k blossom
trees. Using this fact'tégether with properties 3) and 4) from
the proof of Theorem 3.2 it is easy to see that Q(S T,U) + D(S T,U)
is precisely the number of edges required from .S to handle all
_of thg deficiencies among the even nodes. From the algorithm -
we know that every node in S is saturated and both matching
edQES'fOI each odd node are incident with even_nodes; Thefefore,

since this matching is not perfect,

21s] < (s,T,U) + D(S,T,U).
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Section 6. A Conjecture About the Weighted Triangle-Free Simple

2-Matching Problem

. "For any graph G, let P(G) denote the convex hull of the
.incidence vectors of triangle-free simple 2—matchihgs of G. -
In this section we conjecture a complete polyhédral characterizégion
of P(G). 1In ordef to do this we must ihtroduce another class
of valid inequalities for P(G); that is, the inequalities
associated with the simpie blossom trees with edge or trianéular:
petadls are not sufficient.

~In Section 1 of this chapter we defined "simple blossom trees"
and'"simple Llossom_trees with edge or triangular petals". Let
us now consider "blossém tfees", in genéral. Just as the simple
blossom trees are an extension of the "clique trees” of Grdtschel
and Pulleyblank {811, so ‘are blossom trees. (Note that, given.gx

graph G = (V,E), an articulation set S < V is a subset of

nodes such that GI[V\S] has more components than G.)

A blossom tree is a connected graph B such that

(i) it contains at least three nodes,
(ii) centers and petals are connected node. induced subgraphs,
(iii) the subgiaphsfinqucéd bf the hodes.iﬁ each petal have
no cutnodes, '
(iv) a petal and a cen£er can have at most two commonfnbdes
and these common nodes must be articulation sets of B,
(v) no two centers have a common node,

(vi) no two petals have a common node,

(vii) each center is adjacent to an odd number of petals,
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(viii) each petal contains at least one node which belongs to

no center.

For the triangle—f:ee simple 2-matching problem, the
relevant structures are the blossom trees such that

(ix) each petal contains two or three nodes.

Because trianguler_petals may now share two nodes with_a centef,
these structures clearly generalize the simple blossom trees
with edge or triangular petals. (See Figure'3.28.) Note that
(iii)* implies that if a petal and center have two common nodes

u and v, then‘the‘edge (u,v) occurs in both the'petal and

center. A graph which satisfies properties (i) - (ix) is called

a blossom tree with edge oxr triangular petals. For simplicity

these graphs will be referred to as "blossom trees" in this

section.

C center

P petal

Figure 3.28.. A Blossom Tree
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Suppose we have a blossom tree B with centers Cl,...,Cr

and petals Pl”"’Ps' Then we associate with B the following
inequality.
s +-1

r S
. < X |V(C, z { . - p.) - =
x(E(P)) £ i=1l (cHl + j:i(lV(Pj)l p;) R

r s
‘«x(E(Ci)) + .z
i=1 =1

where_fqr,everzhpetal Pj’ pj'E {0,1,2} and denotes the number

of handles whiéﬁ intersect Pj' j = 1,;..,5. Note that if a
centexr and petai share an edge,‘then the inequality ié 0 -1 - 2.
When B 1is simple, the inéquality reduces té (2;1) since

O <
z lvc)l + =

(lV(P~)| - p-) r
i=1 j=1 3 J

in this case, equals n, the number of nodes in B.

Gr®tschel and Pulleyblank [81] prove that the cligque treeig
inequalities are facets for the traveling salesman problem. Thgir
proof that the cligue. tree:inequalities are valid for the traVé}ipg
salesman problem can easily be modified to prove that the blossom
tree inequalities are valid for the triangle-free simple 2-
matching problem. The sets‘of:clique.tree inequalities and
blosSom-trée.inequalities have nonempty intersecfion (that is,
when'the centers. of the blossom trees are cliques). N

Thereforéq since the triangle-free simple é—matching
.problem is a rélaxation of the traveling salesman problem, we
must -include blossom tree inequalities in a complete polyhédral
characterization of P{G). We conjecture that these inequalities

are sufficient.:
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Conjecture: For any graph G, P(G) is characterized by the

following iﬁequalities:'

0 < x_ X< 1 for all e € E

e——
x(6(v)) £ 2 for all v €V
ax < a for all blossom trees of G.

Proposed proof: Using an Edmonds®' style primai—dual algorithm
for fhe weighted triangle-free simple 2-matching prOblem. In
particular, we use the cardinality algorithﬁ of Sectioﬁ 2 in the
primal part of the algorithm.

