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Introduction and basic
concepts

In this introductory chapter, we first give a sample of the problems
and questions to be treated in the book. Then we explain some basic
notions and techniques, mostly fundamental and simple ones com-
mon to most branches of mathematics. We assume that the reader
is already familiar with many of them or has at least heard of them.
Thus, we will mostly review the notions, give precise formal defini-
tions, and point out various ways of capturing the meaning of these
concepts by diagrams and pictures. A reader preferring a more de-
tailed and thorough introduction to these concepts may refer to the
book by Stewart and Tall [8], for instance.

Section 1.1 presents several problems to be studied later on in
the book and some thoughts on the importance of mathematical
problems and similar things.

Section 1.2 is a review of notation. It introduces some common
symbols for operations with sets and numbers, such as U for set
union or ), for summation of a sequence of numbers. Most of the
symbols are standard, and the reader should be able to go through
this section fairly quickly, relying on the index to refresh memory
later on.

In Section 1.3, we discuss mathematical induction, an important
method for proving statements in discrete mathematics. Here it is
sufficient to understand the basic principle; there will be many op-
portunities to see and practice various applications of induction in
subsequent chapters. We will also say few words about mathematical
proofs in general.

Section 1.4 recalls the notion of a function and defines special
types of functions: injective functions, surjective functions, and bi-
jections. These terms will be used quite frequently in the text.
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Sections 1.5 through 1.7 deal with relations and with special types
of relations, namely equivalences and orderings. These again belong
to the truly essential phrases in the vocabulary of mathematics. How-
ever, since they are simple general concepts which we have not yet
fleshed out by many interesting particular examples, some readers
may find them “too abstract”—a polite phrase for “boring”—on the
first reading. Such readers may want to skim through these sections
and return to them later. For instance, ordered sets (Section 1.7) are
only needed for a full understanding of Section 6.2 and for some ex-
ercises in this book, but they certainly should be a part of any deeper
mathematical education. (When learning a new language, say, it is
not very thrilling to memorize the grammatical forms of the verb “to
be”, but after some time you may find it difficult to speak fluently
knowing only “I am” and “he is”. Well, this is what we have to do in
this chapter: we must review some of the language of mathematics.)

1.1 An assortment of problems

Let us look at some of the problems we are going to consider in this
book. Here we are going to present them in a popular form, so you
may well know some of them as puzzles in recreational mathematics.
A well-known problem concerns three houses and three wells.
Once upon a time, three fair white houses stood in a meadow in
a distant kingdom, and there were three wells nearby, their water
clean and fresh. All was well, until one day a seed of hatred was sown,
fights started among the three households and would not cease, and
no reconciliation was in sight. The people in each house insisted that
they have three pathways leading from their gate to each well, three
pathways which should not cross any of their neighbors’ paths. Can
they ever find paths that will satisfy everyone and let peace set in?
A solution would be possible if there were only two wells:
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But with three wells, there is no hope {unless these proud men and
women would be willing to use tunnels or bridges, which sounds quite
unlikely). Can you state this as a mathematical problem and prove
that it has no solution?

Essentially, this is a problem about drawing in the plane. Many
other problems to be studied in this book can also be formulated in
terms of drawing. Can one draw the following picture without lifting
the pencil from the paper, drawing each line only once?

And what about this one?

If not, why not? Is there a simple way to distinguish pictures that
can be drawn in this way from those that cannot? (And, can you
find nice accompanying stories to this problem and the ones below?)

For the subsequent set of problems, draw 8 dots in the plane in
such a way that no 3 of them lie on a common line. (The number 8 is
quite arbitrary; in general we could consider n such dots.) Connect
some pairs of these points by segments, obtaining a picture like the
following:

What is the maximum number of segments that can be drawn so that
no triangle with vertices at the dots arises? The following picture has
13 segments:
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Can you draw more segments for 8 dots with no triangle? Probably
you can. But can you prove your result is already the best possible?

Next, suppose that we want to draw some segments so that any
two dots can be connected by a path consisting of the drawn seg-
ments. The path is not allowed to make turns at the crossings of the
segments, only at the dots, so the left picture below gives a valid
solution while the right one doesn’t:

What is the minimum number of segments we must draw? How many
different solutions with this minimum number of segments are there?
And how can we find a solution for which the total length of all the
drawn segments is the smallest possible?

All these problems are popular versions of simple basic questions
in graph theory, which is one of main subjects of this book (treated
in Chapters 3, 4, and 5). For the above problems with 8 dots in the
plane, it is easily seen that the way of drawing the dots is immaterial;
all that matters is which pairs of dots are connected by a segment
and which are not. Most branches of graph theory deal with problems
which can be pictured geometrically but in which geometry doesn’t
really play a role. On the other hand, the problem about wells and
houses belongs to a “truly” geometric part of graph theory. It is
important that the paths should be built in the plane. If the houses
and wells were on a tiny planet shaped like a tire-tube then the
required paths would exist:
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Another important theme of this book is combinatorial counting,
treated in Chapters 2 and 10. The problems there usually begin with
“How many ways are there...” or something similar. One question
of this type was mentioned in our “8 dots” series (and it is a nice
question—the whole of Chapter 7 is devoted to it). The reader has
probably seen lots of such problems; let us add one more. How many
ways are there to divide n identical coins into groups? For instance,
4 coins can be divided in 4 ways: 1 +1 4+ 1+ 1 (4 groups of 1 coin
each), 1 +1+4+2, 1 + 3, and 4 (all in one group, which is not really
a “division” in the sense most people understand it, but what do
you expect from mathematicians!). For this problem, we will not
be able to give an exact formula; such a formula does exist but its
derivation is far beyond the scope of this book. Nonetheless, we will
at least derive estimates for the number in question. This number is
a function of n, and the estimates will allow us to say “how fast” this
function grows, compared to simple and well-known functions like n?
or 2. Such a comparison of complicated functions to simple ones is
the subject of the so-called asymptotic analysis, which will also be
touched on below and which is important in many areas, for instance
for comparing several algorithms which solve the same problem.

Although the problems presented may look like puzzles, each of
them can be regarded as the starting point of a theory with numerous
applications, both in mathematics and in practice.

In fact, distinguishing a good mathematical problem from a bad one
is one of the most difficult things in mathematics, and the “quality” of

a problem can often be judged only in hindsight, after the problem has
been solved and the consequences of its solution mapped. What is a good
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problem? It is one whose solution will lead to new insights, methods,
or even a whole new fruitful theory. Many problems in recreational
mathematics are not good in this sense, although their solution may
require considerable skill or ingenuity.

A pragmatically minded reader might also object that the problems
shown above are useless from a practical point of view. Why take a
whole course about them, a skeptic might say, when I have to learn so
many practically important things to prepare for my future career? Ob-
jections of this sort are quite frequent and cannot be simply dismissed,
if only because the people controlling the funding are often pragmati-
cally minded.

One possible answer is that for each of these puzzle-like problems,
we can exhibit an eminently practical problem that is its cousin. For
instance, the postal delivery service in a district must deliver mail to all
houses, which means passing through each street at least once. What is
the shortest route to take? Can it be found in a reasonable time using a
supercomputer? Or with a personal computer? In order to understand
this postal delivery problem, one should be familiar with simple results
about drawing pictures without lifting a pencil from the paper.

Or, given some placement of components of a circuit on a board, is
it possible to interconnect them in such a way that the connections go
along the surface of the board and do not cross each other? What is
the most economical placement of components and connections (using
the smallest area of the board, say)? Such questions are typical of VLSI
design (designing computer chips and similar things). Having learned
about the three-wells problem and its relatives (or, scientifically speak-
ing, about planar graphs) it is much easier to grasp ways of designing
the layout of integrated circuits.

These “practical” problems also belong to graph theory, or to a
mixture of graph theory and the design of eflicient algorithms. This
book doesn’t provide a solution to them, but in order to comprehend
a solution in some other book, or even to come up with a new good
solution, one should master the basic concepts first.

We would also like to stress that the most valuable mathematical
research was very seldom directly motivated by practical goals. Some
great mathematical ideas of the past have only found applications quite
recently. Mathematics does have impressive applications (it might be
easier to list those human activities where it is not applied than those
where it is), but anyone trying to restrict mathematical research to the
directly applicable parts would be left with a lifeless fragment with most
of the creative power gone.

Exercises are unnecessary in this section. Can you solve some of
the problems sketched here, or perhaps all of them? Even if you try
and get only partial results or fail completely, it will still be of great
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help in reading further.

So what ¢s this discrete mathematics they’re talking about, the
reader may (rightfully) ask? The adjective “discrete” here is an oppo-
site of “continuous”. Roughly speaking, objects in discrete mathematics,
such as the natural numbers, are clearly separated and distinguishable
from each other and we can perceive them individually (like trees in
a forest which surrounds us). In contrast, for a typical “continuous”
object, such as the set of all points on a line segment, the points are
indiscernible (like the trees in a forest seen from a high-flying airplane).
We can focus our attention on some individual points of the segment
and see them clearly, but there are always many more points nearby
that remain indistinguishable and form the totality of the segment.

According to this explanation, such parts of mathematics as algebra
or set theory might also be considered “discrete”. But in the common
usage of the term, discrete mathematics is most often understood as
mathematics dealing with finite sets. In many current university curric-
ula, a course on discrete mathematics has quite a wide range, including
some combinatorics, counting, graph theory, but also elements of math-
ematical logic, some set theory, basics from the theory of computing
(finite automata, formal languages, elements of computer architecture),
and other things. We prefer a more narrowly focussed scope, so perhaps
a more descriptive title for this book would be “Invitation to combina-
torics and graph theory”, covering most of the contents. But the name
of the course we have been teaching happened to be “Discrete mathe-
matics” and we decided to stick to it.

1.2 Numbers and sets: notation

Number domains. For the set of all natural numbers, i.e. the set
{1,2,3,...}, we reserve the symbol N, The letters n,m, k, i, 7, p and
possibly some others usually represent natural numbers.

