

A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials

Nicholas J.G. Pearce (1), William T. Perkins (1), John A. Westgate (2), Michael P. Gorton (3), Simon E. Jackson (4), Clive R. Neal (5) and Simon P. Chenery (6)

(1) Institute of Earth Studies, University of Wales, Aberystwyth, SY23 3DB, Wales, U.K.

(2) Physical Sciences Division, Scarborough College, University of Toronto, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada

(3) Department of Geology, Earth Sciences Centre, 22 Russel Street, University of Toronto, Toronto, Ontario, M5S 3B1, Canada

(4) Department of Earth Sciences, Memorial University of Newfoundland, St Johns, Newfoundland, A1B 3X5, Canada

(5) Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556, USA.

(6) British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, U.K.

Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μ g g⁻¹ and 50 μ g g⁻¹ respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.

Les techniques de micro-analyses d'éléments en trace (par sonde ionique ou ICP-MS avec ablation laser) sont génées par l'absence de standards homogènes et bien caractérisés. Deux verres silicatés de référence, les verres NIST SRM 610 et NIST SRM 612, ont été démontrés homogènes et contiennent jusqu'à soixante et un élements en trace à des concentrations nominales de 500 μ g g⁻¹ ou 50 μ g g-1 respectivement. Ces verres (qui sont fournis sous forme de galette de 3 mm d'épaisseur) sont équivalents aux standards NIST SRM 611 et NIST SRM 613 (qui eux sont fournis sous forme de galettes de 1 mm d'épaisseur) et sont de plus en plus utilisés comme étalon de référence en micro-analyse. Néanmoins, NIST ne certifie que jusqu'à huit éléments dans ces verres. Nous avons donc compilé les données publiées dans environ soixante articles sur ces deux verres et donnons aussi les résultats des analyses faites dans nos laboratoires. Sont compilées les données sur les éléments composant la matrice de ces verres ainsi que sur cinquantehuit élements en trace. La compilation pour les éléments en trace, qui regroupe toutes les données disponibles déjà publiées ou faites récemment, donne en synthèse la valeur moyenne et la déviation standard associée (±), ainsi que la gamme de dispersion, la médiane, la moyenne géométrique et la valeur moyenne recommandée (calculée en excluant les données à plus d'un sigma de la moyenne générale). Pour les élements déjà certifiés par NIST, on remarque le bon accord entre leurs valeurs recommandées et nos moyennes ainsi compilées. Cette compilation fournit donc un ensemble de données à utiliser comme base de travail pour ces matériaux de référence.

Trace element microanalytical techniques suffer from a lack of homogeneous, well characterized trace element reference materials (see for example Hinton 1990, Perkins and Pearce 1995 and Pearce et al. 1996). The National Institute of Standards and Technology (NIST) produces a series of silicate glasses available as 3 mm wafers (including NIST SRM 610 and NIST SRM 612) which have been spiked with up to sixty one separate trace elements. NIST SRM 610 contains trace elements at a nominal 500 µg g⁻¹ concentration and NIST SRM 612 is at a nominal 50 μ g g⁻¹. The same materials are available as 1 mm wafers as NIST SRM 611 (500 µg g⁻¹) and NIST SRM 613 (50 μ g g⁻¹). In this compilation we include data for NIST SRM 611 with NIST SRM 610, and data for NIST SRM 613 with NIST SRM 612, making no distinction between these wafers. NIST certifies only eight elements in these glasses (Fe, Mn, Ni, Rb, Sr, Pb, Th and U in NIST SRM 610 and Fe, Ni, Rb, Sr, Ag, Pb, Th and U in NIST SRM 612) for an entire wafer, not for a fragment thereof. Information values are given for nine further elements in NIST SRM 610 and eighteen further elements in NIST SRM 612. In the certificate issued in January 1992, NIST states that "no element has been proven heterogeneous outside [5 percent] for the SRM wafer used in its entirety. However, spatial inhomogeneity does exist within each wafer", although no indication of which elements, or to what extent, is given. Hinton et al. (1995), however, have shown, in an ion microprobe study, that the NIST SRM 610 is homogeneous to \pm 1% relative, and that these reference materials are suitable for use as microanalysis standards. It is not the intention of this contribution to prove the homogeneity of these glasses. Whilst studies have been undertaken in one of our laboratories in an attempt to demonstrate the homogeneity of the NIST glasses, problems arise due to element fractionation from the glasses during laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and minor changes in instrumental response mean that this cannot be shown by LA-ICP-MS (see Jeffries et al. 1996, Jeffries 1996).

The NIST SRM 610 and NIST SRM 612 glass wafers are, however, becoming more widely used as reference materials in microanalytical techniques which require homogeneous trace element standards. These techniques include ion-probe analysis (see for example Hinton 1990 and Hinton et al. 1995) and more recently, LA-ICP-MS, (see for example Jackson et al. 1992, Westgate et al. 1994, Perkins and Pearce 1995 and Pearce et al. 1996). LA-ICP-MS requires the knowledge of an internal standard in the material being analysed for calibration as (analyte/internal standard) against a reference material. An ideal internal standard would be the minor isotope of a major element in the sample, which can be determined easily by electron probe micro-analysis. The calibration then only needs to be scaled for the differences in internal standard concentration between the sample and the reference material (see Perkins and Pearce 1995 for further details). An accurate knowledge of the matrix composition of the NIST glasses is thus also important.

Here we have compiled available published compositional data for the NIST SRM 610 and 612 glasses, and include new analytical data for both their major and trace element compositions, determined by a variety of analytical methods in five separate laboratories. We have excluded from our compilation publications which only present isotope ratio measurements. We are only aware of one previous compilation for these glasses (Gladney et al. 1987) which included data from approximately twenty five sources, as well as some isotope ratio determinations.

Analytical techniques and new data: this study

Matrix composition

In LA-ICP-MS analysis, normalisation of the response for an analyte to a minor isotope of a major element internal standard is normal practice (e.g. analyte/⁴³Ca, analyte/²⁹Si, see Perkins and Pearce 1995) with the major element determined by an external method (such as electron probe or from mineral stoichiometry). The results are then scaled for differences in the major element internal standard concentrations between the standard and the unknown. If the NIST values for the major elements are used for internal standardisation, particularly using NIST SRM 610, a significant error (around 3%) will be introduced. Accurate knowledge of the matrix composition is thus important.

The matrix composition of the major elements in NIST SRM 610 and NIST SRM 612 were determined by wavelength dispersive spectrometry methods on a Cameca SX-50 microprobe in the Department of Geology, University of Toronto. Small fragments of glass were mounted in resin blocks and polished prior to analyses. Concentrations were produced using the "PAP" procedure for quantitative analysis, which gives combined corrections for absorption and atomic number

effects (Pouchou and Pichoir 1985). Calibration was achieved for various elements as follows: Si, Al, Na, K - obsidian standard, University of Alberta; Fe, Mg pyrope; Ca, Mn - bustamite; Ti - synthetic TiAl pyroxene glass; Cl - tugtupite. A defocussed beam was used (15 µm) accelerated to 15 kV with a 6 nA current, and elements were analysed in the following order simultaneously: Spectrometer 1 (TAP) - Na, Si, Mg, Al; Spectrometer 2 (LiF) - Fe, Mn; Spectrometer 3 (PET) - K, Ti, Cl, Ca. For both NIST SRM 610 and NIST SRM 612 a total of twenty analyses were made from four separate chips of glass. Detection limits are about 0.03% m/m oxide (3 sigma). The matrix composition, when scaled to 100%, compares extremely well with the nominal composition used for the matrix by NIST (i.e. 72% SiO₂, 2% Al₂O₃, 12% CaO and 12% Na₂O). Absolute values are lower than the NIST "matrix" composition due to the dilution effect of adding some sixty one elements at about 500 μ g g⁻¹.

NIST SRM 610 was also analysed for its matrix composition by electron probe at Memorial University. The electron microprobe used was a Cameca SX50. Analyses were performed using energy dispersive detection for the major constituents (Na, Al, Si, Ca) plus K and Mg and wavelength dispersive detection for the other minor constituents (Ti, Mn, Fe, V). A ZAF correction procedure was employed. Calibration standards were as follows: Na - NaBe-phosphate; Mg - periclase; Al corundum; Si - quartz; K - K-feldspar; Ca - wollastonite; Ti - ilmenite; Mn - MnTiO₃; Fe - fayalite; V - PbV-chloride. It appears that Na may have been lost from this analysis whilst the other major elements compare favourably with the Toronto data.

Data for the matrix compositions of NIST SRM 610 and NIST SRM 612 are presented in Tables 1 and 2 respectively.

Trace elements

New trace element data for up to fifty eight elements from this study are presented in Table 3 for NIST SRM 610 and in Table 4 for NIST SRM 612. Data from five laboratories have been incorporated into these tables and include analyses by solution nebulisation ICP-MS (with a variety of dissolution methods being employed), ICP-AES, AAS, EPMA (for some elements in NIST SRM 610) and INAA. The analytical methods used in each laboratory are described below. EPMA conditions have been described in the previous section.

Solution ICP-MS and AAS analyses, Aberystwyth:

Discs of both NIST SRM 610 and NIST SRM 612 were broken into small fragments. Four 0.3 g (approximately)

Table 1.

Compilation of new and published analyses for the matrix of NIST SRM 610. Analyses in % m/m oxide. The overall average excludes the low Na_2O data from Memorial EPMA. The "matrix scaled" column normalizes the SiO₂, Al_2O_3 , Na_2O and CaO content to 100%

	NIST, nominal matrix	Toronto EPMA, this study, average (n=20)	Memorial EPMA, this study, average (n=19)	(A) average	Overall average	Overall average, scaled	NIST nominal matrix
S:0	70	40.805 0.014	70,400	40.42 . 0.07	40.075 0.201	70.074	70 5:0
510 ₂	12	09.095 ± 0.214	70.400 ± 0.400	09.03 ± 0.27	09.975 ± 0.391	72.270	72 SIO ₂
liO ₂		$0.0/0 \pm 0.025$	$0.0/6 \pm 0.012$	0.08 ± 0.01	$0.0/5 \pm 0.005$		liO ₂
Al_2O_3	2	1.936 ± 0.027	1.960 ± 0.090	2.22 ± 0.01	2.039 ± 0.157	2.106	2 Al ₂ O ₃
FeO		0.059 ± 0.023	0.039 ± 0.024	0.07 ± 0.02	0.056 ± 0.016		FeO
MnO		0.053 ± 0.025	0.060 ± 0.031	0.05 ± 0.03	0.054 ± 0.005		MnO
MgO		0.067 ± 0.012	0.057 ± 0.006	0.07 ± 0.01	0.065 ± 0.007		MgO
CaO	12	11.370 ± 0.083	11.270 ± 0.140	11.71 ± 0.03	11.450 ± 0.231	11.827	12 CaO
Na ₂ O	14	13.833 ± 0.090	8.200 ± 0.300	12.87 ± 0.08	13.352 ± 0.681	13.791	14 Na ₂ O
K ₂ O		0.061 ± 0.019	0.057 ± 0.026	0.06 ± 0.01	0.059 ± 0.002		K ₂ O
Cl		0.047 ± 0.016			0.047 ± 0.000		Cl
P_2O_5				0.12 ± 0.02	0.120 ± 0.000		P ₂ O ₅
Total	100	97.389	92.119	96.88 ± 0.13	97.292	100.000	100 Total

± one standard deviation.

(A) Hollocher and Ruiz (1995).

Table 2.

Compilation of new and published analyses for the matrix of NIST SRM 612. Analyses in % m/m oxide. The "matrix scaled" column normalizes the SiO₂, Al₂O₃, Na₂O and CaO content to 100%

	Toronto EPMA this study, average (n=20)	(A)	(B) average (n=10)	(C) average	(D) average	(E) activation analysis	(E) superprobe 733	Overall average	Overall average, scaled	NIST nominal matrix
SiO2	72.29±0.22	71.5	72.17±0.35			72.90±1.40	70.65	71.90±0.96	71,79	72
TiO ₂	0.02±0.02		0.01±0.01					0.01±0.00		
Al ₂ O ₃	2.01±0.04	2.15	2.32±0.01			2.10±0.04	1.96	2.11±0.16	2.10	2
FeO	0.01±0.02	0.027	0.02±0.01					0.02±0.00		
MnO	0.01±0.02		0.01±0.02					0.01±0.00		
MgO	0.00±0.00							0.00		
CaO	11.77±0.11	11.4	12.09±0.50	12.10±0.20	12.30±1.00			11.93±0.22	11.91	12
Na ₂ C	14.18±0.10	13	13.16±0.07	14.20±0.20	14.40±0.80			13.98±0.56	13.96	14
K ₂ O	0.01±0.01	0.02	0.01±0.01					0.01±0.00		
Cl	0.02±0.02							0.02		
P_2O_5			0.01±0.01					0.01		
Total	100.319	98.117	99.8					100.009	100.000	100

± one standard deviation.

(A) Jackson et al. (1992), (B) Hollocher and Ruiz (1995), (C) Kanda et al. (1980), (D) Kuleff et al. 1984, (E) Penev et al. 1985.

splits from each glass were weighed accurately into 50 ml PTFE beakers and taken into solution using a repeated open, hot HF/HClO₄ attack. After a final evaporation of 2 ml HClO₄, samples were treated with 5 ml of HNO₃ and made up to 100 ml solution in 10% m/m HNO₃. All acids used were AristaR[®] or Primar[®] Grade. Two blanks were also treated with the same volumes of acid and subtracted from the final analyses.

Fully quantitative analyses were performed using a VG Elemental ICP-MS PlasmaQuad II+ with modified (1992) high sensitivity interface. Calibration was achieved using multi-element synthetic standards made from Aldrich 1 mg ml⁻¹ Atomic Absorption single element solutions. With the exception of the REE, calibration samples contained ten to fifteen elements held in dilute acid at concentrations appropriate to the abundance of trace elements in natural rocks. The REE calibration sample used in this study was made to have equal concentrations of all REE, reflecting the expected concentration in the NIST glasses, and to minimise any effect from poly-atomic oxide spectral overlap during analysis.

Each of the four separate digestions for each glass was analysed five times. These were corrected for sample weight and instrument drift, and the means of the five runs for each digestion were then averaged to give the concentration (with standard deviation) of fifty elements in the original glass (see Tables 3 and 4). Relative standard deviations (RSDs) were generally small across the separate determinations, giving a good indication of the reproducibility of ICP-MS for this type of analysis (typically, RSD < 3% for Z > 30). For low Z elements, RSDs were greater, a result of the lower sensitivity of ICP-MS at low Z.

Cu and Zn in NIST SRM 612 and NIST SRM 610 were also determined at Aberystwyth by atomic absorption, whilst the concentrations of K in NIST SRM 612 and Li and K in NIST SRM 610 were determined by flame emission using a Perkin-Elmer 2380 spectrophotometer. Calibration was performed using mixed element standards.

The overall reproducibility of results for most elements (excluding Nb, Ta, Zr and Hf) from the four separate determinations is indicative of a homogeneous glass at the 0.3 g scale of sampling.

Solution ICP-MS analyses, Notre Dame: A VG Instruments PlasmaQuad II+ STE ICP-MS was used to analyse a sample of NIST SRM 610 and NIST SRM 612. The sample (20 mg) was digested in 40 drops of HF and 25 drops of concentrated HNO_3 (both prepared by double distillation) left on a hotplate in PTFE overnight and subsequently evaporated to dryness. After cooling, a further 15 drops of HNO_3 were added prior to a final evaporation to dryness.

Table	e 3.									
New	analytical	data (µg	g g-1)	from	this	stu dy	for	NIST	SRM	610

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ICP-MS	AAS Abarystwyth	EPMA Toronto	ICP-MS Notre Dame	ICP-MS Memorial	ICP-AES Memorial	ICP-MS sinter,	EPMA Memorial	INAA Toronto	
Age 223 × 32 Age Ag		Aberystwym	Aberystwym	Terente		memoria	memoria	Memoria	memoria		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ag	212.3 ± 3.2								202 . 2	Ag
	As Au	156 + 41								303 ± 3 226 ± 03	As Au
Bio 412 + 32 APA AP	B	10.0 ± 4.1								22.0 ± 0.0	В
Be Bit A = 1/2 P M = 1/2 P	Ba	411.2 ± 3.2			473.33 ± 4.33	448 ± 6	424 ± 14	382 ± 12			Ba
	Be	481.4 ± 12.9			540.67 ± 7.9	452 ± 12	421 ± 13				Be
Cd 240 ± 1.3 470 ± 160 462 ± 6 450 ± 15 428 ± 7 463 ± 0 10 10 C 470 ± 160 470 ± 160 463 ± 7 462 ± 6 450 ± 15 463 ± 7 463 ± 20 10	Bi	379.1 ± 7.7			113.7 ± 2.31	387 ± 10					Bi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd	264./ ± 1.3			4501 . 177	462 . 6	450 . 15	409.7		462 . 10	Cd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl	430.3 ± 2.0		470 + 160	432.1 ± 1.77	402 ± 0	430 ± 13	420 ± 7		403 ± 10	Ce
Cr 3011 + 15.6 343 ± 5.6 343 ± 6. .	Co	422.2 ± 9.1			436.17 ± 9.46		418 ± 18			444 ± 2	Co
Ca 2023 + 40 201 3502 + 100 400 ± 5.68 409 ± 22 448.8 ± 5.3 ± 5.3 409 ± 2.6 460 ± 1.2 ± 5.4 404.07 ± 8.67 463 ± 1.2 ± 3.1 ± 407 ± 9.7 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 5.1 ± 407 ± 1.2 ± 3.1 ± 5.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 3.1 ± 407 ± 1.2 ± 1.2 ± 407 ± 1.2 ± 1.	Cr	381.1 ± 15.6			461.77 ± 11.7	406 ± 18	343 ± 6				Cr
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cs	320.3 ± 4.0			458.33 ± 5.3	369 ± 7				395 ± 1	Cs
	Cu	350.2 ± 12.0	420 ± 5.6		462.7 ± 2.26	460 ± 12	431 ± 15				Cu
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy	439.0 ± 1.6			409.6 ± 6.86	448 ± 24		429 ± 9			Dy
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er E	439.2 ± 2.2			404.07 ± 8.67	463 ± 24		436 ± 10 430 ± 12		458 + 1	Er E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe	442.7 ± 3.1 4610 + 34.4		455 + 177	455.27 ± 5.02	400 ± 10	517 + 19	437 ± 12	299 + 187	4J0 ± 1	Fe
Gd 4252 ± 2.5 Ge 3913 ± 9.9 43053 ± 3.64 433 ± 28 4475 ± 11.5 Ge Ge Ge H 3127 ± 20.4 440.1 ± 19 440 ± 19 440 ± 19 439 ± 11 He 406 ± 3 He K 432.5 ± 1.4 432.5 ± 1.4 443.8 ± 20.2 438.4 453 ± 11 421 ± 6 472 ± 222 K U 337.2 ± 25 495.7 ± 4.1 457.2 ± 6.92 435.4 ± 7 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 440.5 ± 7.5 10 398 ± 3 310 ± 11 10 445 ± 24.2 Me 440.5 ± 7.5 Me Me 445 ± 7.5 Me Me 440.5 ± 7.5 Me Me 442 ± 7.2 Me Me 442 ± 7.2 Me Me </td <td>Ga</td> <td>436.5 ± 15.6</td> <td></td> <td></td> <td>501.3 ± 6.98</td> <td></td> <td>395 ± 13</td> <td></td> <td>277 = 107</td> <td></td> <td>Ga</td>	Ga	436.5 ± 15.6			501.3 ± 6.98		395 ± 13		277 = 107		Ga
Ge 3913 ± 99 P	Gd	425.2 ± 2.5			430.53 ± 3.64	433 ± 28		447.5 ± 11.5			Gd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge	391.3 ± 9.9									Ge
	Hf	312.7 ± 20.4			405 ± 7.35	440 ± 19		416 ± 9		406 ± 3	Hf
	Ho	460.3 ± 3.1			439.1 ± 8.15	460 ± 25		439 ± 11			Ho
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ln K	461.2 ± 18.5	4562 + 498	503 ± 157			112 + 6		172 + 222		ln K
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	la	432.5 ± 1.4	430.2 ± 4.70	505 ± 157	443.87 ± 0.52	438 ± 4	442 ± 0 453 ± 11	421 ± 6	47 Z ± ZZZ	452 ± 3	La
	Li	536.3 ± 12.5	495.7 ± 4.1		457.2 ± 6.92	453 ± 17		.2. = 0		102 = 0	Li
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lu	439.7 ± 2.5			440.57 ± 6.94	440 ± 19		416 ± 7		469 ± 0.5	Lu
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg	488.0 ± 12.4		511 ± 92			421 ± 13		436 ± 48		Mg
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	440.8 ± 7.4		409 ± 193			392 ± 20		464 ± 242		Mn
Nb 2485 ± 81.3 305 ± 219 305 ± 219 N Nd 426.1 ± 1.5 435.17 ± 3.06 435 ± 5 424 ± 10 N Ni 4457 ± 15.4 495.47 ± 5.29 341 ± 15 306 ± 29 424 ± 10 N P 304.9 ± 54.0 495.47 ± 5.29 341 ± 15 380 ± 9 P Pb 389.0 ± 70 422.8 ± 2.67 460 ± 9 441 ± 10 P Pr 462.9 ± 2.9 422.8 ± 2.67 460 ± 9 441 ± 10 Re Re 501.97 ± 0.71 450 ± 6 400 ± 30 Re Re 501.97 ± 0.71 450 ± 6 442 ± 1 56 Sc 445.4 ± 18.1 449.07 ± 13.8 444 ± 20 486 ± 13 442 ± 1 Se 76 76 76 76 76 Sn 309.4 ± 43.6 76 76 76 76 Sr 491.91 ± 10 447.93 ± 4.81 458 ± 18 433 ± 12 475 ± 0.5 Sn 514.93 ± 4.93 512 ± 9 459 ± 17 76 514.93 ± 1.93 Sn 300.4 ± 22 525 ± 1 76 514.93 ± 4.93 512 ± 9 459 ± 17 76 Ti 437.2 ± 0.2 421 ± 150 340.13 ± 713 134 ± 23 304 ± 22 525 ± 1 76 Ti 437.2 ± 0.2 421 ± 150 403.63 ± 222 454 ± 14 472 ± 20 396 ± 6 458 ± 74 71 Ti 60.5 ± 0.8 74 72 ± 20 396 ± 6 458 ± 74 71 71 Ti	Mo	407.5 ± 3.1			276 ± 10	398 ± 3	319 ± 11	005 010			Mo
Nu 4201 ± 1.5 420 ± 2.1 421 ± 10 424 ± 10 424 ± 10 424 ± 10 P 304.9 ± 54.0 49547 ± 5.29 301 ± 2.04 419 ± 1.2 381 ± 11 80 ± 9 9 Pb 389.0 ± 70 301.4 ± 2.94 419 ± 1.2 381 ± 11 441 ± 10 P Pr 462.9 ± 2.9 422.8 ± 2.67 460 ± 9 441 ± 10 P Rb 423.8 ± 6.6 501.97 ± 0.71 450 ± 6 400 ± 30 Rb Re 501.97 ± 0.71 450 ± 6 442.1 ± 10 400 ± 30 Rb Sc 445.4 ± 14.1 449.07 ± 13.8 444 ± 20 486 ± 13 442 ± 1 $5c$ Se 501.97 ± 0.71 450 ± 6 442.5 ± 16 442.2 ± 1 $5c$ Sn 309.4 ± 3.6 514.93 ± 4.93 512 ± 9 459 ± 17 452 ± 0.5 Sr 49.93 ± 4.81 458 ± 18 433 ± 12 455 ± 2 525 ± 1 Th 527.6 ± 2.5 514.93 ± 4.93 512 ± 9 459 ± 17 514.5 ± 2 525 ± 1 Th 527.6 ± 2.3 421 ± 150 524.43 ± 4.56 442 ± 9 458 ± 7.4 11 Th 422.6 ± 2.3 407.7 ± 5.78 457 ± 20 442 ± 9 458 ± 7.4 11 Th 422.6 ± 2.3 407.9 ± 8.11 454 ± 20 426 ± 10 11 11 Th 422.6 ± 2.3 407.9 ± 8.11 454 ± 20 426 ± 10 11 100.9 ± 2.2 V 460.5 ± 18.5 369 ± 72.5 438 ± 1.74 11 <td< td=""><td>Nb</td><td>248.5 ± 81.3</td><td></td><td></td><td>432.17 ± 12.4 435.17 ± 3.06</td><td>225 ± 45</td><td></td><td>305 ± 219</td><td></td><td></td><td>ND</td></td<>	Nb	248.5 ± 81.3			432.17 ± 12.4 435.17 ± 3.06	225 ± 45		305 ± 219			ND
No. 100No. 100No. 100No. 100No. 100P 360 ± 9 380 ± 9 380 ± 9 P Pb 380 ± 270 301.4 ± 2.94 419 ± 1.2 381 ± 11 441 ± 10 P Pr 462.9 ± 2.9 422.8 ± 2.67 460 ± 9 441 ± 10 P P Rb 423.8 ± 6.6 501.97 ± 0.71 450 ± 6 441 ± 10 P P Rb 340.4 ± 18.6 501.97 ± 0.71 450 ± 6 P 441 ± 10 P P Sc 445.4 ± 14.1 449.07 ± 13.8 444 ± 20 486 ± 13 442 ± 1 Sc Sc SeSn 309.4 ± 43.6 Sr 449.07 ± 13.8 444 ± 20 486 ± 13 433 ± 12 475 ± 0.5 Sn Sn 309.4 ± 43.6 Sr 449.33 ± 4.81 458 ± 18 433 ± 12 475 ± 0.5 Sn Sn 309.4 ± 43.6 Sr $S12.\pm 9$ 459 ± 17 Sr Sr Sr Sn 309.4 ± 22 512.9 459 ± 17 Sr Sr Sr Th 5276.25 461.77 ± 5.78 457 ± 2.4 414 ± 12 455 ± 2 ThTh 524.43 ± 4.56 402.9 ± 2.0 396 ± 6 458 ± 7.4 TiTh 422.6 ± 2.3 407.9 ± 8.11 454 ± 20 426 ± 10 TiU 513.3 ± 0.9 421 ± 150 438 ± 2 480 ± 11 423.9 ± 2.3 V V 4486 ± 18.5 438 ± 17 435 ± 17 372 ± 141 V <td< td=""><td>Ni</td><td>420.1 ± 1.5 4457 ± 154</td><td></td><td></td><td>435.17 ± 3.00 495.47 ± 5.29</td><td>433 ± 3</td><td>341 + 15</td><td>424 ± 10</td><td></td><td></td><td>Ni</td></td<>	Ni	420.1 ± 1.5 4457 ± 154			435.17 ± 3.00 495.47 ± 5.29	433 ± 3	341 + 15	424 ± 10			Ni
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P	304.9 ± 54.0					380 ± 9				Р.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb	389.0 ± 7.0			301.4 ± 2.94	419 ± 1.2	381 ± 11				Pb
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pr	462.9 ± 2.9			422.8 ± 2.67	460 ± 9		441 ± 10			Pr
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rb	423.8 ± 6.6			501.97 ± 0.71	450 ± 6				400 ± 30	Rb
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Re	240.4 10.4									Re
Se449.4 \pm 2.0449.33 \pm 4.81458 \pm 18433 \pm 12475 \pm 0.5SeSm309.4 \pm 43.6514.93 \pm 4.81458 \pm 18433 \pm 12475 \pm 0.5SnSr491.9 \pm 14.7514.93 \pm 4.93512 \pm 9459 \pm 17SrSrTa293.1 \pm 120.0340.13 \pm 7.13134 \pm 23304 \pm 22525 \pm 1TaTh5276 \pm 2.5461.77 \pm 5.78457 \pm 24414 \pm 12455 \pm 2TbTh5276 \pm 2.5403.63 \pm 2.22454 \pm 14472 \pm 20396 \pm 6458 \pm 74TiTi437.3 \pm 20.2421 \pm 150524.43 \pm 4.56442 \pm 9458 \pm 74TiTi61.2 \pm 2.160.5 \pm 0.8442 \pm 9458 \pm 74TiTi422.6 \pm 2.3407.9 \pm 8.11454 \pm 20426 \pm 10TiU513.3 \pm 0.9369 \pm 7.84434 \pm 17435 \pm 17372 \pm 141VW531.47 \pm 2.75438 \pm 2480 \pm 11423.9 \pm 2.3YY469.6 \pm 8.8459.6 \pm 2.1Y496 \pm 2Y	Sc	340.4 ± 18.0			449.07 ± 13.8	444 ± 20	486 ± 13			442 + 1	Sc
	Se	440.4 ± 14.1			447.07 ± 13.0	444 ± 20	400 ± 13			442 1	Se
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm	449.4 ± 2.0			449.33 ± 4.81	458 ± 18		433 ± 12		475 ± 0.5	Sm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn	309.4 ± 43.6									Sn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr	491.9 ± 14.7			514.93 ± 4.93	512 ± 9	459 ± 17				Sr
Tb 454.8 ± 3.2 461.77 ± 5.78 457 ± 24 414 ± 12 455 ± 2 TbTh 5276 ± 2.5 403.63 ± 2.22 454 ± 14 472 ± 20 396 ± 6 458 ± 2 ThTi 437.3 ± 20.2 421 ± 150 524.43 ± 4.56 442 ± 9 458 ± 74 TiTi 61.2 ± 2.1 60.5 ± 0.8 426 ± 10 426 ± 10 TmU 513.3 ± 0.9 432.27 ± 5.6 464 ± 15 435 ± 17 372 ± 141 VW 369 ± 784 434 ± 17 435 ± 17 372 ± 141 VW 531.47 ± 2.75 438 ± 2 480 ± 11 423.9 ± 2.3 496 ± 2 Yb 450.6 ± 2.1 455.83 ± 8.49 459 ± 22 434 ± 10 423.9 ± 2.3 496 ± 2	Ta	293.1 ± 120.0			340.13 ± 7.13	134 ± 23		304 ± 22		525 ± 1	Ta
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tb	454.8 ± 3.2			461.77 ± 5.78	457 ± 24	170 0.0	414 ± 12		455 ± 2	Tb
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ih T:	527.6 ± 2.5		401 . 150	403.63 ± 2.22	454 ± 14	4/2 ± 20	396 ± 6	459.74	458 ± 2	Ih T:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TI	437.3 ± 20.2 61.2 + 2.1		421 ± 130	524.45 ± 4.50	60.5 ± 0.8	442 ± 9		430 ± 74		T
U 513.3 ± 0.9 432.27 ± 5.6 464 ± 15 372 ± 141 U V 448.6 ± 18.5 369 ± 7.84 434 ± 17 435 ± 17 372 ± 141 V W - - - - - - - Y 469.6 ± 8.8 531.47 ± 2.75 438 ± 2 480 ± 11 423.9 ± 2.3 - Y Yb 450.6 ± 2.1 - 435.83 ± 8.49 459 ± 22 434 ± 10 - 496 ± 2 Yb	Tm	422.6 ± 2.3			407.9 ± 8.11	454 ± 20		426 ± 10			Tm
V 448.6 ± 18.5 369 ± 7.84 434 ± 17 435 ± 17 372 ± 141 V W - - - - - - - - W Y 469.6 ± 8.8 531.47 ± 2.75 438 ± 2 480 ± 11 423.9 ± 2.3 - - Y Yb 450.6 ± 2.1 435.83 ± 8.49 459 ± 22 434 ± 10 - 496 ± 2 Yb	U	513.3 ± 0.9			432.27 ± 5.6	464 ± 15					U
W Y 469.6 ± 8.8 531.47 ± 2.75 438 ± 2 480 ± 11 423.9 ± 2.3 Y Yb 450.6 ± 2.1 435.83 ± 8.49 459 ± 22 434 ± 10 496 ± 2 Yb	۷	448.6 ± 18.5			369 ± 7.84	434 ± 17	435 ± 17		372 ± 141		V
Y 469.6 ± 8.8 531.47 ± 2.75 438 ± 2 480 ± 11 423.9 ± 2.3 Y Yb 450.6 ± 2.1 435.83 ± 8.49 459 ± 22 434 ± 10 496 ± 2 Yb	W					100 F	· · · · ·				W
ID 430.0 ± 2.1 435.83 ± 8.49 459 ± 22 434 ± 10 496 ± 2 Yb	Y	469.6 ± 8.8			531.47 ± 2.75	438 ± 2	480 ± 11	423.9 ± 2.3		407 0	Y
$7_{\rm p}$ 4113+82 413+31 49427+488 477+10 308+11 7-	נט 7n	450.0 ± 2.1 411 3 + 8.2	413 + 31		433.83 ± 8.49 494.27 ± 4.89	439 ± 22 477 ± 10	434 ± 10 308 ± 11			490 ± 2	ĭb 7n
Zr 381.3 ± 14.6 482.37 ± 5.48 449 ± 4 435 ± 9 431.7 ± 1.3 Zr	Zr	381.3 ± 14.6	110 ± 0.1		482.37 ± 5.48	449 ± 4	435 ± 9	431.7 ± 1.3			Zr