We next give a brief and informal example of where the more
general class of blossom trees is needed in an algo;ithm for the

weighted problem.

Suppose we have set up a weighted algorithm for this problem
exactly as we did for the simple é-matching_problem in the last
_chaéter. Also suppose that at some point in an application of the.
algorithm we have grown the structure illustrated in Figure 3.29 |
and are considering the edge” j in the edge selection 'step.

According to our cardinality algorithm, we should shrink
to obtain a’simplé blossom tree in which (xl;xz).is an edge
petal. As defined in the ﬁroof of Theorem 3;1; we should then
set le = (xl,...,xs,r). However, due to a previous dual
change we may have zg > 0. 1If this is the case, then we cannot
augment along le due to the complemgntary slackness cOndition
which states Zg sy 0= x{e) =1 where x 1is the current.matching.
So we must lower 2z, to zero before identifying this simple

blossom tree. To do this we identify the blossom tree in which
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~Figure 3.29

XorX3:%y is a triangular petal sharing two nodes with the center
X3:1XyrXgiXg- Hence the edge e has a coefficient of 2 assOciated '
with it in this inequality. |
wWhen we raise the dual variable associated with this blosséé
tree we must'lowéx the dual variable zg by the same amOunt.inhu
order to keep -e in the equality subgraph. If, after some'duai
chaﬁées, ze ='0, "then we may add the node X as- a petal tip-

of the simplé blossom tree, as we originally intended.
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Chapter 4

A GENERALIZATION OF MATCHING THEORY

Section 0. Introduction

In this chapter we extend many results of matching theory
to what we call hypomatchings. For convenience, let us briefly
restate some definitions given in Chapter 1 and also give some

new ones.

Given a graph G = (V,E) and a family F éf subsets of V,
an F-packing is a subfamily J € F such that every node of G
belongs to at most one member of J. Let us say a subset of nodes

is hypomatchable if it induces a ‘hypomatchable subgraph of G.

. Then, when H denotes a family of hypomatchable node sets and

F = E U H, F-packings are called hypomatchings, Given a

hypomatching J, any node which belongs to one member of J is

‘'said to be covered by J. A max1mum hypomatchlng is one whlch

covers the maximum number of nodes of G. A perfect hypomatch;;g ‘
of a subgraph G[s] is a hypomatchlng of G which covers all the |
nodes of S but no other nodes. . The graph G[S] is sa1d=to»be
critical relative to F if it does not have a perfect hybomatching
but, for every 3j € S, the graph GIs \{j3] has one. (See
Cornuejols, Hartvigsen, and pulleyblank [82], and Cornuejols and

Hartvigsen [83].)
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Section 1. A Relationship Between Maximum Matchings and Maximum

Hypomatchings

We first generalize a result known as the Gallai—Edmonds'
a
Theorem (see Edmonds [65@).

Given a graph G, consider the following partition of its
nodes into three'séts 0, I, R.
| (i) A node of G belongs to O 1if and only if it is
not matched in at least one maximum matching;
(ii) I is the set of nodes of G which are matched
in every maximum matching'andfaré‘adjacth to ét
least one néde of 'O;H |
(iii) R is the set of nodes of G which are matched in
every maximum matching but are not adjacent to any
node of O.‘
The Gallai-Edmends theorem states that
(a) every component of G[O] is hypomatehablé;
(b) a matching of G is a maximum matching
if and only if
(iv) the nodes of R are matched among themselves;
(v) in each component of G{d]; all but one of'tﬁé'
nodes are matched among themselves;
(vi) each node of I is matched to a node in a distinct
component of G[O]. |
The partition O, I, R can be obtained by appiying Edmond"s

matching algorithm. Consider the alternating forest at .
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termination of the algorithm. The set of nodes which are either
outer nodes of the forest or inside shrunk outer nodes is the
set O. The set of inner nodes of the forest forms the set I.
The rest»of the nodes of G is‘ R. (The letters o, I; and R
stand for outer, inner, and remaining nodes, respectively.s
Now we turn to maximum hypomatchings. Recall that
¥ = E(G) UH where every -S € H is a hypomatchable subset of
the nodes of G. Consider the following partition Qf the nodes
of G into three sets O(F), I(F), apd R(F) . _
(1') a node ofv G belongs to O(F) if and only if
it is not covered in at least one maximum
hypomatching;
(ii') I(F) is the set of nodes of G which are
covered in every maximum hypomatching and are
adjacent to at least one node of O(F);
(iii') R(F) is the set of nodes of G which are
covered in every maximum hypomatchiﬁgAbut
are not-adjacent to any node of Q(E)._

Given a-hypométqhing J of G= (V,E), a node of S SV

is said to be'internally covered in S if it is covered by a

member T of J such that T & S.

