
Math 10860, Honors Calculus 2

Homework 5 NAME:

Solutions

Reading for this homework

Sections 12.1 and 12.2 of the course notes.

Solutions

1. Differentiate these functions: (Convention: ab
c

always means a(b
c).)

(a)

f(x) = ee
ee

x

.

Solution:

f ′(x) = ee
ee

x

· eee
x

· eex · ex.

(b)

f(x) = e

(∫ x
0 e−t2dt

)
.

Solution:

f ′(x) = e

(∫ x
0 e−t2dt

)
· e−x2 .

(c)
f(x) = (log x)log x.

Solution: f(x) = e(log((log x)
log x)) = elog x log log x, so

f ′(x) = elog x log log x ·
(

log x · 1

x log x
+

log log x

x

)
= (log x)log x ·

(
1 + log log x

x

)
.

2. The logarithmic derivative of f is the expression f ′/f . It’s called “logarithmic derivative”
because it is the derivative of log ◦f . It is often easier to compute the derivative of
log of a function than it is to compute the derivative of the function directly, because
taking logs turns products into (simpler to differentiate) sums, and turns powers into
(simpler to differentiate) products. The derivate of the original function can then be
recovered by multiplying by the original function.

Compute the logarithmic derivatives of these functions:
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(a)
f(x) = xx.

Solution: log f(x) = x log x, so

(log ◦f)′(x) =
f ′(x)

f(x)
= x

1

x
+ log x = 1 + log x.

(b)

f(x) =
(3− x)1/3x2

(1− x)(3 + x)2/3
.

Solution:

log f(x) =
log(3− x)

3
+ 2 log x− log(1− x)− 2 log(3 + x)

3

so
f ′(x)

f(x)
=

−1

3(3− x)
+

2

x
+

1

1− x
− 2

3(3 + x)
.

(c)

f(x) =
ex − e−x

e2x(1 + x3)
.

Solution:
log f(x) = log(ex − e−x)− 2x− log(1 + x3)

so
f ′(x)

f(x)
=
ex + e−x

ex − e−x
− 2− 3x2

1 + x3
.

3. Compute these limits:

(a)

lim
x→0

ex − 1− x− x2/2
x2

.

Solution: We have, by a direct evaluation,

lim
x→0

ex − 1

2
= 0

and so, via L’Hôpital’s rule,

lim
x→0

ex − 1− x
2x

= 0

and so, again by L’Hôpital’s rule,

lim
x→0

ex − 1− x− x2/2
x2

= 0.
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(b)

lim
x→∞

x

(log x)n
(n a natural number).

Solution: This is an indeterminate of the form ∞/∞, so we apply L’Hôpital’s
rule, to get

lim
x→∞

x

(log x)n
= lim

x→∞

1

(n(log x)n−1)/x
= lim

x→∞

x

n(log x)n−1

n− 1 more applications of L’Hôpital’s rule lead to

lim
x→∞

x

(log x)n
= lim

x→∞

x

n! log x

and one more application of L’Hôpital’s rule leads to

lim
x→∞

x

(log x)n
= lim

x→∞

x

n!
=∞.

(c)

lim
x→0+

x

(log x)n
(n a natural number).

Solution: Since log x → −∞ as x → 0+, we have that 1/ log x → 0 as x → 0+,
and so for any natural number n, it follows that (1/ log x)n = 1/(log x)n → 0 as
x→ 0+, and so x/(log x)n → 0 as x→ 0+.

(d)
lim
x→0+

xx.

Solution: We have xx = ex log x, so we should examine what happens to x log x as
x approaches 0 from above. We have

lim
x→0+

x log x = lim
x→0+

log x

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
−x = 0,

with the first equality a bit of algebraic manipulation, and the second an application
of L’Hôpital’s rule. It follows (after a short ε-δ argument that’s omitted here, but
appears elsewhere in these solutions) that

lim
x→0+

ex log x = e0 = 1,

so limx→0+ x
x = 1.

4. Which number is bigger: eπ or πe? (Rigorously justify your answer!)

Solution: Consider the function f : (0,∞)→ R defined by

f(x) = x
1
x = e

log x
x .
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We have

f ′(x) = e
log x
x

(
1− log x

x2

)
.

