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ABSTRACT: Ion-depletion action of an ion-selective membrane produces a moat channel that electrically insulates a cell colony
and elevates the cell medium potential uniformly to synchronously activate and deactivate the voltage-gated ion channels of all cells.
The result is robust synchronization with strong intercellular electrical communication and the discovery of ion channel deactivation
that is only possible when the cells are in communication. The study suggests that the collective response of a cell colony to external
stimuli is distinct from that of a single cell. Cell proliferation must hence be guided with strong intercellular communication and
proper exogenous stimuli.
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■ SUMMARY

Patterned evolution of functional tissues from engineered stem
cells to realize an OOC has been a long-lasting dream.1−5

Once fully realized, they may replace animal models as the
most convenient human surrogates for high-throughput
pharmacological screening and fundamental research on
interorgan and intercellular signaling driving tissue growth/
regeneration and metabolic/immuno-system dynamics.6−8

These miniaturized OOC platforms must closely mimic the
cellular microenvironment with the proper extracellular matrix,
the correct growth factor protocol, and the required chemical/
mechanical/electrical stimuli that determine stem-cell fate.9−12

A key stimulus is the exogenous electric field that finds
application in wound healing, patterned embryonic develop-
ment, pluripotent stem cell maturation, and cancer meta-
stasis.13−18 Both AC (alternating current) and DC (direct
current) fields have been used extensively to direct the

differentiation of pluripotent stem cells to electrically excitable
cardiac and nerve cells.19,20 In heart-on-chip platforms, AC
external electrical stimulations are routinely used to determine
the cardiomyocytes’ contractile properties, disease modeling
and cytotoxicity studies,21−25 as the exogenous field affects the
intercellular electrical communication important for such
colonies. More than any other signaling pathways, electrical
intercellular communication and the proper exogenous
electrical stimulation are difficult to mimic in an OOC. For
example, stem cell maturation into heart and neuron cells is
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known to involve activities in voltage-gated ion channels,26−28

and yet the optimum exogenous voltage protocol for these cells
has yet to be developed.
The main culprit is that the cell media in OOC is highly

conductive. The resulting field leakage does not permit robust
intercellular electrical communication, which is required to
study systemic response to exogenous stimuli. Moreover, the
exogenous field lines will not penetrate the ion channels but
bypass the cell as the resistance of the cellular membrane is
much higher than the cell culture medium. Typically, the
exogenous fields applied in a heart-on-a-chip device are low in
amplitude (1−6 V/cm) and current (< 3 mA) to prevent any
detrimental effects on cells due to joule healing, harmful
faradaic reaction products, and air bubble formation.29 The
induced voltage drop across an individual cell can hence
become less than the requisite 20−50 mV necessary to activate
voltage gated ion channels. Interdigitated electrodes allow a
higher voltage drop and are indeed able to pace cells, but they
cannot maintain a uniform potential over a colony of
communicating cells to study their collective response. This
electrically lossy medium environment does not exist in a live
organism with layers of insulating tissues.
Instead, the ion channel activities have mostly been studied

at a single cell level using voltage clamp and patch clamp
micromanipulators for studying ion channelopathies.30,31 The
intracellular electrode ensures field penetration through the
membrane ion channels. However, such intracellular electrodes
cannot be applied to a large colony of cells with strong
intercellular communication. A detailed cytotoxicity study on
ion channelopathies of a system of communicating cardiac cells
must hence be studied with a different technique.
A novel flow-free and noninvasive method was developed

recently using perm-selective membranes to apply a tunable,
high, and constant potential over a colony of rCM cultured in a
microfluidic OOC chip to effectively shield the colony
electrically.32 The rCM colony was grown in a cell channel
connected to a parallel moat channel by an orthogonal side
channel. The ion depletion action of an ion-selective
membrane was used to deplete the ions in the moat channel
with an electric field along the channel. The cell channel is
electrically isolated by the near DI-water conductivity of the
moat channel, thus allowing intense intercellular electrical
communication within the colony. The high conductivity of
the cell channel, however, permits significant field penetration
from the moat channel. In fact, the high cell channel
conductivity ensures that the entire cell electrolyte (which
retains the original ionic strength) is at a constant potential. In
these membrane microfluidics-based devices, the applied
electric field can be as high as 100 V/cm, which is much
higher than previously reported values, but a relatively low
current (∼100 μA) minimizes Ohmic heating (∼sub-milliwatt)
thanks to the low conductivity of the ion-depleted moat. This
new technique can hence enhance both intercellular
communication as well as allowing large but spatially uniform
external medium potential for the entire colony.
With a 1000-cell cardiomyocyte culture, the authors

