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Abstract 73

Nonlinear and nonequilibriuralectrophoresis of spheal particles of radius is shown to be possible when the solid surface allows field’
or current penetration. At low particle Peclet numbers, transient capeeitharging occurs until the surface polarization completely screefd
the external field. For a DC applied fielk, the resulting electrokinetic velitg reaches Dukhin’s maximum value éEgoa/u, wheree  '®

andy are the liquid permittivity and viscosity. At high Peclet numbers, electroosmotic convection of the electroneutral bulk stops the traffsient
charging before complete field-line exclusion. For an ion-selective and conducting spherical granule, the polarization is then determifed by
the steady-state Ohmic current driven by the penetrated external field. The high-Peclet electrokinetic velocity is lower, diffusivity-dependent

and scales a8/ a/3. 80
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1. Introduction solely responsible for a large normal surface electric fielé
E; = q;/€, whereg, is the surface charge density ahthe 87
There is considerable interest in using electrokinetics to dielectric constant (permittivity) of the electrolyte. 88

move fluids, separate bioparticles and identify bacteriainthe  The electrostatic force exerted Wy rapidly attracts sur- 89
new field of microfluidics {]. We will analyze a unique class  rounding counterions such as cations even in the presertée
of electrokinetics that cabe called nonequilibrium or non-  of the external applied field », viz. E; > E. If the sur- 91
linear electrokinetics. However, to better contrast this class face is impenetrable to ions (it does not allow current flux)32
of electrokinetic phenomena with traditional linear and equi- the counterions quickly form aequilibrium Boltzmann dis- 93
librium electrokinetics, we first review some basic premises tribution C*(y) = Coo €Xp(—zTA¢/(RT/F)), whereCo, 9
in electrokinetics that are often omitted but must be rescruti- is the bulk electrolyte concentration, such that its elecs
nized and reformulated for nonlinear electrokinetics (for an tromigration inward flux is balanced exactly by outwards
excellent treatment, se@]). These premises concern transi- diffusive flux, resulting in no net flux. The potential dif- 97
tion of the potential from the polarized region to the external ferenceA¢(y) = ¢(y) — ¢(o0) is relative to the bulk at 98

bulk. y = 0o. The co-ions have a similar Boltzmann distributioree
C™ =CooexXpiz—A¢p/(RT/F)). However, due to the oppo- 100

1.1. Linear equilibrium electrokinetics site electrostatic driving force on each, there is an excess vt
counterions and a deficit of co-ions near the surface—there

The Maxwell force per unit volume applied by an external is polarization (see schematicfig. 1). 103
field Eo, on a body with mobile charge density= C* — The thickness of this polarized Debye layer= 104

C~, whereC¥ are the cation and anion concentrations, is VRTE/F2C+, for an electrolyte of concentratiof,,, 105
pEo in vectorial form. Polarized regions with a net charge ranges from 10 to 100 nm. Outside the Debye laygrap- 106
p and a finite Maxwell force occur near dielectric surfaces proaches zero and the potential differere¢ approaches 107
with bound surface charges. These bound charges are almostero at largey, A¢(y — oo) = 0. The overall potential drop 108

A¢(0) is called the zeta potentialand for¢ /(RT/F) « 1, 109

v . . itis of O(EsM). 110
Corresponding author. Fax: +1-574-631-8366. e .
E-mail address: hchang@nd.edu (H.-C. Chang). The condition(E~/Es) < 1 also stipulates an absenceti1
URL: http://mww.nd.edu/~changlab of external field penetration into the Debye layer. A simple12
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Fig. 1. Numerical solutions of the equilibrium concentration and potential profiles. The parameter 487 andC;” = 5. The potential drop¢ (0) is
uniform. 78

application of Gauss divergeatheorem then shows thatto- to transporting bubbles electrokineticall] [In fact, due to 80
tal charge in the Debye layer is equal to the number of boundthe invariance to macroscopic scales, the slip velogily st
charge. Two equal numbers of opposite charges, one bounds identical for particles of arbitrary size and shapg[and 82
to the surface and one confined to the thin Debye layer, arethese particles do not interact as long as their surface charges
separated by an average distance. @b form a molecular  are the same. These features have many advantages anddis-
capacitor of enormous capacitance. advantages in microfluidic applications. The lack of shea#
Most importantly, the total Maxwell force, which only ex- minimizes Taylor dispersiorf] but its irrotational character 86
ists in the polarized Debye layer, is controlled by the net implies that mixing vortices cannot be created electrokine#
charge within the Debye layer, which is equal to the total ically. Noninteracting particles do not aggregate readily buss
bound surface charge. The surface charge hence controls thare also difficult to separated capture. The linearity of the 82
electrokinetic velocity of surfaces with equilibrium Debye slip velocity with respect to the electric field limits its mag-90

layers, known as the Smoluchowski velocig} nitude to less than 1 mys [7] for realistic DC applied fields 91
R A of less than 100 Ycm. 92

U, = _E80OEw | EEx " .
H H 1.2. AC nonlinear and nonequilibrium electrokinetics 94

where: ~ O (E;)) andE; = g5 /€. This equilibrium slip ve- 95
locity is linear with respect to the applied field, and the Due to the mentioned disadvantages, there is consides-

related phenomena are termed linear electrokinetics. Sinceable interest to violate some of the mechanisms that lead 4o
the Maxwell force is confined to the Debye layer, this slip linear and irrotational electroosmotic flow. A large familyes
velocity is independent of any macroscopic length scales— of nonlinear and nonequilibriuralectrokinetic phenomena 9
it only depends on the Debye layer thickness; O (E). have been found or rediscovered recently. All of them workoo