± one standard deviation.

Table 4. New analytical data (µg g-1) from this study for NIST SRM 612

	ICP-MS	AAS	ICP-MS	ICP-MS	ICP-AES	ICP-MS sinter,	ICP-MS, Rb and Sr		
	Aberystwyth	Aberystwyth	Notre Dame	Memorial	Memorial	Memorial	infl. std., BGS	loronto	
Ag	18.91 ± 0.78		22.57 ± 0.38				21.11 ± 1.54		Ag
As			48.14 ± 1.6					31 ± 1	As
Αu	4.05 ± 0.81							5.1 ± 0.1	Au
В									В
Ba	33.6 ± 2.67		38.05 ± 0.73		38 ± 1	32.87 ± 0.11		37.2 ± 0.5	Ba
Be	39.84 ± 1.68				34.3 ± 0.8		37.60 ± 3.96		Be
Bi	31.45 ± 0.12						00.00 17/		Bi
Cd	27.63 ± 1.09				201.00	270 . 0.5	28.92 ± 1.76		Cd
Ce	33.69 ± 0.17				30.1 ± 0.9 340 ± 0.6	37.9 ± 0.5	37.02 ± 1.90	373 ± 0.1	Ce
Cr	3794 + 156		3864 + 0.91		301 ± 0.0		1924 + 341	57.5 ± 0.1	Cr
Cs	35.08 ± 0.64		40.51 ± 1.13		00.1 ± 0.0		17.21 2 0.11	42.8 ± 0.3	Cs
Cu	30.76 ± 1.63	37.33 ± 1.77			37.8 ± 1.1		52.01 ± 6.82	1210 = 010	Cu
Dy	35.02 ± 0.21		34.99 ± .0.82		31.1 ± 0.5	35.7 ± 0.5	36.72 ± 0.77		Dy
Er	35.05 ± 0.25		38.15 ± 0.6			37.7 ± 0.4	38.37 ± 1.21		Er
Eυ	32.68 ± 0.23		33.14 ± 0.46			35.03 ± 0.2	35.95 ± 1.21	35.6 ± 0.1	Eυ
Fe					115 ± 10				Fe
Ga	36.74 ± 1.57		36.88 ± 1.08		33.5 ± 1.7		38.04 ± 2.97		Ga
Gd	36.03 ± 0.23		36.31 ± 0.99			37.82 ± 1.12	38.26 ± 1.65		Gd
Ge	32.77 ± 0.61		o			050 07			Ge
Ht	26.43 ± 0.98		36.99 ± 0.67			35.9 ± 0.6	20.50 1.01	35 ± 0.1	Ht
Ho	38.9 ± 0.31		38.7 ± 0.19			37.3 ± 0.5	38.39 ± 1.21		Ho
in K	3/21 ± 0.03	66 52 + 201	10.44 ± 0.22				43.43 ± 1.67		in K
la	33.45 + 0.35	00.52 ± 2.01	3402 + 0.64		369 + 06	343 + 0.7	3463 + 2.09	343+02	la
Li	40.27 ± 1.95		40.24 ± 1.21			0 110 = 013	41.67 ± 1.76	0 110 2 012	Li
Lu	39.5 ± 0.25		36.51 ± 0.5			35.19 ± 0.1	36.72 ± 0.99	40 ± 0.1	Lu
Mg	85.09 ± 4.37						75.21 ± 14.51		Mg
Mn	37.37 ± 1.19				36.8 ± 1.7		39.03 ± 6.16		Mn
Mo	38.61 ± 1.24		39.68 ± 0.92	34 ± 3					Mo
Nb			37.18 ± 0.39						Nb
Nd	33.52 ± 0.48		34.73 ± 0.52			35.2 ± 0.3	36.17 ± 1.21		Nd
Ni	42.32 ± 1.53				29.2 ± 0.5		43.43 ± 5.61		Ni
P	71.21 ± 21.7				39.1 ± 0.6				P
PD D.,	36.96 ± 7.98		27.01 . 0.72			2762 . 0.10	41.07 ± 4.40		РЮ Р.,
Rh	31.02 ± 0.14		3129 ± 0.69			57.02 ± 0.17	57.02 ± 1.45	33 + 5	Rh
Re	51.02 ± 0.14		10.43 ± 0.67					00 ± 0	Re
S									S
Sb	32.27 ± 0.91		38.91 ± 0.4						Sb
Sc	37.88 ± 0.47			48 ± 13	40.8 ± 0.7				Sc
Sm	35.62 ± 0.18		37.01 ± 0.49			36.4 ± 0.4	37.49 ± 1.32	38.5 ± 0.1	Sm
Sn	36.21 ± 1.83						38.81 ± 2.20		Sn
Sr	73.56 ± 1.26		72.96 ± 0.46		73.9 ± 0.5				Sr
Ta			40.51 ± 0.65					42 ± 0.5	Ta !
lb T	38.46 ± 0.24		34 ± 0.81			35.44 ± 0	3/.16 ± 1.21	38.3 ± 0.1	lb T
Ih T:	37.08 ± 0.33		36.6 ± 0.62		457.10		36.83 ± 1.76	38.1 ± 0.3	Ih T:
н ті	51.35 ± 0.05		1502 ± 0.51		45.7 ± 1.8		15.28 + 0.66	38.2 ± 0.2	н ті
Tm	14.07 ± 0.20 39.15 + 0.29		3729 ± 0.51			362 ± 0.4	3672 ± 1.43		Tm
U	35.39 ± 0.22		57.27 ± 0.00			00.2 ± 0.4	37.38 ± 1.43	35 ± 0.5	U
v	41.44 ± 6.49		36.16 ± 0.57		36.6 ± 0.5		46.29 ± 7.59		v
W				26.5					W
Y	38.96 ± 0.77		31.45 ± 0.73		40.4 ± 0.5	35.2 ± 0.5	41.67 ± 3.08		Y
Yb	37.43 ± 0.38		37.5 ± 0.98			37.1 ± 0.3	40.02 ± 0.99	42.4 ± 0.5	Yb
Zn	38.81 ± 3.2	35.48 ± 2.36	39.83 ± 1.05		35 ± 0.8		44.31 ± 4.18		Zn
Zr	34.84 ± 1.31		35.23 ± 0.03		37.4 ± 0.3	33.81 ± 0.04			Zr

± one standard deviation.

The residue was taken up in 10 ml of 2% v/v HNO₃ before analysis. Internal standards of Hg, Sn and Cd were added to the solutions for calibration during analysis. Calibration was against multi-element standards (ranging in concentration from 1-100 ng g⁻¹ in solution to ensure bracketing of the unknown) prepared by SPEX Industries, New Jersey, USA. A procedural blank was subtracted.

Solution ICP-MS analyses, Memorial: Two digestion and corresponding data acquisition protocols were employed for routine ICP-MS analysis at Memorial. These were an acid digestion and Na₂O₂ sinter digestion procedure and are described fully by Jenner et al. (1990) and Longerich et al. (1990) respectively. Calibration standards for ICP-MS analyses were synthetic multi-element solutions prepared from high purity reagents ("Plasma Grade" reagents, SPEX Industries, Metuchen, N.J., USA). Analytical methods are also described by Jackson et al. (1992). The ICP-MS used was a Sciex (now Perkin Elmer-Sciex) ELAN model 250. The AA used was a Perkin Elmer 2380.

Solution ICP-MS analyses, BGS: A disc of NIST SRM 613 (equivalent to NIST SRM 612) was broken into small pieces and fragments placed in an agate micro-mill. The micro-mill was mechanically shaken until the glass had been reduced to a fine powder. Two aliquots of 0.1g of glass were weighed into PTFE test tubes to which 1 ml HF, 0.8 ml HNO₃ and 0.4 ml HClO₄ were added. This was heated overnight to dryness, and then redissolved in 10 ml of 25% HNO3, before being made up to 100 ml in a plastic volumetric flask. All acids used were of AristaR® grade. Immediately prior to analysis each solution was further diluted by a factor of two. Duplicate analyses were performed on both solutions using a VG Instruments PlasmaQuad II+ ICP-MS. Calibration was achieved using SPEX multi-element standards 1 and 2 at 100 ng g⁻¹ in 1% HNO₃. No internal standard was added due to the presence of so many elements in the solutions, and results were finally normalised to the NIST certified concentrations of Rb and Sr to produce quantitative data.

INAA, Toronto: Instrumental neutron activation analyses (INAA) were performed on the NIST SRM 612 and 610 glasses at the Department of Geology, University of Toronto. Approximately 0.25 g of sample was weighed and sealed into plastic sachets prior to irradiation in a SLOWPOKEII reactor with a low neutron flux of only 2.5 x 10¹¹ neutrons cm⁻² s⁻¹. Counting of the radioactive species generated was performed using a 20% efficient coaxial intrinsic Ge detector at 7, 10, 12, 17 and 38 days. Corrections for fission products and for spectral interferences were performed. The technique is fully described in Stix and Gorton (1992). Of elements normally reported by this method, the abnormal concentrations of many trace elements gave rise to certain problems with the analysis of these glasses. Chromium suffers from a Lu interference, U produces fission products which have serious consequences for Mo, Ba and La, and Ba suffers also from a Tb interference.

A comment on Nb, Ta, Zr and Hf: Nb and Ta give extremely high RSDs in data from Aberystwyth and Memorial, due to an inability to retain these elements in solution in the absence of F⁻ ions (cf. Aldrich atomic absorption standards for these elements being supplied in dilute HF) or the addition of a complexing agent (Ingamells and Pitard 1986). In NIST SRM 610 the highest concentration of Nb recorded in Aberystwyth was 327.3 µg g⁻¹, and Ta 403.8 µg g⁻¹; in NIST SRM 612 the highest Nb concentration was 23.3 μ g g⁻¹ and Ta 16.4 μ g g⁻¹. These data are reported, therefore, as our minimum values for these elements in the NIST glasses, but no other significance is placed upon these values. High RSDs in the Memorial data $(305 \pm 209 \ \mu g \ g^{-1}$ for Nb and $304 \pm 22 \ \mu g \ g^{-1}$ for Ta in NIST SRM 610) also indicate loss of these elements from solution. In the case of NIST SRM 612, the Memorial data (from Jackson 1992) of 38.9 µg g⁻¹ for Nb and 39.3 μ g g⁻¹ for Ta are the average of the two (almost identical) maximum values from the analyses performed.

Jenner et al. (1990) and Fedorowich et al. (1993, see below), who both employ the same digestion methods, are unlikely to remove all the F⁻ ions from their samples due to the relatively low boiling point of HNO_3 (Johnson and Maxwell 1981). This probably explains their ability to retain Nb and Ta in solution, but has implications for the longevity of any instrumental glassware (Thompson and Walsh 1983). Similarly, the ICP-MS data from Notre Dame in this study, which also used an HF/HNO₃ digestion, would retain Nb and Ta in solution. All solution methods for Ta report low concentrations when compared to solid sampling methods, due to loss from solution of Ta.

In addition, the Aberystwyth solution Hf data are low compared to other reported values. This may be

the result of hydrolysis and precipitation of Hf during storage of solutions prior to analysis.

LA-ICP-MS for Nb, Ta, Zr and Hf, Aberystwyth: Due to problems retaining Nb and Ta in solution, a laser ablation ICP-MS technique was used to determine the concentrations of these elements in the NIST glasses. Silicate glasses with a composition similar to the NIST glasses have recently been produced by P and H Developments of Glossop, Derbyshire, U.K and are described by Hamilton and Hopkins (1995). These glasses have been prepared at 0, 75 and 150 μ g g⁻¹ for forty four trace elements (including Zr, Nb and Ta, but unfortunately not Hf) and these glasses, with a blank, were used to erect calibrations for LA-ICP-MS analysis of the NIST glasses. The analytical methodology is described fully by Perkins and Pearce (1995), although a UV laser operating at 266 nm was used in place of an IR laser operating at 1064 nm. No certification exists for the P and H Developments glasses, and thus the laser ablation data produced for Zr, Nb and Ta in NIST SRM 612 by this method must be regarded with some caution. NIST SRM 610, with concentrations of these elements some 3 times higher than the 150 μ g g⁻¹ standard, was not analysed by this method. The results for NIST SRM 612 give Zr 36.82 \pm 1.50 μg g⁻¹, Nb 45.44 ± 1.58 μg g⁻¹ and Ta 48.39 ± 0.87 μ g g⁻¹. These data are not included in the compilation tables.

Summary of published data for NIST SRM 610 and NIST SRM 610

Matrix composition

NIST give nominal compositions of both the NIST SRM 610 and NIST SRM 612 glass matrices as 72% SiO_2 , 12% CaO, 14% Na₂O, and 2% Al₂O₃.

Jackson et al. (1992) and Hollocher and Ruiz (1995) have produced the only complete information relating to the matrix composition of either NIST glass reference material that the present authors have been able to find. Jackson et al. (1992) used a closed bomb (HF/H_3BO_3) digestion of a 0.1 g aliquot of a powdered glass bead prior to analysis by atomic absorption. These data are summarized in Table 1 and Table 2. Other authors (Kanda et al. 1980, Kuleff et al. 1984 and Penev et al. 1985) present several partial analyses of NIST SRM 612.

Trace elements

A compilation of all published and new trace element data for NIST SRM 610 is presented in Table 6, which includes data from thirty nine publications. The abbreviations used to identify contributing techniques are listed in Table 5. New and published data are presented for NIST SRM 612 in Table 7, which includes analyses from forty nine publications. Both tables are arranged element by element in increasing order of reported concentration and giving an indication of method. NIST certifies only eight elements in the glasses SRM 610 and SRM 612, and these data are included in Tables 6 and 7, and presented separately in Tables 8 and 9 respectively, along with NIST information values for some other elements. Many of the elements added to these glasses have no concentration information other than the nominal concentration (50 or 500 μ g g⁻¹). Of the published data, three main sources of information can be identified: (i) large studies of a wide range of elements by techniques with multi-element capabilities; (ii) studies of one or two elements requiring or testing novel or non-

Text continues on page 136

Table 5.

Analytical method abbreviations used	
in the trace element compilation tables (Tables 6 and 7)	

Code	Method
AAS	Atomic absorption spectroscopy
CPAA	Charged particle activation analysis
DNAA	Delayed neutron activation analysis
EPMA	Electron probe microanalysis
GDMS	Glow discharge mass spectrometry
GFAAS	Graphite furnace atomic absorption spectroscopy
HeAA	Helium activation analysis
HIAA	Heavy ion activation analysis
ICP-AES	Inductively coupled plasma atomic emission spectroscopy
ICP-MS	Inductively coupled plasma mass spectrometry
ID-SSMS	lsotope dilution spark source mass spectrometry
IDMS	lsotope dilution mass spectrometry
INAA	Instrumental neutron activation analysis
IPAA	Instrumental photon activation analysis
LA-ICP-MS	Laser ablation ICP-MS
LA-SSMS	Laser ablation spark source mass spectrometry
LP-MS	Laser probe mass spectrometry
MS	Mass spectrometry, unspecified
NAA	Neutron activation analysis
NMP	Nuclear microprobe
NTM	Nuclear track methods
PIXE	Proton induced X-ray emission
POL	Polarography
RAD	Radiography
SIMS	Secondary ion mass spectrometry
SXRF	Synchotron X-ray fluorescence
TCGS	Thermal neutron capture gamma ray spectrometry

Table 6.

