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Abstract

Nonlinear and nonequilibriumelectrophoresis of spherical particles of radiusa is shown to be possible when the solid surface allows fi
or current penetration. At low particle Peclet numbers, transient capacitative charging occurs until the surface polarization completely scre
the external field. For a DC applied fieldE∞, the resulting electrokinetic velocity reaches Dukhin’s maximum value ofε̂E2∞a/µ, whereε̂

andµ are the liquid permittivity and viscosity. At high Peclet numbers, electroosmotic convection of the electroneutral bulk stops the
charging before complete field-line exclusion. For an ion-selective and conducting spherical granule, the polarization is then dete
the steady-state Ohmic current driven by the penetrated external field. The high-Peclet electrokinetic velocity is lower, diffusivity-d

and scales asE2/3∞ a1/3.
 2004 Published by Elsevier Inc.
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1. Introduction

There is considerable interest in using electrokinetic
move fluids, separate bioparticles and identify bacteria in
new field of microfluidics [1]. We will analyze a unique clas
of electrokinetics that canbe called nonequilibrium or non
linear electrokinetics. However, to better contrast this c
of electrokinetic phenomena with traditional linear and eq
librium electrokinetics, we first review some basic premi
in electrokinetics that are often omitted but must be resc
nized and reformulated for nonlinear electrokinetics (for
excellent treatment, see [2]). These premises concern tran
tion of the potential from the polarized region to the exter
bulk.

1.1. Linear equilibrium electrokinetics

The Maxwell force per unit volume applied by an exter
field E∞ on a body with mobile charge densityρ = C+ −
C−, whereC± are the cation and anion concentrations
ρE∞ in vectorial form. Polarized regions with a net char
ρ and a finite Maxwell force occur near dielectric surfac
with bound surface charges. These bound charges are a

* Corresponding author. Fax: +1-574-631-8366.
E-mail address: hchang@nd.edu (H.-C. Chang).
URL: http://www.nd.edu/~changlab.
0021-9797/$ – see front matter 2004 Published by Elsevier Inc.
doi:10.1016/j.jcis.2004.04.004
T
E
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solely responsible for a large normal surface electric fi
Es = qs/ε̂, whereqs is the surface charge density andε̂ the
dielectric constant (permittivity) of the electrolyte.

The electrostatic force exerted byEs rapidly attracts sur
rounding counterions such as cations even in the pres
of the external applied fieldE∞, viz. Es � E∞. If the sur-
face is impenetrable to ions (it does not allow current flu
the counterions quickly form anequilibrium Boltzmann dis-
tribution C+(y) = C∞ exp(−z+�φ/(RT/F)), whereC∞
is the bulk electrolyte concentration, such that its el
tromigration inward flux is balanced exactly by outwa
diffusive flux, resulting in no net flux. The potential di
ference�φ(y) = φ(y) − φ(∞) is relative to the bulk a
y = ∞. The co-ions have a similar Boltzmann distributi
C− = C∞ exp(z−�φ/(RT/F)). However, due to the oppo
site electrostatic driving force on each, there is an exces
counterions and a deficit of co-ions near the surface—t
is polarization (see schematic inFig. 1).

The thickness of this polarized Debye layerλ =√
RT ε̂/F 2C∞, for an electrolyte of concentrationC∞,

ranges from 10 to 100 nm. Outside the Debye layer,Es ap-
proaches zero and the potential difference�φ approaches
zero at largey, �φ(y → ∞) = 0. The overall potential drop
�φ(0) is called the zeta potentialζ and forζ/(RT/F) � 1,
it is of O(Esλ).

The condition(E∞/Es) � 1 also stipulates an absen
of external field penetration into the Debye layer. A sim

http://www.elsevier.com/locate/jcis
http://www.nd.edu/~changlab
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Fig. 1. Numerical solutions of the equilibrium concentration and potential profiles. The parameter areε = 0.07 andC+
s = 5. The potential drop�φ(0) is

uniform.
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application of Gauss divergence theorem then shows that t
tal charge in the Debye layer is equal to the number of bo
charge. Two equal numbers of opposite charges, one b
to the surface and one confined to the thin Debye layer
separated by an average distance ofλ to form a molecular
capacitor of enormous capacitance.

Most importantly, the total Maxwell force, which only e
ists in the polarized Debye layer, is controlled by the
charge within the Debye layer, which is equal to the to
bound surface charge. The surface charge hence contro
electrokinetic velocity of surfaces with equilibrium Deb
layers, known as the Smoluchowski velocity [2]

(1)Us = − ε̂�φ(0)E∞
µ

= − ε̂ζE∞
µ

,

whereζ ∼ O(Esλ) andEs = qs/ε̂. This equilibrium slip ve-
locity is linear with respect to the applied fieldE∞ and the
related phenomena are termed linear electrokinetics. S
the Maxwell force is confined to the Debye layer, this s
velocity is independent of any macroscopic length scale
it only depends on the Debye layer thickness,ζ ∼ O(Esλ).

In fact, these linear electrokinetic phenomena, due
equilibrium ion distributions established by a large surf
field, have many interesting features. With uniform s
face charge and zeta potential and without applied p
sure gradient, the applied field lines are identical to
stream lines [3]. As the external potential in the electrone
tral Ohmic bulk region obeys the Laplace equation, the fl
becomes a potential flow without vorticity and viscous sh
even in the smallest channels. Significant Maxwell str
obviously exists in the Debye layer and this potential fl
hence refers to the region outside the Debye layer. This
ilarity between field and stream lines is the major obsta
T
E

D
 P

d

e

to transporting bubbles electrokinetically [4]. In fact, due to
the invariance to macroscopic scales, the slip velocity(1)
is identical for particles of arbitrary size and shape [3,5] and
these particles do not interact as long as their surface ch
are the same. These features have many advantages an
advantages in microfluidic applications. The lack of sh
minimizes Taylor dispersion [6] but its irrotational characte
implies that mixing vortices cannot be created electroki
ically. Noninteracting particles do not aggregate readily
are also difficult to separate and capture. The linearity of th
slip velocity with respect to the electric field limits its ma
nitude to less than 1 mm/s [7] for realistic DC applied fields
of less than 100 V/cm.

1.2. AC nonlinear and nonequilibrium electrokinetics

Due to the mentioned disadvantages, there is cons
able interest to violate some of the mechanisms that lea
linear and irrotational electroosmotic flow. A large fam
of nonlinear and nonequilibriumelectrokinetic phenomen
have been found or rediscovered recently. All of them w
under the same basic principle—to induce nonuniform
larization within the double layer with the external field
with the electromigration it drives. The normal external fi
must be significant compared to surface fieldEs within the
double layer for these phenomena to occur. As a result
Debye layer polarization is dependent on the normal ex
nal field, as well as the surface field due to surface char
In fact, this external-field-induced polarization should
largest if there is no surface charge. In particular, a cons
potential surface (a high permittivity dielectric, a metal
a conducting granule) that allows maximum field or curr
penetration would enhance this new polarization phen
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enon. If the surface has a curvature such that the no
external field is not uniform on its surface or if the ext
nal field is by itself nonuniform, the polarization would al
be nonuniform. As a result, there is a tangential grad
in the slip velocity and a tangential velocity gradient (sh
rate) appears to revoke the stress-free irrotational char
of uniform polarization. More over, since the polarizati
is external field dependent, the potential drop�φ(0) across
the polarized layer should be field dependent. A direct g
eralization of(1) suggest the resulting electroosmotic a
electrophoretic velocities should depend nonlinearly on th
external field. We hence expect a much larger velocity t
linear electrokinetics at largefields. If nonlinear electroki-
netics is produced by current penetration with a cons
ion flux, equilibrium ion distributions can no longer exi
These nonlinear electrokinetic phenomena are hence
nonequilibrium in nature.