In fact, these linear electrokinetic phenomena, due to under the same basic principle—to induce nonuniform pase:
equilibrium ion distributions established by a large surface larization within the double layer with the external field orioz
field, have many interesting features. With uniform sur- with the electromigration it drives. The normal external fieldo3
face charge and zeta potential and without applied pres-must be significant compared to surface figldwithin the 104
sure gradient, the applied field lines are identical to the double layer for these phenomena to occur. As a result, the
stream lines3]. As the external potential in the electroneu- Debye layer polarization is dependent on the normal exters
tral Ohmic bulk region obeys the Laplace equation, the flow nal field, as well as the surface field due to surface charges?
becomes a potential flow without vorticity and viscous shear In fact, this external-field-induced polarization should beos
even in the smallest channels. Significant Maxwell stress largest if there is no surface charge. In particular, a constane
obviously exists in the Debye layer and this potential flow potential surface (a high permittivity dielectric, a metal on1o
hence refers to the region outside the Debye layer. This sim-a conducting granule) that allows maximum field or currentt.
ilarity between field and stream lines is the major obstacle penetration would enhance this new polarization phenom2
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enon. If the surface has a curvature such that the normalwherea is the radius of the spherical granule. Nevertheless?
external field is not uniform on its surface or if the exter- if it is possible, the polarization would not be specified byss
nal field is by itself nonuniform, the polarization would also the surface charge and field. 59
be nonuniform. As a result, there is a tangential gradient  The most commonly known nonlinear electrokinetic pheso
in the slip velocity and a tangential velocity gradient (shear nomenon is AC dielectrophoresis where charging and dist
rate) appears to revoke the stress-free irrotational charactecharging of the double layer by the external fields leads
of uniform polarization. More over, since the polarization to external-field-induced dipes in dielectric particles. The &3
is external field dependent, the potential devg (0) across dielectrophoretic velocity is proportional to the divergence4
the polarized layer should be field dependent. A direct gen- of the square of the electric field intensity and is hences
eralization of(1) suggest the resulting electroosmotic and clearly nonlinear. The charging by the external field in diss
electrophoretic velocities shallepend nonlinearly on the  electrophoresis are often modeled as a resistor and capac#or
external field. We hence expect a much larger velocity than in parallel P] and is sometimes known as the Maxwell-ss
linear electrokinetics at largields. If nonlinear electroki-  Wagner effect. However, detailed analysis of the actual does
netics is produced by current penetration with a constant ble layer charging in dieleaiphoresis is still lacking. The 70
ion flux, equilibrium ion distributions can no longer exist. mathematical difficulty lies in the insulated boundary condi#
These nonlinear electrokinetic phenomena are hence oftertion, as we shall examine subsequently. 72
nonequilibrium in nature. Another kind of nonlinear electrokinetic phenomenors
Another interesting feature of nonlinear electrokinetics occurs at electrodes supplying a high-frequency AC field4
occurs for the Maxwell stress induced by an AC field. If The frequency is usually beyond hundreds of kHz sucts
the dynamic polarization is due entirely to the normal field that Faradaic reactions do not occur at the electrodes. Con-
and is fast compared to the period of the AC fie# the sequently, ions are charged and discharged by the exter-
Maxwell stress is always in the same direction and has anal field as in dielectrophoresis. This polarization leads te
nonzero time average. Both the charge densitjue to po- strong electroosmotic vortices on the electrodes or constam-
larization and the fieldE, alternate in sign in phase such potential surfaces that have been observed and analyzed
that the Maxwell forcep E, retains the same sign. Hence, [8,10,1]. The vortices dramatically demonstrate that lin-1
nonlinear AC electrokinetics tends to produce very fast ear electroosmotic potential flow has been revoked. Uz
velocities at large fields. At sufficiently high frequencies, like dielectrophoresis, the constant potential surface coes
AC currents do not penetrate biological cells and electron- dition allows matching with the external field to resolvess
transfer or dissolution electrode reactions that produce unde-the all-important external field penetration. Also, the dyss
sirable bubbles/contaminants are also absent. One can henceamic charging and discharging of ions into the doubles
profitably employ high-field AC electrokinetics in microflu- layer by the external AC field yields an interesting dynamie?
idic devices more than DC electrokineti&-{Ld. screening phenomenon that develops over a time scale sf
A corollary of this observation is that equilibrium linear Aa/D™ [10,11, whereD™ is the diffusivity of the ion being &9
electrokinetic phenomena do not exist for an AC external charged. 90
field. From(1), since the zeta potential is specified by the With potential microfluidic applications in mind, Ajdari o1
surface charge and is time independent and since the time{12] predicted that asymmetric AC electroosmotic vortices2
average of the applied fielH,, vanishes exactly foran AC  on asymmetric planar electrodes can lead to a net flow im3
field, time-averagé®; is exactly zero for linear AC electroki-  stead of the closed circulation within vortices. This ACw4
netics whose polarization is determined by surface charges. electroosmotic pump was demonstrated experimentally by
Because field-induced polartian requires external field  Brown [13]. 96
penetration, the total charge within the polarized layer is  Linear DC electroosmotic flow around particles of the?
no longer equal to the total surface charge. For a constantsame zeta potential toward an electrode surface with a dig
potential surface (corresponding to a metal or a conductingferent polarization can produce vortices when the particles
granule), every ion that is driven into the polarized layer by are close to the electrode surfackt[15. These vortices 100
the external field will be compensated by an opposite chargeare on the side of the particles away from the surface. Theg
that moves even more rapidly to the surface on the solid side.can hence induce parallel motion of the particles due to hye2
This compensation would ensure there is no net charge ondrodynamic interaction between two adjacent particles. This3
two sides of the surface anlde potential remains the same. hydrodynamic interaction is attractive and leads to latera4
However, the number of ions that can be driven into the po- particle self-assembly. 105
larized layer can, in principle, be increased arbitrarily by ~ With AC electroosmosis, the velocities are much largetos
raising the applied field. This field-dependent polarization but the external-field-induced nonuniform polarization pro:o7
accounts for the nonlinear dependence of the electrokineticduces parallel dipoles on two adjacent particles. Electraes
velocity on the applied field «. static interaction betweethese induced dipoles is attrac-109
The situation is more complex with insulated boundaries. tive for two particles along the same field line. This in-110
Itis not clear whether such field-induced polarization is pos- teraction is responsible for linear self-assembly along field1
sible for insulated boundaries in the limit ¢f/a) <« 1, lines [16]. The electrostatic interaction is repulsive for par412
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allel self-assembly of particles on different field lines. The cumulation of the counterions at the surface. However, thig
electrostatic repulsion betwedmese dipoles then competes polarization eventually screens the external field to stop ttse
with the attractive hydrodynamic forces in the parallel self- transient charging. Nevertheless, the accumulated counge-
assembly dynamics. However, as observed and analyzed byions, held in place by opposite charges in the granule €8

Trau et al. [L7], Yeh et al. [L§], and Nadal et al. 9], spon- maintain a constant potential for the high-conducting grars:
taneous self-assembly of colloids on electrode surfaces andule, do not disperse and effectively produce a nonuniformBgz
even in the bulk20] occurs with nonlinear AC electroosmo-  charged sphere which screens the external field. 63

sis. Hence, self-assembly seems to occur more readily due to - Dukhin argued that knowledge about this residue chargé
the induced electrostatic dipoles and the hydrodynamic vor-from transient charging is unnecessary to determine tt
tices generated by AC nonlinear electrokinetics. steady-state electrophoretic velocity. His theory yields &
rather surprising prediction that the electrophoretic velocit§’

1.3. DC nonlinear and nonequilibl’iumelectroki netiCS of a Spherica' granu'e Of radimsca'es as 68
69

All AC electrokinetic phenomena are necessarily nonlin- CE2a 70
ear and nonequilibrium and are hence very prevalent. Non-U, ~ O( e ) 2 =n
linear DC phenomena, on the other hand, is less common. K 72
We have observed and analyzed one such nonlinear DC;, place of the¢ potential, which is typically less than 7

electrokinetic phenomenon recentB4]. A large field pen- 100 mV, is a potential drop o..a which can be as large 74

etration exists near sharp channel corners even for channels,q 10 v for large fields and large particles. A much Iarge7r5

::.n?de with Iow—perrr;:tuvny d||e:ectr|cs. Hen(r:]e,.the e?tﬁrnal electrophoretic velocity is hence expected. Although th;ej
leld can penetrate the double layers on both sides of t eCOr'phenomenon is driven by an ion current flux, neither the

ner anldf'allzo thrOl:gT. thg Cgrnerc?letlectrlc '_g betV\éeeni Th|§ electrolyte concentration nor the diffusivity appears in thé:
nhormar field penetration 1S Inward at one side and outward oqimate More elaborate models have been proposed aggd

on the other. As such, its field-induced polarization is of 0p- o ie\ved in Mishchuk and Dukhir2] but all have this pe-
posite charge on the two sides. This produces a converging

nonlinear electroosmotic flow that yields an observable mi culiar scaling. 82
. y . . : Many of the features expemd of nonlinear electroki-
crojet and vortex at the corner—both are impossible with . . u S 83
: S s . . netics have been observed for this DC “electrokinetic phe-
linear electrokinetics. Significaparticle aggregation occurs ” . . . B4

. ; . o nomenon” of the second kind. Large vortices on the sid
at this corner due to this nonuniform channel polarization.