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Ag				Be			
Sheibley 1975	INAA	180	80	ICP-AES, Memorial (T.S.)	ICP-AES	421	13
ICP-MS, Aberystwyth (T.S.)	ICP-MS	212.3	3.2	lass et al. 1982	HIAA	450	50
Rogers <i>et al.</i> 1987	NMP	229	13	Colin et al 1987	ΗΙΔΔ	450	50
Bingham and Slater 1976	LPMS	231		Hollocher and Ruiz 1995		451	12
McGinley and Schweikert 1976	CPAA	246	7			451	10
NIST *	NIST	254	10		ICP-/VIS	452	12
Benjamin <i>et al.</i> 1988	NMP	257	16	Freidli <i>et al.</i> 1987	HIAA	480	00
Bonham and Quattlebaum 1988	LA-SSMS	261	108	ICP-MS, Aberystwyth (I.S.)	ICP-MS	481.4	12.9
Rogers et al 1987	NMP	267	26	Friedli <i>et al.</i> 1988b	HIAA	495	60
Raith et al. 1994 *	LA-ICP-MS	276.2	4.3	ICP-MS, Notre Dame (T.S.)	ICP-MS	540.67	7.9
Milton and Hutton 1993*	GDMS	585.3	31.9	Bi			
As				– ICP-MS, Notre Dame (T.S.)	ICP-MS	113.7	2.31
INAA. Toronto (T.S.)	INAA	303	3	Woolum <i>et al.</i> 1976	RAD	216	
Bergholz <i>et al.</i> 1974	MS	305	20	Carpenter and Pilione 1986	NTM	260	30
Benjamin <i>et al.</i> 1988	NMP	316.5	9.9	Rogers et al. 1987	NMP	328	16
McGinley and Schweikert 1976	CPAA	317	7	Rogers et al. 1987	NMP	370	18
Rogers et al 1987	NMP	329	8	Benjamin <i>et al</i> . 1988	NMP	375	15
Rogers et al. 1987	NMP	334	9	ICP-MS, Aberystwyth (T.S.)	ICP-MS	379.1	7.7
Grev 1990	۵۵۵	406	2	ICP-MS, Memorial (T.S.)	ICP-MS	387	10
	745	400	2	Bergholz <i>et al.</i> 1974	MS	405	18
ICP-MS Abon(structh (TS)	ICP-MS	15.63	4 11	Hollocher and Ruiz 1995	ICP-MS	430	55
Bonham and Quattlobaum 1988		10.00		Raith <i>et al.</i> 1994 *	LA-ICP-MS	495.8	8.72
Sheibley 1975	ΙΝΙΔΔ	20	2	Cd	-		
		20	03	Beraholz <i>et al</i> 1974	MS	187	21
Bonigmin of al 1988	NIMP	22.0	6.8	Benjamin et al 1988	NMP	255	19
	NIIST	25	0.0	Rogers et al 1987	NMP	256	16
McGinley and Schweikert 1976	CPAA	23	6	Regars at al. 1987	NIMP	250	31
Rogers et al 1987	NMP	20	9	ICP MS Abon struth (TS)		264.7	12
B	1 1/1	01	,			204.7	0
Bingham and Slater 1976	IPMS	141		Prith at al 1004 *		412.7	20.5
Raith et al 1994 *	IA-ICP-MS	342.4	127		LA-ICF-///J	413.7	30.3
Gladnev et al 1976	TCGS	348	20		CDA A	20.4	0
Owens et al 1982	ICP-AFS	348	13		CPAA	384	9
Rio et al 1995	NMP	350	49	ICP-MS sinfer, Memorial (I.S.)	ICP-MS	428	/
NIST *	NIST	351		ICP-MS, Aberystwyth (I.S.)	ICP-MS	430.3	2.0
Bonham and Quattlebaum 1988	LA-SSMS	356	49	Hollocher and Ruiz 1995	ICP-MS	431	13
Gladnev <i>et al.</i> 1976	TCGS	358	15	Lukaszew 1990	SSMS	439	
Milton and Hutton 1993*	GDMS	359.3	17.9	ICP-AES, Memorial (T.S.)	ICP-AES	450	15
Freidli <i>et al.</i> 1988a	HIAA	360	60	ICP-MS, Notre Dame (T.S.)	ICP-MS	452.1	1.77
Gladnev <i>et al.</i> 1976	TCGS	363	17	ICP-MS, Memorial (T.S.)	ICP-MS	462	6
, Zachmann 1985	ICP-AES	368	12	INAA, Toronto (T.S.)	INAA	463	10
Βα				– Benjamin <i>et al.</i> 1988	NMP	475	78
ICP-MS sinter, Memorial (T.S.)	ICP-MS	382	12	Raith et al. 1994 *	LA-ICP-MS	486.6	24
McGinley and Schweikert 1976	CPAA	410	12	Michael 1988	EPMA	526	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	411.2	3.2	Rogers et al. 1987	NMP	611	56
Hollocher and Ruiz 1995	ICP-MS	420	26	cl			
ICP-AES, Memorial (T.S.)	ICP-AES	424	14	Webster 1992	EPMA	470	100
ICP-MS, Memorial (T.S.)	ICP-MS	448	6	EPMA, Toronto (T.S.)	EPMA	470	160
ICP-MS, Notre Dame (T.S.)	ICP-MS	473.33	4.33	Co			
Raith et al. 1994 *	LA-ICP-MS	507.9	22	Sheibley 1975	INAA	135	14
Rogers et al. 1987	NMP	957	93	Bingham and Slater 1976	LPMS	253	25.7
Benjamin <i>et al.</i> 1988	NMP	1160	130	Bonham and Quattlebaum 1988	LA-SSMS	369	87

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Co (cont.)				Dy			
Milton and Hutton 1993*	GDMS	370.6		Lukaszew 1990	SSMS	343	
Bergholz <i>et al.</i> 1974	MS	375	12	Rogers <i>et al.</i> 1987	NMP	407	24
Raith <i>et al.</i> 1994 *	LA-ICP-MS	389.3	11.4	ICP-MS, Notre Dame (T.S.)	ICP-MS	409.6	6.86
NIST *	NIST	390		ICP-MS sinter, Memorial (T.S.)	ICP-MS	429	9
Horn <i>et al.</i> 1994	LA-ICP-MS	391.1	11.1	ICP-MS, Aberystwyth (T.S.)	ICP-MS	439.0	1.6
Heidel 1971	EPMA	391.4	22.9	ICP-MS, Memorial (T.S.)	ICP-MS	448	24
Hollocher and Ruiz 1995	ICP-MS	394	2	Benjamin <i>et al.</i> 1988	NMP	466	26
Bendicho and de Loos Vollerbrecht 1990a	GFAAS	399	11	Raith <i>et al.</i> 1994 *	LA-ICP-MS	474.8	20.3
Rogers <i>et al.</i> 1987	NMP	407	12	Er			
Benjamin <i>et al</i> . 1988	NMP	413	16	Lukaszew 1990	SSMS	360	
ICP-AES, Memorial (T.S.)	ICP-AES	418	18	ICP-MS, Notre Dame (T.S.)	ICP-MS	404.07	8.67
ICP-MS, Aberystwyth (T.S.)	ICP-MS	422.2	9.1	McGinley and Schweikert 1976	CPAA	407	7
ICP-MS, Notre Dame (T.S.)	ICP-MS	436.17	9.46	Hollocher and Ruiz 1995	ICP-MS	407	16
INAA, Toronto (T.S.)	INAA	444	2	ICP-MS sinter, Memorial (T.S.)	ICP-MS	436	10
Cr				– ICP-MS, Aberystwyth (T.S.)	ICP-MS	439.2	2.2
ICP-AES, Memorial (T.S.)	ICP-AES	343	6	ICP-MS, Memorial (T.S.)	ICP-MS	463	24
Bergholz <i>et al.</i> 1974	MS	371	15	Raith <i>et al.</i> 1994 *	LA-ICP-MS	515.7	33.7
ICP-MS, Aberystwyth (T.S.)	ICP-MS	381.1	15.6	Benjamin <i>et al.</i> 1988	NMP	519	29
Raith <i>et al.</i> 1994 *	LA-ICP-MS	385.7	12.5	Rogers <i>et al.</i> 1987	NMP	526	35
Hollocher and Ruiz 1995	ICP-MS	394	9	Eu			
ICP-MS, Memorial (T.S.)	ICP-MS	406	18	Lukaszew 1990	SSMS	357	
Heidel 1971	EPMA	417.5	60.6	Hollocher and Ruiz 1995	ICP-MS	420	11
ICP-MS, Notre Dame (T.S.)	ICP-MS	461.77	11.68	ICP-MS, Notre Dame (T.S.)	ICP-MS	433.27	3.02
Rogers et al. 1987	NMP	476	11	ICP-MS sinter, Memorial (T.S.)	ICP-MS	439	12
Benjamin <i>et al.</i> 1988	NMP	485	20	ICP-MS, Aberystwyth (T.S.)	ICP-MS	442.7	3.1
Cs				- INAA, Toronto (T.S.)	INAA	458	1
Bergholz <i>et al.</i> 1974	MS	259	21	ICP-MS, Memorial (T.S.)	ICP-MS	460	16
ICP-MS, Aberystwyth (T.S.)	ICP-MS	320.3	4	Raith <i>et al.</i> 1994 *	LA-ICP-MS	466.2	17.1
Hollocher and Ruiz 1995	ICP-MS	364	15	Benjamin <i>et al.</i> 1988	NMP	575	57
ICP-MS, Memorial (T.S.)	ICP-MS	369	7	Rogers <i>et al.</i> 1987	NMP	731	46
INAA, Toronto (T.S.)	INAA	395	1	Fe			
ICP-MS, Notre Dame (T.S.)	ICP-MS	458.33	5.3	Milton and Hutton 1993*	GDMS	216.5	4.7
Benjamin <i>et al.</i> 1988	NMP	840	150	Bingham and Slater 1976	LPMS	260	
Cu				EPMA, Memorial (T.S.)	EPMA	299	187
Bingham and Slater 1976	LPMS	343		Bonham and Quattlebaum 1988	LA-SSMS	432	65
ICP-MS, Aberystwyth (T.S.)	ICP-MS	350.2	12	Bendicho and de Loos Vollerbrecht 1990a	GFAAS	433	22
Heidel 1971	EPMA	385	95	McGinley and Schweikert 1976	CPAA	440	23
Rogers <i>et al.</i> 1987	NMP	413	25	Raith <i>et al.</i> 1994 *	LA-ICP-MS	446.6	58.5
Hollocher and Ruiz 1995	ICP-MS	417	2	EPMA, Toronto (T.S.)	EPMA	455	155
AAS, Aberystwyth (T.S.)	AAS	420	5.6	NIST *	NIST	458	9
Bendicho and de Loos Vollerbrecht 1990a	GFAAS	428	6	Maienthal 1973	POL	460	10
ICP-AES, Memorial (T.S.)	ICP-AES	431	15	ICP-MS, Aberystwyth (T.S.)	ICP-MS	461	34.4
Benjamin <i>et al.</i> 1988	NMP	436	14	Rogers <i>et al.</i> 1987	NMP	486	10
Raith <i>et al.</i> 1994 *	LA-ICP-MS	441.1	20.8	Benjamin <i>et al.</i> 1988	NMP	490	18
NIST *	NIST	444	4	ICP-AES, Memorial (T.S.)	ICP-AES	517	19
Rogers <i>et al.</i> 1987	NMP	450	9	Ga			
ICP-MS, Memorial (T.S.)	ICP-MS	460	12	ICP-AES, Memorial (T.S.)	ICP-AES	395	13
ICP-MS, Notre Dame (T.S.)	ICP-MS	462.7	2.26	Raith <i>et al.</i> 1994 *	LA-ICP-MS	419.6	20
Bonham and Quattlebaum 1988	LA-SSMS	486	60	McGinley and Schweikert 1976	CPAA	423	17
Milton and Hutton 1993*	GDMS	641.7	23.1	Joyce and Schweikert 1984	PIXE	431	

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Ga (cont.)				In (cont.)			
Hollocher and Ruiz 1995	ICP-MS	433	14	Benjamin <i>et al</i> . 1988	NMP	449	30
Rogers et al. 1987	NMP	436	13	Hollocher and Ruiz 1995	ICP-MS	454	18
ICP-MS, Aberystwyth (T.S.)	ICP-MS	436.5	15.6	ICP-MS, Aberystwyth (T.S.)	ICP-MS	461.2	18.5
Benjamin <i>et al.</i> 1988	NMP	439	14	Rogers et al. 1987	NMP	474	48
Horn <i>et al.</i> 1994	LA-ICP-MS	445.5	10.2	Raith <i>et al.</i> 1994 *	LA-ICP-MS	490.2	15.1
Rogers et al. 1987	NMP	461	9	к			
Bergholz <i>et al.</i> 1974	MS	481	10	Milton and Hutton 1993*	GDMS	420.6	
ICP-MS, Notre Dame (T.S.)	ICP-MS	501.3	6.98	ICP-AES, Memorial (T.S.)	ICP-AES	442	6
Gd				AAS, Aberystwyth (T.S.)	AAS	456.2	4.98
Lukaszew 1990	SSMS	331		NIST *	NIST	461	
McGinley and Schweikert 1976	CPAA	376	6	Raith <i>et al.</i> 1994 *	LA-ICP-MS	468.9	26.4
Hollocher and Ruiz 1995	ICP-MS	407	17	EPMA, Memorial (T.S.)	EPMA	472	222
ICP-MS, Aberystwyth (T.S.)	ICP-MS	425.2	2.5	EPMA, Toronto (T.S.)	EPMA	503	157
ICP-MS, Notre Dame (T.S.)	ICP-MS	430.53	3.64	Bingham and Slater 1976	LPMS	557	53.8
ICP-MS, Memorial (T.S.)	ICP-MS	433	28	Benjamin <i>et al</i> . 1988	NMP	1600	1100
ICP-MS sinter, Memorial (T.S.)	ICP-MS	447.5	11.5	La			
Raith et al. 1994 *	LA-ICP-MS	477	10.1	Lukaszew 1990	SSMS	386	
Rogers et al. 1987	NMP	529	21	Hollocher and Ruiz 1995	ICP-MS	396	16
Benjamin <i>et al</i> . 1988	NMP	556	26	ICP-MS sinter, Memorial (T.S.)	ICP-MS	421	6
Ge				ICP-MS, Aberystwyth (T.S.)	ICP-MS	432.5	1.4
ICP-MS, Aberystwyth (T.S.)	ICP-MS	391.3	9.9	ICP-MS, Memorial (T.S.)	ICP-MS	438	4
Benjamin <i>et al</i> . 1988	NMP	417	12	ICP-MS, Notre Dame (T.S.)	ICP-MS	443.87	0.52
Rogers et al. 1987	NMP	426	8	INAA, Toronto (T.S.)	INAA	452	3
Rogers et al. 1987	NMP	436	11	ICP-AES, Memorial (T.S.)	ICP-AES	453	11
Bergholz <i>et al.</i> 1974	MS	496	10	Michael 1988	EPMA	514	
Hf				Bergholz <i>et al</i> . 1974	MS	638	24
ICP-MS, Aberystwyth (T.S.)	ICP-MS	312.7	20.4	Benjamin <i>et al</i> . 1988	NMP	742	80
Hollocher and Ruiz 1995	ICP-MS	374	13	Rogers et al. 1987	NMP	794	60
ICP-MS, Notre Dame (T.S.)	ICP-MS	405	7.35	Li			
INAA, Toronto (T.S.)	INAA	406	3	Lass <i>et al.</i> 1982	HIAA	354	27
ICP-MS sinter, Memorial (T.S.)	ICP-MS	416	9	Freidli <i>et al.</i> 1987	HIAA	360	20
McGinley and Schweikert 1976	CPAA	420	17	Raith <i>et al</i> . 1994*	LA-ICP-MS	370.9	14.3
ICP-MS, Memorial (T.S.)	ICP-MS	440	19	ICP-MS, Memorial (T.S.)	ICP-MS	453	17
Benjamin <i>et al</i> . 1988	NMP	463	20	ICP-MS, Notre Dame (T.S.)	ICP-MS	457.2	6.92
Rogers et al. 1987	NMP	477	22	Friedli <i>et al.</i> 1988b	HIAA	480	80
Rogers et al. 1987	NMP	477	55	AAS, Aberystwyth (T.S.)	AAS	495.7	4.1
Но				Freidli <i>et al.</i> 1988a	HIAA	500	50
Lukaszew 1990	SSMS	358		Rio <i>et al</i> . 1995	NMP	500	18
Hollocher and Ruiz 1995	ICP-MS	413	13	Rio <i>et al.</i> 1995	NMP	506	19
ICP-MS sinter, Memorial (T.S.)	ICP-MS	439	11	ICP-MS, Aberystwyth (T.S.)	ICP-MS	536.3	12.5
ICP-MS, Notre Dame (T.S.)	ICP-MS	439.1	8.15	Lu			
ICP-MS, Memorial (T.S.)	ICP-MS	460	25	McGinley and Schweikert 1976	CPAA	332	60
ICP-MS, Aberystwyth (T.S.)	ICP-MS	460.3	3.1	Lukaszew 1990	SSMS	389	
Benjamin <i>et al</i> . 1988	NMP	485	24	Hollocher and Ruiz 1995	ICP-MS	390	10
Raith et al. 1994 *	LA-ICP-MS	492.2	13.8	ICP-MS sinter, Memorial (T.S.)	ICP-MS	416	7
Rogers et al. 1987	NMP	511	21	ICP-MS, Aberystwyth (T.S.)	ICP-MS	439.7	2.5
In				ICP-MS, Memorial (T.S.)	ICP-MS	440	19
Bergholz <i>et al</i> . 1974	MS	319	11	ICP-MS, Notre Dame (T.S.)	ICP-MS	440.57	6.94
McGinley and Schweikert 1976	CPAA	385	23	Rogers et al. 1987	NMP	452	67
Rogers <i>et al.</i> 1987	NMP	425	25	INAA, Toronto (T.S.)	INAA	469	0.5

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Lu (cont.)				Nd			
Rogers <i>et al.</i> 1987	NMP	476	17	Lukaszew 1990	SSMS	364	
Benjamin <i>et al</i> . 1988	NMP	497	19	McGinley and Schweikert 1976	CPAA	384	7
Raith et al. 1994 *	LA-ICP-MS	522.6	38.5	Hollocher and Ruiz 1995	ICP-MS	406	13
Mg				- ICP-MS sinter, Memorial (T.S.)	ICP-MS	424	10
Raith et al. 1994 *	LA-ICP-MS	276.2	13.2	ICP-MS, Aberystwyth (T.S.)	ICP-MS	426.1	1.5
ICP-AES, Memorial (T.S.)	ICP-AES	421	13	ICP-MS, Memorial (T.S.)	ICP-MS	435	5
EPMA, Memorial (T.S.)	EPMA	436	48	ICP-MS, Notre Dame (T.S.)	ICP-MS	435.17	3.06
Bergholz <i>et al.</i> 1974	MS	472	22	Raith <i>et al.</i> 1994 *	LA-ICP-MS	493.3	9.63
ICP-MS, Aberystwyth (T.S.)	ICP-MS	488	12.4	Michael 1988	EPMA	505	
EPMA Toronto (TS)	FPMA	511	92	Rogers <i>et al.</i> 1987	NMP	579	32
Mn	21770 (511	72	Benjamin <i>et al.</i> 1988	NMP	598	44
Bingham and Slater 1976	IPMS	216		Ni			
Borgholz et al. 1974	LI ///.5	201	7	Bingham and Slater 1976	LPMS	316	15
ICP AES Momorial (TS)		302	20	ICP-AES, Memorial (I.S.)	ICP-AES	341	15
	EDAAA	400	102	Bendicho and de Loos Vollerbrecht 1990a	GFAAS	410	22
		409	193		GDMS	418.0	23.8
		422	14	Raith et al. 1994	LA-ICP-MS	428.0	18.0
ICP-MS, Aberystwyth (I.S.)	ICP-MS	440.8	7.4	Bergnoiz er al. 1974		431	10
Bonham and Quattlebaum 1988	LA-SSMS	446	60	Rogers et al. 1987		435	14
Milton and Hutton 1993*	GDMS	449.5	17.6	Bonham and Quattlebaum 1988		441	14
Benjamin <i>et al.</i> 1988	NMP	454	22	ICP MS Aborghandh (TS)		445	12.5
EPMA, Memorial (T.S.)	EPMA	464	242	Majenthal 1973	POL	450	7
Raith <i>et al.</i> 1994 *	LA-ICP-MS	466.2	16.7	NIST *	NIST	4587	4
Bendicho and de Loos Vollerbrecht 1990a	GFAAS	481	27	ICP-MS. Notre Dame (T.S.)	ICP-MS	495.47	5.29
NIST *	NIST	485	10	Heidel 1971	EPMA	603.8	200
Heidel 1971	EPMA	495	36.7	_ P			
Μο				ICP-MS, Aberystwyth (T.S.)	ICP-MS	304.9	54
ICP-MS, Notre Dame (T.S.)	ICP-MS	276	10.01	ICP-AES, Memorial (T.S.)	ICP-AES	380	9
McGinley and Schweikert 1976	CPAA	294	12	Pb			
Bergholz <i>et al.</i> 1974	MS	307	19	ICP-MS, Notre Dame (T.S.)	ICP-MS	301.4	2.94
ICP-AES, Memorial (T.S.)	ICP-AES	319	11	ICP-AES, Memorial (T.S.)	ICP-AES	381	11
Benjamin <i>et al.</i> 1988	NMP	381	14	ICP-MS, Aberystwyth (T.S.)	ICP-MS	389	7
ICP-MS, Memorial (T.S.)	ICP-MS	398	3	Bergholz <i>et al</i> . 1974	MS	392	11
ICP-MS, Aberystwyth (T.S.)	ICP-MS	407.5	3.1	Rogers et al. 1987	NMP	405	13
Rogers <i>et al.</i> 1987	NMP	411	11	Rogers <i>et al.</i> 1987	NMP	406	16
Rogers <i>et al.</i> 1987	NMP	414	17	Bonham and Quattlebaum 1988	LA-SSMS	409	102
Hollocher and Ruiz 1995	ICP-MS	427	7	Grey 1990	AAS	411	16
Raith et al. 1994 *	LA-ICP-MS	430.9	17.9	Benjamin <i>et al.</i> 1988	NMP	415	15
				Raith <i>et al.</i> 1994 *	LA-ICP-MS	415.6	16.2
Nb				– ICP-MS, Memorial (T.S.)	ICP-MS	419	1.2
ICP-MS, Memorial (T.S.)	ICP-MS	225	45	Belshaw et al. 1994	SIMS	422	2
ICP-MS, Aberystwyth (T.S.)	ICP-MS	248.5	81.3	Barnes et al. 1973	IDMS	425.58	0.4
ICP-MS sinter, Memorial (T.S.)	ICP-MS	305	219	NIST		420	1
Benjamin <i>et al</i> . 1988	NMP	424	15	Barnes et al 1973		420 426 15	4
ICP-MS, Notre Dame (T.S.)	ICP-MS	432.17	12.43	Broekman and Raanharet 1983		420.15 497	1
Rogers et al. 1987	NMP	441	11	Varias et al 1987	Ηράδ	429	۲ 41
Horn et al. 1994	LA-ICP-MS	456.3	12.3	McGinley and Schweikert 1976	СРАА	430	100
Rogers et al. 1987	NMP	458	16	Bingham and Slater 1976	LPMS	448	
Raith et al. 1994 *	LA-ICP-MS	474.6	18.7	Milton and Hutton 1993*	GDMS	860.9	15.1

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Pr				Sm			
Bergholz <i>et al.</i> 1974	MS	318	14	Hollocher and Ruiz 1995	ICP-MS	417	14
Lukaszew 1990	SSMS	392		ICP-MS sinter, Memorial (T.S.)	ICP-MS	433	12
McGinley and Schweikert 1976	CPAA	400	6	ICP-MS, Notre Dame (T.S.)	ICP-MS	449.33	4.81
ICP-MS, Notre Dame (T.S.)	ICP-MS	422.8	2.67	ICP-MS, Aberystwyth (T.S.)	ICP-MS	449.4	2.0
ICP-MS sinter, Memorial (T.S.)	ICP-MS	441	10	ICP-MS, Memorial (T.S.)	ICP-MS	458	18
ICP-MS, Memorial (T.S.)	ICP-MS	460	9	Lukaszew 1990	SSMS	472	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	462.9	2.9	INAA. Toronto (T.S.)	INAA	475	0.5
Raith et al. 1994 *	LA-ICP-MS	467.3	22.3	Raith et al. 1994 *	LA-ICP-MS	527.2	23.7
Rogers et al. 1987	NMP	493	46	Rogers et al. 1987	NMP	597	25
Benjamin <i>et al</i> . 1988	NMP	505	64	Benjamin <i>et al.</i> 1988	NMP	610	33
Rb						0.0	
Milton and Hutton 1993*	GDMS	318.2	35.4	ICP-MS Aberystwyth (TS)	ICP-MS	309.4	43.6
INAA, Toronto (T.S.)	INAA	400	30	McGinley and Schweikert 1976	CPAA	376	7
Benjamin <i>et al.</i> 1988	NMP	413	13	Rogers et al 1987	NMP	404	30
ICP-MS, Aberystwyth (T.S.)	ICP-MS	423.8	6.6	Benjamin et al. 1988	NMP	409	35
NIST *	NIST	425.7	0.8	Pogor at al 1987	NIMP	458	50
Moore et al. 1973	IDMS	425.7	0.7	c.	1 9/90	450	57
Hollocher and Ruiz 1995	ICP-MS	429	11	Milton and Hutton 1993*	CDMS	120.9	8.5
Bingham and Slater 1976	LPMS	430		Ringham and Slatar 1976		277	0.5
Rogers et al. 1987	NMP	435	11	Banham and Quattlahaum 1929		400	40
Raith <i>et al.</i> 1994 *	LA-ICP-MS	438.1	22.5			422	17
Rogers et al. 1987	NMP	442	10	Reviewing at al. 1022	ICP-AES	401	17
ICP-MS, Memorial (T.S.)	ICP-MS	450	6			481	15
ICP-MS, Notre Dame (T.S.)	ICP-MS	501.97	0.71	ICP-MS, Aberystwyth (I.S.)		491.9	14.7
Re						490	9
Hollocher and Ruiz 1995	ICP-MS	37	6		IN/MP	502	12
Benjamin <i>et al.</i> 1988	NMP	68	16			502	9
Bergholz <i>et al.</i> 1974	MS	206	9	ICP-MS, Memorial (I.S.)	ICP-MS	512	9
Horn <i>et al.</i> 1994	LA-ICP-MS	460.4	17.2	ICP-MS, Notre Dame (I.S.)	ICP-MS	514.93	4.93
Sb				- NISI *	NIST	515.5	0.5
Benjamin <i>et al</i> . 1988	NMP	233	55	Moore et al. 1973	IDMS	515.5	0.3
Rogers et al. 1987	NMP	337	90	Raith <i>et al.</i> 1994 *	LA-ICP-MS	518	17.3
ICP-MS, Aberystwyth (T.S.)	ICP-MS	340.4	18.6			10.4	
Rogers et al. 1987	NMP	384	54	ICP-MS, Memorial (I.S.)	ICP-MS	134	23
Bergholz <i>et al.</i> 1974	MS	387	18	Bergholz <i>et al.</i> 1974	MS	220	14
McGinley and Schweikert 1976	CPAA	394	6	ICP-MS, Aberystwyth (T.S.)	ICP-MS	293.1	120
Sc				- ICP-MS sinter, Memorial (T.S.)	ICP-MS	304	22
Rogers et al1987	NMP	315	97	McGinley and Schweikert 1976	CPAA	332	9
Hollocher and Ruiz 1995	ICP-MS	420	2	ICP-MS, Notre Dame (T.S.)	ICP-MS	340.13	7.13
Raith et al. 1994 *	LA-ICP-MS	423.4	18.6	Rogers et al. 1987	NMP	435	24
Benjamin <i>et al</i> . 1988	NMP	442	180	Horn <i>et al.</i> 1994	LA-ICP-MS	440.7	15.8
INAA, Toronto (T.S.)	INAA	442	1	Benjamin <i>et al.</i> 1988	NMP	491	22
ICP-MS, Memorial (T.S.)	ICP-MS	444	20	Rogers <i>et al</i> . 1987	NMP	510	52
Horn <i>et al</i> . 1994	LA-ICP-MS	445.3	18.5	Raith <i>et al</i> . 1994 *	LA-ICP-MS	520.9	27
ICP-MS, Aberystwyth (T.S.)	ICP-MS	445.4	14.1	INAA, Toronto (T.S.)	INAA	525	1
ICP-MS, Notre Dame (T.S.)	ICP-MS	449.07	13.85	ТЬ			
ICP-AES, Memorial (T.S.)	ICP-AES	486	13	McGinley and Schweikert 1976	CPAA	328	12
Se				Lukaszew 1990	SSMS	344	
Benjamin <i>et al.</i> 1988	NMP	108	4.5	Hollocher and Ruiz 1995	ICP-MS	414	11
Rogers et al. 1987	NMP	110	6	ICP-MS sinter, Memorial (T.S.)	ICP-MS	414	12
Rogers <i>et al</i> . 1987	NMP	114	7	ICP-MS, Aberystwyth (T.S.)	ICP-MS	454.8	3.2