Another interesting feature of nonlinear electrokinet
occurs for the Maxwell stress induced by an AC field.
the dynamic polarization is due entirely to the normal fi
and is fast compared to the period of the AC field [8], the
Maxwell stress is always in the same direction and ha
nonzero time average. Both the charge densityρ due to po-
larization and the fieldE∞ alternate in sign in phase suc
that the Maxwell forceρE∞ retains the same sign. Henc
nonlinear AC electrokinetics tends to produce very f
velocities at large fields. At sufficiently high frequencie
AC currents do not penetrate biological cells and electr
transfer or dissolution electrode reactions that produce u
sirable bubbles/contaminants are also absent. One can h
profitably employ high-field AC electrokinetics in microflu
idic devices more than DC electrokinetics [8–10].

A corollary of this observation is that equilibrium line
electrokinetic phenomena do not exist for an AC exter
field. From(1), since the zeta potential is specified by t
surface charge and is time independent and since the
average of the applied fieldE∞ vanishes exactly for an AC
field, time-averageUs is exactly zero for linear AC electrok
netics whose polarization is determined by surface char

Because field-induced polarization requires external field
penetration, the total charge within the polarized laye
no longer equal to the total surface charge. For a cons
potential surface (corresponding to a metal or a conduc
granule), every ion that is driven into the polarized layer
the external field will be compensated by an opposite ch
that moves even more rapidly to the surface on the solid s
This compensation would ensure there is no net charg
two sides of the surface and the potential remains the sam
However, the number of ions that can be driven into the
larized layer can, in principle, be increased arbitrarily
raising the applied field. This field-dependent polarizat
accounts for the nonlinear dependence of the electrokin
velocity on the applied fieldE∞.

The situation is more complex with insulated boundar
It is not clear whether such field-induced polarization is p
sible for insulated boundaries in the limit of(λ/a) � 1,
T
E

D
 P

R
O

O
F

l

r

-
e

-

t

wherea is the radius of the spherical granule. Neverthele
if it is possible, the polarization would not be specified
the surface charge and field.

The most commonly known nonlinear electrokinetic p
nomenon is AC dielectrophoresis where charging and
charging of the double layer by the external fields le
to external-field-induced dipoles in dielectric particles. Th
dielectrophoretic velocity is proportional to the divergen
of the square of the electric field intensity and is he
clearly nonlinear. The charging by the external field in
electrophoresis are often modeled as a resistor and cap
in parallel [9] and is sometimes known as the Maxwe
Wagner effect. However, detailed analysis of the actual d
ble layer charging in dielectrophoresis is still lacking. The
mathematical difficulty lies in the insulated boundary con
tion, as we shall examine subsequently.

Another kind of nonlinear electrokinetic phenomen
occurs at electrodes supplying a high-frequency AC fi
The frequency is usually beyond hundreds of kHz s
that Faradaic reactions do not occur at the electrodes.
sequently, ions are charged and discharged by the e
nal field as in dielectrophoresis. This polarization leads
strong electroosmotic vortices on the electrodes or cons
potential surfaces that have been observed and ana
[8,10,11]. The vortices dramatically demonstrate that l
ear electroosmotic potential flow has been revoked.
like dielectrophoresis, the constant potential surface c
dition allows matching with the external field to resol
the all-important external field penetration. Also, the d
namic charging and discharging of ions into the dou
layer by the external AC field yields an interesting dynam
screening phenomenon that develops over a time sca
λa/D+ [10,11], whereD+ is the diffusivity of the ion being
charged.

With potential microfluidic applications in mind, Ajda
[12] predicted that asymmetric AC electroosmotic vortic
on asymmetric planar electrodes can lead to a net flow
stead of the closed circulation within vortices. This A
electroosmotic pump was demonstrated experimentally
Brown [13].

Linear DC electroosmotic flow around particles of t
same zeta potential toward an electrode surface with a
ferent polarization can produce vortices when the parti
are close to the electrode surface [14,15]. These vortices
are on the side of the particles away from the surface. T
can hence induce parallel motion of the particles due to
drodynamic interaction between two adjacent particles. T
hydrodynamic interaction is attractive and leads to lat
particle self-assembly.

With AC electroosmosis, the velocities are much lar
but the external-field-induced nonuniform polarization p
duces parallel dipoles on two adjacent particles. Elec
static interaction betweenthese induced dipoles is attra
tive for two particles along the same field line. This
teraction is responsible for linear self-assembly along fi
lines [16]. The electrostatic interaction is repulsive for p
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allel self-assembly of particles on different field lines. T
electrostatic repulsion betweenthese dipoles then compet
with the attractive hydrodynamic forces in the parallel s
assembly dynamics. However, as observed and analyze
Trau et al. [17], Yeh et al. [18], and Nadal et al. [19], spon-
taneous self-assembly of colloids on electrode surfaces
even in the bulk [20] occurs with nonlinear AC electroosm
sis. Hence, self-assembly seems to occur more readily d
the induced electrostatic dipoles and the hydrodynamic
tices generated by AC nonlinear electrokinetics.

1.3. DC nonlinear and nonequilibrium electrokinetics

All AC electrokinetic phenomena are necessarily non
ear and nonequilibrium and are hence very prevalent. N
linear DC phenomena, on the other hand, is less commo

We have observed and analyzed one such nonlinea
electrokinetic phenomenon recently [21]. A large field pen-
etration exists near sharp channel corners even for cha
made with low-permittivity dielectrics. Hence, the exter
field can penetrate the double layers on both sides of the
ner and also through the corner dielectric in between. T
normal field penetration is inward at one side and outw
on the other. As such, its field-induced polarization is of
posite charge on the two sides. This produces a conve
nonlinear electroosmotic flow that yields an observable
crojet and vortex at the corner—both are impossible w
linear electrokinetics. Significant particle aggregation occu
at this corner due to this nonuniform channel polarizat
Aggregation is absent away from the corner, as is consis
with linear electrokinetics, but occurs at the corner due to
localized nonlinear electrokinetics.

The other and more common DC nonlinear electrokineti
phenomenon is the “electrokinetic phenomenon of the
ond kind” first envisioned by Dukhin (see review in [22]).
It involves a highly conductive and ion-selective gran
that permits the external field and diffusion to drive a fl
of counterions (a current) into half of a granule. (The
ions cannot be driven into the other half due to the
specificity.) This steady flux of ions immediately renders
potential and concentration distributions within the dou
layer to be different from the Boltzmann equilibrium dist
butions that cannot sustain a flux. Since this flux is provi
by the electromigration of ions driven by the external fie
the external field necessarily penetrates the double laye
the latter’s polarization is dependent on the normal exte
field.

Dukhin and Mishchuk have formulated a theory for t
DC nonlinear electrokinetic phenomenon (see review [23]).
It implicitly assumes that there is a period of transient cha
ing by the external field thatbuilds up a concentrated clou
of counterions at the surface. This charging is intense
cause the granule is conductive and attracts the externa
lines. Although the ion-selective granule is permeable to
counterions, the flux into the granule is much less than
external electromigration flux such that there is a net a
T
E

D
 P

R
O

O
F

y

s

-

t

d

cumulation of the counterions at the surface. However,
polarization eventually screens the external field to stop
transient charging. Nevertheless, the accumulated co
rions, held in place by opposite charges in the granul
maintain a constant potential for the high-conducting gr
ule, do not disperse and effectively produce a nonunifor
charged sphere which screens the external field.

Dukhin argued that knowledge about this residue cha
from transient charging is unnecessary to determine
steady-state electrophoretic velocity. His theory yield
rather surprising prediction that the electrophoretic velo
of a spherical granule of radiusa scales as

(2)Ue ∼ O

(
ε̂E2∞a

µ

)
.

In place of theζ potential, which is typically less tha
100 mV, is a potential drop ofE∞a which can be as larg
as 10 V for large fields and large particles. A much lar
electrophoretic velocity is hence expected. Although
phenomenon is driven by an ion current flux, neither
electrolyte concentration nor the diffusivity appears in
estimate. More elaborate models have been proposed
reviewed in Mishchuk and Dukhin [23] but all have this pe
culiar scaling.