Theorem 4.1: The partition O(F), I(F), R(F) is such that

(a') every component of G[O(F)] is critical;
(b') a hypomatching of G is maximum if and

only if
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(iv') all the nodes of R(F) are internally covered
in R{F);

(v') in each component of G[O(F)]}, all but one of
-the nodes are internally covered in the
component;

(vi') each node of I(F) is matched to a node in a

distinct component of GIO(F)].
"In order to prove Theorem 4.1 we need the following lemma.

Lemma 4.2: Let S and T be two subsets of the nodes of G = (V,E)
and assume that T is hypomatchable. If S ‘and T have p (>1)
common nodes, then at most p-1 critical connected components of
G[v-S] have a node set C such that GI[C-T] admits a perfect

hypomatching.

Proof of Lemma 4.2: Let ﬁ be a near-perfect matching of G[T]:,
leaving one node of S unmatched. Now let C be the node set
qf any critical connected component of G{V-S] such that the nodes
of 'CNT are matched among themselves by the matching ﬁ. 1f
GI[C-T] had a perfect hypomatching, then completing it with the
edges of ﬁ in G[CNT] would proéuce a perfeét hypomatphiné of
G[C], a contradiction to the fact that G[C] is critical. So the
critical éomponents of GIv-S] such that G[C-T] has a perfect
matching must have at least one of their nodes matched with a
node of S 1in the matching ﬁ. There are at-most p-1 such

A :
components since M leaves one node of S unmatched.
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Now we prove the theorem.

Proof of Theoiem 4.1: Consider the sets O, I, and R defined

by (i)-(iii). Let G be the bipartite graph obtained from G[OUI]
by shrinking each connected component of G[0] to a single node
and by remo&ing all the edges of G[I]. If a component of GI[O]
is critical, the corresponding node of G will also be called
critical. As a consequence of statement (vi) of the Gallai-Edmonds
theorem, every maximum matching of G ‘matchés all the nodes of 1I.
Let M be such a maximum matching of G with the property that
the number of critical matched nodes is the laigest_possible among
all maximum matchings of 5..‘

If every critical node of E iévmatched by M, set R(F)
to be the node set of G and O(F) = I(F) = ¢§. Otherwise, let.
the critical unmatched nodes of G be defined as the roots of
the trees of a forest A. These nodes will also be calléd'outer
hodes of A. If some edge e Jjoins an outer node of A to a
node i € I not in A, let m = (i,j) be the edge of M
incident with i. Grow the forest A by addiné to A the edges
e and m and call the nodes i °and ij. inner and outer nodes
of A; respectively. (Note that the node j must be critical,
otherwise by interchanging the edges in and out of M on the
path of A from j to the root, one more critical node could
be matched, contradicting the assUmption about M.) Keep growing
the forest A as described above until every edge incident with

an outer node of A is also incident with an inner node of A.
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Then let I{(F) be the set of inner‘nodes of A, O(F) the
set of nodes of G{(0) contained in outer nodes of A,'and R(F)
the remaining nodes of G. So I{(F) €I, O(F) €0 and R(F) 2R.
‘Note'also that, by construction of_.A, every componént of G[O(F)]
is.zritical and no edge of G joins O(F) to R(F). We will &
show that the partition O(F), I(F), R(F) just constructed is in
faCiﬁthe unigue partition defined by (i')—(iii').v |

%'Before doing this, we exhibit a hypomatching J of> G whiCh

'vleavee._s uncovered nodes, where s is defined to be the number
of conponents of GIO(F)] minus’ the cardinality of i(F). We
define J separately on G{R],‘a and G[0]l. In GI[R]}, take J‘
to be any perfect matching (this is possible by sterement (iii)
of the Gallai-Edmonds theorem). In G, take J  to be identical
to M. Finally, in GI[0], take J to be a hypomatching which
internally covers all the nodes of the noncritical components
incident with no edge of M, and all but one of the nodes of the
remaining-components of Glol. (When such a component conrains a
node u incident with ﬁ, u is the only node of the component
which is not internally covered.) _Slnce M ‘matches every node
of I(F) with a node of O(F), SO does J leav1ng only cs - |
uncovered nodes .in O(F). Every node of R(F) is covered by J,'
sog&e have the announced hypomatching.