Tis (con.) INAA 455 2 Ti (con.) NNP 6/2 6.3 ICP-MS, Memoral (TS) ICP-MS 457 24 Brogman et al 1987 NMP 6/2 6.3 ICP-MS, Memoral (TS) ICP-MS 46177 578 Tm States and 1987 NMP 70 8 Benjamin et al 1988 NNP 521 29 Holkebar and Values and	Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
INAA, Foromb (IS.) INAA 455 2 Benjamin et al 1988 NNP 672 6.3 ICPAMS, Note Dame (IS.) ICPAMS 457 24 Begen et al 1987 NMP 670 8 Raith et al 1988 INAP 501.1 273 Udotsrew 1990 SSMS 400 9 Begens et al. 1987 NMP 585 24 Idelacher and Buz 1995 ICPAMS 400 9 Benjamin et al. 1988 NMP 585 24 ICPAMS, Nater Dame (IS.) ICPAMS 422.0 2.3 ICPAMS, Nater Dame (IS.) ICPAMS 433.8 36.2 Benjamin et al. 1988 NMP 420 10 Roth et al. 1974 UA/CPAMS 431.8 36.2 Benjamin et al. 1988 NMP 443 18 Barls et al. 1973 IDMS 455.4 10 U	Tb (cont.)				TI (cont.)			
CIC-MA, Nemorial (15) ICPA MS 457 24 Rogens ar al 1987 NMP 70 8 ICPA, Showe Dame (15) ICPA MS 506.1 23.3 Lukazzere 1990 SSM 366 Benigmine at J 1988 NMP 521 29 Halocher and Ruiz 1995 ICPAMS 400 9 Bingham and Slater 1976 ILVMS 506.1 24.3 ICPAMS Anter Demot(15.) ICPAMS 407.9 8.11 The CPAMS Anter Demot(15.) ICPAMS 40.3 42.6 2.3 ICPAMS Inter, Memorial (15.) ICPAMS 40.6 10	INAA, Toronto (T.S.)	INAA	455	2	Benjamin <i>et al.</i> 1988	NMP	67.2	6.3
CP-MS, Note Dome (1.5) CP-MS 401.77 57.8 Tm Julian State SSMS 36.6 Benjami et al. 1994 * LA-ICP-MS 506.1 29.3 Lukaszew 1990 ISSMS 36.6 Benjami et al. 1987 NMP 521 2.9 Hallocher and Ruiz 1995 ICP-MS 400.9 8.11 Binghom and Stater 1976 ICP-MS 2.49 ICP-MS, Nate Dame (1.5) ICP-MS 422.6 2.3 ICP-MS inter, Memorial (1.5) ICP-MS 431.8 36.2 Benjami et al. 1994 * LA-ICP-MS 426 10 ICP-MS, Nate Dame (1.5) ICP-MS 431.8 36.2 Benjami et al. 1994 * LA-ICP-MS 426.7 221.1 ICP-MS, Memorial (1.5) IICP-MS 454.1 10 U U U 10 Bens et al. 1973 IIDMS 457.2 1.2 Bengham et al. 1987 NMP 431 15 Bernse et al. 1973 IIDMS 457.2 1.2 Bengham et al. 1987 NMP 423 18 ICP-AS Netro Dame (1.5) ICP	ICP-MS, Memorial (T.S.)	ICP-MS	457	24	Rogers et al. 1987	NMP	70	8
Bath ed. 1994 * LAICP.MS Social 29.3 Lukazow 1990 SSM 366 Benjomin ed. 1988 NMP 521 29 Hollochr and Ruiz 1995 ICP.MS 400 9 Binghan ed Isiter 1976 ILPMS 521 29 Hollochr and Ruiz 1995 ICP.MS 400 9 Binghan ed Isiter 1976 ILPMS 326 6 ICPMS, Shrine Dome (IS.) ICP.MS 426 2.3 ICP.MS, Inter, Memorial (IS.) ICPMS 403.63 2.22 ICPMS, Memorial (IS.) ICP.MS 426 10 ICP.MS, Inter Obem (IS.) ICP.MS 446 18 Rath et al. 1994 * IA/CP.MS 490.5 221 Benjomin et al. 1988 NMP 446 18 Rath et al. 1994 * IA/CP.MS 490.5 221 Benjom et al. 1973 IDMS 455.4 1.6 Benjoha et al. 1987 * NMP 413 18 INAA, Coorno (IS.) INAA 458 2 Binginam ad Sizer 1976 IBMS 425 100 ICPA/S, Mem	ICP-MS, Notre Dame (T.S.)	ICP-MS	461.77	5.78	Tm			
Banjamin et al. 1988 NMP 521 29 Holkoher and Ruiz 1995 ICP.MS 400 9 Regens et al. 1987 NMP 585 2.4 ICP.MS, Notre Dame (TS.) ICP.MS 407.9 8.11 Binghan and Slater 1976 ILP.MS 2.49 ICP.MS, Aberystwyh (TS.) ICP.MS 422.6 2.3 ICP.MS, Inter, Memorial (TS.) ICP.MS 336 6 ICP.MS, Memorial (TS.) ICP.MS 426.1 00 Bringhan et al. 1984 NMP 446.18 Rath et al. 1994.* IA./CR-MS 52.1 1 Borns et al. 1973 IDMS 457.2 1.2 Berghani et al. 1987 NMP 443 18 NIAT HIST 457.2 1.2 Berghaiz et al. 1977 NMP 443 18 NIAT IDMS 457.2 0.2 Rogens et al. 1984 TCGS 431 40 ICP-AS, Memorial (TS.) IDMS 457.2 2.0 ICPAMS, Memorial 40.1 2.33 Rogens et al. 1973 IDMS 457.3	Raith et al. 1994 *	LA-ICP-MS	506.1	29.3	Lukaszew 1990	SSMS	366	
Begen et al. 1987 NMP 585 24 ICPAMS, Notre Dame (TS) ICPAMS 407.9 8.11 Th I I ICPAMS, Notre Dame (TS) ICPAMS, Alsoyawyh	Benjamin <i>et al.</i> 1988	NMP	521	29	Hollocher and Ruiz 1995		400	9
Th McGinley and Schweikert 1976 CPAA 410 9 Bingham and Slater 1976 LPMS 249 ICPAMS, sheepstwyth (T.S.) CPAAS, 4422.6 2.3 CPAAS, sinter, Mamorial (T.S.) ICPAMS 430.3.3 2.22 ICPAMS, Memorial (T.S.) ICPAMS, 442.6 2.3 Raih <i>et al.</i> 1994 LA-CPAMS 431.8 36.2 Benjamin <i>et al.</i> 1988 NMP 459 21 Bandma and Quattebaum 1988 LA-SPMS 455.4 14 Regens <i>et al.</i> 1977 NMP 517 19 Bandma and Quattebaum 1988 LA-SSMS 455.4 1.6 Benginali <i>et al.</i> 1974 MS 413 18 NIST * NIST 457.2 1.2 Benginali <i>et al.</i> 1974 MS 413 18 INAA, foronto (T.S.) IDMA 457.2 2.0 CPAMS, Notro Dame (T.S.) ICPAMS, 422.7 5.6 Regers <i>et al.</i> 1973 IDMA 457.2 2.0 CPAMS, Notro Dame (T.S.) ICPAMS, 422.7 5.6 Regers <i>et al.</i> 1973 IDMA 459 2.5 Rogens	Rogers et al. 1987	NMP	585	24	ICP-MS, Notre Dame (T.S.)	ICP-MS	407.9	8.11
Bingham and Slater 1976 IPMS 2.49 ICP-MS, Macroschurt (TS,) ICP-MS 42.6 2.3 ICP-MS, sinter, Memorial (TS,) ICP-MS ICP-MS, Machemorial (TS,) ICP-MS 42.6 10 ICP-MS, Nathe Amerial (TS,) ICP-MS Mather al. 1988 INMP 44.6 18 Rank er al. 1994* IACP-MS 431.8 36.2 Benjamin er al. 1988 INMP 44.6 18 Rank er al. 1994* IACP-MS 447.9 221 Benjamin er al. 1988 INMP 44.6 18 Rank er al. 1997* INMP 47.7 17 Bankma and Quattlebaum 1988 IASSMS 455 110 U V V V V V V V V V 13 15 Bankma and Quattlebaum 1988 IAASSMS 455 100 V V 23 Rankmark NMP 40.3 13 15 Bargen at al. 1973 IDMS 457.2 1.2 Bingham and Slater 1974 NMP 450 12 13 10	Th				McGinley and Schweikert 1976	CPAA	410	9
ICP-MS sinter, Memorial (TS.) ICP-MS 403.63 2.22 ICP-MS, Memorial (TS.) ICP-MS 426 10 ICP-MS, Notro Dome (TS.) ICP-MS 403.63 2.22 ICP-MS, Memorial (TS.) ICP-MS 426 20 Benjamin et al. 1988 NMP 446 18 Roith et al. 1994.* ILA/CP-MS 449.5 22.1 Benjamin et al. 1988 NMP 435 11 Roges et al. 1927 NMP 517 19 Banhom and Quottlebour 1988 IASSMS 455.4 1.6 Bergholz et al. 1974 MS 413 18 INST * NIST 457.2 1.2 Benginin et al. 1988 NMP 423 18 INAA 458 2 Bingham and Slater 1976 IPMS 425 102 ICPAAS, Memorial (TS.) IDAS 457.4 2.0 ICPAAS, Marchan Dame (TS.) ILA/CPAS 440.1 2.33 ICPAAS, Memorial (TS.) ICPAAS 425 ICPAAS 400.1 2.33 ICPAAS, Memorial (TS.) ICPAAS <td< td=""><td>Bingham and Slater 1976</td><td>LPMS</td><td>249</td><td></td><td>ICP-MS, Aberystwyth (T.S.)</td><td>ICP-MS</td><td>422.6</td><td>2.3</td></td<>	Bingham and Slater 1976	LPMS	249		ICP-MS, Aberystwyth (T.S.)	ICP-MS	422.6	2.3
ICP.AS, Notre Dame (T.S.) ICP.AS 403.63 2.22 ICP.AS, Memorial (T.S.) ICP.AS 454 20 Rath <i>et al.</i> 1994. LA:CP.AS 431.8 36.2 Benigmin <i>et al.</i> 1998. NAMP 479 21 Benigmin <i>et al.</i> 1988. NAMP 454 14 Roger <i>et al.</i> 1977. NAMP 517 19 Beniss <i>et al.</i> 1773 IDMS 4554 1.6 Bergholz <i>et al.</i> 1977. NAMP 413 15 Barnes <i>et al.</i> 1973 IDMS 457.23 0.52 Rogers <i>et al.</i> 1976. NAMP 413 15 Barnes <i>et al.</i> 1973 IDMS 457.23 0.52 Rogers <i>et al.</i> 1987. NAMP 423 18 ICP.AS, Memorial (T.S.) ICP.AS 472 20 ICP.AS, Notro Dame (T.S.) ICP.AS 423 17 Regres <i>et al.</i> 1977 NMP 539 18 Componter 1921 NMM 451 17 Regres <i>et al.</i> 1973 NMP 539 18 Componter 1972 NMM 451.3 11	ICP-MS sinter, Memorial (T.S.)	ICP-MS	396	6	ICP-MS sinter, Memorial (T.S.)	ICP-MS	426	10
Rath et al. 1994* LA-CP-MS 431.8 36.2 Benjamin et al. 1988 NMP 479 21 Benjamin et al. 1988 NMP 446 18 Roth et al. 1997 19 Benham and Quatilebaum 1988 LASSM 455.4 110 U Image: transmitted and transmitted	ICP-MS, Notre Dame (T.S.)	ICP-MS	403.63	2.22	ICP-MS, Memorial (T.S.)	ICP-MS	454	20
Benjamin et al. 1988 NMP 446 18 Rathe et al. 1994 * LA-CF-MS 490.5 22.1 ICP-MS, Memorial (TS.) ICP-MS 454 14 Regers et al. 1987 NMP 517 19 Barnhan and Quattlebuum 1988 LA-SSMS 455.1 11.6 Bergholz et al. 1974 MS 413 15 Barnes et al. 1973 IDMS 457.23 0.52 Rogens et al. 1987 NMP 423 18 INAA, Toronto (TS.) IIAAA 458 2 Binghom and Slater 1076 LPMS 422 56 Bergholz et al. 1974 MS 469 7 Gladney et al. 1984 TCCS 431 400 LCP-MS, Aberyshwyh (TS.) ICP-MS 527.6 2.5 Rogens et al. 1987 NMP 451 17 Regers et al. 1976 IVMS 527 2.5 Rogens et al. 1973 IDMS 461.3 1 Milton and Huton 1993* GDMS 41.7 1.7 NIST 461.5 1.1 Bengham and Slater 1976 L	Raith et al. 1994 *	LA-ICP-MS	431.8	36.2	Benjamin <i>et al.</i> 1988	NMP	479	21
ICP-MS, Memorial (TS.) ICP-MS 454 14 Rogens et al. 1987 NMP 517 19 Bonham and Quettleboum 1988 IDMS 455.4 1.6 Berghoiz et al. 1974 MS 413 18 NIST* NIST V Benjamin et al. 1988 NMP 413 15 Bornes et al. 1973 IDMS 457.23 0.52 Rogens et al. 1974 MS 423 18 INAA, Toronto (TS.) INAA 456 2 Bingham and Slater 1976 LPMS 422.5 Regens et al. 1974 MS 460 7 Gladhey et al. 1984 TCCS 431.40 ICP-AKS, Memorial (TS.) ICPAKS 472 2.0 ICPAMS, Note Dame (TS.) ICPAMS 422.7 5.6 Rogens et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.3 17 Rogens et al. 1987 NMP 527 Carpenter 1972 NTM 461.5 1.1 Bingham and Slater 1976 LPMS 2.57 Carpenter 1972 NTM	Benjamin <i>et al.</i> 1988	NMP	446	18	Raith <i>et al.</i> 1994 *	LA-ICP-MS	490.5	22.1
Boham and Quartilebaum 1988 LA-SSMS 455 110 U Mit Mit Barnes et al. 1973 IDMS 455.4 1.6 Bergholz et al. 1974 MS 413 18 NIST * NIST 457.2 1.2 Benjamin et al. 1988 NMP 413 15 Barnes et al. 1973 IDMS 457.23 0.52 Rogers et al. 1987 NMP 422 Bergholz et al. 1974 MS 469 7 Gladney et al. 1987 NMP 422 Rogers et al. 1987 NMP 490 23 Raith et al. 1994 * LA-ICP-MS 422.5 5.6 Rogers et al. 1987 NMP 527.6 2.5 Rogers et al. 1987 NMP 451 1.7 Rogers et al. 1987 NMP 527.6 2.5 Rogers et al. 1987 NMP 461.3 1 Milton and Huton 1993* GDMS 41.7 1.7 NIST * NIST 461.5 1.1 Bergholz et al. 1974 MS 361 18 Barnes et al. 1973	ICP-MS, Memorial (T.S.)	ICP-MS	454	14	Rogers <i>et al</i> . 1987	NMP	517	19
Barnes et al. 1973 IDMS 455.4 1.6 Bergholz et al. 1974 MS 413 18 NIST NIST 457.2 1.2 Benjamin et al. 1988 NMP 413 15 Barnes et al. 1973 IDMS 457.23 0.52 Rogers et al. 1987 NMP 423 18 Bergholz et al. 1974 MS 469 7 Gladney et al. 1984 TCGS 431 40 ICP-ASE, Memorial (T5.) ICP-AES 472 20 ICP-MS, Notre Dame (T5.) ILP-MS 422.27 5.6 Rogers et al. 1987 NMP 490 23 Raith et al. 1994* ILA-ICP-MS 440.1 23.3 ICP-MS, Notre Dame (T5.) ILP-MS 527.6 Rogers et al. 1987 NIM 461.3 1.7 Rogers et al. 1987 NMP 539 18 Carpenter 1972 NIM 461.3 1.1 Bingham and Slater 1976 IPMS 257 Carpenter 1972 NIM 461.5 1.1 Benjamin et al. 1984 IA.SSMS 400	Bonham and Quattlebaum 1988	LA-SSMS	455	110	U			
NIST * NIST 457.2 1.2 Benjamin et al. 1988 NMP 413 15 Barnes et al. 1973 IDMS 457.23 0.52 Regers et al. 1987 NMP 423 18 INAA, Toronto (T.S.) INAA 458 2 Bingham and Slater 1976 ILPMS 423 Bergholz et al. 1974 MS 469 7 Gladney et al. 1984 TCCS 431 40 ICP-AES, Memorial (T.S.) ICP-AES 472 20 ICP-MS, Notre Dame (T.S.) ILCPMS 432.27 5.6 Regers et al. 1987 NMP 400 23 Roith et al. 1994.* IL-ICP.MS 440.1 23.3 Regers et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.3 1.7 Regers et al. 1987 IDMS 257 Corpenter 1972 NTM 461.5 1.1 Bingham and Slater 1976 IPMS 257 Corpenter 1972 NTM 461.5 1.1 Benghami et al. 1974 MS 361 18 <td< td=""><td>Barnes <i>et al.</i> 1973</td><td>IDMS</td><td>455.4</td><td>1.6</td><td>Bergholz <i>et al</i>. 1974</td><td>MS</td><td>413</td><td>18</td></td<>	Barnes <i>et al.</i> 1973	IDMS	455.4	1.6	Bergholz <i>et al</i> . 1974	MS	413	18
Barnes et al. 1973 IDMS 457.23 0.52 Regres et al. 1987 NMP 423 18 INAA, foronto (T.S.) INAA 458 2 Bingham and Slater 1976 LPMS 425 Bargholz et al. 1974 MS 469 7 Gladney et al. 1984 TCGS 431 40 ICP-ASS, Memorial (T.S.) ICPAES MAP 490 23 Raith et al. 1994.* LA-ICP-MS 440.1 23.3 ICP-ASS, Aberystwyth (T.S.) ICPAS 527.6 2.5 Rogers et al. 1987 NMP 451 17 Rogers et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.5 1.1 Rogers et al. 1987 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Bingham and Slater 1976 LPMS 257 Carpenter 1972 NTM 462.8 1.8 Bencham and QuartHebaum 1988 LA-SSMS 408 18 Barnes et al. 1973 IDMS 4 464 15 Bencham and QuartHebaum 1988 LA-S	NIST *	NIST	457.2	1.2	Benjamin <i>et al.</i> 1988	NMP	413	15
INAA, Toronto (T.S.) INAA 458 2 Brighom and Slater 1976 LPMS 425 Bergholz et al. 1974 MS 469 7 Gladney et al. 1984 TCGS 4.31 4.0 ICP-AES, Memorial (T.S.) ICP-AES 472 20 ICP-MS, Notre Dame (T.S.) ICP-MS 432.27 5.6 Ragers et al. 1987 NMP 490 23 Raith et al. 1994 * IA-ICP-MS 440.1 2.3 Rogers et al. 1987 NMP 539 18 Corpenter 1972 NTM 461.3 1.7 Righam and Slater 1976 LPMS 2.57 Corpenter 1972 NTM 461.5 1.1 Brigham and Slater 1976 LPMS 2.57 Corpenter 1972 NTM 461.5 1.1 Brigham and Slater 1976 LPMS 2.57 Corpenter 1972 NTM 461.5 1.1 Brigham and Slater 1976 LPMS 2.5 Corpenter 1972 NTM 462.8 1.38 Brigham and Slater 1976 LPMS 4.34 10 Corpenter 1972<	Barnes <i>et al.</i> 1973	IDMS	457.23	0.52	Rogers <i>et al</i> . 1987	NMP	423	18
Bergholz et al. 1974 MS 469 7 Gladney et al. 1984 TCGS 431 40 ICP-AES, Memorial (TS.) ICP-AES 472 20 ICP-MS, Notre Dame (TS.) ICP-MS 432.27 5.6 Regers et al. 1987 NMP 490 23 Raith et al. 1994 * ILA-CP-MS 440.1 23.3 Regers et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.3 1.7 Regers et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.5 1.1 Binghom and Hutton 1993* GDMS 41.7 1.7 NIST * NIST 461.5 1.1 Bergholz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Bonham and Quattlebaum 1988 IA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, foronto (TS.) EPMA 421 150 ICP-MS, Memorial (TS.) ICP-MS 4470 90 Maierhal 1973	INAA, Toronto (T.S.)	INAA	458	2	Bingham and Slater 1976	LPMS	425	-
ICP-AES, Memorial (T.S.) ICP-AES 472 20 ICP-MS, Notre Dame (T.S.) ICP-MS 432.27 5.6 Rogers et al. 1987 NMP 490 23 Raith et al. 1994 * IA-ICP-MS 440.1 23.3 ICP-MS, Aberystwyth (T.S.) ICP-MS 527.6 2.5 Rogers et al. 1987 NMP 451 17 Rogers et al. 1987 NMP 539 18 Carpenter 1972 NTM 461.3 1.7 Rogers et al. 1987 NMS 361 18 Barnes et al. 1973 IDMS 461.5 1.1 Benghou and Slater 1976 LPMS 257 Carpenter 1972 NTM 461.5 0.4 Bendham and Quattlebaum 1988 IA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, Toroto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 NIST * <td< td=""><td>Bergholz <i>et al.</i> 1974</td><td>MS</td><td>469</td><td>7</td><td>Gladnev <i>et al.</i> 1984</td><td>TCGS</td><td>431</td><td>40</td></td<>	Bergholz <i>et al.</i> 1974	MS	469	7	Gladnev <i>et al.</i> 1984	TCGS	431	40
Rogers et al. IP87 INMP 490 23 Raith et al. IP94* LA-CP-MS 440.1 23.3 ICP-MS, Aberystwyh (TS.) ICP-MS 527.6 2.5 Rogers et al. 1987 NMP 451 17 Regers et al. 1987 NMP 539 18 Carpenter 1972 NIM 461.3 1 Milon and Hutton 1993* GDMS 41.7 1.7 NIST* NIST 461.5 1.1 Berghotz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 1.1 Berghotz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 1.1 Benham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 471 28 NIST * NIST 437 20.2 I	ICP-AES, Memorial (T.S.)	ICP-AES	472	20	ICP-MS, Notre Dame (T.S.)	ICP-MS	432.27	5.6
LCP-MS, Aberystwyth (T.S.) ICP-MS 527.6 2.5 Rogers et al. 1987 NMP 451 17 Rogers et al. 1987 NMP 539 18 Carpenter 1972 NIM 461.3 1.7 Ti Milton and Hutton 1993* GDMS 41.7 1.7 NIST * NIST * 461.5 1.1 Bingham and Slater 1976 LPMS 25.7 Carpenter 1972 NIM 461.5 0.4 Bonham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NIM 462.8 13.8 EPMA, foronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464.4 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 NIST 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 342.5 19 ICP-AS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.)	Rogers et al. 1987	NMP	490	23	Raith <i>et al.</i> 1994 *	LA-ICP-MS	440.1	23.3
Rogers et al. INMP 539 18 Carpenter P72 NTM 461.3 1.7 Ti Millon and Hutton 1993* GDMS 41.7 1.7 NIST * NIST 461.5 1.1 Bingham and Slater 1976 LPMS 257 Carpenter 1972 NTM 461.5 1.1 Bergholz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Bonham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 Bonham and Quattlebaum 1988 IA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, foronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Regres et al. 1983 NMP 423 46 Conrad et al. 1982 DNAA 471 28 NIST 437.3 20.2 ICP-MS, Aberyshwyth (T.S.) ICP-MS 513.3 0.9 <td>ICP-MS, Abervstwyth (T.S.)</td> <td>ICP-MS</td> <td>527.6</td> <td>2.5</td> <td>Rogers <i>et al.</i> 1987</td> <td>NMP</td> <td>451</td> <td>17</td>	ICP-MS, Abervstwyth (T.S.)	ICP-MS	527.6	2.5	Rogers <i>et al.</i> 1987	NMP	451	17
Ti Cons C	Rogers et al. 1987	NMP	539	18	Carpenter 1972	NTM	461.3	1.7
Milton and Hutton 1993* GDMS 41.7 1.7 NIST* NIST 461.5 1.1 Bingham and Slater 1976 LPMS 257 Carpenter 1972 NTM 461.5 1.1 Bergholz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Bonham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, Toronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 471 28 NIST 437 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V Hollocher and Ruiz 1995 ICP-MS 442.4 Bergholz et al. 1974 MS 20.6 10 ICP-AES 442 9 Raith et al. 1994.* LA-ICP-MS 342.5 19 EPMA<	Ti				Barnes et al. 1973	IDMS	461.3	1
Bingham and Slater 1976 LPMS 257 Carpenter 1972 NTM 461.5 1.1 Bergholz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Bonham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, Toronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 Maienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 ISIS* NIST 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS 513.3 0.9 ICP-AES, Memorial (T.S.) ICP-MS 442 4<	Milton and Hutton 1993*	GDMS	41.7	1.7	NIST *	NIST	461.5	1.1
Bergholz et al. 1974 MS 361 18 Barnes et al. 1973 IDMS 461.5 0.4 Benham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, Toronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 Maienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 NIST * NIST 437 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ILA-ICP-MS 42.5 19 EPMA, Memorial (T.S.) ICP-AS 442 4 Bergholz et al. 1974 MS 20.6 10 ICP-AS, Memorial (T.S.) ICP-AS 442.5 1 1 1	Bingham and Slater 1976	LPMS	257		Carpenter 1972	NTM	461.5	1.1
Bonham and Quattlebaum 1988 LA-SSMS 408 71 Carpenter 1972 NTM 462.8 13.8 EPMA, Toronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 Maienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 NIST * NIST 437 Bonham and Quattlebaum 1988 LA-SSMS 490 132 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V MS 20.6 10 ICP-AS, Memorial (T.S.) ICP-MS 442 4 Bergholz et al. 1974 MS 20.6 10 ICP-AS, Notre Dame (T.S.) ICP-MS 524.43 4.56 HOHocher and Ruiz 1995 ICP-MS 426.1 1 T Mithon and Hutton	Bergholz <i>et al.</i> 1974	MS	361	18	18 Barnes et al 1973		461.5	0.4
EPMA, Toronto (T.S.) EPMA 421 150 ICP-MS, Memorial (T.S.) ICP-MS 464 15 Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 Maienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 NIST * NIST 437 Bonham and Quattlebaum 1988 LA-SSMS 490 132 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V	Bonham and Quattlebaum 1988	LA-SSMS	408	71	Carpenter 1972	NTM	462.8	13.8
Benjamin et al. 1988 NMP 423 46 Conrad et al. 1982 DNAA 470 90 Maienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 NIST NIST 437 Bonham and Quattlebaum 1988 LA-SSMS 490 132 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 POLASS, Memorial (T.S.) ICP-MS 442 4 Bergholz et al. 1974 MS 206 10 ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * LA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 ICP-MS, Notre Dame (T.S.) ICP-MS 52.43 4.56 Hollocher and Ruiz 1995 ICP-MS 435.1 8.1 <td>EPMA, Toronto (T.S.)</td> <td>EPMA</td> <td>421</td> <td>150</td> <td>ICP-MS, Memorial (T.S.)</td> <td>ICP-MS</td> <td>464</td> <td>15</td>	EPMA, Toronto (T.S.)	EPMA	421	150	ICP-MS, Memorial (T.S.)	ICP-MS	464	15
Anienthal 1973 POL 434 10 Conrad et al. 1982 DNAA 471 28 NIST * NIST 437 Bonham and Quattlebaum 1988 LA-SSMS 490 132 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS 513.3 0.9 Hollocher and Ruiz 1995 ICP-MS 442 4 Bergholz et al. 1974 MS 206 10 ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * LA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 ICP-MS, Notre Dame (T.S.) ICP-MS 52 35 Horn et al. 1994 LA-ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AES 435.1 8.1 Raith et al.	Benjamin <i>et al.</i> 1988	NMP	423	46	Conrad <i>et al.</i> 1982	DNAA	470	90
NIST * NIST 437 Bonham and Quattlebaum 1988 LA-SSMS 440 132 ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Hollocher and Ruiz 1995 ICP-MS 442 4 Bergholz et al. 1974 MS 20.6 10 ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * IA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) EPMA 458 74 ICP-MS, Notre Dame (T.S.) ICP-MS 342.5 19 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 II ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 435.1 8.1 Rith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 435.1	Majenthal 1973	POL	434	10	Conrad <i>et al.</i> 1982	DNAA	471	28
ICP-MS, Aberystwyth (T.S.) ICP-MS 437.3 20.2 ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Rogers et al. 1987 NMP 441 30 V ICP-MS, Aberystwyth (T.S.) ICP-MS 513.3 0.9 Hollocher and Ruiz 1995 ICP-MS 442 4 Bergholz et al. 1974 MS 206 10 ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * IA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) EPMA 458 74 ICP-MS, Notre Dame (T.S.) ICP-MS 369 7.84 Heidel 1971 EPMA 517.5 48.4 EPMA, Memorial (T.S.) EPMA 372 141 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AS 435.1 8.1 Reigholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Rolich et al. 1994 * IA-ICP-MS 58.84 <td>NIST *</td> <td>NIST</td> <td>437</td> <td></td> <td>Bonham and Quattlebaum 1988</td> <td>LA-SSMS</td> <td>490</td> <td>132</td>	NIST *	NIST	437		Bonham and Quattlebaum 1988	LA-SSMS	490	132
Rogers et al. 1987 NMP 441 30 V Additional product of the second product product of the se	ICP-MS, Aberystwyth (T.S.)	ICP-MS	437.3	20.2	ICP-MS, Aberystwyth (T.S.)	ICP-MS	513.3	0.9
Hollocher and Ruiz 1995 ICP-MS 442 4 Bergholz et al. 1974 MS 206 10 Hollocher and Ruiz 1995 ICP-MS 442 4 Bergholz et al. 1974 MS 206 10 ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * IA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) ICP-MS 458 74 ICP-MS, Notre Dame (T.S.) ICP-MS 369 7.84 Heidel 1971 EPMA 517.5 48.4 EPMA, Memorial (T.S.) EPMA 372 141 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 TI ICP-MS, Notre Dame (T.S.) ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AS 435 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 <td< td=""><td>Rogers et al 1987</td><td>NMP</td><td>441</td><td>30</td><td>V</td><td></td><td></td><td></td></td<>	Rogers et al 1987	NMP	441	30	V			
ICP-AES, Memorial (T.S.) ICP-AES 442 9 Raith et al. 1994 * IA-ICP-MS 342.5 19 EPMA, Memorial (T.S.) EPMA 458 74 ICP-MS, Notre Dame (T.S.) ICP-MS 369 7.84 Heidel 1971 EPMA 517.5 48.4 EPMA, Memorial (T.S.) EPMA 372 141 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 TI ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AS 435 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA <t< td=""><td>Hollocher and Ruiz 1995</td><td>ICP-MS</td><td>442</td><td>4</td><td>Bergholz et al. 1974</td><td>MS</td><td>206</td><td>10</td></t<>	Hollocher and Ruiz 1995	ICP-MS	442	4	Bergholz et al. 1974	MS	206	10
EPMA, Memorial (LB,) EPMA 458 74 ICP-MS, Notre Dame (T.S.) ICP-MS 369 7.84 Heidel 1971 EPMA 517.5 48.4 EPMA, Memorial (T.S.) EPMA 372 141 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 TI ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AES 435 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19	ICP-AFS. Memorial (T.S.)	ICP-AFS	442	9	Raith et al 1994 *	IA-ICP-MS	342.5	19
Heidel 1971 EPMA 517.5 48.4 EPMA, Memorial (T.S.) EPMA 372 141 ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 TI ICP-MS GDMS 33.6 2.1 ICP-AS, Memorial (T.S.) ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AS, Memorial (T.S.) ICP-AS 435 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 <	FPMA, Memorial (TS)	FPMA	458	74	ICP-MS. Notre Dame (TS)	ICP-MS	369	7.84
ICP-MS, Notre Dame (T.S.) ICP-MS 524.43 4.56 Hollocher and Ruiz 1995 ICP-MS 426 1 TI ICP-MS GDMS 33.6 2.1 ICP-MS, Memorial (T.S.) ICP-MS 434 17 Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AS, Memorial (T.S.) ICP-MS 434 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1976 CPAA 360.5 30 NIST 61.8 2.5 W M 486.3 30 Barnes et al. 1973 IDMS 61.8 1 McGinley and Schweikert 1976 C	Heidel 1971	FPMA	5175	48.4	EPMA. Memorial (TS)	FPMA	372	141
Instruction	ICP-MS, Notre Dame (T.S.)	ICP-MS	524.43	4.56	Hollocher and Ruiz 1995	ICP-MS	426	1
Milton and Hutton 1993* GDMS 33.6 2.1 ICP-AES, Memorial (T.S.) ICP-AES 435 17 Bergholz et al. 1974 MS 52 35 Horn et al. 1994 IA-ICP-MS 435.1 8.1 Raith et al. 1994 * IA-ICP-MS 58.84 3.81 ICP-AES, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 482 30 ICP-MS, Aberystwyth (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	TI		020		ICP-MS. Memorial (TS)	ICP-MS	434	17
Bergholz et al. 1974 MS 52 35 Horn et al. 1994 LA-ICP-MS 435.1 8.1 Raith et al. 1994 * LA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 LA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 482 30 ICP-MS, Memorial (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	Milton and Hutton 1993*	GDMS	33.6	2.1	ICP-AFS. Memorial (TS)	ICP-AFS	435	17
Raith et al. 1994 * LA-ICP-MS 58.84 3.81 ICP-MS, Aberystwyth (T.S.) ICP-MS 448.6 18.5 Bonham and Quattlebaum 1988 LA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 482 30 ICP-MS, Memorial (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	Bergholz et al. 1974	MS	52	35	Horn et al 1994	IA-ICP-MS	435.1	8.1
Bonham and Quattlebaum 1988 IA-SSMS 59 21 Rogers et al. 1987 NMP 477 18 McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 482 30 ICP-MS, Memorial (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	Raith et al. 1994 *	IA-ICP-MS	58.84	3.81	ICP-MS. Aberystwyth (T.S.)	ICP-MS	448.6	18.5
McGinley and Schweikert 1976 CPAA 60 10 Benjamin et al. 1988 NMP 482 30 ICP-MS, Memorial (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	Bonham and Quattlebaum 1988	IA-SSMS	.59	21	Rogers et al. 1987	NMP	477	18
ICP-MS, Memorial (T.S.) ICP-MS 60.5 0.8 Heidel 1971 EPMA 486.3 53.1 ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W	McGinley and Schweikert 1976	CPAA	60	10	Benjamin et al. 1988	NMP	482	30
ICP-MS, Aberystwyth (T.S.) ICP-MS 61.19 2.06 Joyce and Schweikert 1984 PIXE 494.2 54.1 NIST * NIST 61.8 2.5 W ICP-MS 61.8 1 McGinley and Schweikert 1976 CPAA 366 30 Barnes et al. 1973 IDMS 61.8 1 McGinley and Schweikert 1976 CPAA 366 30	ICP-MS Memorial (TS)		60.5	0.8	Heidel 1971	FPMA	486.3	531
NIST * NIST 61.8 2.5 W Barnes et al. 1973 IDMS 61.8 1 McGinley and Schweikert 1976 CPAA 366 30 Rogers et al. 1987 NMP 65 9 Rogers et al. 1987 NMP 418 40	ICP-MS, Aben/stwyth (TS)		61 19	2.06	lovce and Schweikert 1981	PIXE	494.2	54 1
Barnes et al. 1973 IDMS 61.8 1 McGinley and Schweikert 1976 CPAA 366 30 Rogers et al. 1987 NMP 65 9 Rogers et al. 1987 NMP 418 40	NIST *	NIST	61.8	2.00	W	11/12		U T. I
Rogers et al. 1987 NMP 65 9 Rogers et al. 1987 NMP 418 40	Barnes et al 1973		61.8	1	McGinley and Schweikert 1076	<u></u>	366	30
	Rogers et al. 1987	NMP	65	9	Rogers et al. 1987	NMP	418	40