Using the natural numbers, we may construct other well-known
number domains: the integers, the rationals, and the reals (and also
the complex numbers, but we will seldom hear about them here).

The integer numbers or simply integers arise from the natural
numbers by adding the negative integer numbers and 0. The set of
all integers is denoted by Z.

The rational numbers are fractions with integer numerator and
denominator. This set is usually denoted by Q but we need not
introduce any symbol for it in this book. The construction of the
set R of all real numbers is more complicated, and it is treated in
introductory courses of mathematical analysis. Famous examples of
real numbers which are not rational are numbers such as v/2, some
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important constants like 7, and generally numbers whose decimal
notation has an infinite and aperiodic sequence of digits following
the decimal point, such as 0.12112111211112. ...

The closed interval from a to b on the real axis is denoted by [a, b],
and the open interval with the same endpoints is written as (a, b).

Operations with numbers. Most symbols for operations with
numbers, such as + for addition, ,/~ for square root, and so on,
are generally well known. We write division either as a fraction, or
sometimes with a slash, i.e. either in the form ¢ or as a/b.

We introduce two less common functions. For a real number z,
the symbol |z| is called! the lower integer part of = (or the floor
function of z), and its value is the largest integer smaller than or
equal to z. Similarly [z], the upper integer part of x (or the ceiling
function), denotes the smallest integer greater than or equal to z. For
instance, [0.999] =0, [—0.1] = -1, [0.01] =1, [¥] =6, V2] = L.

Later on, we will introduce some more operations and functions
for numbers, which have an important combinatorial meaning and
which we will investigate in more detail. Examples are n! and (3).

Sums and products. If ay,as,...,a, are real numbers, their sum
ai + as + - -+ + a, can also be written using the summation sign )_,

in the form .
S
i=1

This notation somewhat resembles the FOR loop in many program-
ming languages. Here are a few more examples:

~1_ 1, 1.1 1
2 460810
sL_1,1,1,1 2
=2 27 27 25 27 ]

S G+ =D (G+D+GE+2)+- -+ (i +n))
1=17=1 =1
=§nj(nz‘+(1+2+-~+n))

1=1

'In the older literature, one often finds [x] used for the same function.
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=n<fi)+n(1+z+---+n)

i=1

=2n(l+2+---+n).

Similarly as sums are written using ¥ (which is the capital Greek
letter “sigma”, from the word sum), products may be expressed using
the sign [] (capital Greek “pi”). For example,

7 .
fiei oz mtl_ .,
el 1 2 n

Sets. Another basic notion we will use is that of a set. Most likely
you have already encountered sets in high school (and, thanks to
the permanent modernization of the school system, maybe even in
elementary school). Sets are usually denoted by capital letters:

AB,....X,Y,....M,N,...

and so on, and the elements of sets are mostly denoted by lowercase
letters: a,b,..., z,y,..., m,n,....

The fact that a set X contains an element z is traditionally writ-
ten using the symbol €, which is a somewhat stylized Greek letter
e—*“epsilon”. The notation z € X is read “x is an element of X7,
“z belongs to X7, “z is in X”, and so on.

Let us remark that the concept of a set and the symbol € are so-
called primitive notions. This means that we do not define them using
other “simpler” notions {unlike the rational numbers, say, which are
defined in terms of the integers). To understand the concept of a set,
we rely on intuition (supported by numerous examples) in this book. It
turned out at the beginning of the 20th century that if such an intuitive
notion of a set is used completely freely, various strange situations, the
so-called paradoxes, may arise.? In order to exclude such paradoxes,
the theory of sets has been rebuilt on a formalized basis, where all
properties of sets are derived formally from several precisely formulated
basic assumptions (axioms). For the sets used in this text, which are
mostly finite, we need not be afraid of any paradoxes, and so we can
keep relying on the intuitive concept of a set.

*The most famous one is probably Russell’s paradox. One possible formulation
is about an army barber. An army barber is supposed to shave all soldiers who
do not shave themselves—should he, as one of the soldiers, shave himself or not?
This paradox can be translated into a rigorous mathematical language and it
implies the inconsistency of notions like “the set of all sets”.
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The set with elements 1, 37, and 55 is written as {1, 37, 55}. This,
and also the notations {37,1,55} and {1, 37,1, 55,55,1}, express the
same thing. Thus, a multiple occurrence of the same element is ig-
nored: the same element cannot be contained twice in the same set!
Three dots (an ellipsis) in {2,4,6,8,...} mean “and further simi-
larly, using the same pattern”, i.e. this notation means the set of all
even natural numbers. The appropriate pattern should be apparent
at first sight. For instance, {2',22,2% ...} is easily understandable
as the set of all powers of 2, while {2,4,8,...} may be less clear.

Ordered and unordered pairs. The symbol {z,y} denotes the
set containing exactly the elements z and y, as we already know. In
this particular case, the set {z,y} is sometimes called the unordered
pair of z and y. Let us recall that {z,y} is the same as {y,z}, and
if z =y, then {z,y} is a 1-element set.

We also introduce the notation (z,y) for the ordered pair of
z and y. For this construct, the order of the elements x and y is
important. We thus assume the following:

(x,y) = (2,t) ifand only if x = z and y = ¢£. (1.1)

Interestingly, the ordered pair can be defined using the notion of
unordered pair, as follows:

(z,9) = {{z}, {z,y}}.

Verify that ordered pairs defined in this way satisfy the condition {1.1}.
However, in this text it will be simpler for us to consider {z, y) as another
primitive notion.

Similarly, we write (z1,x9,. .., Z,) for the ordered n-tuple consist-
ing of elements x1,x9,...,2z,. A particular case of this convention is
writing a point in the plane with coordinates x and y as (z,y), and
similarly for points or vectors in higher-dimensional spaces.

Defining sets. More complicated and interesting sefs are usually
created from known sets using some rule. The sets of all squares of
natural numbers can be written

{i%: i € N}
or also

n € N: there exists k € N such that k% = n
{
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or using the symbol 3 for “there exists”:
{n € N: 3k € N (k* = n)}.

Another example is a formal definition of the open interval (a,b)
introduced earlier:

(a,b) ={z € R: a < z < b}.

Note that the symbol {(a,b) may mean either the open interval, or
also the ordered pair consisting of a and b. These two meanings must
(and usually can) be distinguished by the context. This is not at all
uncommon in mathematics: many symbols, like parentheses in this case,
are used in several different ways. For instance, (a,b) also frequently
denotes the greatest common divisor of natural numbers a and b (but
we avoid this meaning in this book).

With modern typesetting systems, it is no problem to use any kind
of alphabets and symbols including hieroglyphs, so one might think of
changing the notation in such cases. But mathematics tends to be rather
conservative and the existing literature is vast, and so such notational
inventions are usually short-lived.

The empty set. An important set is the one containing no element
at all. There is just one such set, and it is customarily denoted by @
and called the empty set. Let us remark that the empty set can be
an element of another set. For example, {0} is the set containing the
empty set as an element, and so it is not the same set as 0!

Set systems. In mathematics, we often deal with sets whose ele-
ments are other sets. For instance, we can define the set

M = {{1,2},{1,2,3},{2,3,4}, {4}},

whose elements are 4 sets of natural numbers, more exactly 4 subsets
of the set {1,2,3,4}. One meets such sets in discrete mathematics
quite frequently. To avoid saying a “set of sets”, we use the notions
set system or family of sets. We could thus say that M is a system of
sets on the set {1,2,3,4}. Such set systems are sometimes denoted
by calligraphic capital letters, such as M.

However, it is clear that such a distinction using various types of let-

ters cannot always be quite consistent—what do we do if we encounter
a set of sets of sets?
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The system consisting of all possible subsets of some set X is
denoted by the symbol® 2% and called the power set of X. Another
notation for the power set common in the literature is P(X).

Set size. A large part of this book is devoted to counting various
kinds of objects. Hence a very important notation for us is that for
the number of elements of a finite set X. We write it using the same
symbol as for the absolute value of a number: | X|.

A more general notation for sums and products. Sometimes
it is advantageous to use a more general way to write down a sum
than using the pattern ) . a;. For instance,

Y

i€{1,3,5,7}

means the sum 12 + 3% + 52 + 72. Under the summation sign, we
first write the summation variable and then we write out the set of
values over which the summation is to be performed. We have a lot
of freedom in denoting this set of values. Sometimes it can in part
be described by words, as in the following:

Y i=24345+T.

i:1<i<10
i a prime
Should the set of values for the summation be empty, we define the
value of the sum as 0, no matter what appears after the summation
sign. For example:

0

Y (i+10) =0, > it=o.

=1 i€{2,4,6,8}
z odd
A similar “set notation” can also be employed for products. An
empty product, such as [];,0<;<1 2/, is always defined as 1 (not 0
as for an empty sum).

Operations with sets. Using the primitive notion of set member-
ship, €, we can define further relations among sets and operations
with sets. For example, two sets X and Y are considered identical
(equal) if they have the same elements. In this case we write X =Y.

3This notation may look strange, but it is traditional and has its reasons.
For instance, it helps to remember that an n-element set has 2™ subsets; see
Proposition 2.1.2,



1.2 Numbers and sets: notation 13

Other relations among sets can be defined similarly. If X, Y are
sets, X C Y (in words: “X is a subset of Y”) means that each
element of X also belongs to Y.

The notation X C Y sometimes denotes that X is a subset of ¥
but X is not equal to Y. This distinction between C and C is not quite
unified in the literature, and some authors may use C synonymously
with our C.

The notations X UY (the union of X and ¥) and X NY (the
intersection of X and Y') can be defined as follows:

XUY ={znzeXorzeY}, XnY={znzeXandzeY}

If we want to express that the sets X and Y in the considered union
are disjoint, we write the union as XUY. The expression X \Y is the
difference of the sets X and Y, i.e. the set of all elements belonging
to X but not to Y.

Enlarged symbols U and N may be used in the same way as the
symbols > and []. So, if X;, Xo,..., X, are sets, their union can be
written

U X (1.2)

and similarly for intersection.