Many of the features expected of nonlinear electroki
netics have been observed for this DC “electrokinetic p
nomenon” of the second kind. Large vortices on the s
receiving the counterion fluxare predicted by Dukhin [22]
and observed by Mishchuk and Takhistov [24]. Also, Barany
et al. [25] have reported nonlinear electrophoretic velocit
of such particles that are two orders of magnitude hig
than linear electrophoresis—a dramatic demonstratio
the dominance of nonlinear electrokinetics over linear elec
trokinetics. However, Dukhin’s scaling(2) disagrees with
the measurement of Barany et al. beyond a critical app
field. This suggests that the high-field polarization is
due to the transient charging assumed in Dukhin’s mo
Instead, another physical phenomenon has interfered suc
that the transient charging in Dukhin’s model cannot l
to maximum polarization that completely screens the e
ternal field. We shall show that tangential convection is
new phenomenon in play at high fields. As the external fi
is never completely screened (viz., the particle is electri
cally insulated from the outside) due to this new mec
nism, a steady current persists into the granule at st
state.

In this paper, we shall examine the various conditi
required for DC nonlinear electrokinetics in general. In par
ticular, we shall mathematically specify the implicit assum
tions leading to(2) and examine why Dukhin’s phenom
enon requires a conducting and ion-specific granule. In
process, a theory will be offered for when complete scre
ing occurs and why scaling(2)breaks down beyond a critic
applied field.



ARTICLE IN PRESS

E
C

S0021-9797(04)00355-8/FLA AID:10153 Vol.•••(•••)
ELSGMLTM(YJCIS):m5 2004/04/06 Prn:9/04/2004; 15:00 yjcis10153 P.5 (1-15)

by:R.M. p. 5

Y. Ben et al. / Journal of Colloid and Interface Science ••• (••••) •••–••• 5

1 57

2 58

3 59

4 60

5 61

6 62

7 63

8 64

9 65

10 66

11 67

12 68

13 69

14 70

15 71

16 72

17 73

18 74

19 75

20 76

21 77

22 78

23 79

24 80

25 81

26 82

27 83

28 84

29 85

30 86

31 87

32 88

33 89

34 90

35 91

36 92

37 93

38 94

39 95

40 96

41 97

42 98

43 99

44 100

45 101

46 102

47 103

48 104

49 105

50 106

51 107

52 108

53 109

54 110

55 111

56 112

ei-
nal
cor
ging
tions
cen-
, the
tive
ell

-
n

siv-
hey

s

ions

tic
l

c-

tial

-

be
ic

d

d
e
city

al
ace
rge
e
lec-
ntial
fully

a
ten-
n.
that
ce,

t
y an
nto

imit
low
The
tic

ltz-
at
ion.
nd

ial
in-
a

For

ite
ce

site
ove
po-
s a

ndi-
tics
po-
but
the
d
an-

We
d
x-
n
d is
face
ver-

um
ntire

ce,
U
N

C
O

R
R

2. Formulation

Although charging of the polarized layer can be
ther transient or steady, we shall focus only on the fi
steady state for a spherical granule. If the steady state
responds to complete external field screening, the char
must be transient. The dimensionless governing equa
for a spherical coordinate whose origin lies at the sphere
ter are the standard Poisson equation for electrostatics
steady ion-flux transport equations that include convec
flux and the viscous flow equations driven by the Maxw
stress on regions with a net charge:

(3)ε2∇2φ = C− − C+,

(4)Pu · ∇C± = −∇ · J±,

(5)J± = −K±(±C±∇φ + ∇C±),

(6)∇2u − ∇p = −∇2φ∇φ,

whereu is the fluid velocity,J± is the combined diffusive
and electromigration fluxesof the cation and anion in vec
torial form, K± = D±/D, D± are the cation and co-io
diffusivities andD = (2D+D−)/(D+ +D−). BothK± and
D are assumed to be unit order parameters—the diffu
ity ratio is not excessive for the cations and anions. T
are of O(ε0) relative to the expansion parameterε. The
inhomogeneous term in(6) represents the Maxwell stres
(C+ −C−)∇φ due to polarizationC+ �= C−. For simplicity,
we have assumed a 1:1 electrolyte with single-valent an
and cations.

In scalingEqs. (3)–(6)we have used as the characteris
concentration the bulk valueC∞, the characteristic potentia
RT/F = 25.7 mV, the characteristic pressureP0 = µU0/a

and the characteristic lengtha (granule radius). The chara
teristic velocity isU0 = (ε̂/µa)(RT/F)2 which is the linear
Smoluchowski slip velocity of a surface with a zeta poten
ζ of RT/F and a reference applied field ofE0 = RT/Fa.
The parameter̂ε is the electrolyte permittivity (the dielec
tric constant). The reference Peclet number isP = U0a/D

with this scaling. However, the true Peclet number should
Pe = Uea/D+, whereUe is the yet unknown electrophoret
velocity. It should be much larger thanP and will be esti-
mated subsequently.

Equations (3)–(6)will be solved with surface and far-fiel
boundary conditions. The far-field conditions are obvious—
a unidirectional applied field−E∞êz, an electroneutral an
homogeneous Ohmic bulkC− = C+ = 1 and, in the absenc
of any external pressure driven flow, a vanishing velo
field if the solid is stationary.

The surface condition for the velocity field is the usu
no-slip condition. We shall examine both a specified surf
field Es and an isopotential surface for surfaces with la
permittivity or high conductivity. With field penetration, th
granule surface and the bulk electrolyte are no longer e
trically insulated and decoupled. As such, the exact pote
value for the isopotential granule must be selected care
for nonequilibrium conditions.
T
E

D
 P

R
O

O
F

-

For equilibrium ion distributions that do not sustain
net flux, the surface concentration is specified by the po
tial difference with the bulk via the Boltzmann distributio
There is hence no need for a surface condition for ions
have equilibrated. When there is a net flux into the surfa
we specify the surface concentrationC+

s by assuming tha
the ion concentration near the surface is determined b
adsorption isotherm. The counterion must first adsorb o
the surface before it enters the solid. In the expected l
when the adsorption kinetics are fast compared to the s
transport rate, an adsorption equilibrium is established.
equilibrium surface concentration is determined by kine
equilibrium of the surface chemistry and not by the Bo
mann equilibrium distributions. The former equilibrium is
the surface and it permits an ion flux in the polarized reg
The latter equilibrium is over the entire polarized region a
allows no net flux.

Specifying bothC+
s and a constant surface potent

seems contradictory, as the surface counterions would
troduce a field into the solid. However, for a solid with
sufficiently large permittivityor conductivity, this field does
not produce a significant potential gradient in the solid.
high-permittivity particles, this limit occurs when̂εp/ε̂ � 1,
where ε̂p is particle permittivity. A similar condition ap-
plies for conductivity. For a very conducting solid, oppos
charges in the solid would migrate rapidly to the surfa
to offset the counterions on the other side. If the oppo
charges are not mobile in the solid, like charges would m
away from the surface to produce a surface region of op
site charge on the solid side. This “double layer” ensure
constant-potential surface.

However, the small parameterε will introduce two or
three regions with two length scales. The boundary co
tions for each region are obtained via matched asympto
with adjacent regions. Hence, the external velocity and
tential fields will not see the true surface conditions
certain effective ones. These effective conditions will be
objective of our derivation. We will specify the true an
effective conditions subsequently when each region is
alyzed.