Compilation of published and new concentration data (µg g⁻¹) for NIST SRM 610. s = standard deviation. T.S. indicates data from this study, NIST data from the NIST certificate. Those publications marked * are not included in calculations of averages, range and median

Element, authors	Method	Conc.	S	Element, authors	Method	Conc.	s
W (cont.)				Zn			
Rogers <i>et al</i> . 1987	NMP	451	19	ICP-AES, Memorial (T.S.)	ICP-AES	398	11
Benjamin <i>et al.</i> 1988	NMP	467	18	ICP-MS, Aberystwyth (T.S.)	ICP-MS	411.3	8.2
Raith et al. 1994 *	LA-ICP-MS	528.1	16.7	AAS, Aberystwyth (T.S.)	AAS	413	3.1
Y				Hollocher and Ruiz 1995	ICP-MS	428	3
McGinley and Schweikert 1976	CPAA	271	7	Raith et al. 1994 *	LA-ICP-MS	428.7	8.4
ICP-MS sinter, Memorial (T.S.)	ICP-MS	423.9	2.3	NIST *	NIST	433	
Benjamin <i>et al.</i> 1988	NMP	431	14	Horn <i>et al.</i> 1994	LA-ICP-MS	434.4	38.1
ICP-MS, Memorial (T.S.)	ICP-MS	438	2	Benjamin <i>et al.</i> 1988	NMP	446	14
Hollocher and Ruiz 1995	ICP-MS	446	5	Bonham and Quattlebaum 1988	LA-SSMS	456	21
Rogers et al. 1987	NMP	450	10	Bingham and Slater 1976	LPMS	457	
Rogers et al. 1987	NMP	461	14	Rogers <i>et al.</i> 1987	NMP	476	9
ICP-MS, Aberystwyth (T.S.)	ICP-MS	469.6	8.8	Rogers et al. 1987	NMP	476	15
ICP-AES, Memorial (T.S.)	ICP-AES	480	11	ICP-MS, Memorial (T.S.)		477	10
Raith et al. 1994 *	LA-ICP-MS	502.6	24.7	ICP-MS, Notre Dame (T.S.)		494.27	4.88
ICP-MS, Notre Dame (T.S.)	ICP-MS	531.47	2.748	Milton and Hutton 1993*	GDMS	3171	166.9
Yb				_ Zr		2912	14.6
Hollocher and Ruiz 1995	ICP-MS	400	10	Paith at $a/1004$ *		307.4	14.0
ICP-AES, Memorial (T.S.)	ICP-AES	434	10	Benjamin et al. 1988	NMP	408	10.7
ICP-MS, Notre Dame (T.S.)	ICP-MS	435.83	8.49	ICP-MS sinter, Memorial (T.S.)	ICP-MS	431.7	13
Lukaszew 1990	SSMS	443		Roaers et al. 1987	NMP	433	15
ICP-MS, Aberystwyth (T.S.)	ICP-MS	450.6	2.1	ICP-AES, Memorial (T.S.)	ICP-AES	435	9
ICP-MS, Memorial (T.S.)	ICP-MS	459	22	Rogers et al. 1987	NMP	436	11
Raith et al. 1994 *	LA-ICP-MS	467.9	11.9	Hollocher and Ruiz 1995	ICP-MS	444	11
INAA, Toronto (T.S.)	INAA	496	2	ICP-MS, Memorial (T.S.)	ICP-MS	449	4
Benjamin <i>et al</i> . 1988	NMP	512	27	Horn <i>et al.</i> 1994	LA-ICP-MS	450.5	15.9
Rogers et al. 1987	NMP	574	29	ICP-MS, Notre Dame (T.S.)	ICP-MS	482.37	5.48

Table 7.

Element, authors	Method	Conc.	S	Element, authors	Method	Conc.	s	
Ag				As (cont.)				-
Bonham and Quattlebaum 1988	LA-SSMS	1		ICP-MS, Notre Dame (T.S.)		48.14	1.6	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	18.91	0.78	Kuleff <i>et al.</i> 1984	INAA	58.1	7.3	
Headridge and Riddington 1984	GFAAS	19.5	0.87					
ICP-MS, BGS (T.S.)	ICP-MS	21.11	1.54	Au				
Fedorowich <i>et al</i> . 1993	ICP-MS	21.4	0.5	ICP-MS, Aberystwyth (T.S.)	ICP-MS	4.05	0.81	
NIST *	NIST	22	0.3	NIST *	NIST	5		
ICP-MS, Notre Dame (T.S.)	ICP-MS	22.57	0.38	Sheibley 1973	INAA	5	1	
McGinley and Schweikert 1976a	CPAA	28	5	Kuleff <i>et al.</i> 1984	INAA	5	0.2	
Sheibley 1973	INAA	31	7	INAA, Toronto (T.S.)	INAA	5.1	0.1	
As				Kim and Born 1973	INAA	5.27	0.11	
Grey 1990	AAS	25.2	1.7	McGinley and Schweikert 1976a	CPAA	6	3	
INAA, Toronto (T.S.)	INAA	31	1	В				
Fedorowich <i>et al</i> . 1993	ICP-MS	33.9	0.6	Denoyer <i>et al.</i> 1991	LA-ICP-MS	25.8	1.9	
Kanda <i>et al</i> . 1980	IPAA	35.6	0.3	Rio <i>et al.</i> 1995	AAS	26	5	
McGinley and Schweikert 1976a	CPAA	38	9	Zachmann 1985	ICP-AES	27.8	2.9	

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
B (cont.)				Ce (cont.)			
Gladney <i>et al.</i> 1984	DNAA	31	3	Bonham and Quattlebaum 1988	LA-SSMS	33	
NIST *	NIST	32		ICP-MS, Aberystwyth (T.S.)	ICP-MS	33.89	0.17
Carpenter 1972	NTM	32.39	1.04	Pearce et al. 1996	ICP-MS	33.9	
Rio et al. 1995	NMP	33	6	Denoyer <i>et al</i> . 1991	LA-ICP-MS	35.4	1.7
Bonham and Quattlebaum 1988	LA-SSMS	35		Sheibley 1973	INAA	37	2
McGinley and Schweikert 1975	CPAA	38	5	Hollocher and Ruiz 1995	ICP-MS	37	3
Rio <i>et al.</i> 1995	NMP	39	6	ICP-MS, BGS (T.S.)	ICP-MS	37.82	1.98
Owens et al. 1982	ICP-AES	40	4	Jackson <i>et al.</i> 1992	ICP-MS	37.9	2
Milton and Hutton 1993*	GDMS	40		ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.9	0.5
Freidli <i>et al.</i> 1988a	HIAA	43	20	ICP-AES, Memorial (T.S.)	ICP-AES	38.1	0.9
Βα				- Fedorowich <i>et al.</i> 1993	ICP-MS	38.3	0.8
ICP-MS sinter, Memorial (T.S.)	ICP-MS	32.87	0.11	NIST *	NIST	39	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	33.6	2.67	Chen <i>et al.</i> 1993	SXRF	39	
Hollocher and Ruiz 1995	ICP-MS	36	4	Raith <i>et al.</i> 1994*	LA-ICP-MS	39.54	0.55
Kuleff <i>et al.</i> 1984	INAA	36.5	5.2	Sutton <i>et al.</i> 1993	SXRF	40	
INAA, Toronto (T.S.)	INAA	37.2	0.5	Kanda <i>et al.</i> 1980	IPAA	40.6	0.2
ICP-AES, Memorial (T.S.)	ICP-AES	38	1	Haney 1977	IDSSMS	41.2	
ICP-MS, Notre Dame (T.S.)	ICP-MS	38.05	0.73	, McGinley and Schweikert 1976a	CPAA	43	2
Jackson <i>et al.</i> 1992	ICP-MS	38.9	0.7	Kuleff <i>et al.</i> 1984	INAA	45.3	1.5
Fedorowich <i>et al.</i> 1993	ICP-MS	39.5	1.6	Chenery and Cook 1993	LA-ICP-MS	48.2	
NIST *	NIST	41		, Co			
Haney 1977	IDSSMS	41.5		Bendicho and de Loos Vollerbregt 1990b	GFAAS	2	0.4
, Bonham and Quattlebaum 1988	LA-SSMS	45		Sheibley 1973	INAA	31	1
Imbert and Telouk 1993 *	LA-ICP-MS	50.6	8 Hollocher and Ruiz 1995		ICP-MS	32.8	0.4
Be				- Fedorowich <i>et al.</i> 1993	ICP-MS	32.9	0.9
Lass et al. 1982	HIAA	31	7	Kanda <i>et al.</i> 1980	IPAA	33.3	1
ICP-AES, Memorial (T.S.)	ICP-AES	34.3	0.8	Denoyer <i>et al</i> . 1991	LA-ICP-MS	33.8	1.1
Hollocher and Ruiz 1995	ICP-MS	35.3	0.3	Raith <i>et al.</i> 1994*	LA-ICP-MS	34.26	0.36
Fedorowich <i>et al.</i> 1993	ICP-MS	37.1	0.4	Kuleff <i>et al.</i> 1984	INAA	34.3	2.9
ICP-MS, BGS (T.S.)	ICP-MS	37.6	3.96	ICP-AES, Memorial (T.S.)	ICP-AES	34.9	0.6
Jackson <i>et al.</i> 1992	ICP-MS	39	5.6	Kobayashi 1986	NAA	35	1.9
ICP-MS, Aberystwyth (T.S.)	ICP-MS	39.84	1.68	NIST *	NIST	35.5	1.2
Colin <i>et al.</i> 1987	HIAA	41	5	Bendicho and de Loos Vollerbregt 1990a	GFAAS	36.1	0.9
Freidli <i>et al</i> . 1988b	HIAA	48	7	Kim and Born 1973	INAA	37.1	2.3
Freidli <i>et al</i> . 1987	HIAA	50	4	INAA, Toronto (T.S.)	INAA	37.3	0.1
Bi				– Kim and Born 1973	INAA	37.47	4.1
Woolum <i>et al</i> . 1976	RAD	13		ICP-MS, BGS (T.S.)	ICP-MS	37.82	4.4
Carpenter and Pilione 1986	NTM	21	4	ICP-MS, Aberystwyth (T.S.)	ICP-MS	39.81	2.27
ICP-MS, Aberystwyth (T.S.)	ICP-MS	31.45	0.12	Milton and Hutton 1993*	GDMS	43	
Jackson <i>et al.</i> 1992	ICP-MS	33	1.4	Imbert and Telouk 1993 *	LA-ICP-MS	44.8	9.3
Fedorowich <i>et al</i> . 1993	ICP-MS	33.9	0.4	Bonham and Quattlebaum 1988	LA-SSMS	84	
Hollocher and Ruiz 1995	ICP-MS	40	2				
Raith <i>et al.</i> 1994*	LA-ICP-MS	62.33	1.42	Cr			
Cd				ICP-MS, BGS (T.S.)	ICP-MS	19.24	3.41
ICP-MS, Aberystwyth (T.S.)	ICP-MS	27.63	1.09	ICP-AES, Memorial (T.S.)	ICP-AES	30.1	0.5
Fedorowich <i>et al.</i> 1993	ICP-MS	28.4	1.1	Hollocher and Ruiz 1995	ICP-MS	31.2	0.2
ICP-MS, BGS (T.S.)	ICP-MS	28.92	1.76	Fedorowich <i>et al.</i> 1993	ICP-MS	34.9	1.7
McGinley and Schweikert 1976a	CPAA	40	5	ICP-MS, Aberystwyth (T.S.)	ICP-MS	37.94	1.56
Ce				 Kobayashi 1986	NAA	38	4
Imbert and Telouk 1993 *	LA-ICP-MS	32	6	ICP-MS, Notre Dame (T.S.)	ICP-MS	38.64	0.91

