Chapter 1

Problems

- $\left(\stackrel{\cdot}{1}\right)$
- (a) By the generalized basic principle of counting there are

$$26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 67,600,000$$

- (b) $26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 19,656,000$
- There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in that order, we see by the generalized basic principle that there are $2 \cdot 1 \cdot 2 \cdot 1 = 4$ possibilities.
- There were $8 \cdot 2 \cdot 9 = 144$ possible codes. There were $1 \cdot 2 \cdot 9 = 18$ that started with a 4.
- Each kitten can be identified by a code number i, j, k, l where each of i, j, k, l is any of the numbers from 1 to 7. The number i represents which wife is carrying the kitten, j then represents which of that wife's 7 sacks contain the kitten; k represents which of the 7 cats in sack j of wife i is the mother of the kitten; and l represents the number of the kitten of cat k in sack j of wife i. By the generalized principle there are thus $7 \cdot 7 \cdot 7 \cdot 7 = 2401$ kittens
- $\begin{array}{c} (8.) & (a) \ 5! = 120 \end{array}$
 - (b) $\frac{7!}{2!2!} = 1260$
 - (c) $\frac{11!}{4!4!2!} = 34,650$
 - (d) $\frac{7!}{2!2!} = 1260$
- 10.
- (a) 8! = 40,320
- (b) $2 \cdot 7! = 10,080$
- (c) 5!4! = 2,880
- (d) $4!2^4 = 384$
- (11.
- (a) 6!
- (b) 3!2!3!
- (c) 3!4!
- There are $\binom{10}{5}\binom{12}{5}$ possible choices of the 5 men and 5 women. They can then be paired up in 5! ways, since if we arbitrarily order the men then the first man can be paired with any of the 5 women, the next with any of the remaining 4, and so on. Hence, there are $5!\binom{10}{5}\binom{12}{5}$ possible results.

$$(18.) \quad {5 \choose 2} {6 \choose 2} {4 \choose 3} = 600$$

- (a) There are $\binom{8}{3}\binom{4}{3} + \binom{8}{3}\binom{2}{1}\binom{4}{2} = 896$ possible committees.

 There are $\binom{8}{3}\binom{4}{3}$ that do not contain either of the 2 men, and there are $\binom{8}{3}\binom{2}{1}\binom{4}{2}$ that contain exactly 1 of them.
 - (b) There are $\binom{6}{3}\binom{6}{3} + \binom{2}{1}\binom{6}{2}\binom{6}{3} = 1000$ possible committees.
 - (c) There are $\binom{7}{3}\binom{5}{3} + \binom{7}{2}\binom{5}{3} + \binom{7}{3}\binom{5}{2} = 910$ possible committees. There are $\binom{7}{3}\binom{5}{3}$ in which neither feuding party serves; $\binom{7}{2}\binom{5}{3}$ in which the feuding women serves; and $\binom{7}{3}\binom{5}{2}$ in which the feuding man serves.
 - $\frac{7!}{3!4!}$ = 35. Each path is a linear arrangement of 4 r's and 3 u's (r for right and u for up). For instance the arrangement r, r, u, u, r, r, u specifies the path whose first 2 steps are to the right, next 2 steps are up, next 2 are to the right, and final step is up.
 - $\begin{array}{ccc}
 \hline
 (27.) & \binom{12}{3,4,5} = \frac{12!}{3!4!5!} \\
 \end{array}$
 - (a) (10)!/3!4!2!(b) $3\binom{3}{2}\frac{7!}{4!2!}$

Theoretical Exercises

- 8. There are $\binom{n+m}{r}$ gropus of size r. As there are $\binom{n}{i}\binom{m}{r-i}$ groups of size r that consist of i men and r-i women, we see that

$$\binom{n+m}{r} = \sum_{i=0}^{r} \binom{n}{i} \binom{m}{r-i}.$$

12.

Number of possible selections of a committee of size k and a chairperson is $k \binom{n}{k}$ and so

 $\sum_{k=1}^{n} k \binom{n}{k}$ represents the desired number. On the other hand, the chairperson can be anyone of

the *n* persons and then each of the other n-1 can either be on or off the committee. Hence, $n2^{n-1}$ also represents the desired quantity.

- (i) $\binom{n}{k} k^2$
- (ii) $n2^{n-1}$ since there are *n* possible choices for the combined chairperson and secretary and then each of the other n-1 can either be on or off the committee.
- (iii) $n(n-1)2^{n-2}$
- (c) From a set of n we want to choose a committee, its chairperson its secretary and its treasurer (possibly the same). The result follows since
 - (a) there are $n2^{n-1}$ selections in which the chair, secretary and treasurer are the same person.
 - (b) there are $3n(n-1)2^{n-2}$ selection in which the chair, secretary and treasurer jobs are held by 2 people.
 - (c) there are $n(n-1)(n-2)2^{n-3}$ selections in which the chair, secretary and treasurer are all different.
 - (d) there are $\binom{n}{k}k^3$ selections in which the committee is of size k.
- $(1-1)^n = \sum_{i=0}^n \binom{n}{i} (-1)^{n-1}$
 - Suppose that r labelled subsets of respective sizes $n_1, n_2, ..., n_r$ are to be made up from elements 1, 2, ..., n where $n = \sum_{i=1}^{r} n_i$. As $\binom{n-1}{n_1, ..., n_i 1, ..., n_r}$ represents the number of possibilities when person n is put in subset i, the result follows.