
Math 10850, Honors Calculus 1

Homework 4

Solutions

1. Prove the following identities. The main point here is that you should be working
towards laying out your proof in a clear and organized manner. Use the proof from
class that 1 + 2 + . . . + n = n(n + 1)/2 as a template.

• Begin the proof by saying that it will be a proof by induction on n.

• Verify the base case, and when you do so, clearly indicate that that is what you
are doing

• When you move onto to the induction step, clearly indicate that that is what you
are doing.

• In the induction step, explicitly state what you are assuming (the inductive
hypothesis), and then clearly deduce what you want to deduce.

• End with a concluding statement, along the lines of “By induction, we conclude
that . . .”.)

(a) For all natural numbers n,

n∑
k=1

k3 =

(
n(n + 1)

2

)2

.

Note that this says: the sum of the cubes of the first n numbers, is the same as
the square of the sum of the first n numbers; an odd fact!

Solution: We prove 13 + 23 + . . . + n3 = (1 + 2 + . . . + n)2 by induction on n.

Base case n = 1: We assert 13 = 12, which is true.

Induction step: We assume that for some n ≥ 1, 13+23+. . .+n3 = (1+2+. . .+n)2.
We have

13 +23 + . . .+n3 +(n+1)3 = (1+2+ . . .+n)2 +(n+1)3 (induction hypotheses).

We want to argue that the right-hand side above equals (1 + 2 + . . .+n+ (n+ 1))2.
We have (1 + 2 + . . . + n + (n + 1))2

= (1 + 2 + . . . + n)2 + 2(n + 1)(1 + 2 + . . . + n) + (n + 1)2 using (x + y)2 = x2 + 2xy + y2

= (1 + 2 + . . . + n)2 + 2(n + 1)
n(n + 1)

2
+ (n + 1)2 using 1 + 2 + . . . + n = n(n + 1)/2, which we proved in class

= (1 + 2 + . . . + n)2 + n(n + 1)2 + (n + 1)2

= (1 + 2 + . . . + n)2 + (n + 1)3.
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So 13 + 23 + . . . + n3 + (n + 1)3 = (1 + 2 + . . . + n + (n + 1))2, and we conclude by
induction that 13 + 23 + . . . + n3 = (1 + 2 + . . . + n)2 for all n ≥ 1.

(b) Remember that the Fibonacci numbers are defined by the recurrence relation

fn =


0 if n = 0
1 if n = 1

fn−1 + fn−2 if n ≥ 2.

Prove that for all n ≥ 0,
n∑

k=0

f 2
k = fnfn+1.

Solution: We proceed by induction on n, with the base case n = 0 being obvious.
For n ≥ 0, assuming

∑n
k=0 f

2
k = fnfn+1 we get

n+1∑
k=0

f 2
k = f 2

n+1 +
n+1∑
k=0

f 2
k

= f 2
n+1 + fnfn+1

= fn+1(fn+1 + fn)

= fn+1fn+2

= f(n+1)+1f(n+1),

and we are done by induction.

(c) For all natural numbers n,
n∑

k=1

(3k2 − 3k + 1) =???.

(Here I’ll leave it up to you to find the correct right-hand side — a simple expression
that doesn’t involve a sum — and then prove that what you have found is correct)

Solution: By checking a few small values of n, one can spot the pattern that∑n
i=1(3k

2 − 3k + 1) = n3, and then prove this, in a straightforward way, by
induction.

Base case (n = 1): this assets that (3(1)2 − 3(1) + 1) = 13, which is true.

Induction step: Suppose, for some n ≥ 1, that
n∑

k=1

(3k2 − 3k + 1) = n3.

We have
n+1∑
k=1

(3k2 − 3k + 1) =

(
n∑

k=1

(3k2 − 3k + 1)

)
+ (3(n + 1)2 − 3(n + 1) + 1)

= n3 + (3n2 + 3n + 1) (induction hypothesis and algebra)

= (n + 1)3 (binomial theorem, or algebra.)

So the identity is proven by induction.
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2. (a) Let r be a real number that’s not equal to 1. Prove by induction on n that

1 + r + r2 + . . . + rn =
1− rn+1

1− r
.

Solution (sketch; see earlier for examples of fully written out induction proofs):
The base case n = 1 is the assertion that for all r 6= 1, 1 + r = (1− r2)/(1− r),
which is easy to verify.

