Lecture No. 10
References: Celia and Gray, 214-253; Roache, 33-91; Pinder and Gray, 150-157.

Convection-Diffusion Equation
ou du o%u

V = velocity (convection or advection)
D = diffusion
« Model equation for computational fluid mechanics

« Represents convective and diffusive transport

The convection-diffusion equations represents:

» Transport of pollutants ~
» Transport of momentum (Burgers and Navier-Stokes equations)

« Transport of turbulence

Numerical Solution to this equation is plagued by various numerical accuracy and/
or stability problems. Typically these problems arise when convection dominates

diffusion in which case wiggles or node to node type oscillations appear in the solu-

tion.
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Oscillations appear when

where P, = Peclet number (equals cell Reynolds number in the case of the
Navier-Stokes equations).

In addition the peak is damped and phase lag of the distribution may be seen. |

Explicit Solution to the Convection-Diffusion Equation

Let us examine the use of the forward in time central in space (FTCS) FD solution

to the convection-diffusion (C-D) equation (i.e. the explicit solution):

i—1,f

Uij+1 %ij _ _V”i+1,j‘“i—1,j+D“i+1,j‘2ui,j+”
At 2Ax A2

Heuristic Approach to Stability of the Expliciﬂy Discretized C-D Equation

The explicit solution to the C-D equation can be re-written as:

_ VAt DAt
el = ¥ij " gag et~ %i-1,)) 2 Uy, ;=20 5+, j)

Let’s assume that the solution or at least part of the actnal solution can be represent-
ed by a solution which oscillates from node to node with the amplitude of the oscil-

lation increasing with x (a pretty reasonable assumption as we shall see later).
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We w111 assume that we want these spatial oscillations to be damped out or at least
that we do not want their absolute values to grow in time! Due to the linearity of the
p.d.e. we are considering, we can examine the solution components due to the diffu-
sion and convection terms separately.

(i) The time varying solution due to the diffusion term:

- DAt

Ui j+1 = Y45 AL

Since ”i,j<0 ui+1,j>0 and ”i—l,j>0

=

Thus u; 1Y and the diffusion term compensates (or corrects) u; I How-

o]
it : -
—Qi; is too large, the correction overshoots and the absolute value of the so-

Iution grows. Thus the solution is no longer damped and:

ever if
[y, 51> |4,
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This type of instability is known as a Dynamic Instability.
AtD
Thus we must have a constraint on At for stability which relates to Zt;z— If this

constraint is not satisfied, the solution grows and oscillates in time as well as in

space.

(ii) The time varying solution due to the convection term:

_ VAt
Upj+1 = Y75, (g1, )= Uio1, )

Assume:

V>0 and ui,j<0

”i+1,j>0 and ui_l’j>0‘and Uy, > U1,

Thus:
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Thus we always have
43,501 > |24,

Therefore the solution always grows monotonically. This is known as a static insta-

bility.

« Thus the unstable behavior of the convection (or advection) term is different
from that of the diffusion term. We see steady growth.

« In reality both the convection and diffusion solutions are combined and stability

will depend on the ratio of diffusion and convection.

Fourier Analysis of the C-D Equation
Let us examine the weighted implicit/explicit central space discretization to:

ou _odu o2u

—a—r‘f'V—aTx- =D-é?
=
Up g+1 " Hpg =~ [0 (8,1 gu1 = Upo1,qeD) T (1=8) (g =2y )]

+p [e(upﬂlqﬂ—Zup,q+1+up_1,q+1) +(1-96) (up+1’q—2up,q+up_1’q)]

where
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Cy = % = Courant Number
and recall that:
0 = the implicit fraction
6 = 0 fully explicit (FTCS)
6 = 0.5 Crank-Nicolson (central time)
6 = 1.0 fully implicit (BTCS)

We assume that the solution may be represented by a Fourier series in time and

space:

-+ oa
u(xt) = Y U,exp (fant-!-'iﬁnx),

n:-—-m

where
o, = frequency

2n
B, = wave number = =

n

Due to linearity we need only consider 1 component:

e e}
.t 1f x

'u(x,t) =Ue "e

Since x = pAx and t = qAt :

_ él’anthe't’Bnpr
b q n :
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We define the amplification factor in time as:

ioauAt

E, =¢€
Thus
1B, pAx

Uy g = Untj,ge

Recall that & , equals the amplification factor in time for component # such that:
By nr = Sply

Substituting into the FD equation:

B pAx B.pA C B, (p+1)A
elﬂnp gg-‘-l_elﬁnp x&g - __T# (e(elB r xég-}-l
ip, (p—1)Ax B (p+1)A B (p-1)A
—e? £a+1) + (1-0) (PP ¥ D ea_ PP D Mgy

+p|:9 (eiBn(p'l' I)Axgi_i_l_zelﬁnpﬂxgﬁ_l_l +eil3n(p—1)Ax§g+1)
2 1 ~ 2 _
+ (1-0) (PP DAg_ o BePhrgg a = 0%egy |

=

iB Ax —IB_Ax i3 Ax -iB Ax
eﬁ e B, B, e 8, )]

)E, +(1-8) (e
p[0(® P g 4 1m0 (PP |
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However recall that:

Pt oA 2cosP, Ax

AT AT o3ing Ax
thus
C# A . Ty
E_,n -1= - [6 (ZzsmBnAx) &n + (1-6) (2ism[3nAx) ]
+p[6 (ZCOSBnAx— 2) én_+ (1-06) (2cos[3nAx -2)]
-
£, {1+6 [C#?sianAx+2p (1 _ cosB Ax)1} =

{1~ (1-8) [Cyisin Ax+2p (1—cosp,Ax)]}

=

1- (1-0) [C,isinB Ax+2p (1~ cosB, Ax)]
" 1+0[CylsinB Ax+2p (1— cosB,Ax)]

Let’s exatrﬁne cases ® = 0,0 = 0.5and 6 = 1.0.
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Fully Explicit Solution to the C-D Equation: 0 =20
& = 1-2p(1-cosP,Ax) —iCysinB, Ax

« Note that the amplification factor is now complex. This relates to the phase of
propagation.

« IfC, = 0(ie. V = 0)thenthe amplification factor will reduce down to that of
the pure diffusion equation (i.e. there is no complex component in &€). The phase
component of & is always zero since there’s no propagation.

« Therefore we only have a phase component if |V] >0 and there is propagation.

« If we have a phase, this numerically computed phase may differ from the ana-
lytical phase. This leads to PHASE ERRORS which creates wiggles or pertur-

bations on the salutian which look like those assumed in the Heuristic

approach.

« Stability still requires that
&l =1

To satisfy the stability condition, we must compute the amplitude of the complex

amplification factor.
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We rewrite the equation for & as:
g, = (1-2p) +(2p) cosB, Ax—iCysinf Ax
In order for |§n| to fall within the unit circle. i.e. for |§ A= 1, we must satisfy:
Cy<1land Cy2<2p

These limits are plotted in Figure L.10.1 in conjunction with the Peclet number, P,,.

We note that P, = ?# and therefore:

2C
2 #
2
< .
C#_.Pe ]
2.
< .
PS

Due to the constraints on C# < 1, we have a combined most restrictive limit:

P,<2 and Cy<l

+  Note that for D = 0 (zero diffusion, pure convection), the explicit approach
is unconditionally unstable. It will not work no matter héw small we make At.

» This case represents a static instability.

10-10



FT?LID.I i
Stability range for FTCS 1.0 I
(forward-time, central differ-
encing) of T-D equations 0.9
(after Leonard, 1979)
0.8 P
0.7 '
0.6 t
0.5 1.0
¢ 04
0.3
1 0.5
0.2
0.1 0.2
0 : e PRy N W S
0 01 02 03 04 05

S

UNSTABLE

12 oet

0.6}

o4f

0.2

0.0 L 1 ! 1 .
WAVELENGTH /Ax

ot ted
Amplificafion Facfor of Hamsport 2gvahon using o wed -
implicit/ovplicit mefhod ( @ is tume Wﬂ-‘ﬁ‘fﬂ-'fma 'ﬁ‘mﬁ:()
€= te ,p=el , Bzio; & vaudis

10 -10k



Fully Implicit Solution to the C-D Equation: 6 = 1

_ 1
: 1+ C#?sin (B,Ax) +2p[1-cos (B, Ax)]
Let
a= 1+2p[1—cos(BnAx)]

b = Cysinf Ax

Thus:

_ a-—ib
a* + b?

a? + b*

[a® + b?]

g% =

g2 =

a* + b*
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1

2 p— | .
g 1+4p[1—cos (BnAx)] +4p2{1—cos (B,Ax) ] 24 C#zsin2 (B,Ax)
However |
1 - cos (B,Ax) = 2sin’ (2B, Ax)
A
Thus
IFDIZ = . 2 2 . 12 . 2
1+ 8psin” (2P _Ax) +8p?sin” (2B,Ax) +Cy2sin (B,Ax)
2z 2

[A
However p >0, Cy >0 and sin? > 0, therefore:

<1

« Hence the implicit solution to the C-D equation is Unconditionally Stable.