In fact, the hypomatching J just construCted isvmaximum:

A consequence of Lemma 4.2 with S = I(F) is that any

hypomatching of G which does not cover all the nodes of I(F)
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or which contéihs a hypomatchable set T € H with at least one
node 1in - i(F), must leave more than s uncovered nodes in - O(F).
By matchihg all.the nodes of I(F) to nodes of O(F) at least s
nodes of O(F) must remain uncovered, and in fact it is possible
to leave exactly s uncovered nodes in G, as shown by the
hypomatching J constructed earlier. This shows that J is a
max1mum hypomatchlng.

This also proves that every maximum hypomatching of G
satisfies (iv'), (v'), and (vi'). Conversely any hypomatching
which satisfies (iv'), (v') and (vif)'leaVee only s uncovered
nodes and therefore is makimum. |

The fact that maximum hypomatchihgs satisfy (iv') and (vi')
implies (ii?) and (iii'). So enly statement (i') remains to be
proved. ‘ConSider the forest A in G. Any critical outer node
5 of A can be left unmatched by some matching H which has
the same cardinality as M and leaves unmatched the same: non-
critical nodes as M. Specifically, if 3j is a critical node
of A matched by M, then construct M from M by interchanging
the edges iniand>eut,ef M on the.paﬁh of A from j to a.rodti
of A. Now the matchlng M can be used instead of M to | N
construct a maximum hypomatchlng J as done earlier. TFurther-

' more, in the critical component of GI[O(F)] left unmatched by ﬁ,

any node can be left uncovered. This proves statement (i') and

completes the proof of Theorem 4.1. o - |

L
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This structural theorem has many consequences, as we shall

see in the next four theorems.

Theorem 4.3: Consider a graph G and two families F; = E(G)lJﬁi

and F2 = E(G) UH, such that the node sets in Hi and H2 are”

hypomatchable. If H, & H,, then the partitions O(F;), I’('Fi)*,-;"5?3*“~
R(Fi), i=1,2, satisfy O(Fz) c O(Fl)’ I(Fé) c I(Fl) [and

therefore R(F,) 2 R(F{) 1.

‘ Proof: The property O(Fz) E‘O(Fl) follows from (i') and the
fact tha£ every hypomatching relative to F, vis'also a hypématching
relative to Fy-

The property I(Fz) < I(Fl) follows from O(Fz)'g O(Fl) and
the fact that I(Fi) is exactly the set of nodes of G adjacent.

to O(F,), i=1,2 (see (ii') and (iii')). . A

The next result generalizesvTheorém-l.é of Tutte [47].

Theorem 4.4: A graph G = (V,E) has a perfect hypomatching if

and only if, for every S €V, the graph G[V-S] contains at most

|Is] critical connected components.

Proof: If G does not have axperfect,hypomafching, then O(F) # @
in Theorem 4.1. Let S = I(F). By Theorem 4.1, the number of
critical components in GIO(F)] is larger than Is] (since a
maximum hypomatching matches each node of S with a node in a

different component of Glo(F)] and still leaves at least one
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component of G[O(F)] unmatched) . By (iii') the critical
 components in G[O(F)] remain critical in GlO(F) UR(F)] = Glv-8].
Conversely, assume that G has a perfect hypomatching J.
Consider any S & V. If no hypomatchable set T € J contains s
a node of S, then every critical component of G[V-S] has tovbe

matched to some node of S by an edge of  J, proving'the theorem.

P
T

Otherwise, |(TNS)| =p > 1 for some T € g, Then by Lemma 4.2
the number of critical components of G[V-S] ‘having a node set C
such that G[C-T] admits a perfect hypomatching is at mosﬁ p-1.
The theorem follows by inductioh‘On‘the nunmber of hypomatchable

sets of J which intersect S. ' - B

Section 2. Maximum Hypomatchings with a Minimum Number of

‘Hypomatchable Sets

The next result genefalizgs a theorem of Urhy [75]) relating
maximum matchings and fractional matchings. Let G = (V,E) be a
graph and let F = EUH where H- is-a family of hypomatchable

sets.

Theorem 4.5: Let J ©F be a maximum hypomatéhing{contéinihgﬂa‘
minimum number of hypomatchable sets. Then the matching obtained
by taking the edges of - J and near-perfectly matching the

hypomatchable sets of J, is a maximum matching.