The small parameter

(7)ε = λ/a

is the ratio of the Debye thickness to the granule radius.
seek an expansion aboutε. Although there is no surface fiel
Es to screen in this nonequilibrium case, the penetrating e
ternal field will be screened bythe ions that electromigratio
and diffusion have driven to the surface. The external fiel
screened by a thin near-equilibrium layer near the sur
but also by an extended polarized region beyond it. Ne
theless, the screening length of any electric field isλ, which
is the screening length for the surface field in equilibri
Debye layers. We hence expect the thickness of the e
polarized region, which screens the external field, to beλ.

Except for a thin polarized inner region near the surfa
whose thickness is of orderε, we can setε to zero in the
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Fig. 2. Numerical solution of the nonequilibrium polarized region forC+
s = 2, ε = 0.01 andj+/K+ = 3.5. The potential drop�φ(0) is nonuniform and

dependent on external fieldΦ.
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electrostatic equation(3). This implies that electroneutralit
C+ = C− exists everywhere except within the thin pol
ized inner region. Electroneutrality, however, does not g
antee a homogeneous concentration distribution. Far
the granule, the concentration is indeed uniform at the
value for the outer Ohmic region. However, an electroneu
intermediate diffusion layer region with concentration g
dient exists between the inner and outer regions (com
Fig. 2 to Fig. 1). In both outer and intermediate electrone
tral regions, one with a nonuniform concentration field a
one with a uniform field, the electrostatic problem redu
to the Laplace equation

(8)∇2Φ = 0

and satisfies the far-field condition imposed by a unidir
tional applied fieldE∞ = −∇Φ(r → ∞) = −E∞êz in the
axial axis of the cylindrical coordinate. The external pot
tial within both electroneutral regions will be denotedΦ.

The inner potentialφ within the polarized layer of thick
nessε must match the external potentialΦ described by the
Laplace equation(8) (seeFig. 2):

(9)φ(y → ∞) = Φ(r = 0) = Φ0,

(10)
∂φ

∂y
(y → ∞) = ∂Φ

∂r
(r = 0) =

(
∂Φ

∂r

)
0
.

We have assumed a spherical granule. More importa
with the present scalingy ∼ O(1) at the granule length sca
and the limit ofy → ∞ is strictly incorrect and should b
y/ε → ∞. We shall omit the tedious inner scalingy → y/ε

unless it is absolutely required in the analysis. The form
correct representation should be obvious in context.
T
E

D
 

A most important feature of this ion-flux-induced pola
ization is the existence of a diffusion layer. In an equilibri
Debye layer, the counterion concentration decreases out
to allow diffusion flux out to balance electromigration fl
in (seeFig. 1). Hence, to produce a net flux in, we exp
the concentration gradient to change sign such that diffu
and electromigration complement each other. This positiv
concentration gradient should exist near the electrone
edge of the polarized layer where the field and electro
gration are weakest. Consequently, the co-ion concentr
also increases outward with the same slope. We henc
pect an electroneutral region with spatially inhomogene
(increasing outward) concentration to sandwich between th
polarized region and the Ohmic region with electroneu
and homogeneous concentrations.

We have numerically constructed some typical const
flux steady-state concentration profiles near the surface th
sustain an ion flux [26]. A reproduction of the compute
profiles inFig. 2 shows the electroneutral intermediate
ymptote with a positive gradient. This asymptote conn
the polarized region with the electroneutral diffusion lay
The diffusion layer, in turn, lies between the polarized la
and the Ohmic bulk. The diffusion layer resembles cla
cal diffusion layers dominated by diffusion or diffusion a
tangential convection, except normal electromigration a
plays a role. In our earlier theory [26], tangential connectio
was not explicitly included. This will be remedied here w
a two-dimensional matched asymptotic analysis for large
Peclet numbers.

An important consequence of the positive concentra
gradient between the diffusion layer and the polarized la
is the presence of an extended polarized region with ex
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space charge (compareFig. 2 to Fig. 1). This region ex-
tends the polarization from the Debye layer into the diffus
layer. In subsequent sections, we shall carry out matche
asymptotics from the polarized layer, across the diffus
layer and into the Ohmic region. The objective is to obt
an effective steady-state boundary condition for the Lap
equation(8) that reflects the steady-state screening by the
tended polarized region. However, we shall precede this
a general discussion on the necessary conditions for no
ear electrokinetics.

3. Polarized region

3.1. Maxwell stress and liquid motion

We first focus on the long-wave expansion of the eq
tions of motion(6) for ε � 1 within the thin polarized re
gion. The normal momentum balance is entirely hydrost
and we obtain a Maxwell pressure

p ∼ P0(x) + 1

2

[(
∂φ

∂y

)2

−
(

∂Φ

∂r

)2

0

]
,

whereP0(x) is the bulk pressure on the surface. We sh
assume that a bulk pressure gradient does not exist (
electrokinetics) and set the homogeneousP0 to an arbitrary
constant. Substituting the Maxwell pressure into the tang
tial momentum balance, we obtain for∂/∂y � ∂/∂x

(11)
∂2u

∂y2 = 1

2

∂

∂x

[(
∂φ

∂y

)2

−
(

∂Φ

∂r

)2

0

]
− ∂2φ

∂y2

∂φ

∂x
.

This equation must be solved with the no-slip bou
ary conditionsu(y = 0) = 0 and the far-field condition
(∂u/∂y)(y → ∞) = 0. The latter because we expect the
locity to approach a constant asymptote when it exits
polarized layer and the Maxwell force disappears. It is
constant asymptote that defines the slip velocityUs for the
electroneutral diffusion layer region and the Ohmic regio

We would like to convert the Maxwell stress on the rig
of (11) in such a manner that the asymptotic slipUs =
limy→∞ u(y) is a product of the tangential external fie
−∂Φ/∂θ and the potential drop across the polarized la
φ(0) − Φ0. This is the manner the classical slip Smo
chowski velocity(1) is expressed and is intuitively correc
The difference for nonlinear electrokinetics is simply th
the potential dropφ(0) − Φ0 is a function of(∂Φ/∂r)0.

There are two specific scalings that render this from p
sible. In the stretched coordinates of the polarized reg
they are

φ(x, y) = �φ(εx, y) + lim
r→1

ε1/2Φ
(
ε(r − 1), θ

)
(12)∼ �φ(y) + ε1/2Φ0(θ),

φ(x, y) = �φ(εx, y) + lim
r→1

ε1/2Φ(r, θ)

(13)∼ �φ(y) + ε1/2Φ0(θ),
T
E

D
 P

R
O

O
F

where�φ(y) is the potential drop relative to the extern
potentialε1/2Φ, which is assumed to be smaller due to
high field and large potential drop within the polarized la
(seeFig. 2).

Due to the condition(λ/a) � 1, the potential drop�φ is
only weakly dependent onx for both cases. However, con
dition (12) reflects a nearly screenedexternal field such tha
(∂Φ/∂r)0 ∼ O(ε) is nearly zero and the particle is nea
insulated electrically from the bulk electrolyte. Scaling(13),
however, allows an external field that is oblique to the gr
ule,(∂Φ/∂r)0 ∼ O(1). We exclude the case of weak scree
ing, (∂Φ/∂r)0 ∼ O(ε−1) � 1. In this unscreened limit
which occurs before the polarization builds up, the tang
tial variation of the inner potentialφ is as strong as that o
the external potentialΦ. As such, the first normal stress ter
in (11) cannot be omitted and the Maxwell stress is not
tegrable. At steady state, when the surface is fully polar
by the charging current, strong external field screening w
(∂Φ/∂r)0 of unit order and smaller is the appropriate bou
ary condition.

We note that the screening of external field in(12) is not
due to the counterions attracted by the surface charg
is the case for equilibrium linear electrokinetics. Rathe
is by the ions driven by the external field and by diffusio
The charging occurs over a short transient before it rea
a steady state with a constant flux that may be vanishi
small. If the steady state corresponds to complete scree
of external field, the transient charging time has been e
mated to beλa/D+ by Squires and Bazant [11]. If the steady
state corresponds to one with partial external field pene
tion, the charging time is even shorter. In the former ca
the charges within the polarized layer are accumulated
ing the charging transient. In the latter case, the charges af
the transient are supplied by electromigration from the b
In both cases, every charge in the polarized layer is com
sated by an opposite charge in a conducting granule wit
isopotential surface (seeFig. 3). However, the polarization
whether due to transient or steady charging, is not limited
the surface charge and the capacitance of the polarized
is determined only by the external field.