Element, authors	Method	Conc.	S	Element, authors	Method	Conc.	S
Cr (cont.)				Er (cont.)			
Raith <i>et al.</i> 1994*	LA-ICP-MS	47.63	0.69	Bonham and Quattlebaum 1988	LA-SSMS	35	
Bonham and Quattlebaum 1988	LA-SSMS	63		ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.05	0.25
Kuleff <i>et al.</i> 1984	INAA	65.9	3.7	Hollocher and Ruiz 1995	ICP-MS	36	3
Kim and Born 1973	INAA	155	8	ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.7	0.4
Cs				Jackson <i>et al.</i> 1992	ICP-MS	37.9	1.2
ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.08	0.64	ICP-MS, Notre Dame (T.S.)	ICP-MS	38.15	0.6
ICP-MS, Notre Dame (T.S.)	ICP-MS	40.51	1.13	ICP-MS, BGS (T.S.)	ICP-MS	38.37	1.21
Kim and Born 1973	INAA	41.1	6.6	Fedorowich <i>et al.</i> 1993	ICP-MS	38.4	0.9
Jackson <i>et al.</i> 1992	ICP-MS	41.8	1.2	Pearce et al. 1996	ICP-MS	38.7	
Hollocher and Ruiz 1995	ICP-MS	42	4	Raith <i>et al.</i> 1994*	LA-ICP-MS	38.8	0.23
Fedorowich <i>et al</i> . 1993	ICP-MS	42.3	1.4	NIST *	NIST	39	
INAA, Toronto (T.S.)	INAA	42.8	0.3	Chen <i>et al.</i> 1993	SXRF	39	
McGinley and Schweikert 1976a	CPAA	43	4	McGinley and Schweikert 1976a	CPAA	43	1
Kuleff <i>et al.</i> 1984	INAA	43	2	Chenery and Cook 1993	LA-ICP-MS	44.6	
Kanda <i>et al</i> . 1980	IPAA	44.8	1.2	Eu			
Bonham and Quattlebaum 1988	LA-SSMS	95		Sheibley 1973	INAA	26	1
Cu				Sutton <i>et al.</i> 1993	SXRF	31	
Bonham and Quattlebaum 1988	LA-SSMS	6		ICP-MS, Aberystwyth (T.S.)	ICP-MS	32.68	0.23
ICP-MS, Aberystwyth (T.S.)	ICP-MS	30.76	1.63	Kim and Born 1973	INAA	32.86	2.19
Milton and Hutton 1993*	GDMS	32		ICP-MS, Notre Dame (T.S.)	ICP-MS	33.14	0.46
Hollocher and Ruiz 1995	ICP-MS	33.5	0.4	Denoyer <i>et al.</i> 1991	LA-ICP-MS	33.4	1.4
Raith et al. 1994*	LA-ICP-MS	35.2	1.02	Hollocher and Ruiz 1995	ICP-MS	34	3
Kuleff <i>et al.</i> 1984	INAA	37	4	4 Jackson <i>et al</i> . 1992		34.4	1
AAS, Aberystwyth (T.S.)	AAS	37.33	1.77	1.77 Pearce et al. 1996		34.9	
NIST *	NIST	37.7	0.9	0.9 ICP-MS sinter, Memorial (T.S.)		35.03	0.2
ICP-AES, Memorial (T.S.)	ICP-AES	37.8	1.1	1.1 Kuleff <i>et al.</i> 1984		35.3	1.2
Bendicho and de Loos Vollerbregt 1990b	GFAAS	38.1	0.8	Fedorowich <i>et al.</i> 1993	ICP-MS	35.4	0.4
Fedorowich <i>et al</i> . 1993	ICP-MS	39.5	1.7	INAA, Toronto (T.S.)	INAA	35.6	0.1
Bendicho and de Loos Vollerbregt 1990a	GFAAS	39.7	1	ICP-MS, BGS (T.S.)	ICP-MS	35.95	1.21
Imbert and Telouk 1993 *	LA-ICP-MS	44.8	9.4	NIST *	NIST	36	
ICP-MS, BGS (T.S.)	ICP-MS	52.01	6.82	Chen <i>et al.</i> 1993	SXRF	36	
Dy				Raith <i>et al.</i> 1994*	LA-ICP-MS	36.28	0.17
ICP-AES, Memorial (T.S.)	ICP-AES	31.1	0.5	McGinley and Schweikert 1976a	CPAA	37	4
ICP-MS, Notre Dame (T.S.)	ICP-MS	34.99	0.82	Chenery and Cook 1993	LA-ICP-MS	43.6	
NIST *	NIST	35		Bonham and Quattlebaum 1988	LA-SSMS	53	
Jackson <i>et al.</i> 1992	ICP-MS	35	1	Fe			
Chen <i>et al.</i> 1993	SXRF	35		Bendicho and de Loos Vollerbregt 1990a	GFAAS	37.7	9
ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.02	0.21	McGinley and Schweikert 1976a	CPAA	48	
Raith et al. 1994*	LA-ICP-MS	35.23	0.18	NIST *	NIST	51	2
ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.7	0.5	Maienthal 1973	POL	51.3	7
Bonham and Quattlebaum 1988	LA-SSMS	36		Bendicho and de Loos Vollerbregt 1990b	GFAAS	53	1
Hollocher and Ruiz 1995	ICP-MS	36	3	Milton and Hutton 1993*	GDMS	55	
Fedorowich <i>et al.</i> 1993	ICP-MS	36.4	0.8	Kuleff <i>et al.</i> 1984	INAA	60	3
ICP-MS, BGS (T.S.)	ICP-MS	36.72	0.77	Haney 1977	IDSSMS	88	0.8
Pearce et al. 1996	ICP-MS	36.8	ICP-AES, Memorial (T.S.)		ICP-AES	115	10
Kuleff et al. 1984	INAA	37	4 Ga				
Sutton et al. 1993	SXRF	37	Bonham and Quattlebaum 1988		LA-SSMS	33	
Chenery and Cook 1993	LA-ICP-MS	41.7		ICP-AES, Memorial (T.S.)	ICP-AES	33.5	1.7
Er				Hollocher and Ruiz 1995	ICP-MS	34	2
Sutton et al. 1993	SXRF	32		ICP-MS, Aberystwyth (T.S.)	ICP-MS	36.74	1.57

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
Ga (cont.)				In			
ICP-MS, Notre Dame (T.S.)	ICP-MS	36.88	1.08	ICP-MS, Notre Dame (T.S.)	ICP-MS	18.44	0.22
ICP-MS, BGS (T.S.)	ICP-MS	38.04	2.97	ICP-MS, Aberystwyth (T.S.)	ICP-MS	37.21	0.63
Fedorowich <i>et al.</i> 1993	ICP-MS	38.3	1.2	Hollocher and Ruiz 1995	ICP-MS	41	2
McGinley and Schweikert 1976a	CPAA	44	10	ICP-MS, BGS (T.S.)	ICP-MS	43.43	1.87
Joyce and Schweikert 1984	PIXE	44.9	11	Bonham and Quattlebaum 1988	LA-SSMS	44	
Gd				- McGinley and Schweikert 1976a	CPAA	49	4
Sutton et al. 1993	SXRF	30		К			
Jackson <i>et al.</i> 1992	ICP-MS	35.4	3	Bonham and Quattlebaum 1988	LA-SSMS	59	
Gladney <i>et al.</i> 1985	TCGS	36	4	NIST *	NIST	64	
Hollocher and Ruiz 1995	ICP-MS	36	3	Haney 1977	IDSSMS	66	
Chen <i>et al.</i> 1993	SXRF	36		AAS, Aberystwyth (T.S.)	AAS	66.52	2.01
ICP-MS, Aberystwyth (T.S.)	ICP-MS	36.03	0.23				
ICP-MS, Notre Dame (T.S.)	ICP-MS	36.31	0.99	Hollocher and Ruiz 1995	ICP-MS	33	3
Denoyer <i>et al.</i> 1991	LA-ICP-MS	37	2	ICP MS Aborgeneth (TS)		33.45	035
Pearce et al. 1996	ICP-MS	37		Pogree at al 1996		33.6	0.00
ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.82	1.12			34.02	0.64
McGinley and Schweikert 1976a	CPAA	38	5	ICP AAS sinten AAssociated (TS)		34.02	0.04
Gladney <i>et al.</i> 1985	TCGS	38	4		ICP-/VIS	34.3	0.7
ICP-MS, BGS (T.S.)	ICP-MS	38.26	1.65	INAA, Ioronto (I.S.)		34.3	0.2
Fedorowich <i>et al.</i> 1993	ICP-MS	38.5	0.8	ICP-MS, BGS (I.S.)	ICP-MS	34.63	2.09
Raith et al. 1994*	LA-ICP-MS	38.93	0.11	Sheibley 1973	INAA	35	15
NIST *	NIST	39		Imbert and Ielouk 1993 *	LA-ICP-MS	35	6
Bonham and Quattlebaum 1988	LA-SSMS	61		Jackson <i>et al.</i> 1992	ICP-MS	35.7	1.2
Ge		-		– Fedorowich <i>et al.</i> 1993	ICP-MS	35.9	0.7
ICP-MS, Aberystwyth (T.S.)	ICP-MS	32.77	0.61	NIST *	NIST	36	
Fedorowich <i>et al.</i> 1993	ICP-MS	36.5	1.2	ICP-AES, Memorial (T.S.)	ICP-AES	36.9	0.6
Hf		00.0		– Sutton <i>et al.</i> 1993	SXRF	38	
Bonham and Quattlebaum 1988	LA-SSMS	12		McGinley and Schweikert 1976a	CPAA	39	5
ICP-MS, Aberystwyth (T.S.)	ICP-MS	26.43	0.98	Kuleff <i>et al.</i> 1984	INAA	40.2	1.2
Kuleff <i>et al.</i> 1984	INAA	32.2	1.6	Chen <i>et al.</i> 1993	SXRF	41	
McGinley and Schweikert 1976a	CPAA	35	4	Chenery and Cook 1993	LA-ICP-MS	41.2	
Hollocher and Ruiz 1995	ICP-MS	35	3	Bonham and Quattlebaum 1988	LA-SSMS	48	
INAA, Toronto (T.S.)	INAA	35	0.1	Li			
ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.9	0.6	Fedorowich <i>et al.</i> 1993	ICP-MS	37.9	0.1
ICP-MS. Notre Dame (TS)	ICP-MS	36.99	0.67	McGinley and Schweikert 1975	CPAA	38	4
lackson et al 1992	ICP-MS	37.6	1	Jackson <i>et al.</i> 1992	ICP-MS	39.9	4.4
Fedorowich et al. 1993	ICP-MS	38.8	0.9	ICP-MS, Notre Dame (T.S.)	ICP-MS	40.24	1.21
Kim and Born 1973	INAA	52.29	3.11	ICP-MS, Aberystwyth (T.S.)	ICP-MS	40.27	1.95
Ho		02.27	0	- ICP-MS, BGS (T.S.)	ICP-MS	41.67	1.76
Bonham and Quattlebaum 1988	LA-SSMS	30		Freidli <i>et al.</i> 1988b	HIAA	42	11
Hollocher and Ruiz 1995	ICP-MS	36	3	Freidli <i>et al.</i> 1987	HIAA	42	3
Raith et al. 1994*	LA-ICP-MS	36.93	0.34	Freidli <i>et al.</i> 1988a	HIAA	43	6
Sutton <i>et al.</i> 1993	SXRF	37		Lass <i>et al.</i> 1982	HIAA	44	8
Jackson et al. 1992	ICP-MS	37.3	1.2	Rio <i>et al.</i> 1995	NMP	48	10
ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.3	0.5	Bonham and Quattlebaum 1988	LA-SSMS	61	
Fedorowich <i>et al.</i> 1993	ICP-MS	37.6	0.7	Lu			
ICP-MS, BGS (T.S.)	ICP-MS	38.59	1.21	Bonham and Quattlebaum 1988	LA-SSMS	29	
ICP-MS, Notre Dame (T.S.)	ICP-MS	38.7	0.19	Hollocher and Ruiz 1995	ICP-MS	35	3
ICP-MS, Aberystwyth (T.S.)	ICP-MS	38.9	0.31	ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.19	0.1
Pearce et al. 1996	ICP-MS	39.4		ICP-MS, Notre Dame (T.S.)	ICP-MS	36.51	0.5
McGinley and Schweikert 1976a	CPAA	46	2	ICP-MS, BGS (T.S.)	ICP-MS	36.72	0.99

Element, authors	Method	Conc.	S	Element, authors	Method	Conc.	s
Lu (cont.)				Nd (cont.)			
Kuleff <i>et al.</i> 1984	INAA	36.8	0.2	ICP-MS, Notre Dame (T.S.)	ICP-MS	34.73	0.52
Raith et al. 1994*	LA-ICP-MS	36.85	0.24	Pearce et al. 1996	ICP-MS	34.9	
Jackson <i>et al.</i> 1992	ICP-MS	37.2	1.8	Hollocher and Ruiz 1995	ICP-MS	35	4
Fedorowich <i>et al</i> . 1993	ICP-MS	37.5	0.5	ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.2	0.3
ICP-MS, Aberystwyth (T.S.)	ICP-MS	39.5	0.25	NIST *	NIST	36	
Sutton <i>et al.</i> 1993	SXRF	40		Chen <i>et al.</i> 1993	SXRF	36	
INAA, Toronto (T.S.)	INAA	40	0.1	Raith <i>et al.</i> 1994*	LA-ICP-MS	36.16	0.18
Pearce et al. 1996	ICP-MS	40.4		ICP-MS, BGS (T.S.)	ICP-MS	36.17	1.21
McGinley and Schweikert 1976a	CPAA	45	4	Fedorowich <i>et al.</i> 1993	ICP-MS	37.3	0.7
Mg				 Chenery and Cook 1993	LA-ICP-MS	41.1	
Bonham and Quattlebaum 1988	LA-SSMS	36		, Bonham and Quattlebaum 1988	LA-SSMS	65	
Fedorowich <i>et al.</i> 1993	ICP-MS	70.9	1.1	Ni			
ICP-MS, BGS (T.S.)	ICP-MS	75.21	14.51	Bonham and Quattlebaum 1988	LA-SSMS	15	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	85.09	4.37	ICP-AES, Memorial (T.S.)	ICP-AES	29.2	0.5
Jackson <i>et al.</i> 1992	ICP-MS	120	60	Milton and Hutton 1993*	GDMS	32	
Kanda <i>et al.</i> 1980	IPAA	341	16	Bendicho and de Loos Vollerbregt 1990a	GFAAS	37.6	2
Mn				Fedorowich <i>et al.</i> 1993	ICP-MS	37.8	1.9
Bonham and Quattlebaum 1988	LA-SSMS	22		Raith <i>et al.</i> 1994*	LA-ICP-MS	37.89	0.38
ICP-AES, Memorial (T.S.)	ICP-AES	36.8	1.7	Bendicho and de Loos Vollerbregt 1990b	GFAAS	38.6	0.4
ICP-MS, Aberystwyth (T.S.)	ICP-MS	37.37	1.19	NIST *	NIST	38.8	0.2
Kuleff <i>et al.</i> 1984	INAA	38.2	1.1	Kanda <i>et al.</i> 1980	IPAA	40.1	1.1
Bendicho and de Loos Vollerbregt 1990a	GFAAS	38.3	1.5	ICP-MS, Aberystwyth (T.S.)	ICP-MS	42.32	1.53
Bendicho and de Loos Vollerbregt 1990b	GFAAS	38.8	0.5	ICP-MS, BGS (T.S.)	ICP-MS	43.43	5.61
Kanda <i>et al.</i> 1980	IPAA	39	2.6	2.6 P			
ICP-MS, BGS (T.S.)	ICP-MS	39.03	6.16	5.16 ICP-AES, Memorial (T.S.)		39.1	0.6
NIST *	NIST	39.6	0.8	0.8 ICP-MS, Aberystwyth (T.S.)		71.21	21.7
Raith <i>et al.</i> 1994*	LA-ICP-MS	39.78	0.27	0.27 Pb			
Fedorowich <i>et al</i> . 1993	ICP-MS	39.9	0.8	McGinley and Schweikert 1976a	CPAA	33	5
Imbert and Telouk 1993 *	LA-ICP-MS	46	6	Imbert and Telouk 1993 *	LA-ICP-MS	35	5
Мо				- Headridge and Riddington 1984	GFAAS	36.33	1.25
Jackson <i>et al.</i> 1992	ICP-MS	33.8	2.9	Jackson <i>et al.</i> 1992	ICP-MS	36.6	3.6
ICP-MS, Memorial (T.S.)	ICP-MS	34	3	ICP-MS, Aberystwyth (T.S.)	ICP-MS	36.96	7.98
Fedorowich <i>et al.</i> 1993	ICP-MS	36.3	2.1	Fisher 1986	IDMS	38.37	0.13
Hollocher and Ruiz 1995	ICP-MS	36.9	0.4	Gulson 1977	IDMS	38.56	0.09
ICP-MS, Aberystwyth (T.S.)	ICP-MS	38.61	1.24	Barnes <i>et al.</i> 1973	IDMS	38.56	0.07
ICP-MS, Notre Dame (T.S.)	ICP-MS	39.68	0.92	NIST *	NIST	38.57	0.2
McGinley and Schweikert 1976a	CPAA	40	5	Barnes <i>et al.</i> 1973	IDMS	38.57	0.09
Bonham and Quattlebaum 1988	LA-SSMS	43		Vargas et al. 1987	HeAA	38.7	3.9
Nb				Broekman and van Raaphorst 1983	IDMS	38.83	0.09
Bonham and Quattlebaum 1988	LA-SSMS	35		Bonham and Quattlebaum 1988	LA-SSMS	39	
Raith <i>et al.</i> 1994*	LA-ICP-MS	36.57	0.23	Haney 1977	IDSSMS	39.5	
ICP-MS, Notre Dame (T.S.)	ICP-MS	37.18	0.39	Grey 1990	AAS	41	2.3
Kanda <i>et al.</i> 1980	IPAA	38.1	1	ICP-MS, BGS (T.S.)	ICP-MS	41.67	4.4
Jackson <i>et al.</i> 1992	ICP-MS	38.9	0.7	Denoyer <i>et al.</i> 1991	LA-ICP-MS	42.8	1.1
Fedorowich <i>et al</i> . 1993	ICP-MS	44.5	1.5	Milton and Hutton 1993*	GDMS	45	
Nd				Fedorowich <i>et al.</i> 1993	ICP-MS	57.9	1.8
Sutton et al. 1993	SXRF	31		Raith <i>et al.</i> 1994*	LA-ICP-MS	73.99	2.68
Denoyer <i>et al</i> . 1991	LA-ICP-MS	33.3	1.5 Pr				
ICP-MS, Aberystwyth (T.S.)	ICP-MS	33.52	0.48	Sutton <i>et al.</i> 1993	SXRF	33	
Jackson <i>et al.</i> 1992	ICP-MS	34.6	2.4	Pearce et al. 1996	ICP-MS	34.7	

Element, authors	Method	Conc.	S	Element, authors	Method	Conc.	S
Pr (cont.)				Sm			
ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.9	0.2	Gladney <i>et al.</i> 1985	TCGS	32.7	3
McGinley and Schweikert 1976a	CPAA	36	4	Gladney <i>et al.</i> 1985	TCGS	32.8	3
ICP-MS, Notre Dame (T.S.)	ICP-MS	37.01	0.73	Sutton et al. 1993	SXRF	34	
Raith <i>et al.</i> 1994*	LA-ICP-MS	37.04	0.21	Hollocher and Ruiz 1995	ICP-MS	35	3
Jackson <i>et al.</i> 1992	ICP-MS	37.4	0.8	ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.62	0.18
ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.62	0.19	Denoyer <i>et al</i> . 1991	LA-ICP-MS	35.8	1.3
ICP-MS, BGS (T.S.)	ICP-MS	37.82	1.43	ICP-MS sinter, Memorial (T.S.)	ICP-MS	36.4	0.4
Fedorowich <i>et al</i> . 1993	ICP-MS	38.4	0.8	Pearce <i>et al.</i> 1996	ICP-MS	36.5	
Bonham and Quattlebaum 1988	LA-SSMS	39		Jackson <i>et al.</i> 1992	ICP-MS	36.8	1.4
Rb				– ICP-MS, Notre Dame (T.S.)	ICP-MS	37.01	0.49
Raith <i>et al.</i> 1994*	LA-ICP-MS	29.14	0.59	Fedorowich <i>et al.</i> 1993	ICP-MS	37.1	0.8
ICP-MS, Aberystwyth (T.S.)	ICP-MS	31.02	0.14	ICP-MS, BGS (T.S.)	ICP-MS	37.49	1.32
Jackson <i>et al.</i> 1992	ICP-MS	31.1	0.4	INAA, Toronto (T.S.)	INAA	38.5	0.1
ICP-MS, Notre Dame (T.S.)	ICP-MS	31.29	0.69	NIST *	NIST	39	
Fedorowich <i>et al.</i> 1993	ICP-MS	31.3	0.8	Raith <i>et al.</i> 1994*	LA-ICP-MS	39	0.31
NIST *	NIST	31.4	0.4	Chen et al. 1993	SXRF	39	
Lippolt et al. 1983	IDMS	31.41	0.08	Kulett <i>et al.</i> 1984	INAA	39.6	1.1
Moore et al. 1973	IDMS	31.44	0.31	Chenery and Cook 1993	LA-ICP-MS	43.2	
Haney 1977	IDSSMS	317	0.01	Bonham and Quattlebaum 1988	LA-SSMS	6/	
Kanda et al 1980	IPAA	32	14	sn		17	
Hollocher and Ruiz 1995	ICP-MS	32	2	Bonnam and Quafflebaum 1988	LA-SSMS	10	1.00
INAA Toronto (TS)		33	5	ICP-MS, Aberystwyth (I.S.)		30.21	1.83
Bonham and Quattlebaum 1988	2002-01	34	5	redorowich er di. 1993		30.0	0.4
Kuleff et al 1984	ΙΝΔΔ	36	A	McGiploy and Schweikert 1976a		30.01	2.2
Milton and Hutton 1993*	GDMS	39		Sr.		40	
Re	00//10	07		 McGinley and Schweikert 1976a	СРАА	72	6
Hollocher and Ruiz 1995	ICP-MS	5.8	0.5	ICP-MS, Notre Dame (T.S.)	ICP-MS	72.96	0.46
ICP-MS Notre Dame (TS)	ICP-MS	10.43	0.67	Imbert and Telouk 1993 *	LA-ICP-MS	73.2	5
s			0.07	- ICP-MS, Aberystwyth (T.S.)	ICP-MS	73.56	1.26
Bonham and Quattlebaum 1988	IA-SSMS	16		ICP-AES, Memorial (T.S.)	ICP-AES	73.9	0.5
Sb	2.00.00			Denoyer <i>et al.</i> 1991	LA-ICP-MS	74.1	3.3
Kuleff et al. 1984	INAA	32.2	16	Jackson <i>et al.</i> 1992	ICP-MS	75.3	1.1
ICP-MS Aberystwyth (TS)	ICP-MS	32.27	0.91	Haney 1977	IDSSMS	76.3	
Fedorowich et al 1993	ICP-MS	34.9	17	Kanda <i>et al.</i> 1980	IPAA	77.3	1.3
McGinley and Schweikert 1976a	СРАА	38	2	Bonham and Quattlebaum 1988	LA-SSMS	78	
ICP-MS Notre Dame (TS)	ICP-MS	38.91	04	Lippolt <i>et al.</i> 1983	IDMS	78.31	0.09
Kanda et al 1980	IPA A	39.4	0.3	Moore et al. 1973	IDMS	78.38	0.25
Bonham and Quattlebaum 1988		41	0.0	NIST *	NIST	78.4	0.2
Kim and Born 1973	ΙΝΔΔ	45.2	6 74	Raith <i>et al.</i> 1994*	LA-ICP-MS	78.66	0.42
Sc.		10.2	0.7 1	_ Fedorowich <i>et al.</i> 1993	ICP-MS	79.5	3
Kuleff et al. 1984	INAA	34	3	Denoyer 1990	LA-ICP-MS	86.2	3.1
Hollocher and Ruiz 1995	ICP-MS	34.4	04	Milton and Hutton 1993*	GDMS	92	
ICP-MS Aberystwyth (TS)	ICP-MS	37.88	0.47	Τα			
Kanda et al 1980	ΙΡΔΔ	38.2	12	Raith et al. 1994*	LA-ICP-MS	33.66	0.32
Kim and Born 1973		40.35	0.35	Kim and Born 1973	INAA	36.33	5.6
ICP-AFS Memorial (TS)		40.8	0.55	Jackson <i>et al.</i> 1992	ICP-MS	39.3	0.5
ICP-MS, Memorial (TS)		40.0	12	ICP-MS, Notre Dame (1.5.)	ICP-MS	40.51	0.65
Kobavashi 1986	NIA A	50	6	redorowich <i>et al.</i> 1993		40.7	0.7
Fedorowich et al. 1993	ICP_MS	54.6	07	IINAA, IORONTO (I.S.)		42 507	0.5
	101-110		0.7	NUIEII EI UI. 1704	AAM	JZ./	0.5