For the induction step:

1 + r + r2 + . . . + rn + rn+1 =
1− rn+1

1− r
+ rn+1

=
1− rn+1 + (1− r)rn+1

1− r

=
1− rn+1 + rn+1 − rn+2

1− r

=
1− rn+2

1− r
.

(b) Set
S = 1 + r + r2 + . . . + rn.

By multiplying both sides by r and doing some algebraic manipulation on the two
equations, give a different (non-induction) proof of the result from the part (a).

Solution, part (b): Let

S = 1 + r + r2 + . . . + rn.

We have
rS = r + r2 + . . . + rn + rn+1,

and so

(1− r)S = S − rS = 1 + r + r2 + . . . + rn − (r + r2 + . . . + rn + rn+1) = 1− rn+1

(the last equality by rearranging terms to cancel r with −r, r2 with −r2, etc.).
Dividing through by 1− r (which is valid since r 6= 1) we get

S =
1− rn+1

1− r
.

3. In class we defined the expression an for all real a and all natural numbers n, via a
recursive definition. Prove (by induction) that for all natural numbers n and m we have

an+m = anam.
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(Hint: don’t try to be too fancy with the induction; pick either induction on n or
induction on m, but not both at once.)

Solution: Let p(m) be the predicate “For all real a, and for all Natural numbers n ≥ 1,
an+m = anam”. We prove p(m) for all Natural numbers m ≥ 1 by induction on m.

Base case n = 1: We want to show an+1 = ana for all n ≥ 1 and for all real a. Using
commutativity (ana = aan) this becomes simply the definition of an+1, so is true.

Induction step: We assume that for some m ≥ 1, p(m) is true. We want to argue that
p(m + 1) is true. Let a be a real number, and n a Natural number. We want to argue
that an+(m+1) = anam+1. By associativity (first equality), definition (second equality),
induction hypothesis (third equality), commutativity and associativity (fourth equality)
and definition (fifth equality)

an+(m+1) = a(n+m)+1 = aan+m = a(anam) = an(aam) = anam+1,

as required. Since this argument was for all real a and all Natural numbers n, we have
verified that p(m) implies p(m + 1). By induction, p(m) is true for all m ≥ 1.

4. Prove that if p, q are rational numbers, x = p +
√
q, and m is a natural number, then

xm = a + b
√
q for some rational numbers a, b.

Solution: We are given that p and q are rational numbers. Let p(m) be the predicate
“(∃a)(∃b)((a ∈ Q)∧(b ∈ Q)∧((p+

√
q)m = a+b

√
q))”. We prove (∀m)p(m) by induction

on m.

The base case m = 1 is easy: we may take a = p and b = 1.

For the induction step, suppose that (p +
√
q)m = a + b

√
q for some rationals a and b.

Then

(p +
√
q)m+1 = (p +

√
q)(p +

√
q)m

= (p +
√
q)(a + b

√
q)

= ap + bp
√
q + a

√
q + b

√
q
√
q

= (ap + bq) + (a + bp)
√
q.

Since ap+ bq, a+ bp are both rational, we infer p(m+ 1) from p(m), and so we conclude
(∀m)p(m) by induction.

Here is an alternate solution: By the binomial theorem,

(p+
√
q)m =

(
m

0

)
pm(
√
q)0+

(
m

1

)
pm−1(

√
q)1+· · ·+

(
m

m− 1

)
p1(
√
q)m−1+

(
m

m

)
p0(
√
q)m.

There are two kinds of term in this sum:

•
(
m
k

)
pm−k(

√
q)k where k is even. Each one of these terms is rational: it is(

m
k

)
pm−kqk/2. Gathering (adding) all these terms together gives a rational number

a.
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•
(
m
k

)
pm−k(

√
q)k where k is odd. Each one of these terms is a rational number

multiplied by
√
q: it is

(
m
k

)
pm−kq(k−1)/2√q. Gathering (adding) all these terms

together gives a b
√
q for some rational number b.

5. Identify1 the error in the following proof of the claim “All cows are the same color”:

Let p(n) be the predicate “any n cows are the same color”. We prove that p(n) is true
for all n ≥ 1 (and so that all cows are the same color), by induction on n.

Base case n = 1: any one cow is a set of cows all of which are the same color (whatever
color the cow under consideration is). So p(1) is true.