Our proof of Theorem 4.5 uses the following lemma.
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Lemma 4.6: A noncritical hypomatchable subgraph G[S] of G has
a ‘perfect hypomatching using only one of the hypomatchable sets

in H.

Proof: Let P be é perfect hypomatching of - G[S] contaihing_a“gar
minimum number of hypomatchable graphs from F. Suppose that P
contains more than one such hypomatchable subgraph. The ﬁumber
of Ehese subgfaphs is odd, and hence at least three, since 'G[S]
has “an odd number of vertices. We define. a matching M of G[S]
as follows. M contains all the edges of P and cémprises;
a near4perfect‘métching of each of the hypgmatchable subgraéhs |
in P.

Then every hypomatchable subgraph H of P will contaih
exactly one node v (H) not covered by M, and these afe the
only nodes not covered by M; If we delete from G[S] one
'such,node v(H), the resulting graph has a perfect matching,'v
that is M is not maximum. So by Berge's theorem 1.7 there exists
an aggmenting path relative to M, joining 'V(Hl) to V(Hz) where
H,y and H, are some hypomatchable subg;aphs in P. ‘This |
augmenting path must contain a path D - whose endnodes belOng
to different hypomatchable graphs of P, say -Hi and H‘; and
such that no other node of D belongs to a hypomatchable graph
of. P. Note that the first and last edges of D are not in the
hypomatching P, so D  is an augmenting path for P. By changfﬁg_’

P in the hypomatchable graphs Hi and Hé and by applying'the
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augmentation along D, we can obtain a new perfect hypomatching.

with a smaller number of hypomatchable subgraphs.

Proof of Theorem 4.5: Let O, I, R be the node sets defined in

the Gallai-Edmonds theorem and  O(F), I(F), R(F) those defined

" in Theorem 4.1. Set I-I(F) =L and O-0(F) = Q.

Consider J as defined in Theorem 4.5. By Theorem 4.1 every
node of I(F) is matched by an edge of J to a node of O(F) and

in évery connected component of GIO(F)] all but one of the nodes

are internaliy covered. Only edges are needed in these near-
perfect hypomatchingsﬁsince'the components of GI[O(F)] are
hypomatchable. So the nodes of O(F) U I(F) are only matched

by edges of J.

The nodes of R(F) = RUQUL are internally covered. Since

the nodes of Q are only joined to L in GI[R(F)], the number
of hypomatchable subgraphs needed to internally cover the nodes
bf R(F) is at least equal to the number of components of 0
minus the cardinality of L. 1In fact, the matching M defined
in the proof of Theorem 4.1 shows that no more are needed since
(1) the nodes of R are perfectly matched among themselves,

(2) every node of L is matched to a component of  and

(3) in each compqnent of Q which is not matched to . L; all

the nodés can be internally covered using only one hypomatchable

set by Lemma 4.6. This completes the proof of Theorem 4.5.

A set of nodes S is separable if and only if there exists
a maximum matching which does not use any edge with exactly one

end in S. The next result generalizes a theorem of Balas [81].

2
W

et
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Theorem 4.7: Given G = (V,E) and F = EUH, a maximum matching

is also a maximum hypomatching of G 'if and only if none of the

hypomatchable sets in H is separable.

Proof: The necessity'folloQS‘from:thé observation that, if sbmeﬁ'
hypomatchable set S € H were separable, then a maximum matchiﬁg~
M using no edge in thé’boundary of S would leave one node of S
‘unmatched,kbut-a hypomatching identical to M on GI[V-S] and |
using S would cover one more node of G.

-Coﬁversely, suppose G does not have a maximum hypomatching
using just edges; Consider one wh%ch uses a minimum number of
hypomatchable.  sets of H. By Theorem 4.5 these sets are separable.

This completes the proof. H

Section 3. Hypomatching Matroid

Let G = (V,E) and F = EUH where H is a family of

hypomatchable sets. A node set 5 ¢V is said to be independent

if there exists a-hypomatching J < F, such that S is a subset
of the nodes covered by J. Let M be the‘family of all indepen—
dent sets. The system (V,M) is an independence system, i.e.,

S €M and T <SS = T € M. When a hypomatching covers all the

nodes of a set S, we say that it covers S.

Theorem 4.8: The independence system (V,M) is a matroid.

Proof: Consider GIO(F) UI(F)]. 1In this graph, we say that a

node set X € M' if and only if X can be covered by a matching