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
ть				TI (cont.)			
Kuleff <i>et al</i> . 1984	INAA	22	2	ICP-MS, BGS (T.S.)	ICP-MS	15.28	0.66
Bonham and Quattlebaum 1988	LA-SSMS	31		Barnes et al. 1973	IDMS	15.68	3
Sutton et al. 1993	SXRF	31		NIST *	NIST	15.7	
ICP-MS, Notre Dame (T.S.)	ICP-MS	34	0.81	Fedorowich <i>et al.</i> 1993	ICP-MS	16	0.3
ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.44	0	Tm			
Hollocher and Ruiz 1995	ICP-MS	36	3	3 Sutton <i>et al.</i> 1993		30	
Fedorowich <i>et al.</i> 1993	ICP-MS	36.7	0.9	Bonham and Quattlebaum 1988	LA-SSMS	32	
Jackson <i>et al.</i> 1992	ICP-MS	36.9	0.9	Hollocher and Ruiz 1995	ICP-MS	36	3
Kobayashi 1986	NAA	37	2	ICP-MS sinter, Memorial (T.S.)	ICP-MS	36.2	0.4
ICP-MS, BGS (T.S.)	ICP-MS	37.16	1.21	ICP-MS, BGS (T.S.)	ICP-MS	36.72	1.43
INAA, Toronto (T.S.)	INAA	38.3	0.1	ICP-MS, Notre Dame (T.S.)	ICP-MS	37.29	0.63
ICP-MS, Aberystwyth (T.S.)	ICP-MS	38.46	0.24	Jackson <i>et al.</i> 1992	ICP-MS	37.3	2.6
Pearce et al. 1996	ICP-MS	39.1		Raith <i>et al.</i> 1994*	LA-ICP-MS	38.6	0.19
Raith <i>et al.</i> 1994*	LA-ICP-MS	39.52	0.27	Fedorowich <i>et al.</i> 1993	ICP-MS	38.7	0.6
Kim and Born 1973	INAA	52.9	5.62	Pearce et al. 1996	ICP-MS	39	
Th				ICP-MS, Aberystwyth (T.S.)	ICP-MS	39.15	0.29
Bonham and Quattlebaum 1988	LA-SSMS	23		U			
Sheiblev 1973	INAA	31	1	Bonham and Quattlebaum 1988	LA-SSMS	30	
Kuleff et al. 1984	INAA	36	2	Denoyer <i>et al.</i> 1991	LA-ICP-MS	31.8	4.1
ICP-MS, Notre Dame (TS)	ICP-MS	36.6	0.62	INAA, Toronto (T.S.)	INAA	35	0.5
lackson et al 1992	ICP-MS	36.7	16	ICP-MS, Aberystwyth (T.S.)	ICP-MS	35.39	0.22
ICP-MS BGS (TS)		36.83	1.0	Virk 1980	NTM	35.74	
		36.00	21	2 1 Conrad <i>et al.</i> 1982		36.3	7.2
ICP-MS Aben(structh (TS)		37.08	033	0.33 Jackson <i>et al.</i> 1992		36.9	1.7
Fedorowich et al 1993		37.5	0.00	0.4 Carpenter 1972		36.94	0.83
Barnos et al. 1973		37.5	0.4	5.4 Fedorowich <i>et al.</i> 1993		37.1	0.5
NICT *	NIST	37.55	0.04	0.04 Fisher 1986		37.37	0.064
Perman at al 1072		37.79	0.08	Barnes et al. 1973	IDMS	37.37	0.015
		201	0.017	NIST *	NIST	37.38	0.08
INAA, Ioronto (I.S.)		30.1	0.3	ICP-MS, BGS (T.S.)	ICP-MS	37.38	1.43
		38.43	0.42	Carpenter 1972	NTM	37.39	0.09
Raith <i>et al.</i> 1994	LA-ICP-MS	39.02	0.19	Carpenter 1972	NTM	37.41	0.21
Denoyer 1990	LA-ICP-MS	42.1	1.3	Barnes et al. 1973	IDMS	37.41	0.09
				Gulson 1977	IDMS	37.66	0.08
INAA, Ioronto (I.S.)		38.2	0.2	Raith et al. 1994*	LA-ICP-MS	37.7	0.41
Hollocher and Ruiz 1995	ICP-MS	38.6	0.4	Conrad <i>et al</i> . 1982	DNAA	39	4.9
Imbert and Ielouk 1993 *	LA-ICP-MS	44	6.8	Gladney <i>et al.</i> 1984	TCGS	40	2
Fedorowich <i>et al.</i> 1993	ICP-MS	45.4	2.3	Kuleff <i>et al.</i> 1984	INAA	43.6	1.6
ICP-AES, Memorial (T.S.)	ICP-AES	45.7	1.8	Denoyer 1990	LA-ICP-MS	44.1	1.8
Maienthal 1973	POL	50	0.3	v			
NIST *	NIST	50.1	0.8	Bonham and Quattlebaum 1988	LA-SSMS	32	
ICP-MS, Aberystwyth (T.S.)	ICP-MS	51.35	6.65	Hollocher and Ruiz 1995	ICP-MS	35.1	0.3
Kanda <i>et al.</i> 1980	IPAA	55.2	8.3	ICP-MS, Notre Dame (T.S.)	ICP-MS	36.16	0.57
Bonham and Quattlebaum 1988	LA-SSMS	57		ICP-AES, Memorial (T.S.)	ICP-AES	36.6	0.5
Tİ				Jackson <i>et al.</i> 1992	ICP-MS	37.6	0.3
Bonham and Quattlebaum 1988	LA-SSMS	7		Fedorowich <i>et al.</i> 1993	ICP-MS	38.6	0.5
McGinley and Schweikert 1976a	CPAA	14	0.3	ICP-MS, Aberystwyth (T.S.)	ICP-MS	41.44	6.49
ICP-MS, Aberystwyth (T.S.)	ICP-MS	14.69	0.26	Joyce and Schweikert 1984	PIXE	42	4.2
Jackson <i>et al.</i> 1992	ICP-MS	14.8	0.1	Raith <i>et al.</i> 1994*	LA-ICP-MS	45.7	0.29
Milton and Hutton 1993*	GDMS	15	1.8	ICP-MS, BGS (T.S.)	ICP-MS	46.29	7.59
ICP-MS, Notre Dame (T.S.)	ICP-MS	15.02	0.51	Kuleff <i>et al.</i> 1984	INAA	58.6	6

Compilation of published and new concentration data (µg g⁻¹) for NIST SRM 612. s = standard deviation. T.S. indicates data from this study, NIST data from the NIST certificate. Those publications marked * are not included in calculations of averages, range and median

Element, authors	Method	Conc.	s	Element, authors	Method	Conc.	s
w				Yb (cont.)			
ICP-MS, Memorial (T.S.)	ICP-MS	26.5		INAA, Toronto (T.S.)	INAA	42.4	0.5
McGinley and Schweikert 1976a	CPAA	39	4	Pearce <i>et al.</i> 1996	ICP-MS	42.7	
Fedorowich <i>et al.</i> 1993	ICP-MS	40.1	1.2	Raith <i>et al.</i> 1994*	LA-ICP-MS	42.86	0.27
Y				 Kobayashi 1986	NAA	44	3
Raith et al. 1994*	LA-ICP-MS	25.54	0.25	Chenery and Cook 1993	LA-ICP-MS	45.2	
ICP-MS, Notre Dame (T.S.)	ICP-MS	31.45	0.73	Bonham and Quattlebaum 1988	LA-SSMS	52	
ICP-MS sinter, Memorial (T.S.)	ICP-MS	35.2	0.5	Kim and Born 1973	INAA	55	5
Jackson <i>et al.</i> 1992	ICP-MS	36.6	0.6	Zn			
Hollocher and Ruiz 1995	ICP-MS	36.7	0.4	Bonham and Quattlebaum 1988	LA-SSMS	13	
Fedorowich <i>et al</i> . 1993	ICP-MS	36.8	1.2	Raith et al 1994*	IA-ICP-MS	13.65	0.9
Kanda <i>et al</i> . 1980	IPAA	37.9	1.4	Hollocher and Ruiz 1995	ICP-MS	34.1	0.1
ICP-MS, Aberystwyth (T.S.)	ICP-MS	38.96	0.77	ICP-AFS, Memorial (TS)	ICP-AFS	35	0.8
McGinley and Schweikert 1976a	CPAA	40	5	AAS Abenstwith (TS)		35.48	2.36
ICP-AES, Memorial (T.S.)	ICP-AES	40.4	0.5	ICP MS Aboristiath (TS)		29.91	2.00
ICP-MS, BGS (T.S.)	ICP-MS	41.67	3.08	ICP MS, Aberysiwyiii (I.S.)		20.01	1.05
Bonham and Quattlebaum 1988	LA-SSMS	46				37.03	1.05
Yb				- ICP-MS, BGS (I.S.)		44.31	4.10
NIST *	NIST	42			ICP-MS	49.4	1./
Sutton et al. 1993	SXRF	34		Zr			
Hollocher and Ruiz 1995	ICP-MS	36	3	ICP-MS sinter, Memorial (I.S.)	ICP-MS	33.81	0.04
ICP-MS sinter, Memorial (T.S.)	ICP-MS	37.1	0.3	ICP-MS, Aberystwyth (T.S.)	ICP-MS	34.84	1.31
ICP-MS, Aberystwyth (T.S.)	ICP-MS	37.43	0.38	Jackson <i>et al.</i> 1992	ICP-MS	35.2	1
ICP-MS, Notre Dame (T.S.)	ICP-MS	37.5	0.98	ICP-MS, Notre Dame (T.S.)	ICP-MS	35.23	0.025
McGinley and Schweikert 1976a	CPAA	38		Hollocher and Ruiz 1995	ICP-MS	37.3	0.4
Jackson <i>et al.</i> 1992	ICP-MS	38.1	2.2	ICP-AES, Memorial (T.S.)	ICP-AES	37.4	0.3
Fedorowich <i>et al</i> . 1993	ICP-MS	38.9	0.2	Kanda <i>et al.</i> 1980	IPAA	41.8	1.1
Kuleff <i>et al.</i> 1984	INAA	40	7.15	Bonham and Quattlebaum 1988	LA-SSMS	43	
ICP-MS, BGS (T.S.)	ICP-MS	40.02	0.99	Fedorowich <i>et al.</i> 1993	ICP-MS	43.5	5.2
Chen <i>et al.</i> 1993	SXRF	42		Raith <i>et al.</i> 1994*	LA-ICP-MS	46.31	0.18

standard analytical techniques - many of the analyses for B in these glasses fall into this category for example; (iii) data generated as part of a larger study of other materials, such as geologic or forensic studies. Whilst we have searched the literature extensively for information on these glasses, data "hidden" in other studies may have been overlooked, and our compilation may not be exhaustive. We would welcome copies of any further information that is not included in the reference list. Only eight publications produce data for more than fifteen elements in NIST SRM 610, and only nine for NIST SRM 612. Only these larger studies are discussed here, information concerning studies of fewer elements can be inferred from the reference list or compilation tables.

One of the earliest extensive studies on NIST SRM 610 was that of Bergholz (1974) who used mass spectro-

metric methods to determine twenty four elements. NIST SRM 610 and NIST SRM 612 were analysed by McGinley and Schweikert (1976), who determined up to twenty six elements of Z 26 using energy dispersive X-ray counting of radioactive species created in the samples by 20 MeV proton and deuteron bombardment.

Haney (1977), in an extensive study of glasses for use in forensic science produced analyses of fifty seven elements in NIST SRM 612 by isotope dilution mass spectrometry. Kanda et al. (1980) produced analyses of fifteen elements in NIST SRM 612 by instrumental photon activation analysis, and in the same material Kuleff (1984) determined twenty five trace elements by INAA. Rogers et al. (1987) produced data for a total of forty nine elements in NIST SRM 610 using a PIXE method. Spectra were obtained by bombardment of the sample with Be or Al ions at differing beam energies,

Table 8.

Summary of composition data (μ g g⁻¹) for NIST SRM 610. N = total number of analyses included in calculation of average, range, geometric mean and median (published and this study). Overall average = average of all analyses (combining published data and new data presented in this study)) excluding semi-quantitative analyses and analyses with "circular calibrations" (see text). s = standard deviation. Range = maximum and minimum concentrations . Median = median of all data. Geometric mean = geometric mean of all data. Preferred average = average of those analyses within ± 1 standard deviation of the overall average. n = number of analyses included in preferred average. s_p = standard deviation of preferred average. NIST = NIST certified values (open) and information values (in brackets)

		Overall		Rar	nge		Geometric	Preferred					
	Ν	average	S	Max	Min	Median	mean	average	\$ _P	n	NIST	cl*	
٨a	8	235 /	200	267	180	238.5	2337	230 4	18.6	6	(254)	10	٨٩
Δs	7	330.1	35.4	406	303	317	328.6	3174	12.4	6	(234)	10	Δs
Au	7	22.7	5.3	31	15.63	22.6	22.2	22.5	3.5	5	(25)		Au
B	, 9	332.4	72.1	368	141	356	321.4	356.4	73	8	(351)		B
Ba	9	565.1	285.5	1160	382	424	518.3	424.1	29.3	7	(001)		Ba
Be	9	469.0	34.9	540.67	421	452	467.9	465.6	19.2	7			Be
Bi	10	326.4	99.7	430	113.7	372.5	307.0	357.7	49.0	7			Bi
Cd	6	269.6	67.1	393	187	259	263.2	259.4	4.7	4			Cd
Ce	12	462.6	57.6	611	384	451.1	459.6	447.8	16.8	9			Ce
Cl	2	470.0	0.0	470	470	470	470.0	470.0	0.0	2			Cl
Co	14	374.8	82.8	444	135	396.5	361.6	405.0	22.9	12	(390)		Co
Cr	9	415.0	49.5	485	343	406	412.4	405.2	32.3	6	(0.0)		Cr
Cs	7	429.4	191.3	840	259	369	401.9	360.9	67.5	6			Cs
Cu	13	421.7	42.0	486	343	428	419.7	430.3	23.6	10	(444)	4	Cu
Dv	7	420.2	39.9	466	343	429	418.5	426.5	18.0	5	(,	-	Dv
Er	9	440.1	54.8	526	360	436	437.2	426.0	23.9	6			Er
Eu	9	479.6	110.1	731	357	442.7	469.9	461.1	52.1	7			Eu
Fe	11	430.3	79.3	517	260	455	422.2	457.1	22.2	8	458	9	Fe
Ga	11	443.8	28.7	501.3	395	436.5	443.0	438.1	11.3	8		-	Ga
Gd	9	437.2	69.6	556	331	430.53	432.4	419.9	25.2	6			Gd
Ge	5	433.3	38.8	496	391.3	426	431.9	426.3	9.5	3			Ge
Hf	10	419.1	50.3	477	312.7	418	416.1	417.7	28.2	7			Hf
Но	8	445.7	46.4	511	358	444.9	443.5	449.4	24.6	6			Но
In	7	423.9	54.7	474	319	449	420.5	441.4	32.0	6			In
K	6	671.7	456.6	1600	442	487.5	591.1	486.0	45.7	5	(461)		K
La	12	509.2	138.0	794	386	448	494.6	457.4	72.4	10	,		La
Li	10	464.2	61.4	536.3	354	487.9	460.2	484.6	21.7	7			Li
Lu	11	431.0	46.9	497	332	440	428.6	434.7	31.0	9			Lu
Ma	5	465.6	37.0	511	421	472	464.4	465.3	26.6	3			Ma
Mn	11	419.2	75.4	495	216	440.8	410.9	433.3	31.8	9	485	10	Mn
Mo	10	363.5	57.7	427	276	389.5	359.1	376.8	45.0	7			Mo
Nb	8	373.7	97.8	458	225	428.1	360.9	419.4	57.6	6			Nb
Nd	10	455.6	79.3	598	364	430.6	449.8	430.8	37.5	7			Nd
Ni	11	437.5	74.9	603.8	316	441	431.7	443.9	24.2	8	458.7	4	Ni
Р	2	342.5	53.1	380	304.9	342.5	340.4	342.5	53.1	2			Р
Pb	18	409.0	31.6	448	301.4	417	407.7	413.3	15.4	16	426	1	Pb
Pr	9	432.7	57.6	505	318	441	429.1	429.8	30.0	6			Pr
Rb	10	435.0	27.4	501.97	400	429.5	434.3	431.1	11.4	8	425.7	0.8	Rb
Re	4	192.9	192.9	460.4	37	137	124.3	103.7	90.0	3			Re
Sb	6	345.9	60.5	394	233	362.2	340.7	368.5	27.5	5			Sb
Sc	9	432.1	47.1	486	315	444	429.4	441.1	9.6	7			Sc
Se	3	110.7	3.1	114	108	110	110.6	109.0	1.4	2			Se
Sm	9	484.5	69.9	610	417	458	480.4	450.5	20.6	7			Sm
Sn	5	391.3	54.5	458	309.4	404	388.1	396.3	17.8	3			Sn
Sr	11	479.6	44.0	515.5	377	498	477.6	497.4	18.3	9	515.5	0.5	Sr
Ta	11	365.9	125.7	525	134	340.13	342.0	376.6	77.6	7			Ta
Tb	10	443.5	75.9	585	328	454.9	437.6	442.8	22.4	6			Tb
Th	14	448.0	69.1	539	249	456.3	441.8	450.6	27.8	11	457.2	1.2	Th
Ti	13	428.2	66.5	524.43	257	437.3	422.6	434.0	14.7	9	(437)		Ti
Tİ	9	61.9	5.2	70	52	61.19	61.7	61.2	2.1	6	(61.8)	2.5	Tİ
Tm	9	431.4	45.4	517	366	422.6	429.3	420.1	19.2	6			Tm
U	17	453.2	27.3	513.3	413	461.3	452.5	457.1	13.6	11	461.5	1.1	U
V	12	422.1	79.3	494.2	206	435.1	412.9	441.7	42.7	11			V
W	4	425.5	44.6	467	366	434.5	423.7	445.3	25.0	3			W
Y	10	440.2	66.9	531.47	271	448	434.6	449.9	19.3	8			Y
Yb	9	467.2	52.2	574	400	450.6	464.7	461.5	30.6	7			Yb
Zn	12	447.2	30.7	494.27	398	451	446.3	456.3	19.2	8	(433)		Zn
Zr	10	435.1	26.6	482.37	381.3	435.5	434.3	439.9	7.8	7			Zr

* 95% confidence limits or range, whichever is larger.

Table 9.	
Summary of composition data (µg g-1) for NIST SRM 612. Column headings as Tak	ole 8

	Overall			Range		_	Geometric	Preferred					
	Ν	average	S	Max	Min	Median	mean	average	\$ _P	n	NIST	cl*	
Aq	8	20.44	8.91	31	1	31.26	15.46	21.92	3.26	6	22	0.3	Aq
As	7	38.56	11.11	58.1	25.2	35.6	37.29	37.33	6.56	5			As
Au	6	5.07	0.63	6	4.05	5.05	5.04	5.09	0.13	4	(5)		Au
В	11	33.73	5.83	43	25.8	33	33.26	34.73	3.21	6	(32)		В
Ba	11	37.92	3.42	45	32.87	38	37.78	37.74	1.26	7	(41)		Ba
Be	10	39.31	5.88	50	31	38.3	38.94	3773	2.41	7			Be
Bi	6	28.73	9.86	40	13	32.13	26.96	29.84	5.98	4			Bi
Cd	4	31.24	5.87	40	27.63	28.66	30.87	28.32	0.65	3			Cd
Ce	18	38.75	3.92	48.2	33	38	38.57	38.35	1.64	12	(39)		Ce
Co	16	36.23	15.37	84	2	34.95	31.05	35.26	2.44	14	(35.5)	1.2	Co
Cr	10	51.39	39.11	155	19.241	37.97	43.19	39.88	15.17	9			Cr
Cs	11	46.49	16.28	95	35.08	42.3	44.81	41.64	2.59	10			Cs
Cu	10	35.17	11.64	52.007	6	37.57	31.63	36.71	3.07	8	(37.7)	0.9	Cu
Dy	14	36.03	2.22	41.7	31.1	36	35.97	35.97	0.82	12	(35)		Dy
Ēr	13	37.99	3.27	44.6	32	38.15	37.86	37.43	1.50	10	(39)		Ér
Eυ	18	35.51	5.50	53	26	34.97	35.16	34.44	1.59	15	(36)		Eυ
Fe	7	64.71	27.14	115	377	53	60.56	56.33	17.14	6	51	2	Fe
Ga	9	3771	4.29	44.9	33	36.88	37.50	36.24	2.03	6			Ga
Gd	15	38.09	6.66	61	30	37	37.66	36.95	1.06	13	(39)		Gd
Ge	2	34.64	2.64	36.5	32.77	34.64	34.58	34.64	2.64	2	()		Ge
Hf	11	34.29	9.64	52.29	12	35	32.61	34.77	3.65	9			Hf
Но	11	37.89	3.71	46	30	376	37.72	37.87	1.09	9			Но
In	6	38.85	10.72	49	18.44	42.22	37.16	42.93	4.32	5			In
К	3	63.84	4.20	66.52	59	66	63.75	66.26	0.37	2	(64)		K
la	17	36.95	3.92	48	33	35.75	36.77	35.77	2.15	13	(36)		١a
li	12	43 17	625	61	379	41.83	42.81	4154	2.87	11	(00)		li
Lu	13	37.60	3.73	45	29	372	37.42	37.71	195	11			Lu
Ma	6	121.37	110.93	341	36	80.15	93.51	7744	30.15				Ma
Mn	9	36.60	5 5 5	399	22	38.3	36.11	38.43	0.99	8	(39.6)	08	Mn
Mo	8	37.79	3.15	43	33.8	37.76	37.67	38.30	165	5	(07.0)	0.0	Mo
Nh	5	38.74	3.54	44.5	35	38.1	38.61	38.06	0.86	3			Nh
Nd	13	37 52	8.58	65	31	35	36.86	35.24	244	12	(36)		Nd
Ni	8	35.51	9.33	3431	15	38.2	33.96	38.44	464	7	38.8	02	Ni
P	2	55.16	22.71	71 21	301	55.16	52.70	55.16	22.71	2	00.0	0.2	P
Ph	16	39.77	5.34	579	33	38.64	39.49	38.96	184	14	38 57	02	Ph
Pr	10	36.69	182	30	33	37.21	36.64	37.16	0.03	7	00.07	0.2	Pr
Rh	12	32.19	1.02	36	31.02	3143	32.16	3163	0.59	10	31.4	04	Rh
Ro	2	8 12	3.77	10.43	5.8	8 12	778	8 12	3.27	2	01.4	0.4	Ro
s	1	16.00	0.00	16.40	16	16	16.00	16.00	16.00	1			c
sh	8	37.74	4.46	452	32.2	38.46	37.51	38.44	2.26	5			sh
Sc	9	42.25	751	546	34	40.35	41.68	4105	4.09	5			Sc
Sm	17	38.50	777	67	327	36.8	37.96	36.72	263	16	(30)		Sm
Sn	5	33.56	994	40	16	36.8	31.91	37.96	176	4	(07)		Sn
Sr	13	76.60	3.74	862	72	76.3	76.52	76.15	2.20	11	78.4	02	Sr
Ta	6	/0.00	5.62	52.7	3633	10.5	/0.52	30.77	2.27	5	70.4	0.2	Ta
Th	14	36.14	6.56	52.7	20.00	36.8	35.58	35.02	2.13	12			Th
ть	14	36.14	4.41	42.1	22	36.00	25.91	37.02	0.70	11	37.70	0.08	ть
т:	14 Q	4769	701	42.1 57	20	4785	4700	37.23 49.11	3.01	1	(501)	0.08	т:
TI	0	47.00	2.01	14	30.Z	47.03	47.22	40.11	0.66	4	(30.1)	0.0	н т
11 T	0	14.00	2.92	20.15	20	27.01	13.00	13.07	1.00	0	(13.7)	0.5	11 T
1m	20	27.10	2.10	39.13	20	37.01	30.12	37.33	1.20	0 14	27.20	0.00	111
U V	20	37.19	3.10 754	44.1 50.4	30	37.37	37.00	37.15	1.23	10	37.30	0.08	U V
V VA/	10	40.44	7.54	50.0	32	30.1	37.88	37.22	3./0	Ø			V
vv v	う 11	35.20	7.55	40.1	20.5	39	34.61	39.55	0.78				vv
T M	11	38.33	3./8	40	31.45	37.9	38.1/	38.25	2.14	9	(10)		Y va
tb 7	1/	41.20	5.52	55	34	40.02	40.88	39.95	2.86	14	(42)		ĭb -7
∠n ⊐	8	36.24	10./2	49.4	13	3/.15	34.18	3/.92	3.86	6			∠n ⊸
∠r	9	38.01	3.77	43.5	33.81	3/3	37.85	35.99	1.25	5			Zr

* 95% confidence limits or range, whichever is larger.

changes in filter selection producing data of varying quality at different Z ranges. Lukaszew (1990) used a spark source mass spectrometric method to determine the rare earth elements in the NIST SRM 610 glass.