With both scalings,(11)becomes to leading order inε in
the unstretched coordinates

(14)
∂2u

∂y2 = − ∂2

∂y2�φ

(
∂Φ

∂θ

)
0
.

The hydrostatic pressure gradient does not contribute a
Maxwell normal stress is independent of the tangential
ordinate with these scalings.

Integrating(14) with the no-slip and far-field boundar
conditions and realizing from the matching conditions(9)
and(10) that �φ(y → ∞) = (∂�φ/∂y)(y → ∞) = 0, we
obtain the desired form

Us = �φ(0)

(
∂Φ

∂θ

)
0

(15)= (
φ(0) − Φ0

)(∂Φ

∂θ

)
.

0
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Fig. 3. Our low-Pe model with significant screening of the Ohmic field. T
granule potential is constant and the potential drop across CD is fixed
equilibrium zeta potentialζ . The charges in the polarized layer are co
terbalanced by opposite internal charges to maintain a constant-potenti
surface.

For a surface with a large electric fieldEs imposed by
the surface charges, the Debye layer is at equilibrium
the potential drop across the Debye layer�φ(0) in (15)
is independent of position and the outer potentialΦ0 (see
Fig. 1). For a conducting granule, however, the surface
tential φ(0) is constant. Consequently, the potential d
�φ(0) = φ(0) − Φ0 is dependent onΦ0. In fact, for the lat-
ter case, we can integrate(15)explicitly to obtain an estimat
of the average slip velocity〈us〉1/2 over the front hemispher
of the sphere inFig. 3,

(16)〈us〉1/2 =
[
φ(0)�Φ0 − 1

2
(�Φ)2

]/
(π/2),

where�Φ0 is the Ohmic potential drop from the pole to t
equator on the surface of the sphere. Because polariz
occurs only over the front hemisphere, we shall show the
erage slip velocity over this surface〈us〉1/2 provides a good
estimate of the electrophoretic velocity. The granule po
tial φ(0) remains to be specified.

The external potential drop�Φ(0) around the granule i
of O(E∞a) for the scalings of(12) and(13). Hence, in the
limit of largeE∞, the second term in(16)dominates. More
over, the magnitude of this term is determined by the de
of external field screening. The slip velocity reaches a ma
imum when there is complete exclusion of the external fi
due to the polarization created during transient charg
This explains why the Dukhin scaling(2) is independent o
ion diffusivity and ion concentration. This observation w
be quantified more explicitly in our analysis.

3.2. Poisson equation and surface conditions

For both steady and transient charging, the potential d
�φ(0) must be determined from the expanded Poisson e
T
E

D
 P

R
O

O
F

-

tion in the polarized layer:

(17)ε2 ∂2

∂y2
�φ = C− − C+.

For a surface with specified surface field,(17)must be solved
with

(18)
∂�φ

∂y
(0) = −Es.

Without external field penetration, this surface field indu
an equilibrium Debye�φeq potential that obeys

(19)ε2 ∂2

∂y2
�φeq= e�φeq − e−�φeq,

where the Boltzmann equilibrium distributions have been
serted.

By perturbing from the equilibrium concentration, we c
demonstrate small external field leakage is not possible
a specified surface field(18). The perturbation field beφ′ =
�φ − �φeq obeys the linearized Poisson equation

(20)ε2 ∂2

∂y2
φ′ = (e�φeq + e�φeq)φ′.

Comparing this to(19), we conclude thatφ′ = (d/dy)�φeq.
However, since the surface filed is fixed in(18), the appro-
priate boundary condition forφ′ is (dφ′/dy)(0) = 0.

This zero excess surface field penetration cannot be
isfied by (d2/dy2)�φeq(0) = ε−2[C−(0) − C+(0)] �= 0.
Moreover,(d/dy)�φeq blows up exponentially and cann
allow matching withΦ as stipulated in(9) and(10). We are
hence unable to perturb the equilibrium Debye layer w
boundary condition(17)for (λ/a) � 1. Nonequilibrium and
nonlinear electrokinetics cannot occur for thin Debye lay
if the surface field is fixed. Mathematically, it implies th
the linearized operator is not invertible—the solvability co
dition cannot be satisfied. The singularity of this operato
related to the fact that the equilibrium potential distribut
φeq = Φ0 + �φeq is invariant to a constant shift (a chan
in the reference point). The pertinent variable with a spec
ified surface field is not the potential but the potential d
relative to the bulk value.

This then explains the choice of a conducting gran
by Dukhin. It is insufficient that the granule permits fl
of counterions. It must also permit field penetration i
the surface during transient or steady changing to allo
departure from equilibrium in the polarized region. This s
face field penetration implies that there cannot be bo
surface charges which generates a large fixed surface
Es ∼ O(ε0). For a constant-potential conducting granu
the constant granule potentialφ(0) offers a specific refer
ence point and the potentialφ in the polarized layer canno
be arbitrarily shifted. Perturbation from equilibrium is no
possible.

The reference granule potentialφ(0) remains to be spec
ified for the steady-state problem. In fact, Dukhin neglec
in comparison to the external potential on the surfaceΦ0.
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This argument requires some scrutiny. The concentra
depletion due to the diffusion layer, as seen inFig. 2, signif-
icantly reduces the conductivity in the electroneutral reg
As such, there is a significant potential drop across b
the diffusion and polarized layers. However, this polari
tion disappears at the equatorial position (point D inFig. 3)
since the normal external field,(∂Φ/∂θ), is exactly zero and
screening is absent.

The surface concentrationC+
s > 1 is established by ad

sorption equilibrium. Since there is no field penetration a
flux at the equatorD, it also sustains an equilibrium Deby
layer. The potential drop across this equational Debye la
the difference between the constant granule potential an
external potential, at the equator is related toCs through the
Boltzmann equilibrium relationship. At the equator,C+

s is
hence consistent with both an adsorption equilibrium an
Boltzmann equilibrium in the electrolyte due to the poten
drop across the polarized layer. Hence, a zeta potentialζ ex-
ists due to the adsorption isotherm rather than surface
by bound charges,

(21)ΦD − φC = RT

F
lnC+

s ≡ ζ.

Since the granule is at the same potential, the cons
granule potential in(15) is now specified

(22)φ(0) = ΦD − ζ.

We can arbitrarily assignΦD = 0 to be the reference poin
of the entire potential field.

We note that the slip velocity expression(15), with a po-
tential drop�φ(0) across the polarized layer, also appli
for linear electrokinetics with surface-field-induced pol
ization. In that case, however, the external field is not pre
in the Debye layer (seeFig. 1). As such,�φ(0) is indepen-
dent of the surface value of the external potentialΦ0 and the
tangential coordinatex. Hence, choosing the external re
erence potential to be zero,�φ(0) = φ(0) = −ζ for linear
electrokinetics.

3.3. Dukhin’s maximum electrokinetic velocity

With the specification of the potential reference poin
ΦD = 0 andφ(0) = −ζ , we are in the position to evalua
Dukhin’s slip velocity at steady state. We examine his lim
when all the polarization is done during transient charg
The charging stops when the external field is comple
screened. However, the polarization remains in place du
the attraction between the charges within the polarized l
and the opposite charges they have attracted on the gr
side (seeFig. 3). Both have arrived at their positions durin
the transient charging. Due to(15), the exact charge within
the polarized region, for this maximum charging limit, do
not need to be known.