Crank-Nicolson Solution to the C-D Equation: 8 = 0.5

Crank-Nicolson solutions to the C-D equation can be shown to be unconditionally

stable as well.
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Notes on Stability:
Let us examine how stability varies with

E _ wavelength 27

Ax A , where ?Ln = N and
n

B, = wave number. We have examined stability problems. (using the Heuristic

approach) associated with very short wavelength components of the solution.

The quesﬁon which arises is how ]E_, " varies with different wavelength components.
Let us examine Figure L10.2. Note that this plot is for a very specific selection of
C# and P, values.

« The shortest possible wavelength is always 2 - Ax.

» For 0 = 0, the unstable behavior is particularly severe for the short near 2 - Ax
wavelengths while for long wavelengths the solution appears to approach stabil-
ity. However the severe instabilities at the short wavelengths will always de-

~ stroy the entire solution (since these always exist due to poor resolution of the
i,c., roundoff error and/or nonlinear transfer of energy to high wavenumbers).
« ForO = 0.5,1.0,we nofe that the solution is stable for all wavelengths. In fact

our analysis showed this to be true for all C4 and P, values.
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Lecture No. 11

References: Pinder and Gray, p. 150-169, Roache, p. 33-94, Peyret and Taylor, p 18-
28; 37-65.

Summary of the FD schemes examined:
» Fully explicit, central space
- Stability requires P, <2, Cy < 1.0
- accuracy 0 (At, Ax?‘)
» Crank-Nicolson, central space
- unconditionally stable
- accuracy 0 (Atz, Ax?)
» Fully implicit, central space
- unconditionally stable
- accuracy 0 (At, Ax?)

Numerical Experiments of 1-D FD Solutions to the C-D Equation

Examine Figures L.11.1a through L11.4c.

VAt
» Recall ;h;t Cy = A and that we vary At to vary Cy.
s P = —x, and that we vary D to vary P, (note that D = 0 leadsto P, = oo).

€ D

Summary of observations

Fully explicit scheme is statically unstable when P, > 2 and dynamically unsta-
ble when Cy4 21.0. -

«  ( — N scheme is unconditionally stable. However the solutions do exhibit wig-

gles for P > 2.
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« Fully implicit scheme is unconditionally stable. The solution has wiggles for
P.>2 at low Cy but does not at high C, where the solution is excessively

damped.

Fourier Analysis to Analyze the Behavior of Numerical Solutions

» So far Fourier analysis has only indicated whether a solution or a component of
a solution will experience unstable growth.

» Typically the short wavelength components of the solution are the features
which lead to stability problems (see Figure 1.10.1).

s Fourier Analysis can also be used to investigate the accuracy of a numerical
solution!

. .By comparing the results of a Fourier analysis of the exact p.d.e., with those
of the difference equation, we can get d handle on how our scheme performs.

+ Therefore we examine the Fourier components of a solution as they are propa-
gated analytically and numerically. This gives substanﬁal information regarding

the accuracy of a numerical scheme.

Fourier .Analysis of the Analytical Solution

ou du o%u

Let the general solution be represented by the Fourier Series:
-+ oa

1 = Z U exp ['f(xnt-l—'f[}nx]

n=—oo
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where

o, = frequency of the n'" component
B, = spatial frequency or wave number
1 =41

Since the p.d.e. is linear we need only examine 1 component of the Fourier series.

Therefore:

w=U exp[io t+if x]

Now we can determine the relationship between wave number 3, and frequency o

in addition to the analytical amplification factor, &n, by substituting into the p.d.e.:
Un?anexp [?ant + ?an] + VUn'anexp ['f(xnt + ?an]

2209 2 4
= Di B U, exp [io, t+1B x]

o = Bn (‘I}DB,,1 ~ V) Dr speaiion Mmﬂ:m;b”

« Thus frequency is a function of wave number.

Substituting o, back into the solution for u, we have:

u=U, exp [?Bn (x—Vt) ] exp [-BiDt]
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* The first portion of this solution represents translation of a Fourier component.

* The second portion represents the amplitnde modification of a Fourier compo-
nent.