Note that this notation is possible (or correct) only because the
operations of union and intersection are associative; that is, we have

XN¥nZ)=(XnY)nZz

and
Xuuz)=(Xuvuz

for any triple X, Y, Z of sets. As a consequence, the way of “parenthe-
sizing” the union of any 3, and generally of any n, sets is immaterial,
and the common value can be denoted as in (1.2). The operations U
and N are also commutative, in other words they satisfy the relations

XNY=YnX,

XuY=YUuX.

The commutativity and the associativity of the operations U and N are
complemented by their distributivity. For any sets X,Y, Z we have

XNYUZ) =(XnY)Uu(Xn2),
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Xul¥YnzZ)y=(XuyY)n(Xu2Zz).

The validity of these relations can be checked by proving that any
element belongs to the left-hand side if and only if it belongs to the right-
hand side. The relations can be generalized for an arbitrary number of
sets as well. For instance,

an (U) = an
AU (éx) =Q(AUX@-).

Such relations can be proved by induction; see Section 1.3 below. Other
popular relations for sets are

X\(AUB) = (X\A)N(X\B) and X\(ANB)=(X\A)U(X\B)

(the so-called de Morgan laws), and their generalizations

ks

X\(QA,-)=H(X\A£)

=1

X\(é&):Q(K\M

The last operation to be introduced here is the Cartesian product,
denoted by X x Y, of two sets X and Y. The Cartesian product of X
and Y is the set of all ordered pairs of the form (z,y), where z € X
and y € Y. Written formally,

XxY={(zy):zecX,ycY}.

Note that generally X xY is not the same as Y x X, i.e. the operation
is not commutative.

The name “Cartesian product” comes from a geometric interpreta-
tion. If, for instance, X =Y = R, then X x Y can be interpreted as all
points of the plane, since a point in‘the plane is uniquely described by an
ordered pair of real numbers, namely its Cartesian coordinates*—the
z-coordinate and the y-coordinate (Fig. 1.1(a})). This geometric view
can also be useful for Cartesian products of sets whose elements are not
numbers (Fig. 1.1(b)).

“These are named after their inventor, René Descartes.
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Y _‘XxY

Q-

(a) (b)

Fig. 1.1 Ilustrating the Cartesian product: (a) R x R; (b) X x Y for
finite sets X, Y.

The Cartesian product of a set X with itself, i.e. X x X, may

also be denoted by X?2.

Exercises

1.

Which of the following formulas are correct?
() (5] = 5] +n,

(b) (2] = [5] + 151,

(c¢) [(lz])] = [z] (for a real number z),

(d) [{lz] + D] = =] + lw).

. *Prove that the equality |/z| = [1/]2]} holds for any positive real

number z.
(a) Define a “parenthesizing” of a union of n sets |J._; X;. Similarly,
define a “parenthesizing” of a sum of n numbers 3., a;.

(b) Prove that any two parenthesizings of the intersection (;_; X;
yield the same result.

(c¢) How many ways are there to parenthesize the union of 4 sets
AUBUCUD?

(d) **Try to derive a formula or some other way to count the number
of ways to parenthesize the union of n sets | J_; X;.

4. True or false? If 2X = 2Y holds for two sets X and Y, then X = Y.

. Is a “cancellation” possible for the Cartesian product? That is, if

X xY = X x Z holds for some sets X,Y, Z, does it necessarily fol-
low that Y = Z7

Prove that for any two sets A, B we have

(A\B)U(B\ A) = (AUB)\ (AN B).
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7. *Consider the numbers 1,2,...,1000. Show that among any 501 of
them, two numbers exist such that one divides the other one.

8. In this problem, you can test your ability to discover simple but “hid-
den” solutions. Divide the following figure into 7 parts, all of them con-
gruent (they only differ by translation, rotation, and possibly by a mir-
ror reflection). All the bounding segments in the figure have length 1,
and the angles are 90, 120, and 150 degrees.

N
_k.

1.3 Mathematical induction and other proofs

Let us imagine that we want to calculate, say, the sum 1 +2 + 22 +
23 + ... 42" = 3 /2 (and that we can’t remember a formula
for the sum of a geometric progression). We suspect that one can
express this sum by a nice general formula valid for all the n. By
calculating numerical values for several small values of n, we can
guess that the desired formula will most likely be 2%+ — 1. But even
if we verify this for a million specific values of n with a computer, this
is still no proof. The million-and-first number might, in principle, be
a counterexample. The correctness of the guessed formula for all n
can be proved by so-called mathematical induction. In our case, we
can proceed as follows:

1. The formula 3% ,2° = 2%+1 — 1 holds for n = 1, as one can
check directly.

2. Let us suppose that the formula holds for some value n = ng.
We prove that it also holds for n = ng + 1. Indeed, we have

no+1 o
do 2t= (ZT) + 2notl,
i=0 =0

The sum in parentheses equals 270! —1 by our assumption (the
validity for n = ng). Hence

ng+1
S 2 =roth g ettt = . gnetl = gnet2
1=0

This is the required formula for n = ng + 1.
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This establishes the validity of the formula for an arbitrary n: by
step 1, the formula is true for n = 1, by step 2 we may thus infer
it is also true for n = 2 (using step 2 with ng = 1}, then, again by
step 2, the formula holds for n = 3. .., and in this way we can reach
any natural number. Note that this argument only works because
the value of ng in step 2 was quite arbitrary. We have made the
step from ng to ng+ 1, where any natural number could equally well
appear as ng.

Step 2 in this type of proof is called the inductive step. The as-
sumption that the statement being proved is already valid for some
value n = ng is called the inductive hypothesis.

One possible general formulation of the principle of mathematical
induction is the following:

1.3.1 Proposition. Let X be a set of natural numbers with the
following properties:

(i) The number 1 belongs to X.

(ii) If some natural number n is an element of X, then the number
n -+ 1 belongs to X as well.

Then X is the set of all natural numbers (X = N).

In applications of this scheme, X would be the set of all numbers
n such that the statement being proved, S(n), is valid for n.

The scheme of a proof by mathematical induction has many vari-
ations. For instance, if we need to prove some statement for alln > 2,
the first step of the proof will be to check the validity of the state-
ment for n = 2. As an inductive hypothesis, we can sometimes use
the validity of the statement being proved not only for n = ng, but
for all n < np, and so on; these modifications are best mastered by
examples.

Mathematical induction can either be regarded as a basic property of
natural numbers (an axiom, i.e. something we take for granted without

a proof), or be derived from the following other basic property {axiom):

Any nonempty subset of natural numbers possesses a smallest element.

This is expressed by saying that the usual ordering of natural numbers

by magnitude is a well-ordering. In fact, the principle of mathematical

induction and the well-ordering property are equivalent to each other,®

and either one can be taken as a basic axiom for building the theory of
natural numbers.

® Assuming that each natural number n > 1 has a unique predecessor n — 1.
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Proof of Proposition 1.3.1 from the well-ordering property.
For contradiction, let us assume that a set X satisfies both (i) and (ii),
but it doesn’t contain all natural numbers. Among all natural numbers
n not lying in X, let us choose the smallest one and denote it by ng.
By condition (i) we know that ng > 1, and since ng was the smallest
possible, the number ng — 1 is an element of X. However, using (ii) we
get that ng is an element of X, which is a contradiction. 0O

Let us remark that this type of argument (saying “Let ng be the
smallest number violating the statement we want to prove” and deriv-
ing a contradiction, namely that a yet smaller violating number must
exist) sometimes replaces mathematical induction. Both ways, this one
and induction, essentially do the same thing, and it depends on the
circumstances or personal preferences which one is actually used.

We will use mathematical induction quite often. It is one of our

basic proof methods, and the reader can thus find many examples
and exercises on induction in subsequent chapters.

Mathematical proofs and not-quite proofs. Mathematical
proof is an amazing invention. It allows one to establish the truth of
a statement beyond any reasonable doubt, even when the statement
deals with a situation so complicated that its truth is inaccessible to
direct evidence. Hardly anyone can see directly that no two natural
numbers m,n exist such that 7 = v2 and yet we can trust this
fact completely, because it can be proved by a chain of simple logical
steps.

~ Students often don’t like proofs, even students of mathematics.
One reason might be that they have never experienced satisfaction
from understanding an elegant and clever proof or from making a
nice proof by themselves. One of our main goals is to help the reader
to acquire the skill of rigorously proving simple mathematical state-
ments.

A possible objection is that most students will never need such
proofs in their future jobs. We believe that learning how to prove math-
ematical theorems helps to develop useful habits in thinking, such as
working with clear and precise notions, exactly formulating thoughts
and statements, and not overlooking less obvious possibilities. For in-
stance, such habits are invaluable for writing software that doesn’t crash
every time the circumstances become slightly non-standard.

The art of finding and writing proofs is mostly taught by exam-
ples,® by showing many (hopefully) correct and “good” proofs to the

SWe will not even try to say what a proof is and how to do one!



1.3 Mathematical induction and other proofs 19

student and by pointing out errors in the student’s own proofs. The
latter “negative” examples are very important, and since a book is
a one-way communication device, we decided to include also a few
negative examples in this book, i.e. students’ attempts at proofs with
mistakes which are, according to our experience, typical. These in-
tentionally wrong proofs are presented in a special font like this. In
the rest of this section, we discuss some common sources of errors.
(We hasten to add that types of errors in proofs are as numerous as
grains of sand, and by no means do we want to attempt any classi-
fication.)

One quite frequent situation is where the student doesn’t under-
stand the problem correctly. There may be subtleties in the problem’s
formulation which are easy to overlock, and sometimes a misunder-
standing isn’t the student’s fault at all, since the author of the prob-
lem might very well have failed to see some double meaning. The only
defense against this kind of misunderstanding is to pay the utmost
attention to reading and understanding a problem before trying to
solve it. Do a preliminary check: does the problem make sense in the
way you understand it? Does it have a suspiciously trivial solution?
Could there be another meaning?