Aggregation is absent away from the corner, as is consistent;enC deg/t')rslgrth: di)ou'\r/‘lt;:;? fll(u:rzz ?giﬂl'giga][b/{|EOUK££%
with linear electrokinetics, but occurs at the corner due to the N y Vi u ! . ! Y &

localized nonlinear electrokinetics. et al. 25 have reported nonlinear electrophoretic velocitieg,

The other and more commornonlinear electrokinetic of suqh particles that are'two orders O.f magnitude highgg
phenomenon is the “electrokinetic phenomenon of the sec-than Ime;ar eIectropho_re&s—a d.rarr!atlc demonstratlon of
ond kind” first envisioned by Dukhin (see review iaJ]). the QOmlnance of nonlmear.eyleckme.tlcs over linear elgc- o1
It involves a highly conductive and ion-selective granule [TOKinetics. However, Dukhin’s scalin@) disagrees with ,
that permits the external field and diffusion to drive a flux the meagurement of Barany et .al. b_eyond a (_:r't'(,:al qppll%gi
of counterions (a current) into half of a granule. (The co- fI€ld- This suggests that the high-field polarization is nof,
ions cannot be driven into the other half due to the ion due to the transient charging assumed in Dukhin's modej
specificity.) This steady flux of ions immediately renders the nStéad, another physical phenenon has interfered such o
potential and concentration distributions within the double that the transient charging in Dukhin's model cannot leag
layer to be different from the Boltzmann equilibrium distri- {0 maximum polarization titacompletely screens the ex-
butions that cannot sustain a flux. Since this flux is provided ternal field. We shall show that tangential convection is thg
by the electromigration of ions driven by the external field, n€w phenomenon in play at high fields. As the external fielgho
the external field necessarily penetrates the double layer ands never completely screenedify the particle is electri- 101
the latter’s polarization is dependent on the normal external cally insulated from the outside) due to this new mechaw

86

field. nism, a steady current persists into the granule at steaghy
Dukhin and Mishchuk have formulated a theory for this state. . _ 104
DC nonlinear electrokinetic phenomenon (see revia@)[ In this paper, we shall examine the various conditionss

Itimplicitly assumes that there is a period of transient charg- required for DC nonlinear eledkinetics in general. In par- 106
ing by the external field thdiuilds up a concentrated cloud ticular, we shall mathematically specify the implicit assumpzoz
of counterions at the surface. This charging is intense be-tions leading to(2) and examine why Dukhin’s phenom- 108
cause the granule is conductive and attracts the external fieldenon requires a conducting and ion-specific granule. In thes
lines. Although the ion-selective granule is permeable to the process, a theory will be offered for when complete screemzo
counterions, the flux into the granule is much less than the ing occurs and why scalin@) breaks down beyond a critical 111
external electromigrationuk such that there is a net ac- applied field. 112
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2. Formulation For equilibrium ion distributions that do not sustain &7

net flux, the surface concentration is specified by the potess

Although charging of the polarized layer can be ei- tial difference with the bulk via the Boltzmann distribution.s¢
ther transient or steady, we shall focus only on the final There is hence no need for a surface condition for ions thet
steady state for a spherical granule. If the steady state cor-have equilibrated. When there is a net flux into the surface
responds to complete external field screening, the chargingwe specify the surface concentratioyf by assuming that sz
must be transient. The dimensionless governing equationsthe ion concentration near the surface is determined by an
for a spherical coordinate whose origin lies at the sphere cen-adsorption isotherm. The counterion must first adsorb onte
ter are the standard Poisson equation for electrostatics, thehe surface before it enters the solid. In the expected limds
steady ion-flux transport equations that include convective when the adsorption kinetics are fast compared to the slow
flux and the viscous flow equations driven by the Maxwell transport rate, an adsorption equilibrium is established. The
stress on regions with a net charge: equilibrium surface concentration is determined by kineties
equilibrium of the surface chemistry and not by the Boltzss

Vip=CT—C", (3) mann equilibrium distributions. The former equilibrium is atro
Pu-VC*=-v.J* 4) the surface and it permits an ion flux in the polarized region:
JE = _KEECEVY 4+ VD), (5) The latter equilibrium is over the entire polarized region ana

2 2 allows no net flux. 73
VU —Vp=-VVe, (6)

Specifying bothC;” and a constant surface potential7
whereu is the fluid velocity,J* is the combined diffusive =~ seems contradictory, as the surface counterions would irs-
and electromigration fluxesf the cation and anion in vec- troduce a field into the solid. However, for a solid with are
torial form, K* = D*/D, D* are the cation and co-ion sufficiently large permittivityor conductivity, this field does 77
diffusivities andD = (2D*D~)/(D* + D). BothK* and not produce a significant potential gradient in the solid. Fos
D are assumed to be unit order parameters—the diffusiv- high-permittivity particles, this limit occurs whefy /é > 1, 79
ity ratio is not excessive for the cations and anions. They where €, is particle permittivity A similar condition ap- 8o
are of 0(¢%) relative to the expansion parameter The plies for conductivity. For a very conducting solid, opposite:
inhomogeneous term i(6) represents the Maxwell stress charges in the solid would migrate rapidly to the surface
(C*t—C7)V¢ due to polarizatiol€ ™ £ C~. For simplicity, to offset the counterions on the other side. If the opposite
we have assumed a 1:1 electrolyte with single-valent anionscharges are not mobile in the solid, like charges would move

and cations. away from the surface to produce a surface region of oppes

In scalingEgs. (3)—(6)we have used as the characteristic site charge on the solid side. This “double layer” ensuressa
concentration the bulk valu€,,, the characteristic potential ~ constant-potential surface. 87
RT/F = 25.7 mV, the characteristic pressufg = uUo/a However, the small parameterwill introduce two or ss

and the characteristic length(granule radius). The charac-  three regions with two length scales. The boundary condis
teristic velocity isUg = (¢ /ua)(RT/F)? which is the linear tions for each region are obtained via matched asymptoties
Smoluchowski slip velocity of a surface with a zeta potential with adjacent regions. Hence, the external velocity and pez

¢ of RT/F and a reference applied field & = RT/Fa. tential fields will not see the true surface conditions bugz
The parameteé is the electrolyte permittivity (the dielec- certain effective ones. These effective conditions will be thes
tric constant). The reference Peclet numbePis= Upa/D objective of our derivation. We will specify the true ande4
with this scaling. However, the true Peclet number should be effective conditions subsequently when each region is aps
Pe=U,a/D", whereU, is the yet unknown electrophoretic ~ alyzed. 9
velocity. It should be much larger thah and will be esti- The small parameter 97

98
mated subsequently. c=i/a @ >

Equations (3)—(6Wwill be solved with surface and far-field
boundary conditions. The far-fieconditions are obvious— is the ratio of the Debye thickness to the granule radius. Weo
a unidirectional applied field- En.¢;, an electroneutral and  seek an expansion abautAlthough there is no surface field 101
homogeneous Ohmic butk~ = C™ =1 and, inthe absence E, to screen in this nonequililrm case, the penetrating ex-102
of any external pressure driven flow, a vanishing velocity ternal field will be screened lihie ions that electromigration 103
field if the solid is stationary. and diffusion have driven to the surface. The external field 4

The surface condition for the velocity field is the usual screened by a thin near-equilibrium layer near the surfages
no-slip condition. We shall examine both a specified surface but also by an extended polarized region beyond it. Nevers
field E; and an isopotential surface for surfaces with large theless, the screening length of any electric field,ieshich 107
permittivity or high conductivity. With field penetration, the is the screening length for the surface field in equilibriumos
granule surface and the bulk electrolyte are no longer elec-Debye layers. We hence expect the thickness of the entir@
trically insulated and decoupled. As such, the exact potential polarized region, which screens the external field, ta be 110
value for the isopotential granule must be selected carefully ~ Except for a thin polarized inner region near the surfacei:
for nonequilibrium conditions. whose thickness is of order, we can set to zero in the 112
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Fig. 2. Numerical solution of the nonequilibrium polarized region @gf = 2, ¢ = 0.01 and;j T /Kt = 3.5. The potential drop\¢ (0) is nonuniform and  7g
dependent on external fietd. 79