This is positive on (0, e) and negative on (e,∞), so f has a global maximum at x = e.
It follows that for any number x 6= e, we have f(e) > f(x), or

e
1
e > x

1
x .

Raising both sides to the power ex yields

ex > xe.

In particular, since e 6= π we have
eπ > πe.

5. Prove that F (x) =
∫ x
2

dt
log t

is not a bounded function on [2,∞).

Solution: We claim that there is t0 such that for t ≥ t0 we have log t ≤ t, so that
1/ log t ≥ 1/t. That implies (from the comparison theorem that we proved in class)
that

lim
x→∞

∫ x

2

dt

log t
=

∫ t0

2

dt

log t
+ lim

x→∞

∫ x

t0

dt

log t

≥
∫ t0

2

dt

log t
+ lim

x→∞

∫ x

t0

dt

t
= ∞.

To see the claim, note that since limt→∞ e
t/t = ∞ there is a t0 such that for t ≥ t0

we have t ≤ et, and so, taking logarithms (valid since log is an increasing function),
log t ≤ t.

Meta-question: Why am I asking this question? There is an important mathematical
concept, one that you’ve been familiar with for many years, and one that most non-
mathematics are familiar with, that this integral is intimately related to. What is the
concept, and what is the connection?

Solution: For a positive number x, let π(x) denote the number of prime numbers less
than or equal to x (so, for example, π(9) = π(9.2) = 4 and π(29) = 10). One version of
the Prime number theorem, a central result in number theory, asserts that the function
F (x) above gives a very good approximation to π(x) for large x, in the sense that

lim
x→∞

π(x)

F (x)
= 1.

6. This question guides you to an alternate expression for e.
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(a) Find limy→0
log(1+y)

y
.

Solution: By L’Hôpital’s rule

lim
y→0

log(1 + y)

y
= lim

y→0

1
1+y

1
= 1.

(b) Find limx→∞ x log(1 + 1/x).

Solution: We know that in general limx→∞ f(x) = limy→0+ f(1/y) (we proved
this last semester). So

lim
x→∞

x log(1 + 1/x) = lim
y→0+

log(1 + y)

y
= 1.

(c) Prove that

e = lim
x→∞

(
1 +

1

x

)x
.

Solution: Fix ε > 0.

Because e0 = 1, and exp is continuous at 0, we know that there is a δ > 0 such
that |x− 0| < δ implies |ex − 1| < ε. In other words, for −δ < x < δ,

1− ε < ex < 1 + ε (?).

We also know that limx→∞ x log(1 + 1/x) = 1, so there is N such that x > N
implies

|x log(1 + 1/x)− 1| < δ/2.

So, for x > N we have

−δ
2
< x log(1 + 1/x)− 1 <

δ

2
.

Exponentiating both sides, and using that exp is increasing, we get

e−δ/2 <

(
1 + 1

x

)x
e

< eδ/2.

But now we can apply (?) (since δ/2 and −δ/2 are both between −δ and δ) to get

1− ε < e−δ/2 <

(
1 + 1

x

)x
e

< eδ/2 < 1 + ε.

Since ε > 0 was arbitrary, this shows that

lim
x→∞

(
1 + 1

x

)x
e

= 1,

which implies that

lim
x→∞

(
1 +

1

x

)x
= e.
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(d) Go though the same process to argue that for all real a

ea = lim
x→∞

(
1 +

a

x

)x
.

Specifically:

• First, argue limy→0
log(1+ay)

y
= a.

• Next, argue limx→∞ x log(1 + a/x) = a.

• Finally, argue ea = limx→∞
(
1 + a

x

)x
.

Solution:

Step 1: (limy→0
log(1+ay)

y
= a)

By L’Hôpital’s rule

lim
y→0

log(1 + ay)

y
= lim

y→0

a
1+ay

1
= a.

Step 2: (limx→∞ x log(1 + a/x) = a)

We know that in general limx→∞ f(x) = limy→0+ f(1/y). So

lim
x→∞

x log(1 + a/x) = lim
y→0+

log(1 + ay)

y
= a.