With the current abundance of calculators and computers, errors are
sometimes caused by the uncritical use of such equipment. Asked how
many zeros does the decimal notation of the number 50! = 50-49-48-. . .-1
end with, a student answered 60, because a pocket calculator with an
8-digit display shows that 50! = 3.04140-10%%. Well, a more sophisticated
calculator or computer programmed to calculate with integers with ar-

bitrarily many digits would solve this problem correctly and calculate
that

501=30414093201713378043612608166064768844377641568960512000000000000

with 12 trailing zeros. Several software systems can even routinely solve
such problems as finding a formula for the sum 1%2.21+22.224.32.2% ... .+
n22", or for the number of binary trees on n vertices (see Section 10.4).
But even programmers of such systems can make mistakes and so it’s
better to double-check such results. Moreover, the capabilities of these
systems are very limited; artificial intelligence researchers will have to
make enormous progress before they can produce computers that can
discover and prove a formula for the number of trailing zeros of n!, or
solve a significant proportion of the exercises in this book, say.
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Next, we consider the situation where a proof has been written
down but it has a flaw, although its author believes it to be satisfac-
tory.

In principle, proofs can be written down in such detail and in such
a formal manner that they can be checked automatically by a com-
puter. If such a completely detailed and formalized proof is wrong,
some step has to be clearly false, but the catch is that formalizing
proofs completely is very laborious and impractical. All textbook
proofs and problem solutions are presented somewhat informally.

While some informality may be necessary for a reasonable pre-
sentation of a proof, it may also help to hide errors. Nevertheless,
a good rule for writing and checking proofs is that every statement
in a correct proof should be literally true. Errors can often be de-
tected by isolating a specific false statement in the proof, a mistake
in calculation, or a statement that makes no sense (“Let 1, £5 be two
arbitrary lines in the 3-dimensional space, and let p be a plane contain-
ing both of them...” etc.). Once detected and brought out into the
light, such errors become obvious to (almost) everyone. Still, they
are frequent. If, while trying to come up with a proof, one discovers
an idea seemingly leading to a solution and shouts “This must be
ITY | caution is usually swept aside and one is willing to write down
the most blatant untruths. (Unfortunately, the first idea that comes
to mind is often nonsense, rather than “it”, at least as far as the
authors’ own experience with problem solving goes.)

A particularly frequent mistake, common perhaps to all mathe-
maticians of the world, is a case omission. The proof works for some
objects it should deal with, but it fails in some cases the author over-
looked. Such a case analysis is mostly problem specific, but one keeps
encountering variations on favorite themes. Dividing an equation by
x — y is only allowed for z # y, and the z = y case must be treated
separately. An intersection of two lines in the plane can only be used
in a proof if the lines are not parallel. Deducing a? > b2 from a > b
may be invalid if we know nothing about the sign of a and b, and so
on and so on.

Many proofs created by beginners are wrong because of a confused
application of theorems. Something seems to follow from a theorem
presented in class or in a textbook, say, but in reality the theorem
says something slightly different, or some of its assumptions don’t
hold. Since we have covered no theorems worth mentioning so far, let
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us give an artificial geometric example: “Since ABC is an isosceles
triangle with the sides adjacent to A having equal length, we have
|AB|? + |AC|? = |BC|? by the theorem of Pythagoras.” Well, wasn’t
there something about a right angle in Pythagoras’ theorem?

A rich source of errors and misunderstandings is relying on un-
proved statements.

Many proofs, including correct and even textbook ones, contain un-
proved statements intentionally, marked by clauses like “obviously...”.
In an honest proof, the meaning of such clauses should ideally be “I,
the author of this proof, can see how to prove this rigorously, and since
I consider this simple enough, 1 trust that you, my reader, can also fill
in all the details without too much effort”. Of course, in many mathe-
matical papers, the reader’s impression about the author’s thinking is
more in the spirit of “I can see it somehow since I’ve been working on
this problem for years, and if you can’t it’s your problem”. Hence omit-
ting parts of proofs that are “clear” is a highly delicate social task, and
one should always be very careful with it. Also, students shouldn’t be
surprised if their teacher insists that such an “obvious” part be proved
in detail. After all, what would be a better hiding place for errors in a
proof than in the parts that are missing?

A more serious problem concerns parts of a proof that are omitted
unconsciously. Most often, the statement whose proof is missing is
not even formulated explicitly.” For a teacher, it may be a very chal-
lenging task to convince the proof’s author that something is wrong
with the proof, especially when the unproved statement is actually
true.

One particular type of incomplete proof, fairly typical of students’
proofs in discrete mathematics, could be labeled as mistaking the par-
ticular for the general. To give an example, let us consider the following
Mathematical Olympiad problem:

1.3.2 Problem. Let n > 1 be an integer. Let M be a set of closed

intervals. Suppose that the endpoints w,v of each interval [u,v] € M

are natural numbers satisfying 1 < v < v < n, and, moreover, for any

two distinct intervals I, I' € M, one of the following possibilities occurs:

INI'=0,or I CI',orI' C I (ie. two intervals must not partially
overlap). Prove that |[M| < n — 1.

An insufficient proof attempt. In order to construct an M as large
as possible, we first insert as many unit-length intervals as possible, as in

"Even proofs by the greatest mathematicians of the past suffer from such
incompleteness, partly because the notion of a proof has been developing over
the ages (towards more rigor, that is).
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the following figure:

— L3 - 4

1 92 ... 3

These |n/2| intervals are all disjoint. Now any other interval in M must
contain at least two of these unit intervals (or, for n odd, possibly the
last unit interval plus the point that remains). Hence, to get the maximum
number of intervals, we put in the next “layer” of shortest possible intervals,
as illustrated below:

i
=

T2 .. 13

We continue in this manner, adding one layer after another, until we finally
add the last layer consisting of the whole interval [1, n]:

3 i A L A & ol 8 -l L b ]
T T T L] 3 1

1 2 ... 13

It remains to show that the set M created in this way has at most n — 1
intervals. We note that every interval I in the kth layer contains a point of
the form i+ %, 1 <2 <n-—1, that was not contained in any interval of the
previous layers, because the space between the two intervals in the previous
layer was not covered before adding the kth layer. Therefore, |M| <n —1
as claimed. O

This “proof” looks quite clever (after all, the way of counting the
intervals in the particular M constructed in the proof is quite elegant).
So what’s wrong with it?7 Well, we have shown that one particular M
satisfies |M| < m — 1. The argument tries to make the impression of
showing that this particular M is the worst possible case, i.e. that no
other M may have more intervals, but in reality it doesn’t prove any-
thing like that! For instance, the first step seems to argue that an M
with the maximum possible number of intervals should contain |[n/2]
unit-length intervals. But this is not true, as is witnessed by M = {[1, 2],
(1,3],[1,4],...,[1,n]}. Saving the “proof” above by justifying its various
steps seems more difficult than finding another, correct, proof. Although
the demonstrated “proof” contains some useful hints (the counting idea
at the end of the proof can in fact be made to work for any M), it’s
still quite far from a valid solution.

The basic scheme of this “proof”, apparently a very tempting one,
says “this object X must be the worst one”, and then proves that this
particular X is OK. But the claim that nothing can be worse than X is
not substantiated (although it usually looks plausible that by construct-
ing this X, we “do the worst possible thing” concerning the statement
being proved).
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Another variation of “mistaking the particular for the general” often
appears in proofs by induction, and is shown in several examples in
Sections 4.1 and 5.3.

Exercises

1.

Prove the following formulas by mathematical induction:
() 14+2+3+-+n=n(n+1)/2
(b) Sor,i-28=(n—1)2"1 12,

The numbers Fy, F, Fs, ... are defined as follows (this is a definition
by mathematical induction, by the way): Fo = 0, F1 = 1, Fpeg =
Fooi + F, forn = 0,1,2,.... Prove that for any n > 0 we have
F, < ({1 ++/3)/2)* ! (see also Section 10.3).

(a) Let us draw n lines in the plane in such a way that no two are
parallel and no three intersect in a common point. Prove that the
plane is divided into exactly n(n + 1)/2 + 1 parts by the lines.

(b) *Similarly, consider n planes in the 3-dimensional space in gen-
eral position (no two are parallel, any three have exactly one point in
common, and no four have a common peint}. What is the number of
regions into which these planes partition the space?

Prove de Moivre’s theorem by induction: (cos a+isina)™ = cos(na) +
isin(na). Here i is the imaginary unit.

. In ancient Egypt, fractions were written as sums of fractions with nu-

merator 1. For instance, £ = 1 + &. Consider the following algorithm
for writing a fraction 2 in this form (1 < m < n): write the fraction
T?UIHT’ calculate the fraction 2 — TTULTET’ and if it is nonzero repeat the
same step. Prove that this algorithm always finishes in a finite number

of steps.

*Consider a 2™ x 2" chessboard with one (arbitrarily chosen) square
removed, as in the following picture (for n = 3):

W

Prove that any such chessboard can be tiled without gaps or overlaps
by L-shapes consisting of 3 squares each.
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7. Let n > 2 be a natural number. We consider the following game. Two

10.

11.

players write a sequence of 0s and 1s. They start with an empty line
and alternate their moves. In each move, a player writes 0 or 1 to
the end of the current sequence. A player loses if his digit completes
a block of n consecutive digits that repeats itself in the sequence for
the second time (the two occurrences of the block may overlap). For
instance, for n = 4, a sequence produced by such a game may look
as follows: 00100001101011110011 (the second player lost by the last
move because 0011 is repeated).

(a) Prove that the game always finishes after finitely many steps.

(b) *Suppose that n is odd. Prove that the second player (the one who
makes the second move) has a winning strategy.

(c) *Show that for n = 4, the first player has a winning strategy.
Unsolved question: Can you determine who has a winning strategy for
some even n > 47

. *On an infinite sheet of white graph paper (a paper with a square

grid), n squares are colored black. At moments ¢t = 1,2,..., squares
are recolored according to the following rule: each square gets the color
occurring at least twice in the triple formed by this square, its top
neighbor, and its right neighbor. Prove that after the moment ¢ = n,
all squares are white.