80
electrostatic equatiofB). This implies that electroneutrality A most important feature of this ion-flux-induced polar-g;

CT = C~ exists everywhere except within the thin polar- ization is the existence of a diffusion layer. In an equilibrium,
ized inner region. Electroneutrality, however, does not guar- Debye layer, the counterion concentration decreases outwagd
antee a homogeneous concentration distribution. Far fromto allow diffusion flux out to balance electromigration fluxg,
the granule, the concentration is indeed uniform at the bulk in (seeFig. 1). Hence, to produce a net flux in, we expects
value for the outer Ohmic region. However, an electroneutral the concentration gradient to change sign such that diffusigg
intermediate diffusion layer region with concentration gra- and electromigration comg@inent each other. This positive g;
dient exists between the inner and outer regions (compareconcentration gradient should exist near the electroneutigl
Fig. 2to Fig. 1). In both outer and intermediate electroneu- edge of the polarized layer where the field and electromis
tral regions, one with a nonuniform concentration field and gration are weakest. Consequently, the co-ion concentratign
one with a uniform field, the electrostatic problem reduces also increases outward with the same slope. We hence ex-

to the Laplace equation pect an electroneutral region with spatially inhomogeneous
5 (increasing outward) conceation to sandwich between the o3
Vo =0 (8) polarized region and the Ohmic region with electroneutrak

and homogeneous concentrations. 95

We have numerically constructed some typical constands
flux steady-state concentratiprofiles near the surface thator
sustain an ion flux46]. A reproduction of the computed 9s
profiles inFig. 2 shows the electroneutral intermediate asss
ymptote with a positive gradient. This asymptote connectso
the polarized region with the electroneutral diffusion layero:
The diffusion layer, in turn, lies between the polarized layeto2

and satisfies the far-field condition imposed by a unidirec-
tional applied fieldEy, = —V® (r — o0) = —Exé; in the
axial axis of the cylindrical coordinate. The external poten-
tial within both electroneutral regions will be denot@d

The inner potentiap within the polarized layer of thick-
ness must match the external potentidldescribed by the
Laplace equatiof8) (seefFig. 2):

¢(y = 00) = P(r =0) = Py, (9) and the Ohmic bulk. The diffusion layer resembles classies

3¢ 9p 9P cal diffusion layers dominated by diffusion or diffusion andos

5@ — 00) = a—r(r =0 = <W> ; (10) tangential convection, except normal electromigration alsos
0

plays a role. In our earlier theorf2§], tangential connection 106
We have assumed a spherical granule. More importantly, was not explicitly included. This will be remedied here withio7
with the present scaling~ O (1) at the granule length scale a two-dimensional matched yamsptotic analysis for large 108
and the limit ofy — oo is strictly incorrect and should be  Peclet numbers. 109
y/e — oo. We shall omit the tedious inner scaling— y/¢ An important consequence of the positive concentrationo
unless it is absolutely required in the analysis. The formally gradient between the diffusion layer and the polarized layer:
correct representation should be obvious in context. is the presence of an extended polarized region with excegg



© 0 N o g b~ W N P

g o o oo g g ga » b B B B B B D DD OWOW W W W W W W WWNNNDNDNDNDNDNDNDNR R P B R PR E PR
o g A W N P O © 0 N O O & W N P O O © N O G & W N P O © © N O O B W NP O © 0N OO o » W DN PP O

S0021-9797(04)00355-8/FLA  AID:10153 Vol.eee(eee) Tall P.7 (1-15)
ELSGMLTM(YJCIS) :m5 2004/04/06 Prn:9/04/2004; 15:00 ijISlOl53 by:R.M. p. 7

Y. Benet al. / Journal of Colloid and Interface Science eee (seee) eoo—see 7

space charge (compafég. 2 to Fig. 1). This region ex- where A¢(y) is the potential drop relative to the externals?
tends the polarization from the Debye layer into the diffusion potentiale/2¢®, which is assumed to be smaller due to thes
layer. In subsequent seatis, we shall carry out matched high field and large potential drop within the polarized layese
asymptotics from the polarized layer, across the diffusion (seeFig. 2). 60
layer and into the Ohmic region. The objective is to obtain Due to the conditiorir/a) <« 1, the potential droj\¢ is 61
an effective steady-state boundary condition for the Laplace only weakly dependent on for both cases. However, con- 62
equation(8) that reflects the steady-state screening by the ex- dition (12) reflects a nearly screenegternal field such that ez
tended polarized region. However, we shall precede this with (d®/dr)o ~ O(¢) is nearly zero and the particle is nearlys4
a general discussion on the necessary conditions for nonlin-insulated electrically from the bulk electrolyte. Scal{{ig), es
ear electrokinetics. however, allows an external field that is oblique to the grarss

ule, (0®/9dr)o ~ O(1). We exclude the case of weak screens?

ing, (0/dr)o ~ O(e~1) > 1. In this unscreened limit, es

3. Polarized region which occurs before the polarization builds up, the tangens
tial variation of the inner potentiat is as strong as that of 7o
3.1. Maxwell stress and liquid motion the external potentiab. As such, the first normal stress termrz

in (11) cannot be omitted and the Maxwell stress is not in#

We first focus on the long-wave expansion of the equa- tegrable. At steady state, when the surface is fully polarized
tions of motion(6) for ¢ « 1 within the thin polarized re- by the charging current, strong external field screening with
gion. The normal momentum balance is entirely hydrostatic (9®/9r)g of unit order and smaller is the appropriate boundss

and we obtain a Maxwell pressure ary condition. 76
2 2 We note that the screening of external field12) is not 77
1| [ d¢ AP -
p~ Po(x)+ = (_> - <_> . due to the counterions attracted by the surface charge, as
2|\ dy ar Jo is the case for equilibrium linear electrokinetics. Rather, its

| is by the ions driven by the external field and by diffusionso
ol e charging occurs over a short transient before it reaches
a steady state with a constant flux that may be vanishingy
_small. If the steady state corresponds to complete screenigg
of external field, the transient charging time has been ests
mated to bé.a/ DT by Squires and Bazant]]. If the steady ss
2u 19| [0p\2 [od\%| 0% d¢ state corresponds to one with partial external field penetra-
9y2 ~29x (5) B <§> C9y2 ax (11) tion, the charging time is even shorter. In the former case;

. . . ) the charges within the polarized layer are accumulated dug
This equation must be solved with the no-slip bound- jng the charging transient. IneHatter case, the charges afterss
ary conditionsu(y = 0) = 0 and the far-field condition  the transient are supplied by electromigration from the bulko
(du/9y)(y — o00) = 0. The latter because we expect the ve- | poth cases, every charge in the polarized layer is compen-
locity to approach a constant asymptote when it exits the gateqd by an opposite charge in a conducting granule with an
polarized layer and the Max.well force ldisappears. It is the isopotential surface (segg. 3). However, the polarization, es
constant asymptote that defines the slip velocifor the  \yhether due to transient or steady charging, is not limited by
electroneutral diffusion layer region and the Ohmic region. he surface charge and the capacitance of the polarized layer

We would like to convert the Maxwell stress on the right 5 determined only by the external field. 9
of (11) in such a manner that the asymptotic slip = With both scalings(11) becomes to leading orderénin o
lim,_ o u(y) is a product of the tangential external field the unstretched coordinates
—d® /06 and the potential drop across the polarized layer

where Pp(x) is the bulk pressure on the surface. We shal
assume that a bulk pressure gradient does not exist (pur
electrokinetics) and set the homogene®ydo an arbitrary
constant. Substituting the Maxwell pressure into the tangen
tial momentum balance, we obtain f@fdy > 9/dx

