Some problems leading to Catalan numbers

Math 30530, Fall 2012

November 23, 2012

The Catalan recurrence, and some values

$$
\begin{aligned}
c_{0} & =1 \\
c_{n} & =c_{0} c_{n-1}+c_{1} c_{n-2}+\ldots+c_{n-1} c_{0} \\
& =\sum_{k=0}^{n-1} c_{k} c_{n-1-k} \text { for } n \geq 1
\end{aligned}
$$

$$
c_{0}=1
$$

$$
c_{1}=1
$$

$$
c_{2}=2
$$

$$
c_{3}=5
$$

$$
c_{4}=14
$$

$$
c_{5}=42
$$

Some problems leading to Catalan numbers

- Handshakes: c_{n} counts number of ways that $2 n$ people in a circle can pair off to shake hands, with no crossing hands
- One-sided tied games: c_{n} counts number of ways the Cubs and White Sox can play to an $n-n$ tie, in which the Cubs never lead (games considered by the order in which the runs are scored)
- Triangulations: c_{n} counts the number of different ways that a convex $(n+2)$-gon can be fully triangulated
- Trees: c_{n} counts the number of full binary trees with $n+1$ leaves. (Start with a root. Each vertex either has two children (right and left), or no children.)
- Tiling stairs: c_{n} counts the number of ways of tiling a height n staircase with exactly n rectangles. (The height n staircase is the set of 1 by 1 boxes whose top right points are the points (i, j) with $i, j \geq 1$ and $i+j \leq n+1$.)
- R. Stanley, Enumerative Combinatorics, has an exercise that gives 66 different counting problems, all solved by Catalan numbers; an addendum on his website gives 136 more!