Step 3: (ea = limx→∞
(
1 + a

x

)x
)

Fix ε > 0. We repeat the same argument as before.

Because exp is continuous at 0, we know that there is a δ > 0 such that for
−δ < x− a < δ,

1− ε < ex < 1 + ε (?).

We also know that limx→∞ x log(1 + a/x) = a, so there is N such that x > N
implies

|x log(1 + a/x)− a| < δ/2.

So, for x > N we have

−δ
2
< x log(1 + a/x)− a < δ

2
.

Exponentiating both sides, and using that exp is increasing, we get

e−δ/2 <

(
1 + a

x

)x
ea

< eδ/2.

But now we can apply (?) (since δ/2 and −δ/2 are both between −δ and δ) to get

1− ε < e−δ/2 <

(
1 + a

x

)x
ea

< eδ/2 < 1 + ε.

Since ε > 0 was arbitrary, this shows that

lim
x→∞

(
1 + a

x

)x
ea

= 1,

which implies that

lim
x→∞

(
1 +

a

x

)x
= ea.
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7. This gives an alternate proof of a basic estimate we proved in class.

(a) Prove that for all natural numbers n ≥ 1 and for all real x > 0 we have

n∑
k=0

xk

k!
≤ ex.

Solution: We’ll proceed by induction on n The base case n = 1 is the assertion
that ex ≥ 1 + x for x > 0. We’ll actually prove the inequality for x ≥ 0, using the
following lemma we proved in class:

Lemma: if f, g : [a,∞) → R are both differentiable, satisfy f(a) = g(a) and
f ′ ≥ g′ on [a,∞), then f ≥ g on [a,∞).

The base case follows from this taking f(x) = ex, g(x) = 1 + x and a = 0.

We now move to the induction step. Suppose that for some n ∈ N,
∑n

k=0
xk

k!
≤ ex

for all x > 0. We wish to show that

ex ≥ 1 + x+
x2

2
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
(1)

for x > 0; we will in fact show this for x ≥ 0. Set f(x) = ex and g(x) =
1 + x + x2

2
+ · · · + xn

n!
+ xn+1

(n+1)!
. Both functions are differentiable on [0,∞), and

f(0) = g(0) = 1. We have f ′(x) = ex and g′(x) = 1 + x+ x2

2
+ · · ·+ xn

n!
. We have

directly that f ′(0) = g′(0) = 1; for x > 0 we have by induction that f ′(x) ≥ g′(x).
So, by our lemma, (1) holds.

(b) Deduce

lim
x→∞

ex

xn
=∞.

Solution: We have, for any n ∈ N and x > 0,

ex ≥ 1 + x+
x2

2
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
≥ xn+1

(n+ 1)!

so
ex

xn
≥ x

(n+ 1)!
.

Since evidently x/(n+ 1)!→∞ as x→∞, we get that ex/n!→∞ as x→∞.

8. Newton’s law of cooling says that an object cools at a rate proportional to the difference
between its temperature and the temperature of the surrounding medium. Suppose
that an object has temperature T0 at time t = 0, and that the temperature of the
surrounding medium remains at a constant M throughout time.

Find the temperature of the object at time t (in terms of T0, M , and k, the implicit
constant of proportionality in Newton’s law).
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Solution: Let T (t) be the temperature at time t. Newton says that the function T
satisfies the equation

T ′(t) = −k(T (t)−M)

where k is some positive constant (the negative sign in the equation above indicates
that the object is cooling).

To solve for T , consider the function f(t) = T (t)−M , which satisfies the equation

f ′(t) = −kf(t).

One family of solutions to this equation is f(t) = ce−kt, where c is some constant; that
there are no other solutions follows from the same argument that we used to establish
that the only solutions to h′(x) = h(x) are h(x) = cex (all this is assuming that T is a
continuous function).

It follows that
T (t) = M + ce−kt.

We have an initial condition: T (0) = T0, from which we find that T0 = M + c or
c = T0 −M , leading to a solution

T (t) = M + (T0 −M)e−kt.
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