0

98

o . : 3%u 32 AP %
¢(0) — @g. This is the manner the classical slip Smolu- —— =__A¢<_> ) (14) 100
chowski velocity(1) is expressed and is intuitively correct. dy? dy? 30 /o 01
The difference for nonlinear electrokinetics is simply that The hydrostatic pressure gradient does not contribute as tf
the potential drog (0) — &g is a function of(d®/dr)o. Maxwell normal stress is independent of the tangential cqg,

There are two specific scalings that render this from pos- ordinate with these scalings. 104
sible. In the stretched coordinates of the polarized region, Integrating(14) with the no-slip and far-field boundary
they are conditions and realizing from the matching conditiq@$

. and(10) that A¢ (y — o0) = (3A¢/dy)(y — c0) = 0, we
P, y) = Aglex, ) + legl/ch(e(r =1.6) obtain the desired form

~ A(y) + 2o (0), 12 4 A¢(o)<3_® ) 109
P (x,y) = Ad(ex, y) + limlel/ch(r,e) 90

0P
~ Ap(y) + € 2Po(6), (13) =(¢(0) — @) <%>0- (15) 1,

106
107
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D tion in the polarized layer: 57

Low-Pe Model 52 %8

E—Ap=C"—C". (17)

dy 60

For a surface with specified surface figltly) must be solved 61

with 62

aA 63

¢ (0) = _Es- (18) 64

3_)7 65

Without external field penetration, this surface field induceg

an equilibrium Debye\ ¢eq potential that obeys 67

D -P. =D -D D -PD. =D, -D ﬂ S 82 08

by~ Py =@, P, + Py, — P =D, - P, + I 1"((;&] 62—2A¢eq=eA¢eq_e_A¢eq7 (19) 69

3 RT_ (C! ay 70

- E”R”Tl“(f) where the Boltzmann equilibrium distributions have been inq

_ o _ o serted. 72
Fig. 3. Our lowPe model with significant screening of the Ohmic field. The By perturbing from the equilibrium concentration, we carys

granule potential is constant and the potential drop across CD is fixed by an

equilibrium zeta potentiaf. The charges in the polarized layer are coun- demonstrate small external field leakage is not possible with

terbalanced by opposite internal charge maintain a constant-potential & Specified surface field 8). The perturbation field b¢" = s
surface. A¢ — A¢eq Obeys the linearized Poisson equation 76
52 77

. L . 2
For a surface with a large electric fiel, imposed by € ﬁd’/ = (eP0eu 4 eAPea)g. (20)

the surface charges, the Debye layer is at equilibrium and
the potential drop across the Debye layep(0) in (15) Comparing this t¢19), we conclude thap’ = (d/dy) Apeq. 80
is independent of position and the outer potentigl (see ~ However, since the surface filed is fixed(itB), the appro- &
Fig. 1). For a conducting granule, however, the surface po- Priate boundary condition fap’ is (d¢'/dy)(0) = 0. 82
tential ¢(0) is constant. Consequently, the potential drop .ThIS zero excess surface field penetration cannot be sét-
A¢(0) = ¢ (0) — g is dependent orbo. In fact, for the lat- ~ isfied by (d?/dy?) Ageq(0) = € %[C™(0) —CT(O)] #0.
ter case, we can integratts) explicitly to obtain an estimate ~ MOreover,(d/dy) Ageq blows up exponentially and cannotés

of the average slip velocity)1/» over the front hemisphere ~ allow matching withe as stipulated irf9) and(10). We are s
of the sphere irfFig. 3 hence unable to perturb the equilibrium Debye layer with?

boundary conditiofi17)for (1/a) <« 1. Nonequilibriumand 88
nonlinear electrokinetics cannot occur for thin Debye layerss
if the surface field is fixed. Mathematically, it implies thatso

h is the Ohm il dron f h | h the linearized operator is not invertible—the solvability const
whereA o is the Ohmic potential drop from the pole to the iin cannot be satisfied. The singularity of this operator i

equator on the surface of the. sphere. Because polar'zat'Orfelated to the fact that the equilibrium potential distributiorss
occurs qnly overthe front _hemlsphere, we shgll show the av- (eq= Po + Adeq is invariant to a constant shift (a changess
erage slip velocity over this surface)1/2 provides agood i, the reference point). Theeptinent variable with a spec- 9
estimate of the electrophoretic velocity. The granule poten- isieq syrface field is not the potential but the potential drogs
tial ¢ (0) remains to be'specmed. . relative to the bulk value. 97

The external potential drop¢ (0) around the granule is This then explains the choice of a conducting granules
of O(Ecca) for the scalings of12) and(13). Hence, inthe 1 pykhin, It is insufficient that the granule permits fluxee
limit of large Ec, the second term i(L6)dominates. More- ot counterions. It must also permit field penetration intaoo
over, the magnitude of this term is determined by the degree e gyrface during transient or steady changing to allow 8t
of external field screening. Brslip velocity reaches a max-  geparture from equilibrium in the polarized region. This surioz
imum when there is complete exclusion of the external field 5.6 field penetration implies that there cannot be bourids
due to the polarization created during transient charging. g rface charges which generates a large fixed surface fietd
This explains why the Dukhin scalin@) is independentof g (%, For a constant-potential conducting granule1os
ion diffusivity and ion concentration. This observation will  {he constant granule potential0) offers a specific refer- 106

1
(us)1/2= [¢(0)A¢o - E(Aqﬁ)z} /2. (16)

be quantified more explicitly in our analysis. ence point and the potentialin the polarized layer cannot 107
be arbitrarily shifted. Perturbation from equilibrium is nowzos
3.2. Poisson equation and surface conditions possible. 109

The reference granule potentig{0) remains to be spec- 110
For both steady and transient charging, the potential dropified for the steady-state problem. In fact, Dukhin neglects ifi1
A¢(0) must be determined from the expanded Poisson equa-in comparison to the external potential on the surfédge 112
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This argument requires some scrutiny. The concentrationwe obtain 57
depletion due to the diffusion layer, as seefrig. 2, signif- 1 58
icantly reduces the conductivity in the electroneutral region. @(r,6) = Eooz<1 + ﬁ) (23) 5o

As such, there is a significant potential drop across both . 60
the diffusion and polarized layers. However, this polariza- Where® (1, w/2) = @o(7r/2) = 0 because of the designateds:

tion disappears at the equatorial position (point BFig. 3) reference point. 62
since the normal external fielh® /30), is exactly zero and The local slip velocity is then, fror(L.6), 63
screening is absent. 3 9 . 2 64

The surface concentratiafif > 1 is established by ad- ~ Us = 50 Eco + g SIND Eo. (24) e

sorption equilibrium. Since there is no field penetration and
flux at the equatoD, it also sustains an equilibrium Debye
layer. The potential drop across this equational Debye layer,
the difference between the constant granule potential and th
external potential, at the equator is related’tahrough the
Boltzmann equilibrium relationship. At the equatar} is
hence consistent with both an adsorption equilibrium and a
Boltzmann equilibrium in the electrolyte due to the potential
drop across the polarized layer. Hence, a zeta potenaat

ists due to the adsorption isotherm rather than surface field

Although there is a large hydrodynamic stress oij
O (nU,/2) in the flow field (6) within the inner polarized
layer, this thin film does not entrain or eject fluid appreciably,
rom the surrounding fluid for a moving granule undergo-
ing electrophoresis or for a stationary granule driving ag,
electroosmostic flow around it. Hence, the film within the ,
polarized layer can be assumed to move with the particle ij
electrophoresis. Consequently, in both electrophoresis and
electroosmosis, the viscous drag on both granule and filmp