At time 0, a particle resides at the point 0 on the real line. Within 1
second, it divides into 2 particles that fly in opposite directions and
stop at distance 1 from the original particle. Within the next second,
each of these particles again divides into 2 particles flying in opposite
directions and stopping at distance 1 from the point of division, and so
on. Whenever particles meet they annihilate (leaving nothing behind).
How many particles will there be at time 2% 4- 17

*Let M C R be a set of real numbers, such that any nonempty subset
of M has a smallest number and also a largest number. Prove that M
is necessarily finite.

We will prove the following statement by mathematical induction: Let
l1,0,...,6, ben > 2 distinct lines in the plane, no two of which are
parallel. Then all these lines have a point in common.

1. For n = 2 the statement is true, since any 2 nonparallel lines intersect.

2. Let the statement hold for n = ng, and let us have n = ng + 1
lines £1,...,£, as in the statement. By the inductive hypothesis, all these
fines but the last one (i.e. the lines ¢y,¢s,...,£,_1) have some point
in common; let us denote this point by z. Similarly the n — 1 lines
£1,4s,...,8,_2,€, have a point in common; let us denote it by y. The
line #; lies in both groups, so it contains both z and y. The same is true
for the line £,_;. Now ¢; and £,_» intersect at a single point only, and
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so we must have z = y. Therefore all the lines #;,...,£, have a point in
common, namely the point z.

Something must be wrong. What is it?

12. Let ny,n2,...,n, be natural numbers, each of them at least 1, and let
ny+ng+---+ng = n. Provethat n? +ni+--+n2 < (n—k+1)%2+k-1.

“Solution”: In order to make 22;1 n? as large as possible, we must set

all the n; but one to 1. The remaining one is therefore n — k& + 1, and in
this case the sum of squares is (n — k+ 1)2 +k - 1.

Why isn’t this a valid proof? *Give a correct proof.
13. *Give a correct proof for Problem 1.3.2.

14. *Let n > 1 and k£ be given natural numbers. Let I1,15,...,I, be
closed intervals (not necessarily all distinct), such that for each interval
I; = [uj,v;], u; and v; are natural numbers with 1 < u; < v; < n,
and, moreover, no number is contained in more than k of the intervals
I,...,I,. What is the largest possible value of m?

1.4 Functions

The notion of a function is a basic one in mathematics. It took a long
time for today’s view of functions to emerge. For instance, around
the time when differential calculus was invented, only real or com-
plex functions were considered, and an “honest” function had to be
expressed by some formula, such as f(z) = z? + 4, f(z) = /sin(z/7),
f(@) = [y (sint/t)dt, f(z) = oo ,(z™/n!), and so on. By today’s stan-
dards, a real function may assign to each real number an arbitrary real
number without any restrictions whatsoever, but this is a relatively re-
cent invention.

Let X and Y be some quite arbitrary sets. Intuitively, a function f is
“something” assigning a unique element of Y to each element of X.
To depict a function, we can draw the sets X and Y, and draw an
arrow from each element z € X to the element y € Y assigned to it:

Note that each element of X must have exactly one outgoing arrow,
while the elements of ¥ may have none, one, or several ingoing ar-
rows.
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Instead of saying that a function is “something”, it is better to
define it using objects we already know, namely sets and ordered
pairs.

1.4.1 Definition. A function f from a set X into a set Y is a set
of ordered pairs (z,y) with x € X and y € Y (in other words, a
subset of the Cartesian product X XY ), such that forany z € X, f
contains exactly one pair with first component z.

Of course, an ordered pair (z,y) being in f means just that the
element z is assigned the element y. We then write y = f(z), and
we also say that f maps x to y or that y is the image of z.

For instance, the function depicted in the above figure consists of
the ordered pairs (o, 8), (5, 8), (v,15) and (4, 8).

A function, as a subset of the Cartesian product X xY, is also drawn
using a graph. We depict the Cartesian product as in Fig. 1.1, and then
we mark the ordered pairs belonging to the function. This is perhaps the
most usual way used in high school or in calculus. The following figure
shows a graph of the function f: R — R given by f(z) =23 -z + 1:

/-1 1

The fact that f is a function from a set X into a set Y is written
as follows:
fiX=>Y.

And the fact that the function f assigns some element y to an ele-
ment z can also be written

frz—y.

We could simply write y = f(z) instead. So why this new notation?
The symbol — is advantageous when we want to speak about some
function without naming it. (Those who have programmed in LISP,
Mathematica, or a few other programming languages might recall the
existence of unnamed functions in these languages.) For instance, it is
not really correct to say “consider the function z2”, since we do not say
what the variable is. In this particular case, one can be reasonably sure
that we mean the function assigning =2 to each real number z, but if we
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say “consider the function zy? + 52°y”", it is not clear whether we mean
the dependence on y, on z, or on both. By writing y — 2y® + 523y, we
indicate that we want to study the dependence on y, treating z as some
parameter.

Instead of “function”, the words “mapping” or “map” are used with

the same meaning.®

Sometimes we also write f(X) for the set {f(z): z € X} (the set
of those elements of Y that are images of something). Also other
terms are usually introduced for functions. For example, X is called
the domain and Y is the range, etc., but here we try to keep the
terminology and formalism to a minimum.

We definitely need to mention that functions can be composed.

1.4.2 Definition (Composition of functions). If f: X — Y and
9:Y — Z are functions, we can define a new function h: X — Z by

Wz) = g(f(z))

for each x € X. In words, to find the value of h(x), we first apply f
to z and then we apply g to the result.

The function h (check that h is indeed a function) is called the
composition of the functions g and f and it is denoted by go f. We
thus have |

(90 f)(@) = g(f(=))
for each z € X.

The composition of functions is associative but not commutative.
For example, if g o f is well defined, f o g need not be. In order that
two functions can be composed, the “middle set” must be the same.

Composing functions can get quite exciting. For example, consider
the mapping f: R? - R? (i.e. mapping the plane into itself) given by

f:{z,y) — (sin(am) + bsin{ay), sin(cz) + dsin(cy))

with a = 2.879879, b = 0.765145, ¢ = —0.966918, d = 0.744728. Except
for the rather hairy constants, this doesn’t look like a very complicated
function. But if one takes the initial point p = (0.1,0.1) and plots

®In some branches of mathematics, the word “function” is reserved for func-
tion into the set of real or complex numbers, and the word mapping is used for
functions into arbitrary sets. For us, the words “function” and “mapping” will
be synonymous.
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Fig. 1.2 The “King’s Dream” fractal (formula taken from the book by
C. Pickover: Chaos in Wonderland, St Martin’s Press, New York 1994).

the first several hundred thousand or million points of the sequence p,
f), f(f(p), F(f(f(®)),..., a picture like Fig. 1.2 emerges.® This is
one of the innumerable species of the so-called fractals. There seems
to be no universally accepted mathematical definition of a fractal, but
fractals are generally understood as complicated point sets defined by
iterations of relatively simple mappings. The reader can find colorful
and more sophisticated pictures of various fractals in many books on
the subject or download them from the Internet. Fractals can be not
only pleasant to the eye (and suitable for killing an unlimited amount of
time by playing with them on a personal computer) but also important
for describing various phenomena in nature.

After this detour, let us return to the basic definitions concerning
functions.

1.4.3 Definition (Important special types of functions). A
function f: X — Y is called

e a one-to-one function if z # y implies f(z) # f(y),

¢ a function onto if for every y € Y there exists ¢ € X satisfying

f(z) =y, and

°To be quite honest, the way such pictures are generated by a computer is
actually by iterating an epprorimation to the mapping given by the formula,
because of limited numerical precision.
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e a bijective function, or bijection, if f is one-to-one and onto.

A one-to-one function is also called an injective function or an
injection, and a function onto is also called a surjective function or
a surjection.

In a pictorial representation of functions by arrows, these types
of functions can be recognized as follows:

o for a one-to-one function, each point y € Y has at most one
ingoing arrow,

¢ for a function onto, each point y € Y has at least one ingoing
arrow, and

¢ for a bijection, each point y € Y has ezactly one ingoing arrow.

The fact that a function f: X — Y is one-to-one is sometimes ex-
pressed by the notation
f: XY,

The < symbol is a combination of the inclusion sign C with the map-
ping arrow —. Why? If f: XY is an injective mapping, then the set
Z = f(X) can be regarded as a “copy” of the set X within ¥ (since f
considered as a map X — Z is a bijection), and so an injective map-
ping f: XY can be thought of as a “generalized inclusion” of X in
Y. This point can probably be best appreciated in more abstract and
more advanced parts of mathematics like topology or algebra.

There are also symbols for functions onto and for bijections, but
these are still much less standard in the literature than the symbol for
an injective function, so we do not introduce them.

Since we will be interested in counting objects, bijections will be
especially significant for us, for the following reason: if X and Y are sets
and there exists a bijection f: X — Y, then X and Y have the same
number of elements. Let us give a simple example of using a bijection
for counting (more sophisticated ones come later).

1.4.4 Example. How many 8-digit sequences consisting of digits 0
through 9 are there? How many of them contain an even number of
odd digits?

Solution. The answer to the first question is 10%. One easy way of
seeing this is to note that each 8-digit sequence can be read as the
decimal notation of an integer number between 0 and 108 — 1, and
conversely, each such integer can be written in decimal notation and, if
necessary, padded with zeros on the left to produce an 8-digit sequence.
This defines a bijection between the set {0,1,...,108 —~ 1} and the set
of all 8-digit sequences.

