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The Prüfer code of a tree

The Construction

Given: a tree T on vertex set {v1, . . . , vn}, with v1 < v2 . . . < vn

Repeat until only one edge left:

I Delete leaf with lowest label (result is smaller tree)
I Record the label of the deleted leaf’s unique neighbor

Result is a string of length n − 2 on alphabet {v1, . . . , vn}, the Prüfer
code of T

Some Facts

FACT 1 (fairly easy): Once first leaf (say vi ) is deleted, and first label
(say vj) recorded, rest of Prüfer code is exactly the Prüfer code of
T − vi on vertex set {v1, . . . , vn} \ {vi}
FACT 2 (follows by induction from FACT 1): Each vertex vi appears
d(vi )− 1 times in the Prüfer code
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Different trees have different Prüfer codes

Proof by Induction

Case n = 3 easily verified

For n ≥ 4: given trees T1, T2 on {v1, . . . , vn}
I IF lowest-labeled leaves are different, then the Prüfer codes are

different (by FACT 2)
I IF lowest-labeled leaves the same, but labels of unique neighbours

different, THEN the Prüfer codes are different (by construction)
I IF lowest-labeled leaves the same, labels of unique neighbours the

same, THEN step one of Prüfer code constructions agree; but resulting
smaller trees are different, so have different Prüfer codes (by induction)

Map from Trees to Prüfer Codes is Injective
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Every string is the Prüfer code of some tree

Proof by Induction

Case n = 3 easily verified

For n ≥ 4: given string S = (σ1, . . . , σn−2) on alphabet {v1, . . . , vn}
I Find the lowest labeled vertex that does not appear in the string, vi say
I Form S ′ = (σ2, . . . , σn−2) by deleting first entry from S
I S ′ is a string of length n − 3 on alphabet {v1, . . . , vn} \ vi , so (by

induction) there is a tree T ′ on {v1, . . . , vn} \ vi with S ′ as its Prüfer
code

I Form T from T ′ by adding vertex vi , joined only to σ1
I Prüfer code of T starts σ1 and (by FACT 1) continues with S ′, so is S

Map from Trees to Prüfer Codes is Surjective, so BIJECTIVE

Cayley’s Formula:

There are exactly nn−2 labelled trees on n vertices
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Math 40210 (Fall 2015) Prüfer and Cayley November 3, 2015 4 / 5



Every string is the Prüfer code of some tree
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I Prüfer code of T starts σ1 and (by FACT 1) continues with S ′, so is S
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The tree of a Prüfer code

Unraveling the Induction

Given: a string S of length n − 2 on alphabet {v1, . . . , vn}, with
v1 < v2 . . . < vn

Repeat until S is empty and alphabet has size 2:

I Identify the lowest letter in the alphabet that does not appear in the
string, vi say, and the first element of the string, vj say

I Add vi to the graph being constructed (if it isn’t already there), and
join it to vj (adding vj to the graph first if necessary)

I Remove vi from the alphabet, and remove the first term from the string

Join the two remaining vertices in the alphabet

Result is a tree on vertex set {v1, . . . , vn} with Prüfer code S
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