should be obtained from the effective Ohmic velocify

by bound charges, of (16) and not the inner velocity = 0. The electroosmotic _,
RT N viscous drag exerted by the slip veloc({ty6) can be easily
Pp —¢c = F InCi =¢. (21) evaluated from a harmonic expansion of the axisymmetrig
. ) ) spherical biharmonic expansion frowfu = V p. Itis
Since the granule is at the same potential, the constant 80
granule potential irf15) is now specified D =3 <2§ Eut %Ego) (25) :;
$0) =®p —¢. (22) Only the front half of the granule is involved {5) as the
We can arbitrarily assigebp = 0 to be the reference point  counterions only enter in this half. There is insignificantdrag5
of the entire potential field. in the back half as only the uniform linear Smoluchowsk]
We note that the slip velocity expressi@irb), with a po- electroosmotic velocity E, exists there. In fact, due to co- o7

tential dropA¢ (0) across the polarized layer, also applied ions accumulation in the back liiave expect the tangential 88
for linear electrokinetics with surface-field-induced polar- field to be weak there and the slip velocity to be even smallgy
ization. In that case, however, the external field is not presentthan the Smoluchowski slip. %
in the Debye layer (se€ig. 1). As such,A¢(0) is indepen- The drag in(25) corresponds to the drag on a stationary,
dent of the surface value of the external potengigland the granule by the electroosmotic flow around it. To evaluate thg%
tangential coordinate. Hence, choosing the external ref- €lectrophoretic drag, we shift to a frame moving with th

erence potential to be zerag (0) = ¢(0) = —¢ for linear electrophoretic velocity,. This corresponds to a shift of

electrokinetics. the electroosmotic velocity field by a uniform velocity field95
U.¢.. Since this uniform reference velocity is stress-free, thg6
3.3. Dukhin’s maximum electrokinetic velocity electrophoretic drag is same as the electroosmotic drag

However, the surface tangential velocity (6) — U, cosd
should be nearly zero in the moving frame, since it is thg9
slip velocity that drives the motion. Hence, we can shrink00
the granule into a point and use the Stokes drag Gfor a

point particle without slip. This produces an estimate for th%z
electrophoresis velocity

With the specification oftte potential reference point
®p =0 and¢(0) = —¢, we are in the position to evaluate
Dukhin’s slip velocity at steady state. We examine his limit,
when all the polarization is done during transient charging.

The charging stops when the external field is completely 103

screened. However, the polarization remains in place due to U.l—¢E S_9E2 26 104
the attraction between the charges within the polarized Iayer| el =8 Eoo + g8 (26) 105
and the opposite charges they have attracted on the granulgy in dimensional form 106
side (seé-ig. 3). Both have arrived at their positions during R R 107
the transient charging. Due {a5), the exact charge within |/, | = € 95E§oa. 27) 108
the polarized region, for this maximum charging limit, does H 8 109
not need to be known. Because of the integrable form of the Maxwell stressio

With this leading-order insulated conditigd® /or) (r = in (14)due to scaling12), in the limit of maximum screen- 111

1) = 0 for the Laplace equatiof®) of the external potential,  ing, we have found it unnecessary to resolve the polarizee
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layer in deriving 24) and(26). However, to determine when
this maximum velocity limit is valid (whether complete
screening can be reached)dato correct it when it is not

(when there is significant esttnal field leakage at steady

(ejt/KH)3 and& = (jt/K )3y /€23, Only a scaled 57
surface concentratiofi;” remains at the boundary conditionss
and all three equations collapse into a single second Painléve
equation without parameters. An asymptotic analysis of thse

state), we shall need to carry out the matched asymptoticslimiting Airy equation at largej+ shows the result to be in- 62
required to resolve the steady-state polarized region and dif-sensitive toC;" and¢. 62

fusion layer. This analysisiWbe preceded by the derivation
of an important asymptote of the polarized region.

3.4. Electroneutral asymptote of polarized layer

In the limit of smalle, the ion transport equations in the
polarized layer are

92¢

2 - +

—=C" —-CT, 28

T (28)
ad aCct

C+—¢+—=—j+/K+, (29)
dy ~ dy

oL (30)

dy ~ dy

which must be solved with surface boundary conditions

¢p(y=0=¢, (32)

Cr(y=0=C. (32)

Note that the counterion flux™ is negative.

Itis still an unknown quantity that must be determined by
matched asymptotics with the diffusion layer that specifies
the flux. In fact, its relationship witkbg provides the desired
condition for the outer equatiaid).

As complex a§28)—(30)seem, its asymptotic behavior at
largey can be derived explicitly by invoking the electroneu-
tral limit C— = Ct = C [26]. This asymptote is
aC jT

9y 2Kt

Alternatively, one can designate the positignas the nom-
inal position where the asymptotic concentrat©meaches
unity (seeFig. 2):

- jT

C=1- 21(—+(y_)’*)-
This electroneutral asymptotic behavior of the polarized re-
gion is independent of thee number for the diffusion layer.
The unit bulk concentration is only reached beyond the dif-
fusion layer and into the Ohmic region (s€ig. 2). Never-
theless,y. is a nominal asymptotic position that estimates
the thickness of the diffusion layer. Its value must be esti-

(33)

(34)

on thePe number in the diffusion layer.

In [26], we have matched the solution (£8)—(30)with
surface boundary conditiorf81) and(32) to the asymptotic
limit (34). The analysis is simplified by several symmetries
of the equation. The zeta potentiglcan be eliminated by
a simple shift of¢. The parameters and j*/K* can be
transformed away with the transformatign= exp(¢/2)/

In this limit of large j ©, we hence obtain a universal cor-63
relation insensitive tg andC;". The asymptotic potential at 64

v« IS shown to be 65
66

$() = JTYE 2/ 67
TWE Tk 3 3\ e ) &8
69

Using the matching conditior{8) and(10)and realizing that

. . . 70
JY/KT =(0¢/3y)(y — oo) = (d®/0r)o, this can be writ- "
ten as

72

0D 73

,3(—) =Pp+V, (35) 74
8}’ 0

where the screening length= (y2/3¢) andV = 5(y/e) 76
are two constant coefficients. 77
Boundary conditiori35) represents an effective boundaryzs
condition for the Laplace equatidB) of the external poten- 79
tial @. For scalingg12) and(13) to be valid, the effective so
screening lengtl8 must a unit-order number or larger with s1
respect tce. If the screening lengti$ exceeds the granule sz
radius, the steady-state external field penetration is insignis
icant. If it is of the order of the granule radius, however, sigss
nificant penetration occurft remains to determing, from ss
matched asymptotics with the diffusion layer of both smaklte
and largePe. However, in the limit of(3¢/y2) « 1, when s
there is maximum polarizatioand minimum field penetra- ss
tion, the maximum Dukhin slip velocitfl5) can be derived so
without explicit construction of the potential and concentraso
tion profiles by matched asymptotics. 91
92

93

4. Low-Peclet theory 94

For typical zeta potentials<{100 mV) for usual elec-
trolyte concentrations, the electrophoretic mobility/ £«
is typically less than 10* cm?/V s. Hence, ifE+, is roughly
or smaller thar(RT/F)/a, the Peclet numbeé®e = U,a/D %
is less than unity for most electrolytes. Larger mobilities ar&™
expected with nonlinear electrokinetics. However, we stift®
expectPe~ 0(¢) to be small. We shall show that this loe 12
limit produces a completely screened steady state.

With low Pe, the tangential convection term can be ne®
105

103

106

19 (, 90 ,0C
——|r<Cc— — )=0 36
r28r<r ar tr 8r> ’ (36)
19 5 0P 50C
=9 _2c%® | ,2°% ) _g
r28r< T tr 8r>

for the electroneutral concentration in the diffusion layer.