Induction step: Suppose that for some n ≥ 1, p(n) is true. Let

{Cow1,Cow2, . . . ,Cown,Cown+1}

be a set of n + 1 cows. By the induction hypothesis (the fact that p(n) is True), all
of Cow1, Cow2, . . ., Cown are the same color; call that color C. Also by the induction
hypothesis, all of Cow2, Cow3, . . ., Cown, Cown+1 are the same color (this is another
collection of n cows). That common color must be C, because Cow2 (for example) is
colored C, from the first application of induction hypothesis. It follows that all of Cow1,
Cow2, . . ., Cown, Cown+1 are the same color, C, and so p(n + 1) is True.

By induction, we conclude that p(n) is True for all n ≥ 1, and so all cows are the same
color.

Solution: The error is the following: it is not necessarily the case that there is a cow
in common to the sets

Cow1, Cow2, . . ., Cown

and
Cow2, Cow3, . . ., Cown, Cown+1.

Specifically, if n = 1 then the first set consists of only Cow1, while the second set
consists of only Cow2. Each set consists of a set of cows that are the same color, but
because there is no cow in common to the sets, we cannot conclude that both cows are
the same color.

If n > 1 then the argument is fine. So this is a situation where p(1) is True, and the
truth of p(n) implies the truth of p(n + 1) for all n except n = 1; this is enough for
induction to fail.

6. The Fibonacci numbers (defined in question 1) are very closely related to the golden
ratio, the number (1 +

√
5)/2 ≈ 1.618, that is often denoted ϕ.

(a) Prove (most easily by induction on n) that for n ≥ 1,

fn ≤ ϕn−1.

1Clearly identify the specific error — vagueness not acceptable here!
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(Be careful! There’s a slight trap in this question, into which you may fall if you
are not careful.)

Solution: We proceed by induction on n, with the base case n = 1 trivial
(f1 = 1 = ϕ0).

For the induction step, assume that for some arbitrary n ≥ 1 we have fn ≤ ϕn−1.
We have

fn+1 = fn + fn−1 (definition)

≤ ϕn−1 + ϕn−2 (induction hypothesis)

= ϕn−2(ϕ + 1)

= ϕn−2(ϕ2) (simple algebra)

= ϕn = ϕ(n+1)−1,

and so, by induction on n, fn ≤ ϕn−1 for all n.

Where was the trap? There are two.

1 The induction hypothesis fn ≤ ϕn−1 does not also allow us to assume fn−1 ≤
ϕn−2, but in the above proof we did in fact do that. The fix is to use the
principle of strong induction, which in the induction step allows us to derive
p(n + 1) from all of p(1), p(2), . . . , p(n).

2 Even with the above issue dealt with, there is a problem right at the first step
of the induction, at n = 1. When you write

f2 = f1 + f + 0

and by induction bound f1 ≤ ϕ0, you can’t also bound f0 ≤ ϕ−1 “by induction”
(which is what the solution is doing), because this clause is definitely not part
of the statement to be proven. So the above argument has a gap at n = 1,
that is, in proving f2 ≤ ϕ.
One fix is to deal with the f2 separately; consider it another base case. The
assertion to be proven is that f2 ≤ ϕ, which is trivial. Then move on to the
induction step, assuming n ≥ 2.
Another fix is to initially observe that the claimed bound also works for n = 0,
because f0 = 0 ≤ ϕ−1, and then proceed with the induction above.
In either case, the fix is to verify two base cases before moving on to the
induction step — either n = 1, 2 or n = 0, 1. This often happens when proving
things by induction about sequences defined recursively.

(b) Prove that that for n ≥ 1
fn ≥ ϕn−2.

Solution: We proceed by strong induction on n. When n = 1 the assertion is

f1 ≥ ϕ−1,

which is true since 1 ≥ 2/(1 +
√

5).
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We also verify directly the case n = 2, which asserts (correctly)

1 ≥ 1.

Notice here that we cannot verify n = 0, and use induction for n = 2, because
here the n = 0 case (0 ≥ ϕ−2) is false.

Now we proceed to the induction step. Assume that for some arbitrary n ≥ 2, we
know that assertion is true for all k, 1 ≤ k ≤ n. We have

fn+1 = fn + fn−1 (definition)

≥ ϕn−2 + ϕn−3 (induction hypothesis)

= ϕn−3(ϕ + 1)

= ϕn−3(ϕ2) (simple algebra)

= ϕn−1 = ϕ(n+1)−2,

and so, by induction on n, fn ≥ ϕn−2 for all n ≥ 1.

Note: These two parts together show that fn grows roughly at the same rate as ϕn;
specifically, for all n ≥ 1

0.3819 ≈ 1

ϕ2
≤ fn

ϕn
≤ 1

ϕ
≈ 0.6180.