* The amplitude and phase of a numerical solution component with wavenum-

ber 3 , do not necessarily coincide with these analytical values.

Let’s relate the expression for u to the amplification factor &.
* Recallthat i, 5, = € u,

lDf.nAt

» andthatg = e
* However we found that o = B (';EDBM -V

Therefore the analytical amplification factor for solution component » with wave-

number f :

e‘fﬁn (iDB, - V) At

G =

=

-DBiAfe—?VBnAf

e

E,n = [COS (BnVAI) —?Sin (BnVAt)] e—DBiAt

Thus the amplitude of the analytical amplification factor is:
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~2DB*A -2DB?
[§n|2 = cosz(BHVAt)e g g sinz(BnVAr)e ?DB“N
=
—2DR2At
B =

. |§n| represents the ratio of the magnitude of the analytical wave after one time
step to its magnitude at the beginning of that time step.

* Note on complex numbers:

72 =u+iv

z = r{cosd+ising) = re

where

r= ,,/L12+v2 and o = tan™! (E)

i

| The phase of analytical amplification factor is:

, 3 —D2A: —iVB At

ei¢n _ n _ &€ e _ e—?VBnAI
: lﬁnl ' e—BleAt
=
¢ = -VB At
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Fourier Analysis of the Numerical Solution

We use an identical procedure as was used in the analysis of the amplification factor

for the weighted implicit/explicit solution (previously used to study stability).

C
#
Upq+1 YpqT 73 [OCu, 1,417 8p-1,q40) T (1=0) (uppq g—ty g )]

—p [9(up+1,q+1—2up:q+1fup_l’q+1) + (1-8) (U 1, g= 2ty o+ Uy q )]

We assume that the solution can be represented by

+ ca
u(x,t) = Z U,exp (?oc'nt-}-f[f’nx)
f=—ca
* We note that the frequency o' obtained in the numerical solution does not nec-
essarily equal to that obtained in the analytical solution.

Again due to linearity considerations we need only consider 1 component of the so-

lution series:

o't iB x
u(x,t) =U.e "eB"

io' gAt if pAx
p— n H
Uy g = Une e

We again define the amplification factor (for the numerical solution} as:

' ?a'nAt
£ =e
) n
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» We note that é'n equals the amplification factor for the numerical solution in

time such that:
_ t
uP,9+1 - énu'p,q

Therefore

_ g ?BnpA:c
iy g = U,Ee

We substitute i, g into our FD equation to find:

1— (1-0) {Cyisin (B, Ax) +2p{1—-cos(B,Ax)]}
" 1+0{C,isin(B _Ax) +2p[1-cos (B Ax)]}

1

«  For stability we must have l?’;'nl <1.0

Comparison of the Analytical and the Numerical Amplification Factors

» We must examine both the ratio of the amplitudes and of the phases.
e 'We normalize the comparisons by comparing the amplification factors for each

wave component after that component has propagated its full wavelength.

A = VN At
n 1

where N, = the number of required time steps required for A, to propagate 1

wavelength:
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* Recall that wavelength A, = o

Ratio of the Computed to Actual (Analvtical) Amplitude After Propagating 1
Wavelength

. g 17V
computed amplitude _ P n]:|

Ry = actual amplitude m

=

T BT
A exp(——BiDAt)

=

_— 5
Ra = {exp (—-4n?p (Ax[ A 2y }

Now substitute in ‘é'n| from the amplification factor analysis completed for the nu-

merical solution.

See the plots for the amplitude ratio; R,,in Figures I.11.5 and L.11.6.
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The amplitude ratio, R ,, may be greater or smaller than 1.0.

Ratio = 1.0 for all %, indicates that the amplitude of the numerical solution is
perfect for all wavelengths.

Ratio < 1.0, indicates that the numerical solution is damped more than the ana-
lytical solution.

Ratio << 1, indicates an excessively damped numerical solution.

Ratio > 1.0, numerical solution damps less than the analytical solution. Howev-
er the solution is not necessarily unstable since this is only the ratio. We must
check Iﬁ’n| for stability (e.g. see Figure L10.2).

For the case shown in Figure L11.6, we note that the fully implicit solution

(6 = 1.0) exhibits greater damping than the C — N case (0 = 0.5) . This is es-
pecially true when C, gets larger (i.e. closer to umty). We found this to be the
case for the fully implicit solutions in our numerical experiments. Let’s compare
ratio’s, R, at 6 = 1.0 for different C values. Examining Figure L11.6.