Well, this bijection was perhaps too simple (or, rather, too custom-
ary) to impress anyone. What about the 8-digit sequences with an even
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number of odd digits? Let E be the set of all these sequences (£ for
“even”), and let O be the remaining ones, i.e. those with an odd num-
ber of odd digits. Consider any sequence s € F, and define another
sequence, f(s), by changing the first digit of s: 0 is changed to 1, 1 to
2,...,8t09, and 9 to 0. It is easy to check that the modified sequence
f(s) has an odd number of odd digits and hence f is a mapping from
E to O. From two different sequences s, s’ € E, we cannot get the same
sequence by the described modification, so f is one-to-one. And any
sequence ¢ € O is obtained as f(s) for some s € F, i.e. s arises from
t by changing the first digit “back”, by replacing 1 by 0, 2 by 1,...,
9 by 8, and O by 9. Therefore, f is a bijection and [E| = |O]. Since
|E| + |O| = 108, we finally have |E| = 5- 107. O

In the following proposition, we prove some simple properties of
functions.

Proposition. Let f: X — Y and g:Y — Z be functions. Then
(i) If f,g are one-to-one, then g o f is also a one-to-one function.

(ii) If f, g are functions onto, then g o f is also a function onto.

(iii) If f, g are bijective functions, then g o f is a bijection as well.

(iv) For any function f: X — Y there exist a set Z, a one-to-one function
h:Z<—Y, and a function onto g: X — Z, such that f = hog. (So any
function can be written as a composition of a one-to-one function
and a function onto.)

Proof. Parts (i), (ii), (iii) are obtained by direct verification from the
definition. As an example, let us prove (ii).

We choose z € Z, and we are looking for an z € X satisfying
(g o f){z) = 2. Since g is a function onto, there exists a y € ¥ such that
9(y) = z. And since f is a function onto, there exists an z € X with
f(z) = y. Such an z is the desired element satisfying (g o f){(z) = 2.

The most interesting part is (iv). Let Z = f{X) (so Z C Y). We
define mappings g: X - Z and h: Z — Y as follows:

gle) = f(z) forze X
h(z) = 2 for z € Z.

Clearly g is a function onto, h is one-to-one, and f = hog. O

Finishing the remaining parts of the proof may be a good exercise
for understanding the notions covered in this section.

Inverse function. If f: X — Y is a bijection, we can define a
function ¢: Y — X by setting ¢g(y) = z if z is the unique element
of X with y = f(z). This g is called the inverse function of f, and
it is commonly denoted by f—!. Pictorially, the inverse function is



1.4 Functions 31

obtained by reversing all the arrows. Another equivalent definition
of the inverse function is given in Exercise 4. It may look more com-
plicated, but from a certain “higher” mathematical point of view it
is better.

Exercises

1. Show that if X is a finite set, then a function f: X — X is one-to-one
if and only if it is onto.

2. Find an example of:
(a) A one-to-one function f: N—N which is not onto.
(b) A function f:IN — N which is onto but not one-to-one.

3. Decide which of the following functions Z — Z are injective and which
are surjective: z = 1+ z, 2= 1+ 22, 2= 1+2% 2= 1+ 2% + 28,
Does anything in the answer change if we consider them as functions
R — R7? (You may want to sketch their graphs and/or use some
elementary calculus methods.)

4. For aset X, let idx: X — X denote the function defined by idx (z) = z
for all z € X (the identity function). Let f: X — Y be some function.
Prove:

(a) A function g:Y — X such that go f = idx exists if and only if f
is one-to-one.

(b) A function g:Y — X such that f o g = idy exists if and only if f
is onto.

(¢) A function g:Y — X such that both fog=idy and go f = idx
exist if and only if f is a bijection.

(d) If f: X — Y is a bijection, then the following three conditions are
equivalent for a function ¢: Y — X:

@) g=r1,
(ii) go f =idx, and
(iii) fog =idy.
5. (a) If go f is an onto function, does g have to be onto? Does f have
to be onto?

(b) If go f is a one-to-one function, does g have to be one-to-one? Does
f have to be one-to-one?

6. Prove that the following two statements about a function f: X — Y
are equivalent (X and Y are some arbitrary sets):

(i) f is one-to-one.
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(ii) For any set Z and any two distinct functions ¢;:Z — X and
g2: Z — X, the composed functions f o g; and f o g» are also distinct.

(First, make sure you understand what it means that two functions
are equal and what it means that they are distinct.)

7. In everyday mathematics, the number of elements of a set is under-
stood in an intuitive sense and no definition is usually given. In the
logical foundations of mathematics, however, the number of elements
is defined via bijections: | X| = n means that there exists a bijection
from X to the set {1,2,...,n}. (Also other, alternative definitions of
set size exist but we will consider only this one here.)

(a) Prove that if X and Y have the same size according to this defini-
tion, then there exists a bijection from X to Y.

(b) Prove that if X has size n according to this definition, and there
exists a bijection from X to Y, then Y has size n too.

(c) *Prove that a set cannot have two different sizes m and n, m # n,
according to this definition. Be careful not to use the intuitive notion
of “size” but only the definition via bijections. Proceed by induction.

1.5 Relations

It is remarkable how many mathematical notions can be expressed using
sets and various set-theoretic constructions. It is not only remarkable
but also surprising, since set theory, and even the notion of a set itself,
are notions which appeared in mathematics relatively recently, and some
100 years ago, set theory was rejected even by some prominent mathe-
maticians. Today, set theory has entered the mathematical vocabulary
and it has become the language of all mathematics (and mathemati-
cians), a language which helps to understand mathematics, with all its
diversity, as a whole with common foundations.

We will show how more complicated mathematical notions can be
built using the simplest set-theoretical tools. The key notion of a re-
lation,'® which we now introduce, is a common generalization of such
diverse notions as equivalence, function, and ordering.

1.5.1 Definition. A relation is a set of ordered pairs.!! If X and
Y are sets, any subset of the Cartesian product X x Y is called a
relation between X and Y. The most important case is X = Y;
then we speak of a relation on X, which is thus an arbitrary subset
RC X xX.

'9As a mathematical object; you know “relation” as a word in common lan-
guage.

11n more detail, we could say a binary relation (since pairs of elements are
being related). Sometimes also n-ary relations are considered for n # 2.
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Fig. 1.3 A graphic presentation of the relation R = {(1,2), (2,4), (3,2),
(4,2), (4,4)} on the set {1,2,3,4}.

If an ordered pair (z,y) belongs to a relation R, i.e. (z,y) € R,
we say that z and y are related by R, and we also write zRy.

We have already seen an object which was a subset of a Cartesian
product, namely a function. Indeed, a function is a special type of
relation, where we require that any x € X is related to precisely one
y € Y. In a general relation, an z € X can be related to several
elements of Y, or also to none.

Many symbols well known to the reader can be interpreted as rela-
tions in this sense. For instance, = (equality) and > {non-strict inequal-
ity) are both relations on the set N of all natural numbers. The first
one consists of the pairs (1,1),(2,2),(3,3),..., the second one of the
pairs (1,1), (2,1), (2,2), (3,1}, (3,2), (3,3), (4,1),.... We could thus
also write (5,2) € > instead of the usual 5 > 2, which we usually don’t
do, however. Note that we had to specify the set on which the relation
>, say, is considered: as a relation on R it would be a quite different
set of ordered pairs.

Many interesting “real life” examples of relations come from various
kinds of relationships among people, e.g. “to be the mother of”, “to be
the father of”, “to be a cousin of” are relations on the set of all people,
usually well defined although not always easy to determine.

A relation R on a set X can be captured pictorially in (at least)
two quite different ways. The first way is illustrated in Fig. 1.3. The
little squares correspond to ordered pairs in the Cartesian product,
and for pairs belonging to the relation we have shaded the corre-
sponding squares. This kind of picture emphasizes the definition of
a relation on X and it captures its “overall shape”.
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This figure is also very close in spirit to an alternative way of de-
scribing a relation on a set X using the notion of a matrix.!? If R is
a relation on some n-element set X = {x1,22,...,2,} then R is com-
pletely described by an n x n matrix A = (a;;), where

Qi = 1 if (:ci,a:j) ER
Qi = 0 if (.’L‘i,fb‘j) ¢ R.

The matrix A is called the adjacency matriz of the relation R. For
instance, for the relation in Fig. 1.3, the corresponding adjacency matrix
would be

0 1 0 0O
0 0 0 1
0 1 0 O
01 0 1

Note that this matrix is turned by 90 degrees compared to Fig. 1.3. This
is because, for a matrix element, the first index is the number of a row
and the second index is the number of a column, while for Cartesian
coordinates it is customary for the first coordinate to determine the
horizontal position and the second coordinate the vertical position.

The adjacency matrix is one possible computer representation of a
relation on a finite set.

Another picture of the same relation as in Fig. 1.3 is shown below:

e 30

Here the dots correspond to elements of the set X. The fact that
a given ordered pair (z,y) belongs to the relation R is marked by
drawing an arrow from z to y:

—— o
T Y
and, in the case z =y, by a loop:

)

A relation between X and Y can be depicted in a similar way:

2An n x m matrix is a rectangular table of numbers with n rows and m
columns. Any reader who hasn’t met matrices yet can consult the Appendix for
the definitions and basic facts, or, preferably, take a course of linear algebra or
refer to a good textbook.
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This way was suggested for drawing functions in Section 1.4.

Composition of relations, Let XY, Z be sets, let R C X X Y be
a relation between X and Y, and let S C Y x Z be a relation between
Y and Z. The composition of the relations R and S is the relation
T C X x Z defined as follows: for given z € X and z € Z, Tz holds
if and only if there exists some y € Y such that zRy and ySz. The
composition of relations R and S is usually denoted by Ro S.

The composition of relations can be nicely illustrated using a draw-
ing with arrows. In the following figure,

X R

=

2

=//

- -

a pair (z,2) is in the relation R o S whenever one can get from z to z
along the arrows (i.e. via some y € Y).

Have you noticed? Relations are composed in the same way as func-
tions, but the notation is unfortunately different! For relations it is cus-
tomary to write the composition “from left to right”, and for functions
it is usually written “from right to left”. Soif f: X - Y and ¢:Y — Z
are functions, their composition is written g o f, but if we understood
them as relations, we would write fog for the same thing! Both ways of
notation have their reasons, such a notation has been established his-
torically, and probably there is no point in trying to change it. In this
text, we will talk almost exclusively about composing functions.