It’s possible to be more precise, and show that for all large n

fn
ϕn
≈ 1√

5
≈ 0.4472.

(And it’s possible to be much more precise, and give an exact formula for fn in terms
of ϕ).

7. Prove that for all natural numbers n, the expression

2× 7n + 3× 5n − 5

is divisible by 24. (It will be helpful to know that if a divides b, and a divides c, then a
divides any linear combination of b and c; that is, a divides mb + nc for every pair of
integers m,n).

Solution: We proceed by (an outer) induction on n, with the base case n = 1
straightforward.

For the induction step, suppose that 24 divides 2× 7n + 3× 5n − 5, and consider the
number

2× 7n+1 + 3× 5n+1 − 5.

We wish to show that this number is divisible by 24. Now

2× 7n+1 + 3× 5n+1 − 5 = 14× 7n + 15× 5n − 5

= 5 (2× 7n + 3× 5n − 5) + 4× 7n + 20.
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By induction we know that 24 divides 5 (2× 7n + 3× 5n − 5), show we need to show
that also 24 divides 4× 7n + 20, which is the same as showing that 6 divides 7n + 5.
We prove this by (an inner) induction on n, with the base case n = 1 easy. For the
induction step, note that

7n+1 + 5 = 7(7n + 5)− 30.

By the (inner) induction hypothesis, 6 divides 7(7n + 5), and since also 6 divides 30 we
get that 6 divides 7n+1 + 5, completing the (inner) induction, and so also completing
the (outer) induction.

In this example we had an induction within an induction, which of course is perfectly
OK — the “inner” induction makes no reference to the “outer” one.

8. Prove the generalized triangle inequality: for all natural numbers n, if x1, x2, . . . , xn

are real numbers, then

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.

Solution: We proceed by induction on n. The base case n = 1 is trivial. The case
n = 2 is the ordinary triangle inequality, which we have proven in class.

For n ≥ 2, assume |x1 + x2 + · · · + xn| ≤ |x1| + |x2| + · · · + |xn| for all real numbers
x1, x2, . . . , xn, and let x1, x2, . . . , xn, xn+1 be any collection of n + 1 real numbers. We
have

|x1 + x2 + · · ·+ xn + xn+1| = |x1 + x2 + · · ·+ xn−1 + (xn + xn+1)|
≤ |x1|+ |x2|+ · · ·+ |xn−1|+ |xn + xn+1| (induction hypothesis)

= |x1|+ |x2|+ · · ·+ |xn|+ |xn+1| (ordinary triangle inequality),

and we are done by induction.

Alternatively, we have

|x1 + x2 + · · ·+ xn + xn+1| = |(x1 + x2 + · · ·+ xn) + xn+1|
≤ |x1 + x2 + · · ·+ xn|+ |xn+1| (ordinary triangle inequality)

= |x1|+ |x2|+ · · ·+ |xn−1|+ |xn|+ |xn+1| (induction hypothesis),

and again we are done by induction.

9. For whole numbers n ≥ ` ≥ 0 let

f(n, `) =
∑̀
k=0

(−1)k
(
n

k

)
(so f(n, `) is the alternating sum of the entries along the nth row of Pascal’s triangle,
up to and including the term

(
n
`

)
). For example

• f(0, 0) = (−1)0
(
0
0

)
= 1,
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• f(1, 0) = (−1)0
(
1
0

)
= 1,

• f(1, 1) = (−1)0
(
1
0

)
+ (−1)1

(
1
1

)
= 0,

• f(2, 0) = (−1)0
(
2
0

)
= 1,

• f(2, 1) = (−1)0
(
2
0

)
+ (−1)1

(
2
1

)
= −1,

• f(2, 2) = (−1)0
(
2
0

)
+ (−1)1

(
2
1

)
+ (−1)2

(
2
2

)
= 0, and

• f(5, 3) = (−1)0
(
5
0

)
+ (−1)1

(
5
1

)
+ (−1)2

(
5
2

)
+ (−1)3

(
5
3

)
= −4.

By computing f(n, `) for a bunch more small values of n and ` (by hand, or by
computer), conjecture a simple formula for f(n, `) and prove that the formula is correct.

Solution: After calculating a bunch of values, it appears that

f(n, `) =


1 if n = ` = 0
0 if n = ` > 0

(−1)`
(
n−1
`

)
otherwise.

To prove this, first note that the case n = ` = 0 is an easy calculation. For n = ` > 0,
we use the binomial theorem:

0 = 0n = ((−1) + 1)n =
n∑

k=0

(
n

k

)
(−1)k(1)n−k = f(n, n).