(37) 110
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57
58
59
60

low-Pe

theory high-Pe

limit 64
65
-~ 66
67

68

\ linear 69
electrophoresis 70

71
72
73
74

10° 10* 7
E 76
77
Fig. 4. Three sets of data plotted in the twovensal dimensionless parameters of the Retheory—E£« = Eooa/(RT/F) and the electrophoretic velocity ;4
scaled by the reference velocitly = (¢/ua)(RT/F)? with ¢ taken to be 8 x 10710 C2N~1m=2. The scaled surface concentrati6g /Cxo is taken to
be 5 but the collapse is insensitive to this parameter as it appears anbkt In(C? /Coo). The particle diameterain um is 0.5 ), 1 (O), 5 (x), 25 (x),
260 (@), 280 (@), 310 (¥), 420 (A), 50 (<1), 100 ¢), 200 (1), 27 (). The open symbols are Barany et al. sajahe closed symbols are Mishchuk and®
Takhistov’s data and the six-pointed stars aresxerimental data. The solid curve is the |Batheory(26) and the two dashed straight lines are, respectively8l
the linear electrophoretic velocity at low field and the laRgetheory U, ~ 1.4 x 1@15"%3 fora =175 pm. 82
83

Adding these two equations to remove the electromigra- case of(12). The quantityy, is the thickness of the low- &

tion term, we obtain Pe diffusion layer—the particle radius and the dimensiondt®
19 9C screening length is the granule radius divided by@ne can 8¢
—2—<r2—> 0 (38) hence use the insulated conditiGh® /9r)(r = 1) =0 and ¥
rédr o ar the Dukhin slip velocity(26) to describe lowPe nonlinear
The solution of this diffusion equation must match with the electrophoresis, which is the maximum possible. 8
Ohmic concentratiod’ = 1 atr — oo. Hence, its solution is While the insulated condition does not allow field pene®

1/9C tration and electromigration inward, this is only the leading®
C=1- —( >(r =1). (39) order approximation for the external field. The polarized?

r\or region still sees a flux™ provided by high-order effects. %

Matching the slope of this diffusion layer solution with the The extended polarization region of space chargeign 2 %4
slope of the intermediate asympt@83) of the polarized re-  still exists and is, in fact, very thick. Its charges are drivef®

gion, we obtain there during transient charging and held in place at steady
i1 state by the opposite charges on the granule side and by ffie
Cry=1+ 2= (40) steady fluxJ* that represents insigigant leakage to the ex- 98
2K+ r’ ternal field Equation (16)mplies that, for this leading-order 99
and the asymptotic concentration on the surface is insulated case, we do not need to resolve the thick polarizé¥
it layer. 101
ChH=1+— <1 (41) In Fig. 4, we successfully collapse our recently measure#?
2 K+ low-field data and those by Barany et &5] and Mishchuk 103
Similarly, the intermediate asymptaf@4) becomes and Takhistov24] by this correlation. (The data of Barany et104
al. are represented by open symbols and those by Mishchigk
C=1+ 2—+( - ). (42) closed symbols. Our data are the intermediate ones indicateél
K . > by six-point stars.) A reasonable value of 5 is useddgr 107
The positiony, of (34)is specified but this value, the granule counterion concentration scalees
yo=1, (43) by the bulk value, can change by one order of magnitude®

and still would not affect the theoretical curve significantly11o
and the screening lengih = 1/3¢ is indeed much larger  This value of the dimensionle€" correspond to a dimen- 111
than the unit granule radius, corresponding to the screenedsional zeta potential of =41 mV. The granule diameter 112
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2a ranges from 1 to 500 um and the electric fields range
from 1 to 1& V/cm and the electrophoretic velocity from
10~* to 10~! cm/s in the data. The electrolyte concentra-
tion Co varies from 10° to 10-2 M for various electrolytes
ranging from HCI to KkSO4. The granule surface ion con-
centrationsC;- must also vary over a large range but their
values are not known and are difficult to measure. Yet all
data collapse within a factor of two H26) over 6 decades
of dimensionless electric field. As expected, this |Bare-
sult is valid up to a dimensionleds,, of unit order (when
the applied field is roughlyRT/Fa)). The low-Pe theory
begins to fail beyond&S, ~ 10, although some data are still
described by the theory up #.,, = 30. The transition from
linear to nonlinear electrophoresiscurs at a critical dimen-
sionless external field of ., ~ 1.0. This low+Pe nonlinear

P.12 (1-15)
by:R.M. p. 12
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where 57
19 19 %8
\/FUQZ——w and \/?Ur:———w 59
sing ady sing 06 o
for the axisymmetric three-dimensional flow field. Withg,
these coordinatgg) becomes 62
1 aC* d d dC* 63
7_—=Ki—<iCi—¢+—>. (46) ¢4
Us(9) sirf e 96 oy G

65

AlthoughPe and P are not equivalent, we have used thes
original scaling withP to avoid introducing the unknown g7
parametePe. However, all higher-order terms P! have 5
been omittedEquation (46)can be further simplified with g
a new coordinate (6) = f(f U, (x) sirf x dx representing a 7o
weighted running average of the slip velocity along the cirx

electrophoresis can be 10to 100 times larger than linear elec-<cumference. The value ¢f starts at zero at the pol@ =0) 72

trophoresis. Beyond ., = 30, the Peclet number begins to
exceed unity even for the smaller granules and the Few-
theory begins to overestimate the speed. Beyond this critical

field, a new physical mechanism stops the transient charging—— = Kii (ici 8—¢

before complete external fietstcurs. In fact, we expect this
limit to have significant steady ion flux™ and the polariza-
tion is now determined by the steady Ohmic current.

5. High-Peclet theory

At large Pe ~ 0 (¢~1), tangential flux is no longer neg-
ligible in the diffusion layer. A thinner diffusion layer is
also associated with largee. Its dimensionless thickness
should scale aBe~1/? due to the velocity slip and the uni-
form velocity profile within it. This thin electroneutral layer
would prevent of the polarized layer to grow indefinitely. In
essence, convection brings in an electroneutral solution to
neutralize the polarized region and to stop dynamic charging
before complete screening occurs.

We hence expect the length of the polarized region to be
shorter. This weaker polarization (and the larger flux) allows
(requires) more external field penetration and scalitig)
applies. With more external field leakage but less polariza-
tion, we expect fron{16) the electrophoretic velocity to be

and increases toward the equater= r/2). With this new 73
tangential coordinat€38) becomes 74

+ + s
9¢ + g) (CY
dx EY; FY Y -
As for the classical diffusion boundary laygr7) is 7
amenable to a self-similar transform even though it corve
tains an extra electromigration term. Using the self-similago
variablen = v/2,/x, (47) becomes an ordinary differential s

[ee]

equation 82
Yo 9 3¢ aC* %
22— = Ki—(ici—d) + —) (48) s
an an an 9y 85

We can now invoke the electroneutrality of the intermediss
ate regionC~ = C*. Adding the two equations i#8), we 87

get a single ordinary differential equation 88
89

aC  9%C
—2—=— (49) ©°
on  9n o1
since YK+ +1/K~ = 2. The solution of this equationis %
93
C=1+ Ag [erf(n) — 1] (50) *
95

such thatC (n — oo) = 1 to match with the Ohmic region. 9

, ) i Near the surface at= 0, (50) simplifies to 97
less than Dukhin’s scalinR) at largePe. Unlike the com- 98
plete screening case, we need to resolve the polarized regio% 14 Ap— Aﬂ (51)
to determine the polarization due to the steady Ohmic cur- 7 2 100

rent.