With this leading-order insulated condition(∂Φ/∂r)(r =
1) = 0 for the Laplace equation(8) of the external potentia
T
E

D
 P

R
O

O
F

t

e

we obtain

(23)Φ(r, θ) = E∞z

(
1+ 1

2r3

)
,

whereΦ(1,π/2) = Φ0(π/2) = 0 because of the designat
reference point.

The local slip velocity is then, from(16),

(24)Us = 3

2
ζE∞ + 9

8
sin 2θE2∞.

Although there is a large hydrodynamic stress
O(µUe/λ) in the flow field (6) within the inner polarized
layer, this thin film does not entrain or eject fluid apprecia
from the surrounding fluid for a moving granule underg
ing electrophoresis or for a stationary granule driving
electroosmostic flow around it. Hence, the film within t
polarized layer can be assumed to move with the partic
electrophoresis. Consequently, in both electrophoresis
electroosmosis, the viscous drag on both granule and
should be obtained from the effective Ohmic velocityUs

of (16)and not the inner velocityu = 0. The electroosmotic
viscous drag exerted by the slip velocity(16) can be easily
evaluated from a harmonic expansion of the axisymme
spherical biharmonic expansion from∇2u = ∇p. It is

(25)D = 3π

(
2ζE∞ + 9

4
E2∞

)
.

Only the front half of the granule is involved in(25) as the
counterions only enter in this half. There is insignificant d
in the back half as only the uniform linear Smoluchow
electroosmotic velocityζE∞ exists there. In fact, due to co
ions accumulation in the back half, we expect the tangentia
field to be weak there and the slip velocity to be even sma
than the Smoluchowski slip.

The drag in(25) corresponds to the drag on a station
granule by the electroosmotic flow around it. To evaluate
electrophoretic drag, we shift to a frame moving with t
electrophoretic velocityUe. This corresponds to a shift o
the electroosmotic velocity field by a uniform velocity fie
Ueêz. Since this uniform reference velocity is stress-free,
electrophoretic drag is same as the electroosmotic draD.
However, the surface tangential velocityUs(θ) − Ue cosθ
should be nearly zero in the moving frame, since it is
slip velocity that drives the motion. Hence, we can shr
the granule into a point and use the Stokes drag 6πUe for a
point particle without slip. This produces an estimate for
electrophoresis velocity

(26)|Ue| = ζE∞ + 9

8
E2∞,

or in dimensional form

(27)|Ue| = ε̂ζE∞
µ

+ 9

8

ε̂

µ
E2∞a.

Because of the integrable form of the Maxwell stre
in (14)due to scaling(12), in the limit of maximum screen
ing, we have found it unnecessary to resolve the polar
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layer in deriving (24) and(26). However, to determine whe
this maximum velocity limit is valid (whether comple
screening can be reached) and to correct it when it is no
(when there is significant external field leakage at stead
state), we shall need to carry out the matched asympt
required to resolve the steady-state polarized region and
fusion layer. This analysis will be preceded by the derivatio
of an important asymptote of the polarized region.

3.4. Electroneutral asymptote of polarized layer

In the limit of smallε, the ion transport equations in th
polarized layer are

(28)ε2∂2φ

∂y2 = C− − C+,

(29)C+ ∂φ

∂y
+ ∂C+

∂y
= −j+/K+,

(30)−C− ∂φ

∂y
+ ∂C−

∂y
= 0,

which must be solved with surface boundary conditions

(31)φ(y = 0) = ζ,

(32)C+(y = 0) = C+
s .

Note that the counterion fluxj+ is negative.
It is still an unknown quantity that must be determined

matched asymptotics with the diffusion layer that speci
the flux. In fact, its relationship withΦ0 provides the desire
condition for the outer equation(8).

As complex as(28)–(30)seem, its asymptotic behavior
largey can be derived explicitly by invoking the electrone
tral limit C− = C+ = C̄ [26]. This asymptote is

(33)
∂C̄

∂y
= − j+

2K+ .

Alternatively, one can designate the positiony∗ as the nom-
inal position where the asymptotic concentrationC̄ reaches
unity (seeFig. 2):

(34)C̄ = 1− j+

2K+ (y − y∗).

This electroneutral asymptotic behavior of the polarized
gion is independent of thePe number for the diffusion layer
The unit bulk concentration is only reached beyond the
fusion layer and into the Ohmic region (seeFig. 2). Never-
theless,y∗ is a nominal asymptotic position that estima
the thickness of the diffusion layer. Its value must be e
mated via matched asymptotics and this value is depen
on thePe number in the diffusion layer.

In [26], we have matched the solution of(28)–(30)with
surface boundary conditions(31)and(32) to the asymptotic
limit (34). The analysis is simplified by several symmetr
of the equation. The zeta potentialζ can be eliminated b
a simple shift ofφ. The parametersε and j+/K+ can be
transformed away with the transformationη = exp(φ/2)/
T
E

D
 P

R
O

O
F

t

(εj+/K+)1/3 and ξ = (j+/K+)1/3y/ε2/3. Only a scaled
surface concentrationC+

s remains at the boundary conditio
and all three equations collapse into a single second Pain
equation without parameters. An asymptotic analysis of
limiting Airy equation at largej+ shows the result to be in
sensitive toC+

s andζ .
In this limit of largej+, we hence obtain a universal co

relation insensitive toζ andC+
s . The asymptotic potential a

y∗ is shown to be

φ(y∗) = − j+

K+
y2∗
3ε

− 2

3

(
y∗
ε

)
.

Using the matching conditions(9)and(10)and realizing tha
j+/K+ = (∂φ/∂y)(y → ∞) = (∂Φ/∂r)0, this can be writ-
ten as

(35)β

(
∂Φ

∂r

)
0
= Φ0 + V,

where the screening lengthβ = (y2∗/3ε) andV = 2
3(y∗/ε)

are two constant coefficients.
Boundary condition(35)represents an effective bounda

condition for the Laplace equation(8) of the external poten
tial Φ. For scalings(12) and(13) to be valid, the effective
screening lengthβ must a unit-order number or larger wi
respect toε. If the screening lengthβ exceeds the granu
radius, the steady-state external field penetration is insi
icant. If it is of the order of the granule radius, however, s
nificant penetration occurs. It remains to determiney∗ from
matched asymptotics with the diffusion layer of both sm
and largePe. However, in the limit of(3ε/y2∗) � 1, when
there is maximum polarization and minimum field penetra
tion, the maximum Dukhin slip velocity(15)can be derived
without explicit construction of the potential and concen
tion profiles by matched asymptotics.

4. Low-Peclet theory

For typical zeta potentials (<100 mV) for usual elec
trolyte concentrations, the electrophoretic mobilityUe/E∞
is typically less than 10−4 cm2/V s. Hence, ifE∞ is roughly
or smaller than(RT/F)/a, the Peclet numberPe = Uea/D

is less than unity for most electrolytes. Larger mobilities
expected with nonlinear electrokinetics. However, we
expectPe ∼ 0(ε) to be small. We shall show that this low-Pe
limit produces a completely screened steady state.

With low Pe, the tangential convection term can be n
glected from the transport equation(4) and one obtains

(36)
1

r2

∂

∂r

(
r2C

∂Φ

∂r
+ r2∂C

∂r

)
= 0,

(37)
1

r2

∂

∂r

(
−r2C

∂Φ

∂r
+ r2∂C

∂r

)
= 0

for the electroneutral concentration in the diffusion layer
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Fig. 4. Three sets of data plotted in the two universal dimensionless parameters of the low-Pe theory—Ē∞ = E∞a/(RT/F) and the electrophoretic velocit
scaled by the reference velocityU0 = (ε̂/µa)(RT/F)2 with ε̂ taken to be 6.9 × 10−10 C2 N−1 m−2. The scaled surface concentrationC+

s /C∞ is taken to
be 5 but the collapse is insensitive to this parameter as it appears only inζ = ln(Cs+/C∞). The particle diameter 2a in µm is 0.5 (+), 1 (!), 5 (∗), 25 (×),

260 (2), 280 (F), 310 (a), 420 (Q), 50 (�), 100 (�), 200 (✩ ), 27 (�). The open symbols are Barany et al.’s data, the closed symbols are Mishchuk a
Takhistov’s data and the six-pointed stars are ourexperimental data. The solid curve is the low-Pe theory(26)and the two dashed straight lines are, respectiv

the linear electrophoretic velocity at low field and the large-Pe theoryUe ∼ 1.4× 103Ē
2/3∞ for a = 175 µm.
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Adding these two equations to remove the electromig
tion term, we obtain

(38)
1

r2

∂

∂r

(
r2∂C

∂r

)
= 0.