Similarly as for functions, the composition is not defined for arbi-
trary two relations. In order to compose relations, they must have the
“middle” set in common (which was denoted by Y in the definition).
In particular, it may happen that R o S is defined while S ¢ R makes
no sense! However, if both R and S are relations on the same set X,
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their composition is always well defined. But also in this case the result
of composing relations depends on the order, and R o S is in general
different from S o R—see Exercise 2.

Exercises
1. Describe the relation R o R, if R stands for
(a) the equality relation “=" on the set IN of all natural numbers,

(b) the relation “less than or equal” (“<”) on N,
(c) the relation “strictly less” (“<”) on N,
(d) the relation “strictly less” {“<”) on the set R of all real numbers.

2. Find relations R, S on some set X such that Ro S # So R.

3. For a relation R on a set X we define the symbol R" by induction:
R'=R, R*! = Ro R™.
(a) Prove that if X is finite and R is a relation on it, then there exist
r,s € N, r < s, such that R" = R?.
(b) Find a relation R on a finite set such that R™ # R™™! for every
n € N.

(¢) Show that if X is infinite, the claim (a) need not hold (i.e. a relation
R may exist such that all the relations R™, n € N, are distinct).

4. (a) Let X = {z1,22,...,2n} and Y = {y1,¥2,...,¥m be finite sets,
and let R C X x Y be a relation. Generalize the definition of the
adjacency matrix of a relation to this case.

{(b) *Let X,Y, Z be finite sets, let RC X xY and S CY x Z be re-
lations, and let Ag and Ag be their adjacency matrices, respectively.
If you have defined the adjacency matrix in (a) properly, the matrix
product ApAg should be well defined. Discover and describe the con-
nection of the composed relation R o S to the matrix product AgAgs.

5. Prove the associativity of composing relations: if R, S,T are relations
such that (RoS)oT is well defined, then also Ro(SoT) is well defined
and equals (Ro S)oT.

1.6 Equivalences

Besides the functions, equivalences are another important special
type of relations. Informally, an equivalence on a set X is a rela-
tion describing which pairs of elements of X are “of the same type”
in some sense. For instance, let X be the set of all triangles in the
plane. By saying that two triangles are related if and only if they
are congruent (i.e. one can be transformed into the other by transla-
tion and rotation), we have defined one equivalence on X. Another
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equivalence is defined by relating all pairs of similar triangles (two
triangles are similar if one can be obtained from the other one by
translation, rotation, and scaling; in other words, if their correspond-
ing angles are the same). And a third equivalence arises by saying
that each triangle is only related to itself.

These are three particular examples of equivalence relations, and
the reader may look forward to many more examples later on. In
general, in order to be called an equivalence, a relation must satisfy
three conditions. These conditions are so useful that they each de-
serve a name.

1.6.1 Definition. We say that a relation R on a set X is

e reflexive if Rz for every z € X,
e symmetric if Ry implies yRx, for all z,y € X,
e transitive if t Ry and yRz imply xRz, for all z,y,z € X.

In a drawing like that in Fig. 1.3, a reflexive relation is one con-
taining all squares on the diagonal (drawn by a dotted line). In draw-
ing using arrows, a reflexive relation has loops at all points.

For a symmetric relation, a picture of the type in Fig. 1.3 has
the diagonal as an axis of symmetry. In a picture using arrows, the
arrows between two points always go in both directions:

Y

The condition of transitivity can be well explained using arrows.
If there are arrows £ — y and ¥y — %, then the £ — z arrow is present

as well:

&
z y z

1.6.2 Definition. We say that a relation R on X is an equivalence
on X if it is reflexive, symmetric, and transitive.

(You may want to contemplate for a while why these properties
are natural for a relation that should express something like “being
of the same type”.) The notion of equivalence is a common gener-
alization of notions expressing identity, isomorphism, similarity, etc.
Relations of equivalence are often denoted by symbols like =, =, ~,
=, =, and so on.
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Although an equivalence R on a set X is a special type of relation
and we can thus depict it by either of the above methods, more often
a picture similar to the one below is used:

The key to this type of drawing is the following notion of equivalence
class. Let R be an equivalence on a set X and let £ be an element
of X. By the symbol R[z], we denote the set of all elements y € X
that are equivalent to z; in symbols, R[z] = {y € X: zRy}. R|z] is
called the equivalence class of R determined by x.

1.6.3 Proposition. For any equivalence R on X, we have
(i) R[z] is nonempty for every z € X.
(ii) For any two elements z,y € X, either R[z] = Rly] or R[z] N
Rly] = 0.
(iii) The equivalence classes determine the relation R uniquely.

Before we start proving this, we should explain the meaning of
(iii). It means the following: if R and S are two equivalences on X
and if the equality R[z] = S[z] holds for every element z € X, then
R=2S.

Proof. The proof is simple using the three requirements in the
definition of equivalence.

(i) The set R[z] always contains z since R is a reflexive relation.
(ii) Let z,y be two elements. We distinguish two cases:

(a) If zRy, then we prove R[z] C R[y] first. Indeed, if z € R[z],
then we also know that zRz (by symmetry of R) and there-
fore zRy (by transitivity of R). Thus also z € R|y]. By using
symmetry again, we get that xRy implies R[z] = Rly].

(b) Suppose that zRy doesn’t hold. We show that R[z]N R[y] =
. We proceed by contradiction. Suppose that there exists
z € R[z] N R[y]. Then zRz and zRy (by symmetry of R),
and so Ry (by transitivity of R), which is a contradiction.

(iii) This part is obvious, since the equivalence classes determine R

as follows:
zRy if and only if {z,y} C R[z]. -
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The above proposition explains the preceding picture. It guaran-
tees that the equivalence classes form a partition of the set X; that is,
they are pairwise disjoint subsets of X whose union is the whole X.
Conversely, any partition of X determines exactly one equivalence
on X. That is, there exists a bijective mapping of the set of all equiv-
alences on X onto the set of all partitions of X.

Exercises

1. Formulate the conditions for reflexivity of a relation, for symmetry of
a relation, and for its transitivity using the adjacency matrix of the
relation.

2. Prove that a relation R is transitive if and only if Ro R C R.
3. (a) Prove that for any relation R, the relation T = RURo RURoRo

RU... (the union of all multiple compositions of R) is transitive.

(b) Prove that any transitive relation containing R as a subset also
contains T'.

(¢} Prove that if [ X|=n,then T=RURoRU---URoRo---o R,

(n-:rl)x

Remark. The relation T as in (a), (b) is the smallest transitive relation
containing R, and it is called the transitive closure of R.

4. Let R and S be arbitrary equivalences on a set X. Decide which of
the following relations are necessarily also equivalences (if yes, prove;
if not, give a counterexample).

(a) RNS
(b) RUS
(c) R\ S
(d) Ro S.

5. (a) Suppose that R is a transitive relation on the set Z of all integers,
and we know that for any two integers a,b € Z, if |a — b} = 2 then
aRb. Is every R satisfying these conditions necessarily an equivalence?
(Note that a pair of elements can perhaps be in R even if it is not
enforced by the given conditions!)

(b) Suppose that R is a transitive relation on Z, and we know that for
any two integers a,b € Z, if |a — b| € {3,4} then aRb. Is R necessarily
an equivalence?
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6. Call an equivalence ~ on the set Z (the integers) a congruence if the
following condition holds for all ¢,z,y € Z: if ¢ ~ y then also a + = ~
a+y.

(a) Let ¢ be a nonzero integer. Define a relation =; on Z by letting
z =4 y if and only if ¢ divides x — y. Check that =, is a congruence
according to the above definition.

(b) *Prove that any congruence on Z is either of the form =, for some
g or the diagonal relation {(z,z): © € Z}.

(c) Suppose we replaced the condition “a+xz ~ a+y” in the definition
of a congruence by “az ~ ay”. Would the claim in (a) remain true for
this kind of “multiplicative congruence”? *And how about the claim
in (b)?

1.7 Ordered sets

The reader will certainly be familiar with the ordering of natural
numbers and of other number domains by magnitude (the “usual”
ordering of numbers). In mathematics, such an ordering is considered
as a special type of a relation, i.e. a set of pairs of numbers. In the
case just mentioned, this relation is usually denoted by the symbol
“<” (“less than or equal”). Various orderings can be defined on other
sets too, such as the set of all words in some language, and one set
can be ordered in many different and perhaps exotic ways.

Before introducing the general notion of an ordered set, we define
an auxiliary notion. A relation R on a set X is called antisymmet-
rict3 if zRy and yRx imply that = = y, for all z,y € X. When
depicting a relation by arrows, the following situation is forbidden
in an antisymmetric relation:

NQT

1.7.1 Definition. An ordering on a set X is any relation on X that
is reflexive, antisymmetric, and transitive. An ordered set is a pair
(X, R), where X is a set and R is an ordering on X.

Note the formal similarity of this definition to the definition of an
equivalence. The definitions are almost the same, “only” the symmetry

13Sometimes this is called weakly antisymmetric, while for a strongly antisym-
melric relation xRy and yRz never happen at the same time, i.e. zRx is also
excluded.
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has been replaced by antisymmetry. Yet equivalences and orderings are

very different concepts.

For orderings, the symbols < or < are commonly used. The first
of them is useful, e.g. when we want to speak of some other ordering
of the set of natural numbers than the usual ordering by magnitude,
or if we consider some arbitrary ordering on a general set.

If we have some ordering =<, we define a derived relation of “strict
inequality”, <, as follows: @ < b if and only if @ < b and a # b.
Further we can introduce the “reverse inequality” >, by letting a > b
if and only if b < a.

Examples. We have already mentioned several examples of ordered
sets—these were (N, <), (R, <), and similar ones, where < of course
denotes the usual ordering, formally understood as a relation.