The slip velocityUy(9) within this diffusion layer is the
asymptotic limit ofu(y — oo) from the polarized region.
From(16)and(22), we have

0P 0P
Us(0) = —=¢ (@) - ‘150(9)(%) S
0 0

A convenient tangential coordinate for this boundary layer
is defined by the local stream line with the azimuthal sin-
gle # as its coordinate and its locally orthogonal coordinate
represented by the stream function

=0 —DVP=yJP,

(44)

(45)

Matching (51) to the intermediate asymptote (3.28) of theio1
polarized region to account for the finite flux into the polarioz
ized region, we find the thickness of the higaintermediate
region is

103
104
105

1 0
jum = JTXO) (52)
UssingV P 107
and it grows from zero at the pole toward the equator posies
tion D in Fig. 3. 109

The order ofy, is essentiallyO (Pe~1/2), the boundary 110
layer scaling. Hence, the scaling?) and (13) which re- 111
quire the screening length= y2/3¢ to be O (%) or smaller 112
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then requirede to be of 0(e~1). This limit is reached at
very high fields. The field leakage is now significant such
thatd®/or ~ 0(€9).

More explicitly, the coefficients for the effective external
field conditiong35) are

wx(6) Ve 1 mx(0) 2
3PeU2sir?6’ T UgsingV P 3

These coefficients are implicitly dependent on the slip-
velocity U; = %(8052/80)@ =1) throughy (9). Hence the
effective Ohmic electrostatic Laplace problé®) must now

be solved with a nonlinear differential-integral electrostatic
slip condition. However, from the lowe result for the max-
imum Dukhin velocityUs () in (24), we do not expect;

to depend strongly ofi. We hence approximaté, siné by
(Uy), its average value, and also approximatby its mean
value,

g = (53)

/2

XN(US)=E/ U do. (54)
T
0
This approximation simplifie€53) to
b4 T 2
=, V= |———, 55
p 3Pe(Uy) P(Uy) 3¢ (55)

and hence provides a linear effective boundary condition
for (35).

The solution of the Laplace equation with conditi@®%)
and far-field conditiorV @ (r — o0) = — Eoé, can be read-
ily solved. The external potential at the surface is

3p

———cCcost — V.
1428
We neglect the first term i44) and obtain the local slip
velocity

Do(0) =P(r=1,0)=E (56)

Us(0)=2(r=1,0)

= (Eooli—ﬁZﬁ cosd — V) Eooli—ﬁZﬁ sing. (57)
The average slip in dimensional variables is then
(Us> =—ExV 0
(3UoA(Us)/ D + 27)
l( SEoom )2, (58)
7w \ 3UoA(Us)/D + 21

It is clear that the second term dominates and, to leading £, = 100, with presumably much larg®e, begin to devi-

oder,

U= i = L 3Ecom 2
‘T 27 T 2\ 6UoUA (D) + 27 )
Hence, at low field and low electrophoretic velocity, we

recover theE2, scaling of the nonlinear part of the low-

Pe theory in (27). Even the coefficient agrees despite the

(59)

the limit of large velocity, a new scaling fdr, is obtained, 57
58

1 7T2D 2/3 2/3
U|==| — E , 60 59
Vel 2<U0)») * (60) 60
or in dimensional form 61
62
1/72D\2/3 1/3
U, == <”—) <5) EZ3,13, (61) ©3
2\ A iz 64

Unlike Dukhin’s screened slip velocit{27), this finite pen- 65
etration slip velocity is dependent on the diffusivity and thes
electrolyte concentration. 67

Both (60) and(61) do not have the same dimensionlesgs
parameters as the loRe theory(27). They hence cannot be 69
depicted inFig. 4. However, the two sets of lardé. datain 70
Fig. 4, which are not captured by the loRe scaling, have 71
large particle diameters of 100 and 250 um and have similar
electrolyte concentrations. Usiag= 175 um as an average 73
value and typical values of the other parameters stated in
the caption ofFig. 4, we obtainlUg=3.2 x 10-* cm/s and 75
(60) becomesl/, ~ 1.4 x 103EZ>. This specific limit for 7
a =175 um is plotted irFig. 4. Both sets of data =100 77
and 250 um are seen to approach this specific high-fielél
limit. In all our correlations, the characteristic diffusivity 7©
used isD = 2 x 10~° cn¥/s, the zeta potentigl =41 mV, 80
permittivity of wateré = 6.9 x 10710 C2N-Im~2 and vis- 8!
cosityu = 1.0 cP. 82

Equation (60)offers the general scalings for anythat 83
are realized at large radius and large electric field witk¢
Pe ~ O(e~1). This scaling is equivalent to saying that thess
Debye layer Peclet numbeérx /D™ is of order unityO (¢°). 86
The tangential convection of ions in the polarized layer 8§’
still much weaker than the normal flux term. (The ratio oB8
the two isO(eU1/D™).) However, by controlling the flux 8°
of ions through the all-importauiffusion layer and limiting %
the thickness of the polarized layer, tangential convection #4
the electroneutral diffusion layer has significantly enhanced
the external field penetratiomd reduced the polarization to 93
produce a weaker electrophoretic velocity. As sedrign4, 94
the highPe data have yet to reach this limit. However, using5
(59) for both low and highPe, we are able to satisfactorily 96
collapse all data witht, beyondE, ~ 20 in Fig. 5. Cor- 97
relation(59)is within a factor of 10 of all data in this range, 98
and is within a factor of 2 of data by Mishchuk and Takhis99
tov. 100

Correlation(59) seems to capture well the intermediatetol
data atE» = 10 to 100 inFig. 4. However, the data beyond 102
103
ate and exceed the prediction by a factor of 10. The terms
omitted in(60) has lowered the prediction significantly suchzos
that(60) overpredicts irFig. 4 but underpredicts ifrig. 5. 106

There are several possible reasons why our theory um~
derpredicts the measured velocity at high field. We haves
made several simplifications to arrive at a closed-form coros
relation, viz., uniform slip velocity and screening lengthi1o

uniform slip velocity assumption here. This suggests that a In reality, there could be stagnation points on the surface:

uniform theory can be formulated for both limits Bé. In

other than those at the pole and equator. At Highwith 112
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71

73
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2 '6U U A(Dm)+2n 77

3Exom P . - 78
Fig. 5. Collapse of high-speed data with, > 20 inFig. 4. Thex-axis is 5 (W) , and they-axis isU,. The straight line is our theory &fq. (59) ;

valid for both low and highPe. The symbols are identical to thoseHiy. 4.
80

. . . . 81

strong convection, charges cdwdccumulate at those points For both transient charging at Id®e and steady current at
to produce excess polarization. At the high fields necessaryhigh Peto be possible, the granule should be an isopotentig]
to reach largePe (>100 V/cm), surface reactions can also body as well as one that is penetrable to the counterions thgt
occur at the granule to produce excess counterions. Never<arry the current. An electrically insulated membrane would
theless, it is quite clear frorRigs. 4 and Zhat the break-  notresult in significant polarization beyond that endowed byﬁ
down of Dukhin’s lowPe scaling is due to the presence of a its bound surface charge.
convection—diffusion boundary layer that stops the transient  The extended polarized region also holds as much charge
charging before complete screening occurs. as the external electromigration and diffusion fluxes allow
it both during transient charing and steady current penetrg})-
tion. Its capacitance is not limited by the total bound surface
charge.

These unique properties of this DC nonlinear electrokg3
netic phenomenon allows it to produce an electrokinetic maq;,

The diffusion layer plays a key role in this current flux- bility 100 times larger than iténear counterpart. Is nonuni- o
induced nonlinear electrokinetics. At low Peclet numbers, form polarization also prodies vortices on the side receiv-

6. Discussion

the thick diffusion layer and the polarized layer produce ing the counterion fluxje]. o7
complete steady-state scremmi The polarization is hence 98
due entirely to transient capacitative charging. Complete 99
screening produces large tangahfield and transient charg- ~ Acknowledgments 100
ing produces the largest polarization. In this case, we obtain 101
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