Math 30440 — Probability and Statistics

Spring 2010 first mid-term exam, February 16 2010

Instructors: David Galvin and Daniel Cibotaru

Name: 5‘0 LJTTo }\)5

This examination contains 7 problems on 8 pages (including the front cover).
It is closed-book. You may use up to 2 pages of handwritten notes. You may use a
calculator, but only for arithmetic; you must calculate all integrals by hand. Show all
your work on the paper provided. The honor code is in effect for this examination.

Scores
[ Question | Score | Out of |

1 10
2 10
3 10
4 10
5 10
6 10
7 10
Total 70
GOOD LUCK !



(a) Use a Venn diagram to show that for any two events A and B, P(AB°) +
P(A°B) < 1.
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(b) Suppose that E and F are two events with P(E) = .6, P(F) = .5 and
P(EF) = .3. What is the probability that exactly one of F, F' occur?
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2. There is an 80% chance that the center of Hurricane D. will hit a certain coastal
city. If it does then there is a 95% chance of massive rain in the city. If it doesn’t

there is still a 50% chances of massive rain.

(a) What is the probability that the city will not get massive rain?
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(b) You hear on the Weather Channel that the city didn’t get massive rain.
What is the probability that the center of the hurricane struck the city?
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3. From a group of 10 people (6 from Stanford and 4 from Keenan), I randomly
select a team of 3 people to help paint the door of the Stanford-Keenan Chapel.

Let X be the number people from Keenan on the team.

(a) Compute the mass function of X.
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(b) Compute the expectation of X,
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(c) What is the probability that more than half of the team are from Stanford?
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. At a coffee shop the owner sells a random amount X of coffee each hour. Suppose
that X (measured in pounds) has the density function

o) = 6x? —42® f0<z <1
Y=%0 otherwise

The owner buys z pounds of coffee for a price of 2z + 1 dollars and he sells the
same amount for 4z dollars. What is his expected profit for a given hour?
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5. A certain component in a (shoddy) computer typically fails 40% of the time,
causing the computer to break. To counteract this appalling problem, a hacker
decides to install n copies of the component in parallel, in such a way that the
computer only breaks if all n components fail at the same time. Assume that
component failures are independent of each other.

(a) Find the probability that the computer does not break if n = 3.
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(b) Find the smallest value of n that should be chosen to ensure that the
probability that the computer does not break is at least 98%.
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6. (a) The joint probability density function of random variables V and W is
given by the formula

o, w) = v+w H0<v<landO0<w<l1
T 0 otherwise.

Find E(V2W).
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(b) X and Y are two independent random variables that both only take posi-
tive values. Show that for each a > 0 the value of the distribution function

of Y/X at a is
Fyx(@ = [ Frlan)fx()de

where fx(z) is the density function of X and Fy(y) is the distribution
function of Y.
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7. When Baltimore Ravens’ running back Ray Rice rushes, he advances a number
of yards that has mean 4 and standard deviation 1/2.

(a) Suppose that Rice rushes three times in a row. Let X be the number of

yards he advances in total. Assuming that the three rushes are independent
of each other, calculate the expectation and variance of X.
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(b) Use Tcebychev’s inequality to find a number p such that the probability

that Rice gains between 10 and 14 yards on three successive rushes is at
least p.
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