demonstrated enhanced synchronization of cell beating with
this technique. The imposed field is shown to increase the
beating frequency of synchronized rCM cells approximately by
a factor of 2. Moreover, the synchronization can be switched
on and off reproducibly within a few milliseconds by activating
and deactivating the depletion zone in the moat channel.
Action potential waveform analysis indicates that the large

exogenous potential has depolarized the communicating cells
simultaneously by activating an HCN Na ion channel and
deactivating all other calcium, sodium, and potassium channels.
This is consistent with prior single-cell voltage clamp
experiments that suggest that the long-polarized interval
between the twin contraction/relaxation peaks, when the cell
is in equilibrium and motionless, is reduced by activating HCN
ion channels.33,34 Immunostaining further confirmed the
existence of HCN2 channels in neonatal rCM cells. Closer
image analysis shows that the L-type Cav ion channels are
deactivated more than the other channels by the positive
extracellular potential, which has never been observed in
single-cell voltage clamp experiments. These exploratory
observations suggest that HCN and L-type Cav ion channels
are more sensitive than others to extracellular voltage in a
synchronized colony with intercellular communication. However,
extensive pharmacologic and/or genetic experiments directly
targeting HCN channels expressed by neonatal rat ventricular
myocytes (i.e., HCN2 and HCN4) and L-type Cav needs to be
performed to completely validate the suggested hypothesis.
This OOC technique can hence mimic the conditions in the
body, where an exogenous electrical stimulus from another
organ or a pace-setter is imparted uniformly over a colony of
cells simultaneously with intimate intercellular communication,
with the collective response quite distinct from that of a single
cell. We believe that this kind of device can direct
differentiation/maturation of pluripotent stem cells with high
electrical connectivity into neuronal and rCM colonies.

■ FUTURE DIRECTIONS
Low-cost membrane-based microfluidics devices have been
extensively used for biosensing, sample pretreatment, analyte
concentration, and pH actuation.35−40 Under a voltage bias, an
external depletion front develops across one side of a
membrane and can be further propagated and controlled.41,42

These devices can be integrated with cell culture to measure
and control VEGF and calcium signaling between adjacent
cells and globally over the entire tissue.
In the future, a perm-selective membrane-based constant

potential environment setup can be used to test the
controversial “ephaptic coupling” theory between neuron and
cardiac cells. The theory is based on the hypothesis that long-
and short-range synchronization of cells can be achieved by the
extracellular charge generation due to ion channel activities of
neighboring neuron or cardiac cells, respectively. The multi-
scale coupling of long-range exogenous potential and
intercellular action potential between neighboring cells is
precisely what this technique can scrutinize.
So far, synthetic biology relies on genetic modification,

without considering physiology and intercellular communica-
tion. Bioelectric intercellular communication during tissue
growth is now attracting more attention not only for
electrically active nerve and cardiac cells but also during
angiogenesis. Recent work has shown that VEGF and calcium
signaling is coupled differently for polarized and unpolarized
cells, but the mechanisms coordinating multicellular behavior
between communicating cells remain unknown, much less how
exogenous fields and stimuli couple with this system
dynamics.43,44 Membrane-based microfluidic devices, in
conjunction with a comprehensive synthetic biology toolkit
that includes optogenetics, quantitative imaging, and molecular
manipulation, may realize a next-generation OOC platform
that allows us to probe and dynamically control these
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multiscale electrical and molecular communications between
different cells and across different colonies.
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■ GLOSSARY/DEFINITIONS

Ion-depletion, removing both cations and anions; ion-selective
membrane, membranes that allow only counterions to pass
through them by electromigration; OOC, organ-on-a-chip;
rCM, neonatal rat cardiomyocytes; HCN, hyperpolarization-
activated, cyclic nucleotide-gated (HCN) ion channels; VEGF,
vascular endothelial growth factor is a protein that supports
new blood vessel growth
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