- Shows tha;c for0 = 1,P, = e and C# = 0.1, the ratio is R, = 1 Therefore
neither short wavelengths (wiggles) ﬁor longér wavelength components of the
solution are significantly damped.

- - Shows thatfor @ = 1, P, = e and C4 = 1.1, the ratio R,<< 1 for a very
large range of '?\,n/ Ax. Therefore both short (wiggles) and long wavelength
components of the solution will be excessively damped.

- Shows that for 8 = 0.5, P,= e and C; = 0.1 and 1.1, the ratio R, = 1
for all 7\.”/ Ax. Therefore we expect no damping greater than the analytical solu-
tion for all wavelengths (thus wiggles are not eliminated).

11-9



l-E'-I' T-_i% Lu-5
1L6F
14+
1.2}
E 1.0}
&
2 o8l
=
L=
1]
<
o
06}
Q4
G2
0.0 ! 1 . 1 |
1.0 50 100 500 100.0
WAVELENGTH/AX
Fig. 5.13. Amplitude ratio for the single equation finite element { ) and finite dilference
- ——) methods, where D = 0.069 and €= 0.369. =S ver By
---) P e [ TEE . ‘Lb'_‘" =536
Tev L
Pl
e*r
= 4 Li-6

_ compukd omplitudy

Ra

aethual arnplliude_

iz T2 Frr <\ casas

d:Eo.l_,!.lJ- g=0.%

0.6

0.4

-
pmmm————

LN 3 1 i I i
40 60 B0 100 120 140 160 180 200




« A perfect numerical solution would have the ratio R, = 1 for all ln/ Ax.
o Ideally we would like a scheme such that the rafio R,<<1 only for small
A /Ax and R, =1 for all other ) /Ax. Reasons for this include the computa-

tion of gradients of a solution as well as nonlinear energy transfer.

Comparison of Analytical and Numerical Phase (Phase La
Phase lag equals phase of the computed solution relative to the actnal solution after

that wave has propagated one complete wavelength:

® = _¢1nNII+¢nNH

where

¢'_= the phase of the numerical solution

¢, = the phase of the analytical solution

N, = the number of time steps to propagate 1 wavelength

@ = phase lag |
Recall that

"._knAx
n " Ax VAt

and

2
o = VB At = —Va At
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Thus

: on A, Ax
=

non

®=—¢' N —2m

@ relates to numerical dispersion. Certain wavelength components of the solution
don’t have the correct frequency and therefore do not propagate at the correct speed.
Therefore incorrect phase of various wavelength components- of the solution causes
wiggles which trail the solution. .

Note that the solution can still be stable (1.e., these short wavelength perturbations

may be still damped or even neutrally stable, however we will see them trail our so-

lution).

Let us examine the Phase Lag Plots shown in Figures L11.7.

* Characteristically the shorter wavelengths are propagated poorly while there is
felatively little phase lag for the longer wavelengths.

» The C—N (centered-time) 8 = 0.5 solutions exhibit slightly less phase lag
than the fully implicit 8 = 1.0 solution. Therefore for C — N we don’t expect to
see as much numerical dispersion, i.e., the wiggles won’t be as bad.

* A perfect solution would have @ = 0 forall A /Ax.

11-11



T1i-11

““@. L=

0.0 0.0
&51.0
-50F 501
-l0o - ool 905
e
o <50} @ 5o}
3 3
i :
@ 200} * 200}
1
!
-250} ~250}- \
/
1
-300F -3o0} g_.
/
|
-3501 -350p
1
. {a} (b} .
. 1 l L I R | S W N O B I W ] [ R WA O I T
400 1O 50 0.0 50.0 1020 400 i 10 100
WAVELENGTH/AX WAVELENGTH/aX
) and finite difference {---) methods. (a) sﬁ = 0069 and &= 0.369;

Fig. 512 Phasc lag m. for the single nn._._w:on finite clement (

(B) = 0.0069 and = 0.369.




Conclusion

Fourier analysis helps understand accuracy of a numerical scheme (both ampli-
tude and phase propagation characteristics). However we still don’t have infor-
mation regarding b.c.’s which may be very important. Furthermore the
applicability of this approach is practically limited to linear problems.

Ideally you want to design a numerical scheme which minimizes “numerical
dispersion” or phase lag and which has a damping ratio R, =1 except for very

short wavelengths.
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