Bonham and Quattlebaum (1989) coupled a Nd:YAG laser to a spark source mass spectrograph to analyse a variety of metals and insulators, including both NIST SRM 610 and NIST SRM 612. They state clearly that, regarding NIST SRM 610, "the sample was not homogeneous", this conclusion being drawn from only four separate analyses and despite their having powdered (and presumably thoroughly mixed) the glass. NIST SRM 612 was also analysed (whether as a powder or the bulk glass is not stated) and their results for most elements "fall well within the predicted factor of three". Notable exceptions include Cu and Ag. Many of the data from Bonham and Quattlebaum disagree wildly with other published data for the NIST glasses, and most of their data are excluded in the calculation of a preferred average by being outside ± 1 standard deviation of the overall mean.

By the early 1990's more work had started to appear on these reference materials, and their potential use as microanalytical standards had been recognised. Hinton (1990), in an ion-microprobe study of silicate glasses, cites chemical data for the NBS-610, assuming all elements to be present at 500 µg g⁻¹ unless analyses from elsewhere were available (e.g. Michael (1988) or NIST certified or estimated concentrations). Hinton (1990) did not produce any new chemical information for NIST SRM 610 and used the actual or assumed values in NBS-610 to calibrate the ion microprobe instrumentation. In many cases substantial errors can occur when the assumed 500 $\mu g~g^{\text{-1}}$ concentrations are used for calibration, although using compilations such as the present one, or with new information on the NIST glasses, corrections can be made retrospectively to published analyses.

Jackson et al. (1992) produced analyses of a range of elements from duplicate ICP-MS analyses of two acid digestions of NIST SRM 612 in a paper dealing with laser ablation ICP-MS. These data include many petrologically significant elements (REE, high field strength, large ion lithophile elements). Powdered samples were analysed using the digestion method of Jenner et al. (1990), which uses a closed bomb HF/HNO₃ attack on 0.1 g sample, followed by a double evaporation with HNO₃. Final solutions were prepared in dilute HNO₃, made up to a given mass (not volume) of solution. For Nb, Mo, Ta and W, a "surrogate calibration" (Jenner et al. 1990) was used where the slope of the Nb and Mo calibrations were determined indirectly from the Zr calibration, and Ta and W from the Hf calibration.

Fedorowich et al. (1993) cited a wide range of solution nebulisation ICP-MS data for NIST SRM 612. Samples were prepared for analysis and their instrument calibrated using a method similar to that of Jenner et al. (1990).

Raith et al. (1996) used a laser ablation ICP-MS technique to determine forty four elements in the NIST SRM 610 and thirty elements in NIST SRM 612. Five spectra were acquired from both the NIST glasses, and three spiked glasses produced by P and H Developments of Glossop U.K. (see above and Hamilton and Hopkins 1995). Calibrations were produced from the first of Raith et al.'s (1996) acquisitions from each standard, using NIST certified or information values and the 75 or 150 μ g g⁻¹ concentrations. The remaining four spectra for each standard were then treated as unknowns. It is not surprising that much of Raith et al.'s data is very similar to the NIST information or certified values, and whilst these data show the viability of LA-ICP-MS as a quantitative technique, and demonstrate the linearity of LA-ICP-MS calibrations, the calibration is not against external materials thus these data are not included in the averages given in Tables 8 and 9.

Most recently, Hollocher and Ruiz (1995) produced a suite of new data for NIST SRM 611 (equivalent to NIST SRM 610), NIST SRM 612 and NIST SRM 614 (a nominal 1 µg g⁻¹ reference material). Hollocher and Ruiz (1995) took only one fragment of glass from each sample (weight approximately 150 mg) which was crushed before dissolution of approximately 100 mg in HF:HNO₃ in a PTFE bomb, prior to analysis by ICP-MS. Calibration was achieved against synthetic multi element standards, and for NIST SRM 611 and NIST SRM 612, internal standards from the sample were used, followed by normalisation of the data to NIST certified values for Ni, Sr and Pb. It is unclear from the manuscript, how Hollocher and Ruiz (1995) determined their analytical errors (presumably multiple analyses on the single solution prepared of each sample), or how, having only prepared one solution of each sample, they were able to test the statement that "NIST glass SRM's 611, 612 and 614 are nominally homogeneous within expected analytical uncertainty for minor and trace elements on the scale of sampling". Hollocher

and Ruiz (1995) quoted maximum, minimum and median concentrations from seventeen publications for NIST SRM 610 and from twenty five publications for NIST SRM 612.

Summary

In general, the inter-laboratory comparison for the new data presented here is very good, although in some cases the solution nebulisation ICP-MS analyses for some of the light REE are notably lower than data produced in other laboratories (e.g. from Aberystwyth and for some elements from Notre Dame). This phenomenon has also been noted in ICP-MS analysis by Garbe-Schönberg (1993). Nonetheless, the new data compares very favourably with published data presented elsewhere, with the exception of some of the studies mentioned above (e.g. Bonham and Quattlebaum 1989).

There are clearly discrepancies in the analyses of Nb and Ta (and to some extent Zr and Hf), due to problems retaining these elements in solution without HF present. This is evident in both the Aberystwyth and Memorial ICP-MS analyses. These elements are useful petrogenetic indicators and clearly further determinations on these elements are needed.

Several elements present in these glasses have been determined only a small number of times. These include Mg, P, S, Cl, Ge, Se, Cd, Sn, Sb, W and Re. Clearly further determinations of these elements would be of value.

Major element data for NIST SRM 610 and NIST SRM 612 are presented in Tables 1 and 2 which give an average of all the data. When the matrix composition is normalised back to 100%, it compares extremely well with the composition of the matrix given by NIST, although the absolute concentrations of the matrix elements are reduced by the dilution effect of some sixty elements present at nominal 50 μ g g⁻¹ or 500 μ g g⁻¹.

Tables 6 and 7 present all the available trace element data for the NIST SRM 610 and NIST SRM 612 glasses. For NIST SRM 610, data is taken from the forty references cited. For NIST SRM 612, data is taken from the forty nine cited references. All data are summarized in Table 8 (NIST SRM 610) and Table 9 (NIST SRM 612) which includes:

• the overall average and standard deviation for each element,

• the "preferred average" and standard deviation. The preferred average is the average of all values within ± 1 standard deviation of the overall average. Whilst not widely used in the geostandards literature, the preferred average is occasionally reported (see for example Abbey et al. 1979 and Govindaraju 1995), and has the advantage of rejecting some outlying values.

• the range of reported concentrations

the median

• the geometric mean (calculated after Sankar Das 1979).

All mathematical calculations were performed using the spreadsheet package Microsoft Excel® v5.0. Analyses from Raith et al. (1996) and Imbert and Telouk (1993) were not used to compute results in Tables 8 and 9, the former because data were obtained using a calibration generated from the glasses themselves and the latter because results were reported as being semi-quantitative. In addition, the data presented by Milton and Hutton (1993) has been excluded from the compilations because of a circular calibration strategy. Data from the NIST certificate, being a compilation, is also excluded from the calculations. In most cases, the data of Bonham and Quattlebaum (1989) has been excluded by the rejection process used to calculate the preferred averages, and is clearly distinct from the majority of the data. Otherwise there appears to be no particular bias between laboratories.

Overall, the NIST SRM 612 glass contains most elements at concentrations of about $38 \pm 12 \ \mu g \ g^{-1}$, lower than the nominal 50 $\ \mu g \ g^{-1}$ suggested by NIST. NIST SRM 610 contains most elements at about $400 \pm 100 \ \mu g \ g^{-1}$, again lower than the nominal 500 $\ \mu g \ g^{-1}$ suggested by NIST. Studies which have assumed the NIST nominal concentrations may suffer from up to 25% bias.

Whilst a large amount of data has been published for NIST SRM 612, less is available for NIST SRM 610. This contribution, therefore, represents a substantial increase in the amount of analytical data available for NIST SRM 610 as well as adding valuable data towards the fuller characterisation of NIST SRM 612. The summary tables provide averages which make these reference materials more useful to the microanalytical community. We will endeavour to maintain and update these compilations and would be grateful

for information concerning sources of published data we have overlooked.

Acknowledgments

We are grateful to P.J. Potts and two anonymous referees for their helpful comments which have improved this contribution.

References

Abbey S., Meads R.A. and Belanger P.G. (1979) Reference samples of rocks - the search for "best values". Geostandards Newsletter, 2, 121-133.

Barnes L , Garmer E. , Gramlich J. , Moore L , Murphy T. , Machlan L. , Shields W. , Tatsumoto M. and Knight R. (1973)

Determination of lead, uranium and thallium in silicate glass standard materials by isotope dilution mass spectrometry. Analytical Chemistry, 45, 880-885.

Barnes S.J. and Gorton M.P. (1984)

Trace element analysis by neutron activation with a low flux reactor (Slowpoke-II): Results for International Reference Rocks. **Geostandards Newsletter**, **8**, 17-23.

Belshaw N.S. , O'Nions R.K. , Martel D.

and Burton K. (1994)

High-resolution SIMS analysis of common lead. Chemical Geology, 112, 57-70.

Bendicho C. and de Loos Vollerbregt M.T.C. (1990a)

The influence of pyrolysis and matrix modifiers for the analysis of glass materials by graphite furnace atomic absorption spectrometry using slurry sample extraction. Spectrochimica Acta, 45B, 679-693.

Bendicho C. and de Loos Vollerbregt M.T.C. (1990b)

Metal extraction by hydrofluoric acid from slurries of glass materials in graphite furnace atomic absorption spectrometry. **Spectrochimica Acta**, **45B**, 695-710.

Benjamin T.M. , Duffy C.J. and Rodgers P.S.Z. (1988)

Geochemical utilisation of nuclear microprobes. Nuclear Instruments and Methods in Physics Research, B30, 454-458.

Bergholz J. , Luck J. , Moller P. and Szacki W. (1974)

Funkenquellen - massenspektrometrische analyses des NBS-SRM 610 (3 mm) standards. **Fresenius Zeitschrift für Analytische Chemie, 269,** 121.

Bingham R.A. and Slater P.L. (1976)

Materials analysis by laser-probe mass spectrometry. International Journal of Mass Spectrometry and Ion Physics, 21, 133-144.

Bonham R.W. and Quattlebaum J.C. (1989)

Coupling of a spark-source mass spectrograph and an Nd:YAG laser. Spectroscopy International, 1, 42-44.

Broekman A. and van Raaphorst J.G. (1983)

Stable isotope dilution analysis by thermal ionisation mass spectrometry. Fresenius Zeitschrift für Analytische Chemie, 315, 30-33.

Carpenter B.S. (1972).

Determination of trace concentrations of boron and uranium in glass by nuclear track technique. **Analytical Chemistry, 44,** 600-602.

Carpenter B.S. and Pillone L.J. (1986).

The use of delayed nuclear track counting for determining bismuth. In Proceedings of the Seventh Modern Trends in Activation Analysis. (Copenhagen), 473-478.

Chen J.R. , Chao E.C.T. , Back J.M. , Minkin J.A. , Rivers M.L. , Sutton S.R. , Cygan G.L. , Grossman J.N. and Reed M.J. (1993)

Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis. Nuclear Instruments and Methods in Physics Research, B75, 576-581.

Chenery S.P. and Cook J.M. (1993)

Determination of rare earth elements in single mineral grains by laser ablation microprobe inductively coupled plasma-mass spectrometry - preliminary study. Journal of Analytical Atomic Spectrometry, 8, 299-303.

Colin M., Freidli C. and Lerch P. (1987)

Trace determination of beryllium by heavy ion activation analysis. Journal of Radioanalytical and Nuclear Chemistry - Letters, 119, 477-487.

Conrad C.P., Rowe M.W. and Gladney E.S. (1982)

Comparative determination of uranium in silicates by delayed neutron activation analysis. Geostandards Newsletter, 6, 1-4.

Denoyer E.R. (1990)

Laser sampling ICP-MS of high purity quartz and glasses. Perkin-Elmer Laser Application Report No LAR-5.

Denoyer E.R. , Fredeen K.J. and Hager J.W. (1991)

Laser solid sampling for inductively coupled plasma-mass spectrometry. Analytical Chemistry, 63, 445A-457A.

Fedorowich J.S. , Richards J.P. , Jain J.C. , Kerrich R. and Fan J. (1993)

A rapid method for REE and trace element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. **Chemical Geology**, **106**, 229-249.

Fisher L.B. (1986)

Microwave dissolution of geological material: application to isotope dilution analysis. **Analytical Chemistry, 58**, 261-263.

Freidli C., Diaco Th. and Lerch P. (1987)

Lithium and beryllium trace determination using heavy ion activation analysis. Journal of Radioanalytical and Nuclear Chemistry - Articles 112, 403-413.

Freidli C. , Colin M. and Lerch P. (1988a)

Studies in heavy ion activation analysis. X. Trace determination possibilities with $^{11}\mathrm{B}$ ion bombardment. Journal of Radioanalytical and Nuclear Chemistry - Articles 120, 253-265.

references

Freidli C. , Colin M. and Lerch P. (1988b)

Studies in heavy ion activation analysis. XI. Trace determination possibilities with ¹⁵N ion bombardment. Journal of Radioanalytical and Nuclear Chemistry - Articles 122, 115-128.

Garbe-Schönberg C.-D. (1993)

Simultaneous determination of thirty seven trace elements in twenty eight international rock standards by ICP-MS. Geostandards Newsletter, 17, 81-98.

Gladney E.S., Jurney E.T. and Curtis D.B. (1976)

Nondestructive determination of boron and cadmium in environmental materials by thermal neutron prompt gamma-ray spectrometry **Analytical Chemistry**, **48**, 2139-2142.

Gladney E.S. , Burns C.E. , Perrin D.R. , Robinson R.D. and Knab D. (1984)

Quality assurance for environmental analytical chemistry: 1982. Los Alamos National Laboratory Report LA-9950-MS.

Gladney E.S., Curtis D.B. and Perrin D.R. (1984)

Determination of boron in thirty five international geochemical reference materials by thermal neutron capture prompt gamma-ray spectrometry. **Geostandards** Newsletter, 8, 43-46.

Gladney E.S., Curtis D.B. and Perrin D.R. (1985)

Determination of selected rare earth elements in thirty seven international geochemical reference materials by instrumental thermal neutron capture prompt gamma-ray spectrometry. **Geostandards Newsletter**, 9, 25-30.

Gladney E.S. , O'Malley B.T. , Roelandts I. and Gills T.E. (1987)

Compilation of elemental concentration data for NBS clinical, biological, geological and environmental standard reference materials. National Bureau of Standards Special Publication 260-111, 547 pp.

Govindaraju K. (1995)

Update (1984-1995) on two GIT-IWG geochemical reference samples: albite from Italy, AL-I and iron formation sample from Greenland, IF-G. **Geostandards** Newsletter, 19, 55-96.

Grey P. (1990)

Determination of arsenic and lead in catalysts by atomic absorption spectrometry with electrothermal atomisation. Analyst, 116, 159-165.

Gulson B.L. (1977)

Isotopic and geochemical studies on crustal effects in the genesis of the Woodlawn Pb-Zn-Cu deposit. Contributions to Mineralogy and Petrology, 65, 227-242.

Hamilton D.L. and Hopkins T.C. (1995)

Preparation of glasses for use as chemical standards involving the coprecipitated gel technique. Analyst, 120, 1373-1377.

Haney M.A. (1977)

Comparison of window glasses by isotope dilution spark source mass spectrometry. **Journal of Forensic Sciences**, **22**, 534-544.

Hannaker P. and Hughes T.C. (1977)

Multi-element trace analysis of geological materials with solvent extraction and flame atomic absorption spectrometry. **Analytical Chemistry**, **49**, 1485-1488.

Headridge J.B. and Riddington I.M. (1984)

Determination of silver, lead and bismuth in glasses by atomic absorption spectrometry with introduction of solid samples into furnaces. Analyst, 109, 113-118.

Heidel R.H. (1971)

Precision and detection limits of certain minor and trace elements in silicates by electron microprobe analysis. Analytical Chemistry, 43, 1907-1908.

Hinton R.W. (1990)

Ion microprobe trace element analysis of silicates: Measurement of multi-element glasses. Chemical Geology, 83, 11-25.

Hinton R.W., Harte B. and Witt-Eickschen G. (1995)

lon probe measurements of National Institute of Standards and Technology Standard Reference Material SRM 610 glass, trace elements. **Analyst, 120**, 1315-1319.

Hollocher K. and Ruiz J. (1995)

Major and trace element determinations on NIST glass standard reference materials 611, 612, 614 and 1834 by inductively coupled plasma-mass spectrometry. **Geostandards Newsletter, 19**, 27-34.

Horn I. , Foley S.F. , Jackson S.E. and Jenner G.A. (1994)

Experimentally determined partitioning of high field strength elements and selected transition-elements between spinel and basaltic melt. **Chemical Geology**, **117**, 193-218.

Imbert J.L and Telouk P. (1993)

Application of laser ablation ICP-MS to elemental analyses of glasses. Mikrochimica Acta, 110, 151-160.

Ingamells C.O. and Pitard F.F. (1986)

Applied Geochemical Analysis. John Wiley (New York), 733pp.

Jackson S.E. , Longerich H.P. , Dunning G.R. and Fryer B.J. (1992)

The application of laser ablation microprobe inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace element determinations in minerals. **Canadian Mineralogist, 30,** 1049-1064.

Jeffries T.E. (1996)

Investigations of mineral analysis by laser ablation inductively coupled plasma-mass spectrometry. Unpublished Ph.D. thesis, University of Wales, Aberystwyth.

Jeffries T.E. , Pearce N.J.G. , Perkins W.T and Raith A. (1996)

Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma-mass spectrometry - implications for mineral microanalysis. Analytical Communications, 33, 35-39.

references

Jenner G.A. , Longerich H.P. , Jackson S.E. and Fryer B.J. (1990)

ICP-MS - a powerful tool for high precision trace element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples. **Chemical Geology**, **83**, 133-148.

Johnson W.M. and Maxwell J.A. (1981)

Rock and Mineral Analysis, John Wiley and Sons (New York), 489pp.

Joyce J.R. and Schweikert E.A. (1984)

Low energy proton activation with X-ray counting. Journal of Trace and Microprobe Techniques, 2, 53-65.

Kanda Y. , Oikawa T. and Niwaguchi T. (1980)

Multi-element determination of trace elements in glass by instrumental photon activation analysis. Analytica Chimica Acta, 121, 157-163.

Kim J.I. and Born H.J. (1973)

Monostandard activation analysis and its applications: analyses of kale powder and NBS standard glass samples. Journal of Radioanalytical Chemistry, 13, 427.

Kobayashi K. (1986)

Determination of trace elements in electronic materials by NAA. Bunseki Kagu, 35, 734-736.

Kuleff I. , Djingova R. and Penev I. (1984)

Analysis of ancient and medieval glasses by INAA. Journal of Radioanalytical and Nuclear Chemistry, 83, 333-343.

Lass B.D. , Roche N.G. , Sanni A.O. , Schweikert E.A. and Ojo J.F. (1982)

Heavy ion activation analysis. Journal of Radioanalytical Chemistry, 70, 251-272.

Lippolt H.J. , Schleicher H. and Raczek I. (1983)

Rb-Sr systematics of Permian volcanites in the Schwarzwald (SW Germany): Part I: Space of time between plutonism and late orogenic volcanism. **Contributions to Mineralogy and Petrology, 84,** 272-280.

Longerich H.P., Jenner G.A., Fryer B.J. and Jackson S.E. (1990)

Inductively coupled plasma-mass spectrometric analysis of geological samples: a critical evaluation based on case studies. **Chemical Geology, 83,** 105-118.

Lukaszew R.A. (1990)

Determination of REE in a glass matrix by spark source mass spectrometry. Spectrochimica Acta B. 45, 613-614.

Maienthal E.J. (1973)

Determination of trace elements in silicate matrices by differential cathode ray polarography. Analytical Chemistry, 45, 644-648.

McGinley J.R. and Schweikert E.A. (1975)

Determination of lithium, boron and carbon by quasiprompt charged particle activation analysis. Analytical Chemistry, 47, 2403-2407.

McGinley J.R. and Schweikert E.A. (1976)

Multi-element charged particle activation analysis with Xray counting. Analytical Chemistry, 48, 429-435.

Michael P.J. (1988)

Partition coefficients for rare earth elements in mafic minerals of high silica rhyolites: the importance of accessory mineral inclusions. Geochimica et Cosmochimica Acta, 52, 275-282.

Milton D.M.P. and Hutton R.C. (1993)

Investigations into the suitability of using a secondary cathode to analyse glass using glow discharge mass spectrometry. **Spectrochimica Acta**, **48B**, 39-52.

Moore L.J. , Moody J. , Barnes I. , Gramlich J. , Murphy T. , Paulsen P. and Shields W. (1973)

Trace determination of rubidium and strontium in silicate glass standard reference materials. Analytical Chemistry, 45, 2384-2387.

Owens J.W. , Gladney E.S. and Knab D. (1982)

Determination of boron in geological materials by inductively coupled plasma-emission spectroscopy. Analytica Chimica Acta, 135, 169-172.

Pearce N.J.G. , Westgate J.A. and Perkins W.T. (1996)

Developments in the analysis of volcanic glass shards by laser ablation inductively coupled plasma-mass spectrometry. **Quaternary International**, **34-36**, 213-227.

Penev I., Kuleff I. and Djingova R. (1985)

Simultaneous activation determination of aluminium, magnesium and silicon in rocks, glasses and pottery. Journal of Radioanalytical and Nuclear Chemistry, 96, 219-232.

Perkins W.T. and Pearce N.J.G. (1995)

Laserprobe micro-analysis inductively coupled plasmamass spectrometry. In Potts P.J. , Bowles J.F.W. , Reed S.J.B. and Cave M.R. (ed) "Microprobe Techniques in the Earth Sciences". Chapman Hall (London), 291-325.

Pouchou J.L. and Pichoir F. (1985)

"PAP" () procedure for improved quantitative microanalysis. In Armstrong J.T. (ed) Microbeam analysis -1985. San Francisco Press (USA), 104-106.

Raith A., Godfrey J. and Hutton R.C. (1996)

Quantitation methods using laser ablation ICP-MS. Part II: Evaluation of new glass standards. Fresenius Journal of Analytical Chemistry, 354, 163-168.

Rio S., Metrich N., Mosbah M. and Massiot P. (1995)

Lithium, boron and beryllium in volcanic glasses and minerals studied by nuclear microprobe. Nuclear Instruments and Methods in Physics Research, B100, 141-148.

Rogers P.S.Z. , Duffy C.J. and Benjamin T.M. (1987)

Accuracy of standardless nuclear microprobe trace element analyses. Nuclear Instruments and Methods in Physics Research, B22, 133-137.

Sankar Das M. (1979)

Geometric means as probable values for compiled data on geochemical samples. Geostandards Newsletter, 2, 199-205.

references

Sheibley D.W. (1973)

Trace elements in instrumental neutron activation analysis for pollution monitoring. In Babu S.P. (ed) Trace elements in fuel. Advances in Chemistry Series, 141. American Chemical Society, (Washington D.C), 98-117.

Stix J. and Gorton M.P. (1992)

Trace element analysis of ten U.S. Geological Survey rock standards by neutron activation using a low flux reactor. Geostandards Newsletter, 16, 21-26.

Sutton S.R. , Rivers M.L. , Bajt S. and Jones K.W. (1993)

Synchotron X-ray fluorescence microprobe analysis with bending magnets and insertion devices. Nuclear Instruments and Methods in Physics Research, B75, 553-558.

Thompson M. and Walsh J.N. (1983)

A handbook of inductively coupled plasma spectrometry. Blackie (Glasgow), 273pp.

Vargas M.E. , Batchelor J.D. and Schweikert E.A. (1987)

Trace determination of lead by Helium-4 activation analysis. Journal of Radioanalytical and Nuclear Chemistry-Letters, 119, 81-86.

Virk H.S. (1980)

Intercalibration of glass dosimiters for neutron fluence determination. International Journal of Applied Radiation and Isotopes, 31, 649-651.

Webster J.D. (1992)

Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar. Geochimica et Cosmochimica Acta, 56, 659-678.

Westgate J.A. , Perkins W.T. , Fuge R. , Pearce N.J.G. and Wintle A.G. (1994)

Trace element analysis of volcanic glass shards by laser ablation inductively coupled plasma-mass spectrometry: application to Quaternary tephro-chronological studies. **Applied Geochemistry, 9**, 323-336.

Woolum D.S., Burnett D.S. and August L.S. (1976)

Lead-bismuth radiography. Nuclear Instruments and Methods, 138, 655-662.

Zachmann D. (1985)

Geochemistry of boron in concentrations and host rocks of Emsian age in the Rheinische Schiefergebirge, Federal Republic of Germany. **Chemical Geology**, 48, 213-229.