The solution of this diffusion equation must match with t
Ohmic concentrationC = 1 atr → ∞. Hence, its solution is

(39)C = 1− 1

r

(
∂C

∂r

)
(r = 1).

Matching the slope of this diffusion layer solution with th
slope of the intermediate asymptote(33)of the polarized re-
gion, we obtain

(40)C(r) = 1+ j+

2K+
1

r
,

and the asymptotic concentration on the surface is

(41)C(1) = 1+ j+

2K+ < 1.

Similarly, the intermediate asymptote(34)becomes

(42)C̄ = 1+ j+

2K+ (1− y).

The positiony∗ of (34) is specified

(43)y∗ = 1,

and the screening lengthβ = 1/3ε is indeed much large
than the unit granule radius, corresponding to the scree
T
Ecase of(12). The quantityy∗ is the thickness of the low

Pe diffusion layer—the particle radius and the dimensio
screening length is the granule radius divided by 3ε. One can
hence use the insulated condition(∂Φ/∂r)(r = 1) = 0 and
the Dukhin slip velocity(26) to describe low-Pe nonlinear
electrophoresis, which is the maximum possible.

While the insulated condition does not allow field pen
tration and electromigration inward, this is only the leadin
order approximation for the external field. The polariz
region still sees a fluxj+ provided by high-order effects
The extended polarization region of space charge inFig. 2
still exists and is, in fact, very thick. Its charges are driv
there during transient charging and held in place at ste
state by the opposite charges on the granule side and b
steady fluxJ+ that represents insignificant leakage to the ex
ternal field.Equation (16)implies that, for this leading-orde
insulated case, we do not need to resolve the thick polar
layer.

In Fig. 4, we successfully collapse our recently measu
low-field data and those by Barany et al. [25] and Mishchuk
and Takhistov [24] by this correlation. (The data of Barany
al. are represented by open symbols and those by Mish
closed symbols. Our data are the intermediate ones indic
by six-point stars.) A reasonable value of 5 is used forC+

s

but this value, the granule counterion concentration sc
by the bulk value, can change by one order of magnit
and still would not affect the theoretical curve significan
This value of the dimensionlessC+

s correspond to a dimen
sional zeta potential ofζ = 41 mV. The granule diamete
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2a ranges from 1 to 500 µm and the electric fields ra
from 1 to 103 V/cm and the electrophoretic velocity fro
10−4 to 10−1 cm/s in the data. The electrolyte concent
tion C∞ varies from 10−5 to 10−3 M for various electrolytes
ranging from HCl to K2SO4. The granule surface ion con
centrationsC+

s must also vary over a large range but th
values are not known and are difficult to measure. Ye
data collapse within a factor of two by(26) over 6 decade
of dimensionless electric field. As expected, this low-Pe re-
sult is valid up to a dimensionlessE∞ of unit order (when
the applied field is roughly(RT/Fa)). The low-Pe theory
begins to fail beyondEc∞ ∼ 10, although some data are s
described by the theory up toE∞ = 30. The transition from
linear to nonlinear electrophoresisoccurs at a critical dimen
sionless external field ofE∞ ∼ 1.0. This low-Pe nonlinear
electrophoresis can be 10 to 100 times larger than linear
trophoresis. BeyondE∞ = 30, the Peclet number begins
exceed unity even for the smaller granules and the lowPe
theory begins to overestimate the speed. Beyond this cr
field, a new physical mechanism stops the transient char
before complete external fieldoccurs. In fact, we expect th
limit to have significant steady ion fluxj+ and the polariza
tion is now determined by the steady Ohmic current.

5. High-Peclet theory

At large Pe ∼ O(ε−1), tangential flux is no longer neg
ligible in the diffusion layer. A thinner diffusion layer i
also associated with largePe. Its dimensionless thicknes
should scale asPe−1/2 due to the velocity slip and the un
form velocity profile within it. This thin electroneutral laye
would prevent of the polarized layer to grow indefinitely.
essence, convection brings in an electroneutral solutio
neutralize the polarized region and to stop dynamic char
before complete screening occurs.

We hence expect the length of the polarized region to
shorter. This weaker polarization (and the larger flux) allo
(requires) more external field penetration and scaling(13)
applies. With more external field leakage but less polar
tion, we expect from(16) the electrophoretic velocity to b
less than Dukhin’s scaling(2) at largePe. Unlike the com-
plete screening case, we need to resolve the polarized r
to determine the polarization due to the steady Ohmic
rent.

The slip velocityUs(θ) within this diffusion layer is the
asymptotic limit ofu(y → ∞) from the polarized region
From(16)and(22), we have

(44)Us(θ) = −ζ

(
∂Φ

∂θ

)
0
− Φ0(θ)

(
∂Φ

∂θ

)
0
.

A convenient tangential coordinate for this boundary la
is defined by the local stream line with the azimuthal s
gle θ as its coordinate and its locally orthogonal coordin
represented by the stream function

(45)ψ = (r − 1)
√

P = y
√

P ,
T
E

D
 P

R
O

O
F

-

l

n

where
√

P Uθ = 1

sinθ

∂ψ

∂y
and

√
P Ur = − 1

sinθ

∂ψ

∂θ

for the axisymmetric three-dimensional flow field. W
these coordinates(4) becomes

(46)
1

Us(θ)sin2 θ

∂C±

∂θ
= K± ∂

∂ψ

(
±C± ∂φ

∂ψ
+ ∂C±

∂ψ

)
.

AlthoughPe andP are not equivalent, we have used t
original scaling withP to avoid introducing the unknow
parameterPe. However, all higher-order terms inPe−1 have
been omitted.Equation (46)can be further simplified with
a new coordinateχ(θ) = ∫ θ

0 Us(x)sin2 x dx representing a
weighted running average of the slip velocity along the
cumference. The value ofχ starts at zero at the pole(θ = 0)

and increases toward the equator(θ = π/2). With this new
tangential coordinate,(38)becomes

(47)
∂C±

∂χ
= K± ∂

∂ψ

(
±C± ∂φ

∂ψ
+ ∂C±

∂ψ

)
.

As for the classical diffusion boundary layer,(47) is
amenable to a self-similar transform even though it c
tains an extra electromigration term. Using the self-sim
variableη = ψ/2

√
χ , (47) becomes an ordinary differenti

equation

(48)−2η
∂C±

∂η
= K± ∂

∂η

(
±C± ∂φ

∂η
+ ∂C±

∂η

)
.

We can now invoke the electroneutrality of the interme
ate region,C− = C+. Adding the two equations in(48), we
get a single ordinary differential equation

(49)−2η
∂C

∂η
= ∂2C

∂η2

since 1/K+ + 1/K− = 2. The solution of this equation is

(50)C = 1+ A

√
π

2

[
erf(η) − 1

]
such thatC(η → ∞) = 1 to match with the Ohmic region.

Near the surface atη = 0, (50)simplifies to

(51)C ∼ 1+ Aη − A

√
π

2
.

Matching(51) to the intermediate asymptote (3.28) of t
polarized region to account for the finite flux into the pol
ized region, we find the thickness of the high-Pe intermediate
region is

(52)y∗ = 1

Us sinθ

√
πχ(θ)

P
,

and it grows from zero at the pole toward the equator p
tion D in Fig. 3.