That leaves the remaining cases, where n > ` and n > 0. For each fixed n, we prove by
induction on ` the predicate p(`):

∑`
k=0(−1)k

(
n
k

)
= (−1)`

(
n−1
`

)
. The base case ` = 0 is

easy: both sides evaluate to 1. For the induction step, suppose p(`) is true. We have

`+1∑
k=0

(−1)k
(
n

k

)
=

(∑̀
k=0

(−1)k
(
n

k

))
+ (−1)`+1

(
n

` + 1

)
= (−1)`

(
n− 1

`

)
+ (−1)`+1

(
n

` + 1

)
(induction hypothesis)

= (−1)`
((

n− 1

`

)
−
(

n

` + 1

))
= (−1)`

(
−
(
n− 1

` + 1

))
(Pascal’s identity)

= (−1)`+1

(
n− 1

` + 1

)
,

and we are done by induction.

But wait, what is going on here? We are using induction to prove p(`) for finitely many
values of `, namely ` = 0, 1, . . . , n− 1, whereas induction (as we have seen it) is used to
prove things for infinitely many values of the parameter! And here, the predicate we are
proving doesn’t even make sense for ` ≥ n (since it involves a binomial coefficient where

9



the number downstairs is bigger than the number upstairs, and we haven’t defined such
a monster).

In fact, induction is often used to prove statements like this for finite ranges of a
parameter, and it’s all perfectly legitimate. What’s really happening is this: the
predicate we are proving, for all ` ≥ 0, is

p(`) : 0 ≤ ` < n implies
∑`

k=0(−1)k
(
n
k

)
= (−1)`

(
n−1
`

)
or, equivalently,

p(`) : ` ≥ n or
∑`

k=0(−1)k
(
n
k

)
= (−1)`

(
n−1
`

)
The induction step that we have described (showing p(`) implies p(`+1)) works perfectly
in the case 0 ≤ ` < n. If ` ≥ n, then we have a different, trivial, induction step: p(`)
implies p(` + 1) in this case trivially, because both the premise and the hypothesis in
this case are just plain true, so the implication is true.

10. In class we saw that the general associative law — no matter how parentheses are
placed around the expression a1 + a2 + . . . + an, the sum is still the same — follows
from the associativity axiom.

Show that the general commutative law — no matter what order a1, a2, . . . , an are
added in, the sum is still the same — follows from the commutativity axiom a+b = b+a.
You may assume the general associative law.

(As a specific clarifying example, the case n = 3 of the general commutative law says
that a + b + c, a + c + b, b + a + c, b + c + a, c + a + b and c + b + a are all the same.)

Solution: Some notation will be useful. Write GCA(n) for the predicate “for all real
numbers a1, . . . , an, no matter what order a1, a2, . . . , an are added in, the sum is still
the same”.

We will prove (∀n)GCA(n) by complete induction on n. The base case GCA(1) requires
nothing to prove, and the base case GCA(2) is the commutativity axiom. Now suppose
that for some n, we know GCA(k) for all k in the range 1 ≤ k ≤ n. We will show
GCA(n + 1), by showing that for all real numbers a1, . . . , an, an+1, no matter what
order a1, a2, . . . , an, an+1 are added in, the sum is always the same as the natural sum
N(a1, . . . , an+1) = a1 + a2 + · · ·+ an+1.

So, let n + 1 real numbers a1, . . . , an+1 be given. Let S be a summing of the numbers
in some order. We precede by cases.

Case 1: S = SOMETHING+an+1. In this case, by GCA(n) we have SOMETHING =
N(a1, . . . , an) = a1 + · · ·+an so S = a1 + · · ·+an +an+1 = N(a1, . . . , an+1), as required.

Case 2 S = SOMETHING1 + an+1 + SOMETHING2, where SOMETHING1 might
be empty, but SOMETHING2 is not empty (i.e., is genuinely the sum of some of the
ai). In this case we can use commutativity (GCA(2)) to write S = SOMETHING1 +
SOMETHING2 +an+1. We are now back is Case 1, and the argument given there shows
S = a1 + · · ·+ an + an+1 = N(a1, . . . , an+1), as required.

So, by strong induction, we are done.
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(But really this was only strong induction because we used GCA(2) as well as GCA(n)
to deduce GCA(n + 1). Had we appealed to “commutativity” rather than GCA(2), we
could have called this a proof by ordinary induction.)
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