As is easy to check, if R is an ordering on aset X, and Y C X is
some subset of X, the relation RN Y? (the restriction of R on Y) is
an ordering on Y. Intuitively, we order the elements of Y in the same
way as before but we forget the others. This yields further examples
of ordered sets, namely various subsets of real numbers with the usual
ordering.

Linear orderings. The examples discussed so far have a significant
feature in common: any two elements of the underlying set can be
compared; in other words, for any two distinct elements z and y
either £ < y or y < z holds. This property is not a part of the
definition of an ordering, and orderings having it are called linear
orderings {sometimes the term total ordering is used with the same
meaning).

Other examples of orderings. What do orderings which are
not linear look like? For example, on any set X, we may define a
relation A in which each element z is in relation with itself only, i.e.
A = {(z,z): z € X}. It is easily checked that this relation satisfies
the definition of an ordering, but this is a rather dull example. Before
giving more examples, let us insert a remark about terminology.

In order to emphasize that we speak of an ordering which is not
necessarily linear, we sometimes use the longer term partial ordering.
A partial ordering thus means exactly the same as ordering (with-
out further adjectives), so a partial ordering may also happen to be
linear. Similarly, instead of an ordered set, one sometimes speaks of
a partially ordered set. To abbreviate this long term, the artificial
word poset is frequently used.
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Let us describe more interesting examples of partially ordered
sets.

1.7.2 Example. Let us imagine we intend to buy a refrigerator,
say. We simplify the complicated real situation by a mathematical
abstraction, and we suppose that we only look at three numerical
parameters of refrigerators: their cost, electricity consumption, and
the volume of the inner space. If we consider two types of refrigera-
tors, and if the first type is more expensive, consumes more power,
and a smaller amount of food fits into it, then the second type can
be considered a better one—a large majority of buyers of refrigera-
tors would agree with that. On the other hand, someone may prefer
a smaller and cheaper refrigerator, another may prefer a larger re-
frigerator even if it costs more, and an environmentally concerned
customer may even buy an expensive refrigerator if it saves power.
The relation “to be clearly worse” (denote it by <} in this sense
is thus a partial ordering on refrigerators or, mathematically re-
formulated, on the set of triples (¢, p,v) of real numbers (c stands for
cost, p for power consumption, and v for volume), defined as follows:

(c1,p1,v1) = (2, p2,v2) if and only if

1.3
c1 = ¢2, p1 = p2, and v; < vg. (1.3)

1.7.3 Example. For natural numbers a, b, the symbol a{b means “a
divides b”. In other words, there exists a natural number ¢ such that
b = ac. The relation “|” is a partial ordering on N. We leave the
verification of this to the reader.

1.7.4 Example. Let X be a set. Recall that the symbol 2% denotes
the system of all subsets of the set X. The relation “C” (to be a
subset) defines a partial ordering on 2%,

Drawing partially ordered sets. Finite orderings can be drawn
using arrows, as with any other relations. Typically, such drawings
will contains lots of arrows. For instance, for a 10-element linearly
ordered set we would have to draw 10+ 9+ ---+ 1 = 55 arrows and
loops. A number of arrows can be reconstructed from transitivity,
however: if we know that z < ¥ and y < z, then also z < z, so we
may leave out the arrow from z to z. Similarly, we need not draw
the loops, since we know they are always there. For finite ordered
sets, all the information is captured by the relation of “immediate
predecessor”, which we are now going to define.
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Let (X, <) be an ordered set. We say that an element z € X is
an immediate predecessor of an element y € X if

e z <y, and
e there isnot € X such that z <t < y.

Let us denote the just-defined relation of immediate predecessor
by «.
The claim that the ordering < can be reconstructed from the relation
< may be formulated precisely as follows:

1.7.5 Proposition. Let (X, =) be a finite ordered set, and let < be
the corresponding immediate predecessor relation. Then for any two
elements z,y € X, © < y holds if and only if there exist elements
X1,T2,...,%x € X such that <z Q-+ <z <y (possibly with k = 0,
i.e. we may also have z < y).

Proof. One implication is easy to see: if we have z Q21 4--- < xp <y,
then also ¢ X z; < +-+ < z < y (since the immediate predecessor
relation is contained in the ordering relation), and by the transitivity
of <, we have z < y.

The reverse implication is not difficult either, and we prove it by
induction. We prove the following statement:

Lemma. Let z,y € X, z <y, be two elements such that there exist
at most n elementst € X satisfyingz <t <y (i.e. “between” z and y).
Then there exist x1,2g,...,2;, € X such thatz 421 < --- <z < y.

For n = 0, the assumption of this lemma asserts that there exists no ¢
with # < ¢ < y, and hence z <y, which means that the statement holds
(we choose k£ = 0).

Let the lemma hold for all n up to some ng, and let us have z < y
such that the set My, = {t € X: z <t < y} has n = ng + 1 elements.
Let us choose an element u € M,,, and consider the sets My, = {t €
X:z <t < u} and M,y defined similarly. By the transitivity of < it
follows that My, C Mgy and Myy C Myy. Both M, and M, have at
least one element less than Mg, (since u & My, u € M,y), and by the
inductive hypothesis, we find elements 21,...,z% and y1,...,¥y¢ in such
awaythat zz1 Q- Qzp <uand u<dy; <--- <yp <y. By combining
these two “chains” we obtain the desired sequence connecting z and .

O

By the above proposition, it is enough to draw the relation of
immediate predecessor by arrows. If we accept the convention that
all arrows in the drawing will be directed upwards (this means that
if z < y then z is drawn higher than y), we need not even draw the
direction of the arrows—it is enough to draw segments connecting
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the points. Such a picture of a partially ordered set is called its Hasse
diagram. The following figure shows a 7-element linearly ordered set,
such as ({1,2,...,7},<):

The next drawing depicts the set {1,2,...,10} ordered by the divis-
ibility relation (see Example 1.7.3):

8 10
4
q 5 7
2
1

The following figure is a Hasse diagram of the set {1, 2,3} x {1, 2, 3}
with ordering < given by the rule (a;1,b;) = (a9,bs) if and only if
a1 < ag and b; < bs:

Finally, here is a Hasse diagram of the set of all subsets of {1, 2, 3}
ordered by inclusion:

{1,2,3}
{1,2} ‘@ {2,3}
{1} }Q' {3}
¢

/N
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Further examples and notions concerning posets are left to the exer-
cises. The theory of finite posets is an important and flourishing
branch of combinatorics. The reader can learn about it in Trot-
ter [28].

Exercises

1.

Describe all relations on a set X which are equivalences and (partial)
orderings at the same time.

Let R and S be arbitrary partial orderings on a set X. Decide which
of the following relations are necessarily partial orderings:

(a) RNS

(b) RUS

(c) R\ S

(d) Ro S.

Verify that the relation (1.3) in Example 1.7.2 indeed defines a partial
ordering.

*Let R be a relation on a set X such that there is no finite sequence
of elements x1, zs, ...,z of X satisfying zy Rzs, xoRzs,..., k-1 Rxy,
zx Rz, (we say that such an R is acyclic). Prove that there exists an
ordering < on X such that R C <. You may assume that X is finite if
this helps.

(a) Consider the set {1,2,...,n} ordered by the divisibility relation
| (see Example 1.7.3). What is the maximum possible number of el-
ements of a set X C {1,2,...,n} which is ordered linearly by the
relation | (such a set X is called a chain)?

(b) Solve the same question for the set 2{*2-+"} ordered by the rela-
tion C (see Example 1.7.4).
Show that Proposition 1.7.5 does not hold for infinite sets.

Let (X, <) be a poset. An element a € X is called

e a largest element of X if for every z € X, x < a holds, and
e a mazimal element of X if there exists no y € X such that a < y.

A smallest element and a minimal element are defined similarly.

{(a) Show that a largest element is always maximal, and find an example
of a poset with a maximal element but no largest element.

{b) Find a poset having no smallest element and no minimal element
either, but possessing a largest element.
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8.

10.

11.

12.

Introduction and basic concepts

*Let < be any (partial) ordering on a set X. A linear extension of <
is any linear ordering < on X such that z < y implies z < y for all
z,y € X. (If it didn’t look so strange we could write this condition
compactly as < C <.) Prove that any partial ordering on a finite set
X has at least one linear extension.

Let (X, <), (Y, =) be ordered sets. We say that they are isomorphic
(meaning that they “look the same” from the point of view of ordering)
if there exists a bijection f: X — Y such that for every z,y € X, we
have z < y if and only if f(z) < f(y).

(a) Draw Hasse diagrams for all nonisomorphic 3-element posets.

(b) Prove that any two n-element linearly ordered sets are isomorphic.
(c) Find two nonisomorphic linear orderings of the set of all natural
numbers.

(d) Can you find infinitely many nonisomorphic linear orderings of N?
*Uncountably many (for readers knowing something about the cardi-
nalities of infinite sets)?

*Show that for every finite poset (X, <) there exists a finite set A
and a system M of subsets of A such that the ordered set (M, C)
is isomorphic to (X, <). (Isomorphism of posets has been defined in
Exercise 9.)

Let (X, <) be a poset and let A C X be its subset. An element s € X
is called a supremum of the set A if the following holds:

e g < s foreachae€ A,
e if a < s holds for all @ € A, where s’ is some element of X, then
s=<s.
The infimum of a subset A C X is defined analogously, but with all
inequalities going in the opposite direction.
(a) Check that any subset A C X has at most one supremum and

at most one infimum. (The supremum of A, if it exists, is denoted by
sup A. Similarly inf A denotes the infimum.)

(b) Which element is the supremum of the empty set (according to the
definition just given)?

(c) Find an example of a poset in which every nonempty subset has
an infimum, but there are nonempty subsets having no supremum.

(d) *Let (X, X) be a poset in which every subset (including the empty
one) has a supremum. Show then that every subset has an infimum as
well.

Consider the poset (N, |) (ordering by divisibility).

(a) Decide whether each nonempty subset of N has a supremum.

(b) Decide whether each nonempty finite subset of N has a supremurm.
(c) Decide whether each nonempty subset has an infimum.