The order ofy∗ is essentiallyO(Pe−1/2), the boundary
layer scaling. Hence, the scalings(12) and (13) which re-
quire the screening lengthβ = y2∗/3ε to beO(ε0) or smaller
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then requiresPe to be ofO(ε−1). This limit is reached a
very high fields. The field leakage is now significant su
that∂Φ/∂r ∼ O(ε0).

More explicitly, the coefficients for the effective extern
field conditions(35)are

(53)β = πχ(θ)

3PεU2
s sin2 θ

, V = 1

Us sinθ

√
πχ(θ)

P

2

3ε
.

These coefficients are implicitly dependent on the s
velocity Us = 1

2(∂Φ2/∂θ)(r = 1) throughχ(θ). Hence the
effective Ohmic electrostatic Laplace problem(8) must now
be solved with a nonlinear differential–integral electrosta
slip condition. However, from the low-Pe result for the max-
imum Dukhin velocityUs(θ) in (24), we do not expectUs

to depend strongly onθ . We hence approximateUs sinθ by
〈Us〉, its average value, and also approximateχ by its mean
value,

(54)χ ∼ 〈Us〉 = 2

π

π/2∫
0

Us dθ.

This approximation simplifies(53) to

(55)β = π

3Pε〈Us〉 , V =
√

π

P 〈Us〉
2

3ε
,

and hence provides a linear effective boundary condi
for (35).

The solution of the Laplace equation with condition(35)
and far-field condition∇Φ(r → ∞) = −E∞êz can be read
ily solved. The external potential at the surface is

(56)Φ0(θ) = Φ(r = 1, θ) = E∞
3β

1+ 2β
cosθ − V.

We neglect the first term in(44) and obtain the local slip
velocity

Us(θ) = Φ(r = 1, θ)

(57)=
(

E∞
3β

1+ 2β
cosθ − V

)
E∞

3β

1+ 2β
sinθ.

The average slip in dimensional variables is then

〈Us〉 = −E∞V
6

(3U0λ〈Us〉/D + 2π)

(58)+ 1

π

(
3E∞π

3U0λ〈Us 〉/D + 2π

)2

.

It is clear that the second term dominates and, to lea
oder,

(59)|Ue| = π̄

2
〈Us〉 = 1

2

(
3E∞π

6U0Ueλ/(Dπ) + 2π

)2

.

Hence, at low field and low electrophoretic velocity, w
recover theĒ2∞ scaling of the nonlinear part of the low
Pe theory in (27). Even the coefficient agrees despite
uniform slip velocity assumption here. This suggests th
uniform theory can be formulated for both limits ofPe. In
T
E

D
 P

R
O

O
F

the limit of large velocity, a new scaling forUe is obtained,

(60)|Ue| = 1

2

(
π2D

U0λ

)2/3

E
2/3∞ ,

or in dimensional form

(61)|Ue| = 1

2

(
π2D

λ

)2/3( ε

µ

)1/3

E
2/3∞ a1/3.

Unlike Dukhin’s screened slip velocity(27), this finite pen-
etration slip velocity is dependent on the diffusivity and
electrolyte concentration.

Both (60) and(61) do not have the same dimensionle
parameters as the low-Pe theory(27). They hence cannot b
depicted inFig. 4. However, the two sets of largeUe data in
Fig. 4, which are not captured by the low-Pe scaling, have
large particle diameters of 100 and 250 µm and have sim
electrolyte concentrations. Usinga = 175 µm as an averag
value and typical values of the other parameters state
the caption ofFig. 4, we obtainU0 = 3.2 × 10−4 cm/s and
(60) becomesUe ∼ 1.4 × 103Ē

2/3∞ . This specific limit for
a = 175 µm is plotted inFig. 4. Both sets of dataa = 100
and 250 µm are seen to approach this specific high-
limit. In all our correlations, the characteristic diffusivi
used isD = 2× 10−5 cm2/s, the zeta potentialζ = 41 mV,
permittivity of waterε̂ = 6.9× 10−10 C2 N−1 m−2 and vis-
cosityµ = 1.0 cP.

Equation (60)offers the general scalings for anya that
are realized at large radius and large electric field w
Pe ∼ O(ε−1). This scaling is equivalent to saying that t
Debye layer Peclet numberUλ/D+ is of order unityO(ε0).
The tangential convection of ions in the polarized laye
still much weaker than the normal flux term. (The ratio
the two isO(εUλ/D+).) However, by controlling the flux
of ions through the all-importantdiffusion layer and limiting
the thickness of the polarized layer, tangential convectio
the electroneutral diffusion layer has significantly enhan
the external field penetration and reduced the polarization t
produce a weaker electrophoretic velocity. As seen inFig. 4,
the high-Pe data have yet to reach this limit. However, usi
(59) for both low and highPe, we are able to satisfactoril
collapse all data withE∞ beyondE∞ ∼ 20 in Fig. 5. Cor-
relation(59) is within a factor of 10 of all data in this rang
and is within a factor of 2 of data by Mishchuk and Takh
tov.

Correlation(59) seems to capture well the intermedia
data atE∞ = 10 to 100 inFig. 4. However, the data beyon
E∞ = 100, with presumably much largerPe, begin to devi-
ate and exceed the prediction by a factor of 10. The t
omitted in(60)has lowered the prediction significantly su
that(60)overpredicts inFig. 4but underpredicts inFig. 5.

There are several possible reasons why our theory
derpredicts the measured velocity at high field. We h
made several simplifications to arrive at a closed-form c
relation, viz., uniform slip velocity and screening leng
In reality, there could be stagnation points on the surf
other than those at the pole and equator. At highPe with
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Fig. 5. Collapse of high-speed data withĒ∞ > 20 inFig. 4. Thex-axis is 1
2

( 3Ē∞π
6U0λ〈Us 〉/D+2π

)2, and they-axis isUe . The straight line is our theory ofEq. (59)

valid for both low and highPe. The symbols are identical to those inFig. 4.
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strong convection, charges could accumulate at those poin
to produce excess polarization. At the high fields neces
to reach largePe (>100 V/cm), surface reactions can al
occur at the granule to produce excess counterions. N
theless, it is quite clear fromFigs. 4 and 5that the break
down of Dukhin’s low-Pe scaling is due to the presence o
convection–diffusion boundary layer that stops the trans
charging before complete screening occurs.

6. Discussion

The diffusion layer plays a key role in this current flu
induced nonlinear electrokinetics. At low Peclet numb
the thick diffusion layer and the polarized layer produ
complete steady-state screening. The polarization is henc
due entirely to transient capacitative charging. Comp
screening produces large tangential field and transient charg
ing produces the largest polarization. In this case, we ob
Dukhin’s scaling(2) for the maximum electrophoretic velo
ity.

At high Peclet numbers, the normal flux is enhanced
tangential convection due to electroosmotic flow. The th
ness of the electroneutral convection–diffusion layer a
ally shortens transient charging before complete screenin
occurs. The polarization is induced by the steady Oh
current due to the penetrating field. This allows more
ternal field penetration and reduces polarization. The e
trophoretic velocity is hence lower relative to the low-Pe
value.
T
E

D

-

For both transient charging at lowPe and steady current a
highPe to be possible, the granule should be an isopote
body as well as one that is penetrable to the counterions
carry the current. An electrically insulated membrane wo
not result in significant polarization beyond that endowed
its bound surface charge.

The extended polarized region also holds as much ch
as the external electromigration and diffusion fluxes al
it both during transient charing and steady current pene
tion. Its capacitance is not limited by the total bound surf
charge.

These unique properties of this DC nonlinear electro
netic phenomenon allows it to produce an electrokinetic
bility 100 times larger than itslinear counterpart. Is nonun
form polarization also produces vortices on the side rece
ing the counterion flux [26].
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